51
|
Ikegami K, Katou Y, Higashi K, Yoshimura T. Localization of circadian clock protein BMAL1 in the photoperiodic signal transduction machinery in Japanese quail. J Comp Neurol 2009; 517:397-404. [DOI: 10.1002/cne.22165] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
52
|
Ono H, Nakao N, Yoshimura T. Identification of the photoperiodic signaling pathway regulating seasonal reproduction using the functional genomics approach. Gen Comp Endocrinol 2009; 163:2-6. [PMID: 19084017 DOI: 10.1016/j.ygcen.2008.11.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 11/17/2008] [Accepted: 11/17/2008] [Indexed: 10/21/2022]
Abstract
Animals measure photoperiod (daylength) and adapt to seasonal changes in the environment by altering their physiology and behavior accordingly. Although this photoperiodic response has long been of interest, the underlying mechanism has only recently begun to be uncovered at the molecular level. Japanese quail provide an excellent model to study the molecular mechanism underlying the vertebrate photoperiodic response. The recent sequencing of the chicken genome allowed a system-level analysis of photoperiodic time measurement in quail, and this approach uncovered the key event in the photoperiodic signaling cascade that regulates seasonal reproduction. Long photoperiod-induced expression of thyrotropin in the pars tuberalis of the pituitary gland was found to trigger local thyroid hormone catabolism in the mediobasal hypothalamus, which increases the activity of the reproductive neuroendocrine system resulting in gonadal development. Since thyrotropin was only known to stimulate the thyroid gland, a traditional hypothesis-driven approach would not have been expected to predict this discovery. Thus, a functional genomics approach, which is a discovery-driven approach, provides new insights in the field of endocrinology.
Collapse
Affiliation(s)
- Hiroko Ono
- Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | |
Collapse
|
53
|
Halford S, Pires SS, Turton M, Zheng L, González-Menéndez I, Davies WL, Peirson SN, García-Fernández JM, Hankins MW, Foster RG. VA opsin-based photoreceptors in the hypothalamus of birds. Curr Biol 2009; 19:1396-402. [PMID: 19664923 DOI: 10.1016/j.cub.2009.06.066] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 06/19/2009] [Accepted: 06/25/2009] [Indexed: 11/19/2022]
Abstract
Studies in the 1930s demonstrated that birds possess photoreceptors that are located within the hypothalamus and regulate photoperiodic responses to day length. Most recently, photoperiod has been shown to alter the activity of the pars tuberalis to release thyrotrophin, which ultimately drives a reproductive response. Despite these significant findings, the cellular and molecular identity of the hypothalamic photoreceptors has remained a mystery. Action spectra implicated an opsin-based photopigment system, but further identification based on rod- or cone-opsin probes failed, suggesting the utilization of a novel opsin. The vertebrate ancient (VA) opsin photopigments were isolated in 1997 but were thought to have a restricted taxonomic distribution, confined to the agnatha and teleost fish. Here, we report the isolation of VA opsin from chicken and show that the two isoforms spliced from this gene (cVAL and cVA) are capable of forming functional photopigments. Further, we show that VA opsin is expressed within a population of hypothalamic neurons with extensive projections to the median eminence. These results provide the most complete cellular and molecular description of a deep brain photoreceptor in any vertebrate and strongly implicate VA opsin in mediating the avian photoperiodic response.
Collapse
Affiliation(s)
- Stephanie Halford
- Circadian and Visual Neuroscience, Nuffield Laboratory of Ophthalmology, University of Oxford, Headley Way, Oxford OX3 9DU, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Li H, Proudman J, Kuenzel WJ. Differential regulation of gene expression and release of FSH and prolactin by long day and sulfamethazine in chicks. Gen Comp Endocrinol 2009; 161:262-6. [PMID: 19523391 DOI: 10.1016/j.ygcen.2009.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2008] [Revised: 01/16/2009] [Accepted: 01/21/2009] [Indexed: 11/30/2022]
Abstract
In several avian species long day exposure results in plasma elevation of gonadotropins and prolactin (PRL). We examined the early (12-72h) effects of photostimulation on mRNA transcripts and plasma levels of follicle stimulating hormone (FSH) and PRL in three-week old cockerels. In addition, the neuroendocrine influence of the compound, sulfamethazine (SMZ), known to enhance light-induced gonadal development in chicks, was studied when applied with or without long-day photostimulation. Both long day exposure and SMZ intake caused a rapid increase in FSHbeta mRNA transcripts at Zeitgeber time 48 (ZT48), while only SMZ stimulated secretion of the hormone into plasma during the course of the study. In contrast to SMZ treatment, photostimulation was more effective at stimulating PRL mRNA transcripts and secretion of PRL. Results demonstrate a differential role of long day exposure and SMZ intake on the regulation of FSH and PRL synthesis and secretion and suggest that some effects of SMZ on gonadal development may be mediated by the pituitary.
Collapse
Affiliation(s)
- Hongyan Li
- Poultry Science Center, University of Arkansas, Fayetteville, AR 72701, USA.
| | | | | |
Collapse
|
55
|
Steinman MQ, Dinius SC, Siopes TD, Millam JR. Photostimulated expression of type 2 iodothyronine deiodinase mRNA is greatly attenuated in the rostral tuberal hypothalamus of the photorefractory turkey hen. J Neuroendocrinol 2008; 20:1260-9. [PMID: 18752654 DOI: 10.1111/j.1365-2826.2008.01781.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For many temperate-zone avian species, termination of breeding occurs when individuals no longer respond to previously stimulatory day lengths, a condition called photorefractoriness. Long day lengths induce significantly greater expression of c-fos and fos-related antigens (FRAs) in the tuberal hypothalamus of the photosensitive hen than that of the photorefractory hen. The tuber is also a site of photoinducible glial expression of type 2 iodothyronine deiodinase (Dio2), which converts thyroxine into its active form, triiodothyronine (T3). T3 induces withdrawal of glial processes from gonadotrophin-releasing hormone (GnRH) I nerve terminals, which is believed to permit the efficient release of GnRH I into the associated portal vasculature. Using a riboprobe, we tested whether long days induce Dio2 mRNA expression in the turkey tuber and, if so, whether this expression is reduced in photorefractory hens. Long days significantly induced rostral and caudal tuberal hypothalamic Dio2 expression in photosensitive hens. Photorefractory hens had reduced expression of Dio2 with most subjects expressing no detectable mRNA in the rostral tuber and variably attenuated amounts throughout the medial and caudal tuber. We also performed double-label immunohistochemistry to identify co-localisation between FRAs and glial fibrillary acidic protein, a glial marker. FRAs were present in the nuclei of a few astrocytes in the median eminence and infundibular nucleus of the tuber. The temporal and spatial coincidence between FRA and Dio2 expression, their mutual association with glia, and the attenuation of their response during photorefractoriness suggests that the two events are linked and that photorefractoriness involves a reduced capacity for photo-inducible gene expression within glia of the tuberal hypothalamus.
Collapse
Affiliation(s)
- M Q Steinman
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
56
|
Deviche P, Sabo J, Sharp PJ. Glutamatergic stimulation of luteinising hormone secretion in relatively refractory male songbirds. J Neuroendocrinol 2008; 20:1191-202. [PMID: 18673412 DOI: 10.1111/j.1365-2826.2008.01771.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Seasonal breeding in two Sonoran desert passerines, the Cassin's (Aimophila cassinii) and Rufous-crowned (Aimophila ruficeps) Sparrows is thought to be terminated by the development of a decrease in responsiveness to photostimulation, a condition known as relative photorefractoriness. It was predicted that the development of relative refractoriness is a consequence of a decrease in gonadotrophin-releasing hormone (GnRH) synthesis and associated stores of releasable GnRH. This hypothesis was tested by determining the luteinising hormone (LH) responses to the excitatory amino acid glutamate agonist N-methyl-D,L-aspartate (NMA) in males of the two species subjected to photomanipulations aimed at generating five groups: Fully photosensitive with undeveloped testes on short days (8L : 16D); fully photosensitive with developed testes on 13L : 11D; relatively photorefractory with regressed testes on 13L : 11D, and groups with developed testes held on 15L : 9D or 16L : 8D. LH release was stimulated in the Cassin's Sparrow by NMA most in the 8L group; to a lesser, but similar extent in the two 13L groups; and not at all in the 15L and 16L groups. LH release was not stimulated by NMA in any of the photoperiodic regimes in the Rufous-crowned Sparrow. In both species, NMA induced Fos-like immunoreactivity in the anterior and basal hypothalamus, but not in GnRH cell bodies. It is concluded that the development of relative photorefractoriness in Cassin's Sparrows is a consequence of reduced GnRH synthesis, reflected in a reduction in releasable GnRH. The lack of LH response of the Rufous-crowned Sparrows to NMA administration may be a consequence of high responsiveness to handling stress.
Collapse
Affiliation(s)
- P Deviche
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA.
| | | | | |
Collapse
|
57
|
Li H, Kuenzel WJ. A possible neural cascade involving the photoneuroendocrine system (PNES) responsible for regulating gonadal development in an avian species, Gallus gallus. Brain Res Bull 2008; 76:586-96. [PMID: 18598849 DOI: 10.1016/j.brainresbull.2008.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 03/13/2008] [Accepted: 04/21/2008] [Indexed: 02/06/2023]
Abstract
Neurons located in the lateral septal organ (LSO) and medial basal hypothalamus (MBH) have been proposed to be encephalic photoreceptors (EPRs), which sense photoperiodic time and initiate avian gonadal development. Controversy continues regarding the location of EPRs serving the PNES and their signal transduction pathway. Using quantitative real-time RT-PCR we determined activation of key genes following prolonged light periods and sulfamethethazine (compound known to advance light-induced testes development) in 21-day old chicks. Earliest activation occurred in genes of vasoactive intestinal polypeptide (VIP) and type 6 phosphodiesterase beta subunit (PDE-6 beta) in the LSO at 4 and 6h, respectively, after onset of light and sulfamethazine intake. In contrast, no change was detected in the MBH during the first 8h of that treatment. Thereafter, significant increases in gonadotropin releasing hormone (GnRH-1) and VIP receptor (VIPR) mRNA transcripts were detected in the bed nucleus of the pallial commissure (NCPa). Hours later, activation of all four genes (VIP, PDE-6 beta, GnRH-1, VIPR) were induced solely by photostimulation. Deiodinase 2 and tyrosine hydroxylase in the MBH did not show increased gene expression until 12h of photostimulation. Prolactin mRNA transcripts showed significant increases at 4h due to SMZ intake and at 24, 36 and 48 h due to long-day photoperiodic effects. Data suggest that VIP neurons in the LSO may serve as EPRs and utilize PDE, present in the phototransduction cascade of known photoreceptors. Additionally, VIP released from the LSO may modulate GnRH-1 neurons in the NCPa via VIP receptors by increasing GnRH-1 gene expression.
