51
|
Wright JW, Wilson WL, Wakeling V, Boydstun AS, Jensen A, Kawas L, Harding JW. The Hepatocyte Growth Factor/c-Met Antagonist, Divalinal-Angiotensin IV, Blocks the Acquisition of Methamphetamine Dependent Conditioned Place Preference in Rats. Brain Sci 2012; 2:298-318. [PMID: 24961196 PMCID: PMC4061800 DOI: 10.3390/brainsci2030298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/06/2012] [Accepted: 08/10/2012] [Indexed: 11/16/2022] Open
Abstract
The use of methamphetamine (MA) is increasing in the U.S. and elsewhere around the world. MA's capacity to cause addiction significantly exceeds other psychostimulant drugs, and its use negatively impacts learning and memory. Recently, attempts have been made to interfere with the presumed mechanism(s) underlying the establishment of drug-induced memory consolidation. The majority of these studies have employed matrix metalloproteinase (MMP) inhibitors to disrupt MMP-induced extracellular matrix molecule dependent synaptic reconfiguration, or GABA receptor agonists. The present investigation utilized an angiotensin IV (AngIV) analogue, Divalinal-AngIV (divalinal), to disrupt acquisition of MA-induced dependence in rats as measured using the conditioned place preference paradigm. Results indicate that both acute and chronic intracerebroventricular infusion of divalinal prior to each daily subcutaneous injection of MA prevented acquisition. However, divalinal was unable to prevent MA-induced reinstatement after prior acquisition followed by extinction trials. These results indicate that prevention of MA dependence can be accomplished by blockade of the brain AT4 receptor subtype. On the other hand, once MA-induced memory consolidation is in place divalinal appears to be ineffective. Mechanistic studies indicated that divalinal is a potent inhibitor of the hepatocyte growth factor (HGF)/c-Met receptor system, and thus it appears that a functional HGF/c-Met system is required for the acquisition of MA-mediated conditioned place preference.
Collapse
Affiliation(s)
- John W Wright
- Department of Psychology, Washington State University, Pullman, WA 99164-4820, USA.
| | - Wendy L Wilson
- Department of Psychology, Dickinson State University, Dickinson, ND 58601, USA.
| | - Vanessa Wakeling
- Department of Psychology, Washington State University, Pullman, WA 99164-4820, USA.
| | - Alan S Boydstun
- L-3 Communications, Link Simulation and Training, Wright Patterson Air Force Base, OH 45433-7955, USA.
| | - Audrey Jensen
- Department of Psychology, Washington State University, Pullman, WA 99164-4820, USA.
| | - Leen Kawas
- Program in Pharmacology and Toxicology, Washington State University, Pullman, WA 99164-6510, USA.
| | - Joseph W Harding
- Department of Psychology, Washington State University, Pullman, WA 99164-4820, USA.
| |
Collapse
|
52
|
Gard PR, Naylor C, Ali S, Partington C. Blockade of pro-cognitive effects of angiotensin IV and physostigmine in mice by oxytocin antagonism. Eur J Pharmacol 2012; 683:155-60. [DOI: 10.1016/j.ejphar.2012.02.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 02/13/2012] [Accepted: 02/26/2012] [Indexed: 11/25/2022]
|
53
|
Wright JW, Harding JW. The brain renin–angiotensin system: a diversity of functions and implications for CNS diseases. Pflugers Arch 2012; 465:133-51. [DOI: 10.1007/s00424-012-1102-2] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/20/2012] [Accepted: 03/30/2012] [Indexed: 12/14/2022]
|
54
|
Albiston AL, Diwakarla S, Fernando RN, Mountford SJ, Yeatman HR, Morgan B, Pham V, Holien JK, Parker MW, Thompson PE, Chai SY. Identification and development of specific inhibitors for insulin-regulated aminopeptidase as a new class of cognitive enhancers. Br J Pharmacol 2012; 164:37-47. [PMID: 21470200 DOI: 10.1111/j.1476-5381.2011.01402.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Two structurally distinct peptides, angiotensin IV and LVV-haemorphin 7, both competitive high-affinity inhibitors of insulin-regulated aminopeptidase (IRAP), were found to enhance aversion-associated and spatial memory in normal rats and to improve performance in a number of memory tasks in rat deficits models. These findings provide compelling support for the development of specific, high-affinity inhibitors of the enzyme as new cognitive enhancing agents. Different classes of IRAP inhibitors have been developed including peptidomimetics and small molecular weight compounds identified through in silico screening with a homology model of the catalytic domain of IRAP. The proof of principal that inhibition of IRAP activity results in facilitation of memory has been obtained by the demonstration that the small-molecule IRAP inhibitors also exhibit memory-enhancing properties.
Collapse
Affiliation(s)
- Anthony L Albiston
- Howard Florey Institute, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Wright JW, Harding JW. Brain renin-angiotensin—A new look at an old system. Prog Neurobiol 2011; 95:49-67. [DOI: 10.1016/j.pneurobio.2011.07.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 06/27/2011] [Accepted: 07/03/2011] [Indexed: 12/15/2022]
|
56
|
Benoist CC, Wright JW, Zhu M, Appleyard SM, Wayman GA, Harding JW. Facilitation of hippocampal synaptogenesis and spatial memory by C-terminal truncated Nle1-angiotensin IV analogs. J Pharmacol Exp Ther 2011; 339:35-44. [PMID: 21719467 DOI: 10.1124/jpet.111.182220] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Angiotensin IV (AngIV; Val(1)-Tyr(2)-Ile(3)-His(4)-Pro(5)-Phe(6))-related peptides have emerged as potential antidementia agents. However, their development as practical therapeutic agents has been impeded by a combination of metabolic instability, poor blood-brain barrier permeability, and an incomplete understanding of their mechanism of action. This study establishes the core structure contained within norleucine(1)-angiotensin IV (Nle(1)-AngIV) that is required for its procognitive activity. Results indicated that Nle(1)-AngIV-derived peptides as small as tetra- and tripeptides are capable of reversing scopolamine-induced deficits in Morris water maze performance. This identification of the active core structure contained within Nle(1)-AngIV represents an initial step in the development of AngIV-based procognitive drugs. The second objective of the study was to clarify the general mechanism of action of these peptides by assessing their ability to affect changes in dendritic spines. A correlation was observed between a peptide's procognitive activity and its capacity to increase spine numbers and enlarge spine head size. These data suggest that the procognitive activity of these molecules is attributable to their ability to augment synaptic connectivity.
Collapse
Affiliation(s)
- Caroline C Benoist
- Department of Veterinary and Comparative, Washington State University, Pullman, Washington 99164-6520, USA
| | | | | | | | | | | |
Collapse
|
57
|
Andersson H, Demaegdt H, Johnsson A, Vauquelin G, Lindeberg G, Hallberg M, Erdélyi M, Karlén A, Hallberg A. Potent Macrocyclic Inhibitors of Insulin-Regulated Aminopeptidase (IRAP) by Olefin Ring-Closing Metathesis. J Med Chem 2011; 54:3779-92. [DOI: 10.1021/jm200036n] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hanna Andersson
- Department of Medicinal Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| | - Heidi Demaegdt
- Department of Molecular and Biochemical Pharmacology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Anders Johnsson
- Department of Medicinal Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| | - Georges Vauquelin
- Department of Molecular and Biochemical Pharmacology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Gunnar Lindeberg
- Department of Medicinal Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| | - Mathias Hallberg
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden
| | - Máté Erdélyi
- Department of Chemistry, University of Gothenburg, SE-412 96 Gothenburg, Sweden
- Swedish NMR Centre, University of Gothenburg, Box 465, SE-405 30 Gothenburg, Sweden
| | - Anders Karlén
- Department of Medicinal Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| | - Anders Hallberg
- Department of Medicinal Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| |
Collapse
|
58
|
Lukaszuk A, Demaegdt H, Van den Eynde I, Vanderheyden P, Vauquelin G, Tourwé D. Conformational constraints in angiotensin IV to probe the role of Tyr2, Pro5 and Phe6. J Pept Sci 2011; 17:545-53. [DOI: 10.1002/psc.1365] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 01/27/2011] [Accepted: 01/27/2011] [Indexed: 12/16/2022]