Collapse
MESH Headings
- Animals
- Anti-Infective Agents/administration & dosage
- Anti-Infective Agents/pharmacology
- Brain/drug effects
- Brain/growth & development
- Brain/metabolism
- Chickens/genetics
- Chickens/growth & development
- Cyclic Nucleotide Phosphodiesterases, Type 6/genetics
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/radiation effects
- Gonadotropin-Releasing Hormone/genetics
- Iodide Peroxidase/genetics
- Male
- Photoperiod
- Pituitary Gland, Anterior/drug effects
- Pituitary Gland, Anterior/growth & development
- Pituitary Gland, Anterior/metabolism
- Prolactin/genetics
- Receptors, Vasoactive Intestinal Peptide/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sulfamethazine/administration & dosage
- Sulfamethazine/pharmacology
- Testis/growth & development
- Testis/metabolism
- Tyrosine 3-Monooxygenase/genetics
- Vasoactive Intestinal Peptide/genetics
- Vision, Ocular/drug effects
- Vision, Ocular/genetics
- Vision, Ocular/radiation effects
- Iodothyronine Deiodinase Type II
Collapse
Affiliation(s)
- Hongyan Li
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States.
| | | |
Collapse
|
58
|
Nakao N, Ono H, Yoshimura T. Thyroid hormones and seasonal reproductive neuroendocrine interactions. Reproduction 2008; 136:1-8. [DOI: 10.1530/rep-08-0041] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Many animals that breed seasonally measure the day length (photoperiod) and use these measurements as predictive information to prepare themselves for annual breeding. For several decades, thyroid hormones have been known to be involved in this biological process; however, their precise roles remain unknown. Recent molecular analyses have revealed that local thyroid hormone activation in the hypothalamus plays a critical role in the regulation of the neuroendocrine axis involved in seasonal reproduction in both birds and mammals. Furthermore, functional genomics analyses have revealed a novel function of the hormone thyrotropin. This hormone plays a key role in signaling day-length changes to the brain and thus triggers seasonal breeding. This review aims to summarize the currently available knowledge on the interactions between elements of the thyroid hormone axis and the neuroendocrine system involved in seasonal reproduction.
Collapse
|
59
|
Calisi RM, Rizzo NO, Bentley GE. Seasonal differences in hypothalamic EGR-1 and GnIH expression following capture-handling stress in house sparrows (Passer domesticus). Gen Comp Endocrinol 2008; 157:283-7. [PMID: 18571170 DOI: 10.1016/j.ygcen.2008.05.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 04/21/2008] [Accepted: 05/02/2008] [Indexed: 11/24/2022]
Abstract
Stress is a known inhibitor of reproductive function. The mechanisms by which stress acts to influence the reproductive axis have been intensely studied and appear to be extremely varied. Gonadotropin-releasing hormone (GnRH) is a critical component of the vertebrate reproductive axis and directly causes pituitary gonadotropin synthesis and release. A second neuropeptide, gonadotropin-inhibitory hormone (GnIH), directly inhibits pituitary gonadotropin synthesis and release in birds. We hypothesized that stress effects upon reproduction are mediated via the hypothalamic GnIH system. We examined the effects of capture-handling stress in the hypothalamus of male and female adult house sparrows (Passer domesticus) at the start (spring) and end of the breeding season (fall). We quantified numbers of GnIH neurons to provide an estimate of hypothalamic GnIH content. In addition, we quantified the expression of the protein product of the immediate-early gene, EGR-1, using this as an indicator of neuronal activation. We saw an increase in EGR-1 positive cells in the paraventricular nuclei of stressed birds as opposed to controls at both collecting times, but this stress response was more apparent in the spring as opposed to the fall. There were more GnIH-positive neurons in fall birds versus those sampled in the spring, and a significant increase in GnIH positive neurons was seen in stressed birds only in spring. GnIH cells show little to no activation of EGR-1, suggesting that EGR-1 is not involved in GnIH transcription in response to capture-handling stress. These data imply an influence of stress upon the paraventricular nucleus and the GnIH system that changes over the annual cycle of reproduction.
Collapse
Affiliation(s)
- Rebecca M Calisi
- Department of Integrative Biology and Helen Wills Neuroscience Institute, University of California, 3060 Valley Life Sciences, Bldg 3140, Berkeley, CA 94720-3140, USA.
| | | | | |
Collapse
|
60
|
Huang YM, Shi ZD, Liu Z, Liu Y, Li XW. Endocrine regulations of reproductive seasonality, follicular development and incubation in Magang geese. Anim Reprod Sci 2008; 104:344-58. [PMID: 17368765 DOI: 10.1016/j.anireprosci.2007.02.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 01/22/2007] [Accepted: 02/16/2007] [Indexed: 11/20/2022]
Abstract
This study investigated the regulatory mechanisms of seasonal breeding, developments of ovarian follicles and incubation in Magang geese, a short day breeding bird. Throughout the year, plasma PRL concentrations increased in non-breeding season in spring and summer (from April to early August), and remained low in the rest of the year, while LH concentrations peaked in August and September and remained low in non-breeding season (March to June). Lengthening photoperiod increased PRL and decreased LH secretions, which inhibited follicular development, terminated lay and induced moulting, while shortening photoperiod decreased PRL and increased LH secretion and reinitiated lay. Long photoperiod stimulated PRL secretion occurred with increased gene expressions of PRL in the pituitary gland and VIP in the hypothalamus, but inhibition of LH secretion was without decreases in gene expressions of LH beta subunit and GnRH. Under breeding conditions, terminating incubation decreased PRL but increased LH concentrations and resumed lay in 24 days following recruitment of about 10 large white follicles into hierarchical development. Plasma concentrations of progesterone and inhibin peaked at peak lay, whereas LH concentrations exhibited a bi-phasic pattern with troughs at peak lay and incubation when PRL concentrations were high. Ninety percent geese exhibited incubation behaviour after laying one clutch of approximately eight eggs in approximately 30 days. In conclusion the seasonal reproductive activities in Magang geese is directly inhibited by long photoperiod and directly stimulated by short photoperiod via PRL and LH secretions, whose interplays also cause occurrences of four to five lay and incubation cycles in the breeding season.
Collapse
Affiliation(s)
- Y M Huang
- Department of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | | | | | | | | |
Collapse
|
61
|
Paul MJ, Zucker I, Schwartz WJ. Tracking the seasons: the internal calendars of vertebrates. Philos Trans R Soc Lond B Biol Sci 2008; 363:341-61. [PMID: 17686736 PMCID: PMC2606754 DOI: 10.1098/rstb.2007.2143] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Animals have evolved many season-specific behavioural and physiological adaptations that allow them to both cope with and exploit the cyclic annual environment. Two classes of endogenous annual timekeeping mechanisms enable animals to track, anticipate and prepare for the seasons: a timer that measures an interval of several months and a clock that oscillates with a period of approximately a year. Here, we discuss the basic properties and biological substrates of these timekeeping mechanisms, as well as their reliance on, and encoding of environmental cues to accurately time seasonal events. While the separate classification of interval timers and circannual clocks has elucidated important differences in their underlying properties, comparative physiological investigations, especially those regarding seasonal prolactin secretions, hint at the possibility of common substrates.
Collapse
Affiliation(s)
- Matthew J Paul
- Department of Neurology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| | | | | |
Collapse
|
62
|
Balthazart J. Activation of luteinizing hormone secretion by photoperiod and social stimuli: different paths to the same destination. Endocrinology 2007; 148:5611-3. [PMID: 18006638 DOI: 10.1210/en.2007-1258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Jacques Balthazart
- Center for Cellular and Molecular Neurobiology, Research Group in Behavioral Neuroendocrinology, University of Liège, 1 Avenue de l'Hopital (Bat B36), Liège, Belgium.
| |
Collapse
|
63
|
Maney DL, Goode CT, Lake JI, Lange HS, O'Brien S. Rapid neuroendocrine responses to auditory courtship signals. Endocrinology 2007; 148:5614-23. [PMID: 17823268 DOI: 10.1210/en.2007-0879] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In many species, courtship signals enhance reproductive function in the receiver. How these social signals are processed by the brain, particularly how they induce an endocrine response, is not well understood. Songbirds provide an ideal model in which to study this phenomenon because of the large existing literature on both their auditory neurobiology and the control of their reproductive physiology by environmental cues. To date, all of the relevant studies on songbirds have involved measuring the effects of male vocalizations on ovarian function over a period of weeks, a time course that precludes detailed analysis of the neuroendocrine mechanisms operating during song perception. We played recordings of conspecific male song to laboratory-housed female white-throated sparrows and quantified the resulting rapid changes in LH as well as the induction of the immediate early gene Egr-1 in the GnRH system and mediobasal hypothalamus (MBH). Hearing song for 42 min induced LH release and Egr-1 expression in the MBH, but did not alter Egr-1 expression in GnRH neurons. The time course of LH release and the pattern of Egr-1 expression together suggest that song acts as a trigger to induce GnRH release in a manner resembling photostimulation. The Egr-1 response in the MBH was qualitatively distinguishable from the responses to either photostimulation or pharmacologically induced LH release but seemed to involve overlapping neuronal populations. Song-induced Egr-1 expression in the MBH was correlated with the expression in midbrain and forebrain auditory centers, further supporting a role for the MBH in processing social information.
Collapse
Affiliation(s)
- Donna L Maney
- Department of Psychology, Emory University, 532 Kilgo Circle, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
64
|
Kang SW, Thayananuphat A, Bakken T, El Halawani ME. Dopamine-melatonin neurons in the avian hypothalamus controlling seasonal reproduction. Neuroscience 2007; 150:223-33. [PMID: 17935892 DOI: 10.1016/j.neuroscience.2007.08.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 08/03/2007] [Accepted: 09/07/2007] [Indexed: 10/22/2022]
Abstract
Day length cues are used by temperate zone birds to time seasonal changes in reproductive physiology and behavior. However, the neuronal and neurochemical circuits used to measure day length (photoperiodic time measurement; PTM), transduce light information and activate the reproductive neuroendocrine system have not been definitely established. Recent findings from our laboratory provide data showing dopamine (DA) neurons within the premammillary nucleus (PMM) of the caudal turkey hypothalamus are putative photoreceptive neurons. These neurons reach threshold activation when a brief pulse of light is provided during the photo-inducible phase for photosexual stimulation. To further clarify the role of PMM neurons in coding daylight information, we showed that by using double-label immunocytochemistry (ICC) these neurons are immunoreactive (ir) to both tyrosine hydroxylase (TH; the rate limiting enzyme in DA biosynthesis) and melatonin (MEL). Moreover, we found these neurons to express tryptophan hydroxylase 1 (TPH1; the first enzyme in MEL biosynthesis) and 5-HT N-acetyltransferase (AANAT; a key regulatory enzyme in MEL synthesis) mRNAs but not neuronal tryptophan hydroxylase 2 mRNA (TPH 2; the rate limiting enzyme in 5-HT pathway). Both TH and TPH1 mRNAs were shown to cycle rhythmically, and with opposite phases, in PMM neurons of birds kept under a diurnal illumination cycle (12-h light/dark; LD). These neurons could also generate 24 h TH and TPH1 mRNA expression rhythms with the same phase relationship in constant light (LL) and constant dark (DD). In addition, the expression patterns and amplitudes of TH and TPH1 mRNAs were different between long and short photoperiods. These findings may form the basis for an endogenous dual-oscillator circadian system within PMM DA-MEL co-localized neurons controlling reproductive seasonality in birds.
Collapse
Affiliation(s)
- S W Kang
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | |
Collapse
|
65
|
Yasuo S, Yoshimura T, Ebihara S, Korf HW. Temporal dynamics of type 2 deiodinase expression after melatonin injections in Syrian hamsters. Endocrinology 2007; 148:4385-92. [PMID: 17540726 DOI: 10.1210/en.2007-0497] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In many species living in temperate zones, reproduction is controlled by the photoperiod. Recent findings have clarified that type 2 iodothyronine deiodinase (Dio2) plays a significant role in the photoperiodic response of gonads in the mediobasal hypothalamus, converting the prohormone T(4) into bioactive T(3). In mammals, Dio2 expression is suppressed by long-term melatonin injections, although the signal transduction pathways that link the melatonin signal to Dio2 expression are unknown. As a first step to approach the problem, we have here investigated the temporal dynamics of the melatonin effect on Dio2 expression using male Syrian hamsters. Dio2 mRNA levels were found to show diurnal rhythms under long-day conditions in an area adjacent to the tuberoinfundibular sulcus and in the ependymal cell layer lining the ventrobasal walls of the third ventricle. Daily sc melatonin injections given in the late afternoon under long-day condition suppressed the Dio2 mRNA levels already at the first day after the onset of the treatment in the ependymal cell layer lining the ventrobasal walls of the third ventricle, and 1 d later in an area adjacent to the tuberoinfundibular sulcus. These suppressive effects were sustained for at least 2 d after a single injection. Furthermore, we examined the temporal changes of the Dio2 expression after the onset of the treatment, showing that the suppression did not occur until midday of the next day. These data suggest that melatonin is involved in the signal transduction mechanisms controlling the photoperiodic response of gonads by acting on Dio2 expression rather rapidly through indirect pathways.
Collapse
Affiliation(s)
- Shinobu Yasuo
- Dr. Senckenbergische Anatomie, Institute of Anatomy II, Johann Wolfgang Goethe-University Frankfurt, Theodor-Stern-kai 7, 60590 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
66
|
Dawson A, Sharp PJ. Photorefractoriness in birds--photoperiodic and non-photoperiodic control. Gen Comp Endocrinol 2007; 153:378-84. [PMID: 17367789 DOI: 10.1016/j.ygcen.2007.01.043] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 01/29/2007] [Accepted: 01/30/2007] [Indexed: 11/18/2022]
Abstract
Avian breeding seasons vary in length and in the degree of asymmetry with respect to the annual cycle in photoperiod to suit species-specific food resources. Asymmetry is the result of photorefractoriness. The degree of photorefractoriness, absolute or relative, is related to the length and asymmetry of the breeding season. Absolute photorefractoriness is associated with a marked decrease in hypothalamic cGnRH-I. However, during the initiation of absolute photorefractoriness there is a transient period during which the gonads regress in advance of the decrease in cGnRH-I, and this stage may be analogous to relative photorefractoriness. Photoinduced prolactin secretion has an inhibitory modulatory role during the initiation of absolute photorefractoriness, but is unlikely to be the only factor involved, while a possible role for avian gonadotrophin inhibitory hormone is not established. The first stage in the termination of photorefractoriness is the resumption of cGnRH-I synthesis. The major environmental cue driving gonadal maturation, and the transitions between the photosensitive state and photorefractoriness is the annual cycle in photoperiod. A range of non-photoperiodic cues may also play a role: social cues, climatic factors (temperature, rainfall, etc.), food availability and nutritional state. There is considerable evidence that these cues can influence gonadal maturation and the timing of egg-laying. There is some evidence that non-photoperiodic cues (certainly temperature and possibly social cues and food availability) can affect the timing of the onset of photorefractoriness, but no evidence that they can influence the time of the end of photorefractoriness.
Collapse
Affiliation(s)
- Alistair Dawson
- Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS, UK.
| | | |
Collapse
|
67
|
Zawilska JB, Lorenc A, Berezínska M, Vivien-Roels B, Pévet P, Skene DJ. Photoperiod-Dependent Changes in Melatonin Synthesis in the Turkey Pineal Gland and Retina. Poult Sci 2007; 86:1397-405. [PMID: 17575188 DOI: 10.1093/ps/86.7.1397] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effect of photoperiod on melatonin content and the activity of the melatonin-synthesizing enzymes, namely, serotonin N-acetyltransferase (AANAT) and hydroxyindole-O-methyltransferase, were investigated in the pineal gland and retina of turkeys. The birds were adapted to 3 different lighting conditions: 16L:8D (long photoperiod), 12L:12D (regular photoperiod), and 8L:16D (short photoperiod). Pineal, retinal, and plasma melatonin concentrations oscillated with a robust diurnal rhythm, with high values during darkness. The duration of elevated nocturnal melatonin levels in the turkey pineal gland, retina, and plasma changed markedly in response to the length of the dark phase, being longest during the short photoperiod with 16 h of darkness. These photoperiodic variations in melatonin synthesis appear to be driven by AANAT, because changes in the activity of this enzyme were closely correlated with changes in melatonin. By contrast, pineal and retinal hydroxyindole-O-methyltransferase activities failed to exhibit any significant 24-h variation in the different photoperiods. A marked effect of photoperiod on the level of melatonin production was also observed. Peak values of melatonin and AANAT activity in the pineal gland (but not in the retina) were highest during the long photoperiod. During the light phase, mean melatonin concentrations in the pineal gland and retina of turkeys kept under the long photoperiod were significantly higher compared with those from birds maintained under the regular and short photoperiods. In addition, mean circulating melatonin levels were lowest in the short photoperiod. Finally, the magnitude of the light-evoked suppression of nighttime pineal AANAT activity was also influenced by photoperiod, with suppression being smallest under the long photoperiod. These findings show that in the turkey, photoperiod plays an important role in regulating the melatonin signal.
Collapse
Affiliation(s)
- J B Zawilska
- Centre for Medical Biology, Polish Academy of Sciences, Lodz, 93-232, Poland.
| | | | | | | | | | | |
Collapse
|
68
|
Thayananuphat A, Kang SW, Bakken T, Millam JR, El Halawani ME. Rhythmic dependent light induction of gonadotrophin-releasing hormone-I expression and activation of dopaminergic neurones within the premammillary nucleus of the turkey hypothalamus. J Neuroendocrinol 2007; 19:399-406. [PMID: 17388816 DOI: 10.1111/j.1365-2826.2007.01545.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Our previous studies using turkey hens have demonstrated that c-fos mRNA (a marker of neuronal activation) is expressed in gonadotrophin-releasing hormone-I (GnRH-I), vasoactive intestinal peptide (VIP) and dopamine (DA) neurones following electrical stimulation in the preoptic area. DA has been shown to have both stimulatory and inhibitory effects on the GnRH-I/luteinising hormone (LH), follicle-stimulating hormone (FSH) and VIP/prolactin (PRL) systems. To identify the DA neurones that mediate the stimulatory influences of photoperiod on the reproductive system, we examined c-fos mRNA induction in DA, GnRH-I, and VIP neurones in the turkey hypothalamus using a dark-interruption experimental design. A 30-min light period was provided to short day (6L : 18D) photosensitive turkeys at times when birds were responsive to light (14 h after first light) and at times when birds were unresponsive to light (8 h and 20 h after first light). The only area where DA neurones were activated when the birds were provided with light was in the nucleus premammillaris (PMM). The number of activated DA neurones was significantly greater when light was provided at 14 h (during the photoinducible phase) than at 8 h or 20 h. At 14 h, there was also an increase in the number of GnRH-I neurones activated in the area of the nucleus commissura pallii (nCPa), as well as an up-regulation of GnRH-I mRNA expression. No expression of c-fos mRNA was observed in VIP neurones in the nucleus infundibularis or up-regulation of VIP mRNA expression in any of the experimental light treatments. These results are the first evidence to demonstrate a relationship between the dopaminergic system in the PMM and the GnRH-I system in the nCPa during the photoinduction of avian reproductive activity.