|
59
|
Ascher DB, Cromer BA, Morton CJ, Volitakis I, Cherny RA, Albiston AL, Chai SY, Parker MW. Regulation of insulin-regulated membrane aminopeptidase activity by its C-terminal domain. Biochemistry 2011; 50:2611-22. [PMID: 21348480 DOI: 10.1021/bi101893w] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of inhibitors of insulin-regulated aminopeptidase (IRAP), a membrane-bound zinc metallopeptidase, is a promising approach for the discovery of drugs for the treatment of memory loss such as that associated with Alzheimer's disease. There is, however, no consensus in the literature about the mechanism by which inhibition occurs. Sequence alignments, secondary structure predictions, and homology models based on the structures of recently determined related metallopeptidases suggest that the extracellular region consists of four domains. Partial proteolysis and mass spectrometry reported here confirm some of the domain boundaries. We have produced purified recombinant fragments of human IRAP on the basis of these data and examined their kinetic and biochemical properties. Full-length extracellular constructs assemble as dimers with different nonoverlapping fragments dimerizing as well, suggesting an extended dimer interface. Only recombinant fragments containing domains 1 and 2 possess aminopeptidase activity and bind the radiolabeled hexapeptide inhibitor, angiotensin IV (Ang IV). However, fragments lacking domains 3 and 4 possess reduced activity, although they still bind a range of inhibitors with the same affinity as longer fragments. In the presence of Ang IV, IRAP is resistant to proteolysis, suggesting significant conformational changes occur upon binding of the inhibitor. We show that IRAP has a second Zn(2+) binding site, not associated with the catalytic region, which is lost upon binding Ang IV. Modulation of activity caused by domains 3 and 4 is consistent with a conformational change regulating access to the active site of IRAP.
Collapse
Affiliation(s)
- David B Ascher
- Centre for Structural Neurobiology and Biota Structural Biology Laboratory, St. Vincent's Institute, 9 Princes Street, Fitzroy, Victoria 3065, Australia
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Olson ML, Cero IJ. Intrahippocampal Norleucine¹-Angiotensin IV mitigates scopolamine-induced spatial working memory deficits. Peptides 2010; 31:2209-15. [PMID: 20816712 DOI: 10.1016/j.peptides.2010.08.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/23/2010] [Accepted: 08/24/2010] [Indexed: 11/19/2022]
Abstract
Depletion of cholinergic neurons in the hippocampus has been implicated in memory impairment and Alzheimer's Disease (AD). The brain angiotensin AT₄ receptor is co-localized with cholinergic neurons, and the AT₄ receptor has also been implicated in cognitive processing. The current investigation used the spatial win-shift version of the radial arm maze to determine the involvement of AT₄ receptors in spatial working memory formation. We initially established that intrahippocampal scopolamine significantly impaired the spatial working memory performance of Sprague-Dawley rats in the radial arm maze. We also demonstrated that subsequent intrahippocampal infusions of Norleucine¹-Angiotensin IV (Nle¹-AngIV) significantly prevented the scopolamine-induced deficit. Consistent with previously published data on long-term spatial memory, our findings suggest that activation of AT₄ receptors can compensate for impaired spatial working memory resulting from compromised muscarinic acetylcholine receptor function. We further demonstrate that the hippocampus is a site of action for Nle¹-AngIV-mediated cognitive improvement.
Collapse
Affiliation(s)
- Mikel L Olson
- Department of Psychology, Concordia College, 901 8th St. S., Moorhead, MN 56562, USA.