Collapse
Affiliation(s)
- A Thayananuphat
- Department of Animal Science, University of Minnesota, St Paul, MN 55108, USA
| | | | | | | | | |
Collapse
|
69
|
Thayananuphat A, Kang SW, Bakken T, Millam JR, El Halawani ME. Rhythm-dependent light induction of the c-fos gene in the turkey hypothalamus. J Neuroendocrinol 2007; 19:407-17. [PMID: 17388817 DOI: 10.1111/j.1365-2826.2007.01544.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Day length (photoperiod) is a powerful synchroniser of seasonal changes in the reproductive neuroendocrine activity in temperate-zone birds. When exposed to light during the photoinducible phase, reproductive neuroendocrine responses occur. However, the neuroendocrine systems involved in avian reproduction are poorly understood. We investigated the effect of light exposure at different circadian times upon the hypothalamus and components of the circadian system, using c-fos mRNA expression, measured by in situ hybridisation, as an indicator of light-induced neuronal activity. Levels of c-fos mRNA in these areas were compared after turkey hens (on a daily 6-h light period) had been exposed to a 30-min period of light occurring at 8, 14, or 20 h after the onset of first light of the day (subjective dawn). Non-photostimulated control birds were harvested at the same times. In birds, photostimulated within the photoinducibile phase (14 h), in contrast to before or after, c-fos mRNA was significantly increased in the nucleus commissurae pallii (nCPa), nucleus premamillaris (PMM), eminentia mediana (ME), and organum vasculosum lamina terminalis (OVLT). Photostimulation increased c-fos mRNA expression in the pineal gland, nucleus suprachiasmaticus, pars visualis (vSCN) and nucleus inferioris hypothalami compared to that of their corresponding nonphotostimulated controls. However, the magnitudes of the responses in these areas were similar irrespective of where in the dark period the pulses occurred. No c-fos mRNA was induced in the nucleus infundibulari, in response to the 30-min light period at any of the circadian times tested. The lack of c-fos up-regulation in the pineal gland and vSCN following photostimulation during the photoinducible phase lends credence to the hypothesis that these areas are not involved in the photic initiation of avian reproduction. On the other hand, c-fos mRNA increases in the nCPa, ME, and OVLT support other studies showing that these areas are involved in the onset of reproductive behaviour initiated by long day lengths. The present study provides novel data showing that the PMM in the caudal hypothalamus is involved in the neuronally mediated, light-induced initiation of reproductive activity in the turkey hen.
Collapse
Affiliation(s)
- A Thayananuphat
- Department of Animal Science, University of Minnesota, St Paul, MN 55108, USA
| | | | | | | | | |
Collapse
|
70
|
Dawson A. Seasonality in a temperate zone bird can be entrained by near equatorial photoperiods. Proc Biol Sci 2007; 274:721-5. [PMID: 17254997 PMCID: PMC2197212 DOI: 10.1098/rspb.2006.0067] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Birds use photoperiod to control the time of breeding and moult. However, it is unclear whether responses are dependent on absolute photoperiod, the direction and rate of change in photoperiod, or if photoperiod entrains a circannual clock. If starlings (Sturnus vulgaris) are kept on a constant photoperiod of 12h light:12h darkness per day (12L:12D), then they can show repeated cycles of gonadal maturation, regression and moult, which is evidence for a circannual clock. In this study, starlings kept on constant 11.5L:12.5D for 4 years or 12.5L:11.5D for 3 years showed no circannual cycles in gonadal maturation or moult. So, if there is a circannual clock, it is overridden by a modest deviation in photoperiod from 12L:12D. The responses to 11.5L:12.5D and 12.5L:11.5D were very different, the former perceived as a short photoperiod (birds were photosensitive for most of the time) and the latter as a long photoperiod (birds remained permanently photorefractory). Starlings were then kept on a schedule which ranged from 11.5L:12.5D in mid-winter to 12.5L:11.5D in mid-summer (simulating the annual cycle at 9 degrees N) for 3 years. These birds entrained precisely to calendar time and changes in testicular size and moult were similar to those of birds under a simulated cycle at 52 degrees N. These data show that birds are very sensitive to changes in photoperiod but that they do not simply respond to absolute photoperiod nor can they rely on a circannual clock. Instead, birds appear to respond to the shape of the annual change in photoperiod. This proximate control could operate from near equatorial latitudes and would account for similar seasonal timing in individuals of a species over a wide range of latitudes.
Collapse
Affiliation(s)
- Alistair Dawson
- Centre for Ecology and Hydrology, Monks Wood, Huntingdon, Cambridge PE28 2LS, UK.
| |
Collapse
|
71
|
Revel FG, Saboureau M, Pévet P, Mikkelsen JD, Simonneaux V. Melatonin regulates type 2 deiodinase gene expression in the Syrian hamster. Endocrinology 2006; 147:4680-7. [PMID: 16873538 DOI: 10.1210/en.2006-0606] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In seasonal species, photoperiod organizes various physiological processes, including reproduction. Recent data indicate that the expression of type 2 iodothyronine deiodinase (Dio2) is modulated by photoperiod in the mediobasal hypothalamus of some seasonal species. Dio2 is believed to control the local synthesis of bioactive T(3) to regulate gonadal response. Here we used in situ hybridization to study Dio2 expression in the hypothalamus of a photoperiodic rodent, the Syrian hamster. Dio2 was highly expressed in reproductively active hamsters in long day, whereas it was dramatically reduced in sexually inhibited hamsters maintained in short day. This contrasted with the laboratory rat, a nonphotoperiodic species, in which no evidence for Dio2 photoperiodic modulation was seen. We also demonstrate that photoperiodic variations of Dio2 expression in hamsters are independent from secondary changes in gonadal steroids. Studies in pinealectomized hamsters showed that the photoperiodic variation of Dio2 expression is melatonin dependent, and injections of long day hamsters with melatonin for only 7 d were sufficient to inhibit Dio2 expression to that of short day levels. Finally, because in some seasonal species thyroid hormones are involved in photorefractoriness, we examined Dio2 expression in short day-refractory hamsters and found that Dio2 mRNA levels remained low despite full reproductive recrudescence. Altogether, these results demonstrate that in the Syrian hamster Dio2 is photoperiodically modulated via a melatonin-dependent process. Furthermore, refractoriness to photoperiod in hamsters appears to occur independently of Dio2. These results raise new perspectives for understanding how thyroid hormones are involved in the control of photoperiodic neuroendocrine processes.
Collapse
Affiliation(s)
- Florent G Revel
- Département de Neurobiologie des Rythmes, Centre National de la Recherche Scientifique Unité Mixte de Recherche, 7168/LC2, Institut des Neurosciences Cellulaires et Intégratives, Université Louis Pasteur, 67084 Strasbourg Cedex, France
| | | | | | | | | |
Collapse
|
72
|
Yasuo S, Watanabe M, Iigo M, Yamamura T, Nakao N, Takagi T, Ebihara S, Yoshimura T. Molecular mechanism of photoperiodic time measurement in the brain of Japanese quail. Chronobiol Int 2006; 23:307-15. [PMID: 16687304 DOI: 10.1080/07420520500521913] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In most organisms living in temperate zones, reproduction is under photoperiodic control. Although photoperiodic time measurement has been studied in organisms ranging from plants to vertebrates, the underlying molecular mechanism is not well understood. The Japanese quail (Coturnix japonica) represents an excellent model to study this problem because of the rapid and dramatic photoperiodic response of its hypothalamic-pituitary-gonadal axis. Recent investigations of Japanese quail show that long-day-induced type 2 deiodinase (Dio2) expression in the mediobasal hypothalamus (MBH) plays an important role in the photoperiodic gonadal regulation by catalyzing the conversion of the prohormone thyroxine (T(4)) to bioactive 3,5,3'-triiodothyronine (T3). The T3 content in the MBH is approximately 10-fold higher under long than short days and conditions, and the intracerebroventricular infusion of T3 under short days and conditions mimics the photoperiodic gonadal response. While Dio2 generates active T3 from T4 by outer ring deiodination, type 3 deiodinase (Dio3) catalyzes the conversion of both T3 and T4 into inactive forms by inner ring deiodination. In contrast to Dio2 expression, Dio3 expression in the MBH is suppressed under the long-day condition. Photoperiodic changes in the expression of both genes during the photoinduction process occur before the changes in the level of luteinizing hormone (LH) secretion, suggesting that the reciprocal changes in Dio2 and Dio3 expression act as gene switches of the photoperiodic molecular cascade to trigger induction of LH secretion.
Collapse
Affiliation(s)
- Shinobu Yasuo
- Division of Biomodeling, Graduate School of Bioagricultural Sciences & Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Al-Zailaie KA, Kang SW, Youngren OM, Thayananuphat A, Bakken T, Chaiseha Y, Millam JR, Proudman JA, El Halawani ME. Identification of dopamine, gonadotrophin-releasing hormone-I, and vasoactive intestinal peptide neurones activated by electrical stimulation to the medial preoptic area of the turkey hypothalamus: a potential reproductive neuroendocrine circuit. J Neuroendocrinol 2006; 18:514-25. [PMID: 16774500 DOI: 10.1111/j.1365-2826.2006.01443.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The neural and neurochemical substrates regulating reproduction in birds remain vaguely defined. The findings that electrical stimulation in the medial preoptic area (ES/MPOA) or intracerebroventricular infusion of dopamine (DA) stimulated luteinising hormone (LH) and prolactin (PRL) release in female turkeys, led to the suggestion that ES/MPOA might help to clarify the DA circuitry regulating LH and PRL. We used c-fos mRNA and tyrosine hydroxylase immunoreactivity as measured by double in situ hybridisation/immunocytochemistry (ISH/ICC) to determine which group/subgroup of DA neurones was activated following unilateral ES/MPOA. To establish that the reproductive neuroendocrine system was activated, double ISH/ICC was also conducted on c-fos/gonadotrophin-releasing hormone-I (GnRH-I) and c-fos/vasoactive intestinal peptide (VIP). Changes in circulating LH and PRL were determined by radioimmunoassay. Unilateral ES/MPOA (100 microA, right side) of anaesthetised laying turkeys for 30 min increased circulating LH and PRL levels. It also induced c-fos mRNA expression on the ipsilateral side by all GnRH-I neurones within the septopreoptic region, implying that GnRH-I neurones in this region share similar circuitry. VIP neurones within the nucleus infundibularis were the only VIP group to show c-fos mRNA expression, suggesting their involvement in ES/MPOA induced PRL release. c-fos mRNA expression was also observed in a subgroup of DA neurones in the nucleus mamillaris lateralis (ML). To our knowledge, the present study is the first to show that activation of DAergic cells in the ML is associated with the activation of GnRH-I and VIP neurones and the release of LH and PRL. It is likely that ES/MPOA activated VIP/GnRH-I neurones via activation of DA neurones in the ML, as this was the only DA subgroup that showed c-fos mRNA expression.
Collapse
Affiliation(s)
- K A Al-Zailaie
- Department of Animal Science, University of Minnesota, St Paul, MN, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Kang SW, Thayananuphat A, Rozenboim I, Millam JR, Proudman JA, El Halawani ME. Expression of hypothalamic GnRH-I mRNA in the female turkey at different reproductive states and following photostimulation. Gen Comp Endocrinol 2006; 146:91-9. [PMID: 16427052 DOI: 10.1016/j.ygcen.2005.10.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 09/07/2005] [Accepted: 10/09/2005] [Indexed: 11/30/2022]
Abstract
In birds, changes in hypothalamic gonadotropin-releasing hormone-I (GnRH-I) content and release are correlated with reproductive stages. This study examined the distribution and expression level of GnRH-I mRNA in anatomically discrete hypothalamic nuclei throughout the turkey reproductive cycle and following photostimulation. GnRH-I mRNA expression was determined using in situ hybridization in non-photostimulated (NPS), egg-laying (LAY), incubating (INC) and photorefractory (REF) hens. Overall, GnRH-I mRNA expression was greatest in the nucleus commissurae pallii (nCPa) and around the organum vasculosum lamina terminalis (OVLT), with less expression observed in the nucleus septalis lateralis (SL), cortico-habenula cortico-septum area, and within the nucleus preopticus medialis. GnRH-I mRNA expression was significantly increased in nCPa, OVLT, and SL after NPS hens (6L:18D) were exposed to a 30 or 90 min pulse of light beginning 14 h after first light (dawn). GnRH-I mRNA abundance within nCPa, OVLT and SL was greater in LAY than in NPS and INC hens, while mRNA expression was least in REF hens. These results indicate that GnRH-I mRNA expression in birds is sensitive to light stimulation during the photosensitive period and can be used to more precisely characterize their different reproductive stages.
Collapse
Affiliation(s)
- Seong W Kang
- Department of Animal Science, University of Minnesota, 495 AnSci/Vet Med Bldg., 1988 Fitch Ave., St. Paul, MN 55108 ,USA
| | | | | | | | | | | |
Collapse
|
75
|
Hazlerigg DG, Wagner GC. Seasonal photoperiodism in vertebrates: from coincidence to amplitude. Trends Endocrinol Metab 2006; 17:83-91. [PMID: 16513363 DOI: 10.1016/j.tem.2006.02.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 01/26/2006] [Accepted: 02/16/2006] [Indexed: 11/23/2022]
Abstract
In vertebrates living in regions that range from tropical to polar zones, the day length (photoperiod) is a powerful synchronizer of seasonal changes in endocrine and metabolic physiology. This seasonal photoperiodism depends on the responses of internal circadian clocks to changing patterns of light-dark exposure, which can be conceptualized in the form of "coincidence-timing" models. The structural basis for this timing function is formed by a specialized "photoperiodic axis" that links light reception to the neuroendocrine system. In this review we describe the essential elements of this axis in mammals and birds, and discuss recent progress in understanding the cellular and molecular mechanisms through which this axis transduces photoperiodic change into altered endocrine output.
Collapse
Affiliation(s)
- David G Hazlerigg
- University of Aberdeen, Zoology, Tillydrone Avenue, Aberdeen AB24 2TZ, UK.
| | | |
Collapse
|
76
|
Meddle SL, Bush S, Sharp PJ, Millar RP, Wingfield JC. Hypothalamic pro-GnRH-GAP, GnRH-I and GnRH-II during the onset of photorefractoriness in the white-crowned sparrow (Zonotrichia leucophrys gambelii). J Neuroendocrinol 2006; 18:217-26. [PMID: 16454805 DOI: 10.1111/j.1365-2826.2005.01403.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gambel's white-crowned sparrow is a long distance migrant that undergoes spontaneous gonadal regression as a result of long day exposure. This termination of breeding is caused by the development of photorefractoriness and the birds become insensitive to long days, including continuous light. The present study investigated its possible mechanisms by examining the activity of the gonadotrophin-releasing hormone (GnRH) system under different photoperiodic regimes. We investigated the localisation and distribution of GnRH-I, its precursor pro-GnRH-GAP and GnRH-II in Gambel's white-crowned sparrow brain using immunocytochemistry with specific antibodies during photostimulation and the development of photorefractoriness. The study revealed that photoperiodic treatment, including the onset of photorefractoriness, had no significant effect on the size or number of GnRH-I, pro-GnRH-GAP or GnRH II immunoreactive cells, or the density of the GnRH-I, pro-GnRH-GAP immunoreactive fibres at the median eminence. GnRH-II was not found in the median eminence, suggesting that it does not regulate pituitary gonadotrophin secretion. GnRH-I measurement in hypothalamic extracts by radioimmunoassay did not reveal any significant difference between birds that were photostimulated or in the early stages of photorefractoriness. Furthermore, the action of the excitatory amino acid glutamate agonist N-methyl-D-aspartate on GnRH neurones in photorefractory birds was demonstrated by the significant blockade of luteinising hormone release with a specific GnRH antagonist. Taken together, these results suggest that, in Gambel's white-crowned sparrow, a decrease in GnRH-I secretion is the initial step for the onset of photorefractoriness and not a decrease in GnRH-I biosynthesis.
Collapse
Affiliation(s)
- S L Meddle
- Laboratory of Neuroendocrinology, Centre for Integrative Physiology, School of Veterinary Biomedical Sciences, Royal (Dick) School of Veterinary Medicine, Summerhall, Edinburgh, UK.
| | | | | | | | | |
Collapse
|
77
|
Yamamura T, Yasuo S, Hirunagi K, Ebihara S, Yoshimura T. T3 implantation mimics photoperiodically reduced encasement of nerve terminals by glial processes in the median eminence of Japanese quail. Cell Tissue Res 2006; 324:175-9. [PMID: 16432711 DOI: 10.1007/s00441-005-0126-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Accepted: 11/09/2005] [Indexed: 10/25/2022]
Abstract
Photoperiodically generated triiodothyronin (T(3)) in the mediobasal hypothalamus (MBH) has critical roles in the photoperiodic response of the gonads in Japanese quail. In a previous study, we demonstrated seasonal morphological changes in the neuro-glial interaction between gonadotrophin-releasing hormone (GnRH) nerve terminals and glial endfeet in the median eminence (ME). However, a direct relationship between photoperiodically generated T(3) and seasonal neuro-glial plasticity in the ME remained unclear. In the present study, we examined the effect of T(3) implantation into the MBH on the neuro-glial interaction in the ME. T(3) implantation caused testicular growth and reduced encasement of nerve terminals in the external zone of the ME. In contrast, no morphological changes were observed in birds given an excessive dose of T(3), which did not cause testicular growth. These results support the hypothesis that thyroid hormone regulates photoperiodic GnRH secretion via neuro-glial plasticity in the ME.
Collapse
Affiliation(s)
- Takashi Yamamura
- Division of Biomodeling, Graduate School of Bioagricultural Sciences, Nagoya University, 464-8601, Nagoya, Japan
| | | | | | | | | |
Collapse
|
78
|
Goodson JL, Saldanha CJ, Hahn TP, Soma KK. Recent advances in behavioral neuroendocrinology: insights from studies on birds. Horm Behav 2005; 48:461-73. [PMID: 15896792 PMCID: PMC2570788 DOI: 10.1016/j.yhbeh.2005.04.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 04/05/2005] [Accepted: 04/07/2005] [Indexed: 01/16/2023]
Abstract
Ever since investigations in the field of behavioral endocrinology were hatched with experiments on roosters, birds have provided original insights into issues of fundamental importance for all vertebrate groups. Here we focus on more recent advances that continue this tradition, including (1) environmental regulation of neuroendocrine and behavioral systems, (2) steroidogenic enzyme functions that are related to intracrine processes and de novo production of neurosteroids, and (3) hormonal regulation of neuroplasticity. We also review recent findings on the anatomical and functional organization of steroid-sensitive circuits in the basal forebrain and midbrain. A burgeoning body of data now demonstrates that these circuits comprise an evolutionarily conserved network, thus numerous novel insights obtained from birds can be used (in a relatively straightforward manner) to generate predictions for other taxa as well. We close by using birdsong as an example that links these areas together, thereby highlighting the exceptional opportunities that birds offer for integrative studies of behavioral neuroendocrinology and behavioral biology in general.