| | | |
Collapse
|
61
|
Golding BJD, Overall ADJ, Brown G, Gard PR. Strain differences in the effects of angiotensin IV on mouse cognition. Eur J Pharmacol 2010; 641:154-9. [PMID: 20553916 DOI: 10.1016/j.ejphar.2010.05.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 04/27/2010] [Accepted: 05/25/2010] [Indexed: 11/26/2022]
Abstract
Angiotensin IV has been shown to improve learning and memory in rodents. Strain dependent variation in murine behaviour, aminopeptidase activity and inhibitory effect of Angiotensin IV, structural variation in insulin regulated aminopeptidase (IRAP) and aminopeptidase N (ApN) and expression of the encoding genes were explored. Strain differences in the behavioural response to Angiotensin IV were observed, where CD mice were refractory. All strains showed inhibition of aminopeptidase activity by Angiotensin IV but CD mice displayed reduced endogenous aminopeptidase activity. No differences in the coding sequence of IRAP or ApN were found. RT-PCR analysis showed no difference in IRAP expression between strains but an increased expression of ApN was observed in CD mice. The lack of cognitive response of CD mice to Angiotensin IV cannot be explained through variation within IRAP sequence nor expression but the results highlight a potential role for ApN in the effects of Angiotensin IV.
Collapse
Affiliation(s)
- Bruno J D Golding
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK.
| | | | | | | |
Collapse
|
62
|
Wu HM, Wang C, Wang XL, Wang L, Chang CW, Wang P, Gao GD. Correlations between angiotensinase activity asymmetries in the brain and paw preference in rats. Neuropeptides 2010; 44:253-9. [PMID: 20096929 DOI: 10.1016/j.npep.2009.12.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 11/22/2009] [Accepted: 12/29/2009] [Indexed: 12/09/2022]
Abstract
The function of angiotensin peptides is dependent upon the action of several aminopeptidases (APs) termed angiotensinases. Soluble (SOL) and membrane (MEM)-bound alanyl-AP (AlaAP) and cystinyl-AP (CysAP) are involved in the metabolism of angiotensins and related to the modulation of behavior and memory. To study the interactions between angiotensinase activity in the hippocampus and behavioral lateralization, Wistar rats were selected on the basis of their performance in the paw preference test (left-handed, ambidextrous and right-handed) and the activities of SOL-AlaAP/CysAP and MEM-AlaAP/CysAP were measured in the both hippocampuses. We observed that: (1) the left hippocampus had higher activities of SOL-AlaAP/CysAP and MEM-AlaAP/CysAP than the right hippocampus; (2) rats showed significant differences in the activities of SOL-AlaAP/CysAP and MEM-AlaAP/CysAP in the hippocampus depending on the behavioral lateralization detecting by paw preference; (3) in three groups of rats, hemispheric dominance - %R/T [%R/T=right hemisphere/(right hemisphere+left hemisphere)x100] activities of MEM-AlaAP, SOL-CysAP and MEM-CysAP was significantly different whereby %RT was lower in left-handed, higher in ambidextrous and intermediate in right-handed rats; (4) individual %R/T activities of SOL-CysAP and MEM-CysAP in the hippocampus were positively correlated with paw preference scores. Finally, we used the passive avoidance behavior test to demonstrate the differences of long-term memory among the three groups. These results suggested that the asymmetric activity of angiotensinase in the rat hippocampus may be associated with both the direction and the intensity of behavioral lateralization as expressed by paw preference.
Collapse
Affiliation(s)
- He-ming Wu
- Department of Neurosurgery, Tangdu Hospital, Institute of Functional Brain Disorders of PLA, The Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | |
Collapse
|
63
|
Fogari R, Zoppi A. Clinical benefits from combination therapy in the treatment of hypertension. HIPERTENSION Y RIESGO VASCULAR 2010. [DOI: 10.1016/j.hipert.2009.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
64
|
de Kloet AD, Krause EG, Woods SC. The renin angiotensin system and the metabolic syndrome. Physiol Behav 2010; 100:525-34. [PMID: 20381510 DOI: 10.1016/j.physbeh.2010.03.018] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/18/2010] [Accepted: 03/26/2010] [Indexed: 01/01/2023]
Abstract
The renin angiotensin system (RAS; most well-known for its critical roles in the regulation of cardiovascular function and hydromineral balance) has regained the spotlight for its potential roles in various aspects of the metabolic syndrome. It may serve as a causal link among obesity and several co-morbidities. Drugs that reduce the synthesis or action of angiotensin-II (A-II; the primary effector peptide of the RAS) have been used to treat hypertension for decades and, more recently, clinical trials have determined the utility of these pharmacological agents to prevent insulin resistance. Moreover, there is evidence that the RAS contributes to body weight regulation by acting in various tissues. This review summarizes what is known of the actions of the RAS in the brain and throughout the body to influence various metabolic disorders. Special emphasis is given to the role of the RAS in body weight regulation. The paper represents an invited review by a symposium, award winner or keynote speaker at the Society for the Study of Ingestive Behavior [SSIB] Annual Meeting in Portland, July 2009.