Collapse
Affiliation(s)
- James L Goodson
- Psychology Department, University of California, 5212 McGill Hall, San Diego, La Jolla, CA 92093-0109, USA.
| | | | | | | |
Collapse
|
79
|
Yoshimura T. Molecular mechanism of the photoperiodic response of gonads in birds and mammals. Comp Biochem Physiol A Mol Integr Physiol 2005; 144:345-50. [PMID: 16253532 DOI: 10.1016/j.cbpa.2005.09.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 09/13/2005] [Accepted: 09/14/2005] [Indexed: 11/25/2022]
Abstract
Appropriate timing of various seasonal processes is crucial to the survival and reproductive success of animals living in temperate regions. When seasonally breeding animals are subjected to annual changes in day length, dramatic changes in neuroendocrine-gonadal activity take place. However, the molecular mechanism underlying the photoperiodic response of gonads remains unknown for all living organisms. It is well known that a circadian clock is somehow involved in the regulation of photoperiodism. Recently, rhythmic expression of circadian clock genes was observed in the mediobasal hypothalamus (MBH) of Japanese quail. The MBH is believed to be the center for photoperiodism. In addition, long-day-induced hormone conversion of the prohormone thyroxine (T(4)) to the bioactive triiodothyronine (T(3)) by deiodinase in the MBH has been proven to be important to the photoperiodic response of the gonads. Although the regulating mechanism for the photoperiodic response of gonads in birds and mammals has long been considered to be quite different, the long-day-induced expression of the deiodinase gene in the hamster hypothalamus suggests the existence of a conserved regulatory mechanism in avian and mammalian photoperiodism.
Collapse
Affiliation(s)
- Takashi Yoshimura
- Division of Biomodeling, Graduate School of Bioagricultural Sciences, and Institute for Advanced Research, Nagoya University, Nagoya 464-8601, Japan.
| |
Collapse
|
80
|
Yamamura T, Hirunagi K, Ebihara S, Yoshimura T. Seasonal morphological changes in the neuro-glial interaction between gonadotropin-releasing hormone nerve terminals and glial endfeet in Japanese quail. Endocrinology 2004; 145:4264-7. [PMID: 15178649 DOI: 10.1210/en.2004-0366] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In a previous study we showed that photoperiodically generated T3 in the hypothalamus is critical for the photoperiodic response of gonads in Japanese quail. The expression of thyroid hormone receptors in the median eminence (ME) suggested that photoperiodically generated T3 acts on the ME. Because thyroid hormone is known to play a critical role in the development and plasticity of the central nervous system, in the present study we have examined ultrastructure of the ME in Japanese quail kept in short-day and long-day environments. Immunoelectron microscopy revealed that GnRH nerve terminals are in close proximity to the basal lamina under long-day conditions, and conventional transmission electron microscopy demonstrated the encasement of the terminals by the endfeet of glia under short-day conditions. These morphological changes may regulate photoperiodic GnRH secretion.
Collapse
Affiliation(s)
- Takashi Yamamura
- Division of Biomodeling, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
81
|
Richard S, Martínez-García F, Lanuza E, Davies DC. Distribution of corticotropin-releasing factor-immunoreactive neurons in the central nervous system of the domestic chicken and Japanese quail. J Comp Neurol 2004; 469:559-80. [PMID: 14755536 DOI: 10.1002/cne.11023] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In birds, as in mammals, corticotropin-releasing factor (CRF) is present in a number of extrahypothalamic brain regions, indicating that CRF may play a role in physiological and behavioral responses other than the control of adrenocorticotropin hormone release by the pituitary. To provide a foundation for investigation of the roles of CRF in the control of avian behavior, the distribution of CRF immunoreactivity was determined throughout the central nervous system of the domestic chicken (Gallus domesticus) and Japanese quail (Coturnix japonica). The distribution of CRF-immunoreactive (-ir) perikarya and fibers in the chicken and quail brain was found to be more extensive than previously reported, notably in the telencephalon. Numerous CRF-ir perikarya and fibers were present in the hyperstriatum, hippocampus, neostriatum, lobus parolfactorius, and archistriatum, as well as in the nucleus taeniae, nucleus accumbens, and bed nucleus of the stria terminalis, which exhibited the strongest immunolabeling in the telencephalon. The presence of dense populations of CRF-ir perikarya in the medial lobus parolfactorius, nucleus of the stria terminalis, and paleostriatum ventrale, apparently giving rise to CRF-ir projections to the mesencephalic reticular formation, the parabrachial/pericerulear region, and the dorsal vagal complex, suggests that these telencephalic areas may constitute part of the avian "central extended amygdala." These results have important implications for understanding the role of extrahypothalamic CRF systems in emotional responses in birds.
Collapse
Affiliation(s)
- Sabine Richard
- Station de Recherches Avicoles, Institut National de la Recherche Agronomique, 37380 Nouzilly, France
| | | | | | | |
Collapse
|
82
|
Sadananda M, Bischof HJ. c-fos is induced in the hippocampus during consolidation of sexual imprinting in the zebra finch (Taeniopygia guttata). Hippocampus 2004; 14:19-27. [PMID: 15058479 DOI: 10.1002/hipo.10149] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
c-fos was used to mark regions of enhanced neuronal activity during sexual imprinting, an early learning process by which information about the prospective sexual partner is acquired and consolidated. In the present study, we demonstrate that the hippocampus, already known for its specialized spatial memory capacities in navigating pigeons and in food-storing birds, depicts a selective differential c-fos induction in a situation shown to lead to sexual imprinting, that is, exposing previously isolated male birds to a female for 1 h. c-fos induction is lateralized, the left hippocampus showing more c-fos activity than the right. Our results would indicate a role for the hippocampus in the consolidation process of imprinting, probably in the transfer of information to the other telencephalic areas that show alterations in synaptic connectivity as a result of consolidation of sexual imprinting.
Collapse
Affiliation(s)
- Monika Sadananda
- Department of Applied Zoology, Mangalore University, Karnataka, India
| | | |
Collapse
|
83
|
|
84
|
Yoshimura T, Yasuo S, Watanabe M, Iigo M, Yamamura T, Hirunagi K, Ebihara S. Light-induced hormone conversion of T4 to T3 regulates photoperiodic response of gonads in birds. Nature 2003; 426:178-81. [PMID: 14614506 DOI: 10.1038/nature02117] [Citation(s) in RCA: 360] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Accepted: 09/25/2003] [Indexed: 11/08/2022]
Abstract
Reproduction of many temperate zone birds is under photoperiodic control. The Japanese quail is an excellent model for studying the mechanism of photoperiodic time measurement because of its distinct and marked response to changing photoperiods. Studies on this animal have suggested that the mediobasal hypothalamus (MBH) is an important centre controlling photoperiodic time measurement. Here we report that expression in the MBH of the gene encoding type 2 iodothyronine deiodinase (Dio2), which catalyses the intracellular deiodination of thyroxine (T4) prohormone to the active 3,5,3'-triiodothyronine (T3), is induced by light in Japanese quail. Intracerebroventricular administration of T3 mimics the photoperiodic response, whereas the Dio2 inhibitor iopanoic acid prevents gonadal growth. These findings demonstrate that light-induced Dio2 expression in the MBH may be involved in the photoperiodic response of gonads in Japanese quail.
Collapse
Affiliation(s)
- Takashi Yoshimura
- Division of Biomodeling, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | | | | | | | | | | | | |
Collapse
|
85
|
Millam JR, Craig-Veit CB, Siopes TD. Photostimulated fos-like immunoreactivity in tuberal hypothalamus of photosensitive vs. photorefractory turkey hens. Gen Comp Endocrinol 2003; 134:175-81. [PMID: 14511988 DOI: 10.1016/s0016-6480(03)00249-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Photorefractoriness in commercial turkey hens can be viewed as a failure of previously sexually stimulatory photoperiods to maintain egg production via activation of cGnRH I neurons, but the neural locus of photorefractoriness, i.e., where in the brain failure occurs, is not known. We used a c-fos antiserum that detects c-Fos and Fos-related antigens to characterize Fos-like immunoreactivity (FLI) as a measure of neuronal activation. FLI was measured in somatically mature, photosensitive hens (held on short photoperiods [8L:16D] for at least 10 weeks) before (non-photostimulated-photosensitive group) and after 48 h of exposure to long photoperiods (16L:8D; photostimulated-photosensitive group). We also measured FLI in hens that had become photorefractory, transferred to short photoperiods for 1 week--an insufficient time period to reverse photorefractoriness--and then exposed to long photoperiods for 48 h (photostimulated-photorefractory group). FLI was nearly absent in the tuberal hypothalamus of non-photostimulated-photosensitive hens but FLI was abundant in photostimulated-photosensitive hens. FLI was greatly reduced (P<0.01) in the rostral tuberal hypothalamus of photostimulated-photorefractory hens. All hens showed variable extra-tuberal FLI in locations associated with stress, e.g., paraventricular nucleus, lateral septal area, and nucleus taenia. Double-label fluorescence immunohistochemistry with c-fos antiserum and anti-Neu-N, a neuron-specific protein, showed that a substantial fraction of tuberal FLI-positive cells in photostimulated-photosensitive hens were neuronal. These results implicate neurons in the rostral tuberal hypothalamus as a potential neural locus of photorefractoriness, as FLI in this region appears coupled with cGnRH I activation in photostimulated-photosensitive but not photostimulated-photorefractory turkey hens.
Collapse
Affiliation(s)
- J R Millam
- Department of Animal Science, University of California, One Shields Avenue, Davis, CA 95616-8532, USA.
| | | | | |
Collapse
|
86
|
Affiliation(s)
- Gregory F Ball
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21230, USA.
| | | |
Collapse
|
87
|
Yasuo S, Watanabe M, Okabayashi N, Ebihara S, Yoshimura T. Circadian clock genes and photoperiodism: Comprehensive analysis of clock gene expression in the mediobasal hypothalamus, the suprachiasmatic nucleus, and the pineal gland of Japanese Quail under various light schedules. Endocrinology 2003; 144:3742-8. [PMID: 12933643 DOI: 10.1210/en.2003-0435] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In birds, the mediobasal hypothalamus (MBH) including the infundibular nucleus, inferior hypothalamic nucleus, and median eminence is considered to be an important center that controls the photoperiodic time measurement. Here we show expression patterns of circadian clock genes in the MBH, putative suprachiasmatic nucleus (SCN), and pineal gland, which constitute the circadian pacemaker under various light schedules. Although expression patterns of clock genes were different between long and short photoperiod in the SCN and pineal gland, the results were not consistent with those under night interruption schedule, which causes testicular growth. These results indicate that different expression patterns of the circadian clock genes in the SCN and pineal gland are not an absolute requirement for encoding and decoding of seasonal information. In contrast, expression patterns of clock genes in the MBH were stable under various light conditions, which enables animals to keep a steady-state photoinducible phase.
Collapse
Affiliation(s)
- Shinobu Yasuo
- Division of Biomodeling, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | | | |
Collapse
|
88
|
Sadananda M, Bischof HJ. Enhanced fos expression in the zebra finch (Taeniopygia guttata) brain following first courtship. J Comp Neurol 2002; 448:150-64. [PMID: 12012427 DOI: 10.1002/cne.10232] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Young zebra finch males that court a female for the first time develop a stable preference for the females of that species. On the neuronal level, consolidation of the imprinted information takes place. Here we demonstrate that first courtship or being chased around in the cage leads to enhanced fos expression in forebrain areas implicated in learning and imprinting in zebra finch males compared with birds reared in isolation or in the aviary. Two of the forebrain areas highly active during first courtship (as demonstrated by the 14C-2-deoxyglucose technique), the imprinting locus latral neo/hyperstriatum ventrale (LNH) and the secondary visual area hyperstriatum accessorium/dorsale (HAD), demonstrate enhanced fos expression. Two other imprinting-related areas, the medial neo/hyperstriatum ventrale (MNH) and archistriatum/neostriatum caudale (ANC), do show c-fos induction; however, the areas are not congruous with those demarcated by the 2-DG autoradiographic studies. Additional telencephalic areas include the olfactory lobe, the information storage site lobus parolfactorius (LPO), the memory site hippocampus, the auditory caudomedial neostriatum implicated in the strength of song learning, and the caudolateral neostriatum, which is comparable to the mammalian prefrontal cortex. In addition, c-fos is induced by first courtship and chasing in neurosecretory cell groups of the preoptic area and hypothalamus associated with the repertoire of sexual behavior and stress or enhanced arousal. Enhanced fos expression is also observed in brainstem sources of specific (noradrenergic, catecholaminergic) and nonspecific (reticular formation) activating pathways with inputs to higher brain areas implicated in the imprinting process. Birds reared in isolation or alternatively in the aviary with social and sexual contact to conspecifics showed attenuated or no fos expression in most of the above-mentioned areas. First courtship and chasing both lead to enhanced uptake of 2-DG in the four imprinting areas, as well as subsequent changes in spine density-an anatomical manifestation of the imprinting process. fos expression in the imprinting and other telencephalic, preoptic, hypothalamic, and mesencephalic brain regions indicates processing of stimuli originating from exposure (like chasing) and the analysis of stimuli in a behaviorally relevant, sexually explicit context (like first courtship). c-fos induction in these brain areas indicates its involvement in the triggering of neural changes that accompany the learning process of imprinting, leading eventually to alterations in dendritic spine density in the zebra finch.
Collapse
Affiliation(s)
- Monika Sadananda
- Department of Applied Zoology, Mangalore University, Mangalagangothri-574199, Karnataka, India
| | | |
Collapse
|
89
|
Abstract
This review examines how birds use the annual cycle in photoperiod to ensure that seasonal events--breeding, molt, and song production--happen at the appropriate time of year. Differences in breeding strategies between birds and mammals reflect basic differences in biology. Avian breeding seasons tend to be of shorter duration and more asymmetric with respect to changes in photoperiod. Breeding seasons can occur at the same time each year (predictable) or at different times (opportunistic), depending on the food resource. In all cases, there is evidence for involvement of photoperiodic control, nonphotoperiodic control, and endogenous circannual rhythmicity. In predictable breeders (most nontropical species), photoperiod is the predominant proximate factor. Increasing photoperiods of spring stimulate secretion of gonadotropin-releasing hormone (GnRH) and consequent gonadal maturation. However, breeding ends before the return of short photoperiods. This is the consequence of a second effect of long photoperiods--the induction of photorefractoriness. This dual role of long photoperiods is required to impart the asymmetry in breeding seasons. Typically, gonadal regression through photorefractoriness is associated with a massive decrease in hypothalamic GnRH, essentially a reversal to a pre-pubertal condition. Although breeding seasons are primarily determined by photoperiodic control of GnRH neurons, prolactin may be important in determining the exact timing of gonadal regression. In tropical and opportunistic breeders, endogenous circannual rhythmicity may be more important. In such species, the reproductive system remains in a state of "readiness to breed" for a large part of the year, with nonphotic cues acting as proximate cues to time breeding. Circannual rhythmicity may result from a temporal sequence of different physiological states rather than a molecular or cellular mechanism as in circadian rhythmicity. Avian homologues of mammalian clock genes Per2, Per3, Clock, bmal1, and MOP4 have been cloned. At the molecular level, avian circadian clocks appear to function in a similar manner to those of mammals. Photoperiodic time measurement involves interaction between a circadian rhythm of photoinducibility and, unlike mammals, deep brain photoreceptors. The exact location of these remains unclear. Although the eyes and pineal generate a daily cycle in melatonin, this photoperiodic signal is not used to time seasonal breeding. Instead, photoperiodic responses appear to involve direct interaction between photoreceptors and GnRH neurons. Thyroid hormones are required in some way for this system to function. In addition to gonadal function, song production is also affected by photoperiod. Several of the nuclei involved in the song system show seasonal changes in volume, greater in spring than in the fall. The increase in volume is, in part, due to an increase in cell number as a result of neurogenesis. There is no seasonal change in the birth of neurons but rather in their survival. Testosterone and melatonin appear to work antagonistically in regulating volume.
Collapse
Affiliation(s)
- A Dawson
- Centre for Ecology and Hydrology, Huntingdon, Cambridgeshire, UK
| | | | | | | |
Collapse
|
90
|
Dawson A. The effects of a single long photoperiod on induction and dissipation of reproductive photorefractoriness in European starlings. Gen Comp Endocrinol 2001; 121:316-24. [PMID: 11254373 DOI: 10.1006/gcen.2001.7601] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In many birds, long photoperiods stimulate gonadal maturation but also cause photorefractoriness, leading to gonadal regression. While much is known about the neuroendocrinology of photostimulation, little is known about photorefractoriness, partly due to lack of an experimental model. This study aimed to develop a model to test whether a single long photoperiod (LP) initiates the mechanism leading to photorefractoriness. It made use of the fact that in castrated European starlings, luteinizing hormone (LH) is low in photorefractory birds and high in photosensitive birds. In the first experiment, groups of castrated photorefractory birds were transferred from a long to a short photoperiod and then exposed to one LP every 5, 10, 20, 30, 40, or 60 days. In birds exposed to one LP every 5 days, LH stayed low. In birds exposed to one LP every 10 days, each LP caused a pulse in LH, but mean LH remained low. One LP every 20 days increased LH 6 days later, followed by a decrease at 11 days and then a further increase, so that overall, LH increased slowly. In birds exposed to one LP every 30, 40, or 60 days, LH increased at the same rate as in short photoperiod controls. Each LP did not cause a significant increase in LH, but did cause a decrease. A second experiment examined the changes in LH following a LP in more detail. Castrated starlings had been exposed to one LP every 14 days for 16 weeks. On the day of the final LP, LH values were midway between photorefractory and photosensitive values. The LP caused an increase in LH from the second day to a peak after 7 days. Thereafter, LH declined to initial values after 14 days, followed, in the absence of further LP, by a second increase to photosensitive values. These results suggest that the mechanisms causing photostimulation and photorefractoriness are both initiated during the first long photoperiod. That gonadal maturation precedes regression must reflect the relative rates at which the two processes reach completion.
Collapse
Affiliation(s)
- A Dawson
- Centre for Ecology and Hydrology, Abbots Ripton, Huntingdon, Cambridgeshire, PE28 2LS, United Kingdom.
| |
Collapse
|
91
|
Péczely P, Kovács KJ. Photostimulation affects gonadotropin-releasing hormone immunoreactivity and activates a distinct neuron population in the hypothalamus of the mallard. Neurosci Lett 2000; 290:205-8. [PMID: 10963899 DOI: 10.1016/s0304-3940(00)01360-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To reveal central mechanisms that transduce photic stimuli to sexually related neuroendocrine changes, Fra-2-ir, an inducible immediate-early gene marker of neuronal activation has been consecutively localized with that of GnRH-I in the brain of mallards that were triggered by artificial light at the photosensitive phase of the reproductive cycle. Strong neuronal activation was found in the POM and PVN in response to 1x or 4x 20 h light exposure that was accompanied with an increase of GnRH-ir in the hypothalamus and a dramatic depletion of GnRH-ir from terminals in the median eminence. The Fra-2 and GnRH-ir profiles, however, were not co-localized in any region at any phase of photostimulation. These results demonstrate profound changes of GnRH-ir in the hypothalamus and reveal a distinct, photoresponsive cell population in the anterior hypothalamic area of the mallard.
Collapse
Affiliation(s)
- P Péczely
- Department of Reproductive Biology, University of Agriculture, Gödöllö, Hungary
| | | |
Collapse
|
92
|
Deviche P, Saldanha CJ, Silver R. Changes in brain gonadotropin-releasing hormone- and vasoactive intestinal polypeptide-like immunoreactivity accompanying reestablishment of photosensitivity in male dark-eyed juncos (Junco hyemalis). Gen Comp Endocrinol 2000; 117:8-19. [PMID: 10620420 PMCID: PMC3266068 DOI: 10.1006/gcen.1999.7361] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In seasonally breeding, photoperiodic birds, the development of photorefractoriness is associated with decreased brain expression of gonadotropin-releasing hormone-like immunoreactivity (GnRH-li ir) and increased expression of vasoactive intestinal polypeptide-like immunoreactivity (VIP-li ir). Dissipation of photorefractoriness and reestablishment of photosensitivity are associated with increased GnRH-li ir brain production, but concurrent changes in VIP-li ir expression have not been investigated. To address this question, we compared the expression of VIP-li ir in the infundibulum (INF) of adult male dark-eyed juncos (Junco hyemalis) that were made photorefractory (PR) by prolonged exposure to long days with that of birds that were not photostimulated (PS), but had regained photosensitivity by exposure to short days for 5 (short-term-PS, ST-PS) or 13 (long-term-PS, LT-PS) consecutive months. Photosensitive males had smaller INF VIP-li ir cell bodies than PR males, but the numbers of INF VIP-li ir cells were independent of photoperiodic condition. Changes in infundibular VIP-li ir were correlated with changes in preoptic area (POA) GnRH-li expression. Specifically, photosensitive males had more and larger POA GnRH-li ir cells and more GnRH-li ir fibers in this region than PR males. Further, LT-PS males had more GnRH-li ir POA fibers and larger testes than ST-PS juncos. Thus, induction of photorefractoriness is associated with increased VIP and decreased GnRH brain expression whereas dissipation of photorefractoriness concurs with decreased VIP and increased GnRH brain expression. These results suggest a physiological role for VIP in the control of changes in GnRH expression as a function of the photosensitive condition.
Collapse
Affiliation(s)
- P Deviche
- Institute of Arctic Biology, University of Alaska-Fairbanks, Fairbanks, Alaska 99775, USA
| | | | | |
Collapse
|
93
|
Meddle SL, Maney DL, Wingfield JC. Effects of N-methyl-D-aspartate on luteinizing hormone release and Fos-like immunoreactivity in the male White-crowned sparrow (Zonotrichia leucophrys gambelii). Endocrinology 1999; 140:5922-8. [PMID: 10579359 DOI: 10.1210/endo.140.12.7206] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Seasonal breeding is terminated in the White-crowned sparrow by the onset of absolute photorefractoriness, a condition in which the reproductive system is switched off indefinitely until it is dissipated by short day lengths. Absolute photorefractoriness is controlled by the central nervous system; however, the mechanisms underlying GnRH quiescence in photorefractory birds have yet to be elucidated. Using the excitatory amino acid glutamate agonist N-methyl-D-aspartate (NMDA), plasma LH levels in White-crowned sparrows were significantly elevated regardless of the reproductive or photoperiodic condition. NMDA also significantly induced Fos-like immunoreactivity (FLI) within the infundibular nucleus and median eminence, regions previously shown to express FLI after a photoperiodically driven LH rise. NMDA did not induce FLI within GnRH I neurons; instead, it significantly activated cells within the organum vasculosum of the lamina terminalis in close proximity to GnRH I perikarya. These findings provide the first evidence that photorefractoriness is not due to depletion of GnRH stores, as LH and presumably GnRH were secreted in response to excitatory amino acid stimulation. NMDA activation of FLI in the region of the organum vasculosum of the lamina terminalis and the basal tuberal hypothalamus suggests that seasonal reproductive neuroendocrine control may be mediated via cells in the region of the GnRH I perikarya and terminals.
Collapse
Affiliation(s)
- S L Meddle
- Department of Zoology, University of Washington, Seattle 98195, USA.
| | | | | |
Collapse
|
94
|
Meddle SL, Foidart A, Wingfield JC, Ramenofskyand M, Balthazart J. Effects of sexual interactions with a male on fos-like immunoreactivity in the female quail brain. J Neuroendocrinol 1999; 11:771-84. [PMID: 10520126 DOI: 10.1046/j.1365-2826.1999.00384.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sexual interactions can cause changes in plasma hormone levels and activate immediate early genes within the mammalian brain. There are marked anatomical differences between the regions activated that relate directly to the sexual specific behaviour and neuroendocrinology of each sex. The aim of this study was to determine if such a sexual dimorphism exists in birds by examining the brain regions stimulated in adult virgin female Japanese quail (Coturnix japonica) during sexual behaviour and comparing this to previously reported data concerning males. Female quail were allowed to freely interact with adult males and both female and male sexual behaviour was recorded. Contrary to previous findings in male quail, no significant induction of Fos-like immunoreactive (FLI) cells was observed following sexual interactions in the preoptic area of females; this area is fundamentally involved in the control of male-type copulatory behaviour. Sexual interactions significantly induced FLI cells in the hyperstriatum ventrale, the part of the archistriatum just lateral to the anterior commissure, and the nucleus intercollicularis. Moreover, prominent activation was detected throughout most of the ventromedial nucleus of the hypothalamus, a region reported to be rich in oestrogen receptors. FLI induction was not a consequence of sexual behaviour induced changes in luteinizing hormone (LH) as plasma LH levels were unaltered. Instead, brain activation must be a consequence of copulation-associated somatosensory inputs or direct stimuli originating from the male. Male quail, like the majority of other birds, lack an intromittant organ (penis) so that the somatosensory inputs to the female are rather different from those in mammals; the precise nature of these inputs is yet to be determined.
Collapse
Affiliation(s)
- S L Meddle
- BBSRC Group on Photoperiodism and Reproduction, School of Biological Sciences, University of Bristol, Bristol, UK.
| | | | | | | | | |
Collapse
|
95
|
D'Hondt E, Vermeiren J, Peeters K, Balthazart J, Tlemçani O, Ball GF, Duffy DL, Vandesande F, Berghman LR. Validation of a new antiserum directed towards the synthetic c-terminus of the FOS protein in avian species: immunological, physiological and behavioral evidence. J Neurosci Methods 1999; 91:31-45. [PMID: 10522822 DOI: 10.1016/s0165-0270(99)00067-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the past 10 years, the study of the expression of immediate early genes, such as c-fos, in the brain has become a common method for the identification of brain areas involved in the regulation of specific physiological and behavioral functions. The use of this method in avian species has been limited by the paucity of suitable antibodies that cross-react with the FOS protein in birds. We describe in this paper the preparation of an antibody directed against a synthetic fragment of the protein product of the c-fos gene in chickens (Gallus domesticus). We demonstrate that this new antibody can be used in several avian species to study FOS expression induced by a variety of pharmacological, physiological and behavioral stimuli. Western blot studies indicated that this antibody recognizes a protein of the expected size (47 kDa) but also cross reacts to some extent with proteins of lower molecular weight that share sequence homology with FOS (Fos-related antigens). FOS immunocytochemistry was performed with this antibody in four species of birds in three different laboratories utilizing diverse variants of the immunocytochemical procedure. In all cases the antibody provided a reliable identification of the FOS antigen. The new antibody described here appears to be suitable for the study of FOS expression in several different avian species and situations. It is available in substantial amounts and will therefore make it possible to use FOS expression as a tool to map brain activity in birds as has now been done for several years in mammalian species.
Collapse
Affiliation(s)
- E D'Hondt
- Laboratory of Neuroendocrinology, University of Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Foidart A, Meddle SL, Balthazart J. Mating-induced Fos and aromatase are not co-localized in the preoptic area. Neuroreport 1999; 10:907-12. [PMID: 10321458 DOI: 10.1097/00001756-199904060-00003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Male sexual behavior is determined by the interaction of endocrine and environmental stimuli originating from the female, yet it is unknown how and where these stimuli are integrated within the brain. Activation of copulatory behavior by testosterone is limited by its central aromatization into an estrogen in the preoptic area. We investigated whether mating-induced neuronal activation as identified by the expression of the immediate early gene Fos occurs in aromatase-immunoreactive (ARO-ir) cells of the male quail preoptic area. Fos-immunoreactive (ir) cells were observed within and lateral to these ARO-ir cells groups but few ARO-ir cells contained Fos-ir indicating that mating-related stimuli do not directly affect estrogen-synthesizing cells.
Collapse
Affiliation(s)
- A Foidart
- Laboratory of Biochemistry, Research Group in Behavioral Neuroendocrinology, University of Liège, Belgium
| | | | | |
Collapse
|
97
|
Martinez de la Torre M, Mitsacos A, Kouvelas ED, Zavitsanou K, Balthazart J. Pharmacological characterization, anatomical distribution and sex differences of the non-NMDA excitatory amino acid receptors in the quail brain as identified by CNQX binding. J Chem Neuroanat 1998; 15:187-200. [PMID: 9797075 DOI: 10.1016/s0891-0618(98)00046-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The distribution of non-N-methyl-D-aspartate binding sites was studied in coronal and sagittal sections through the brain of adult Japanese quail by quantitative autoradiography, using tritiated 6-cyano-7-nitroquinoxaline-2,3-dione as a radioligand. Saturation binding experiments were, in addition, carried out in areas showing high levels of binding (cerebellar molecular layer, nucleus anterior medialis and nucleus infundibularis) and demonstrated that the binding of tritiated ligand was specific and saturable. Competition studies with alpha-amino-3-hydroxy-methyl-4-isoxazole propionic acid and kainic acid indicated that kainic acid strongly inhibited ligand binding in all brain areas. alpha-Amino-3-hydroxy-methyl-4-isoxazole propionic acid was only a weak inhibitor in the hypothalamic nuclei whereas in the cerebellar molecular layer both high and low affinity inhibitions were detected. The highest binding levels of tritiated ligand were observed in the molecular layer of the cerebellum. Very high levels of binding were detected in various preoptic/hypothalamic sites including the nucleus suprachiasmaticus pars medialis, nucleus anterior medialis hypothalami, nucleus infundibularis, nucleus mammillaris medialis, nucleus posteromediale hypothalami and nucleus hypothalami ventromedialis. High levels of binding were also detected in the bulbus olfactorius, bed nucleus commissuralis anterior, bed nucleus commissuralis pallii, nucleus accumbens, bed nucleus striae terminalis and nucleus interpeduncularis. In the preoptic area/hypothalamus, high levels of binding were clearly present in all areas that contain gonadotropin releasing hormone cells or fibers. In the pons and mesencephalon, moderate levels of binding were associated with catecholaminergic areas such as the area ventralis tegmentalis (area ventralis of Tsai) and the locus coeruleus. Saturation analysis demonstrated the presence of a higher number of binding sites in females than in males in the cerebellar molecular layer, nucleus infundibularis and nucleus anterior medialis. This latter difference was confirmed in the one point assays that also identified higher levels of specific binding in the nucleus suprachiasmaticus pars medialis of males as compared with females. These anatomical data suggest a possible implication of non-N-methyl-D-aspartate receptors in the synthesis and/or release of both gonadotropin releasing hormone and catecholaminergic neurotransmitters that should now be tested by pharmacological experiments.
Collapse
|