Collapse
Affiliation(s)
- Annette D de Kloet
- Program in Neuroscience University of Cincinnati, Cincinnati, OH 45237, United States.
| | | | | |
Collapse
|
65
|
Yamamoto BJ, Elias PD, Masino JA, Hudson BD, McCoy AT, Anderson ZJ, Varnum MD, Sardinia MF, Wright JW, Harding JW. The angiotensin IV analog Nle-Tyr-Leu-psi-(CH2-NH2)3-4-His-Pro-Phe (norleual) can act as a hepatocyte growth factor/c-Met inhibitor. J Pharmacol Exp Ther 2010; 333:161-73. [PMID: 20086056 DOI: 10.1124/jpet.109.161711] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The angiotensin (Ang) IV analog norleual [Nle-Tyr-Leu-psi-(CH2-NH2)(3-4)-His-Pro-Phe] exhibits structural homology with the hinge (linker) region of hepatocyte growth factor (HGF) and is hypothesized to act as a hinge region mimic. Norleual competitively inhibited the binding of HGF to its receptor c-Met in mouse liver membranes, with an IC(50) value of 3 pM. Predictably, norleual was able to inhibit HGF-dependent signaling, proliferation, migration, and invasion in multiple cell types at concentrations in the picomolar range. Ex vivo studies demonstrated that norleual exhibited potent antiangiogenic activity, an attribute that would be predicted for a HGF/c-Met antagonist. Furthermore, norleual suppressed pulmonary colonization by B16-F10 murine melanoma cells, which are characterized by an overactive HGF/c-Met system. Together, these data suggest that AngIV analogs exert at least some of their biological activity through interference with the HGF/c-Met system and may have utility as therapeutic agents in disorders that are dependent on an intact HGF/c-Met system. Finally, the ability of norleual to induce marked biological responses in human embryonic kidney cells, which do not express insulin-responsive aminopeptidase (IRAP), coupled with the observed effects of norleual on the HGF/c-Met system, casts doubt on the physiological significance of AngIV-dependent inhibition of IRAP. [Corrected]
Collapse
Affiliation(s)
- B J Yamamoto
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, WA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Albiston AL, Fernando RN, Yeatman HR, Burns P, Ng L, Daswani D, Diwakarla S, Pham V, Chai SY. Gene knockout of insulin-regulated aminopeptidase: Loss of the specific binding site for angiotensin IV and age-related deficit in spatial memory. Neurobiol Learn Mem 2010; 93:19-30. [DOI: 10.1016/j.nlm.2009.07.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 07/27/2009] [Accepted: 07/29/2009] [Indexed: 01/14/2023]
|
67
|
De Bundel D, Demaegdt H, Lahoutte T, Caveliers V, Kersemans K, Ceulemans AG, Vauquelin G, Clinckers R, Vanderheyden P, Michotte Y, Smolders I. Involvement of the AT1 receptor subtype in the effects of angiotensin IV and LVV-haemorphin 7 on hippocampal neurotransmitter levels and spatial working memory. J Neurochem 2009; 112:1223-34. [PMID: 20028450 DOI: 10.1111/j.1471-4159.2009.06547.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Intracerebroventricular (i.c.v.) administration of angiotensin IV (Ang IV) or Leu-Val-Val-haemorphin 7 (LVV-H7) improves memory performance in normal rats and reverses memory deficits in rat models for cognitive impairment. These memory effects were believed to be mediated via the putative 'AT4 receptor'. However, this binding site was identified as insulin-regulated aminopeptidase (IRAP). Correspondingly, Ang IV and LVV-H7 were characterised as IRAP inhibitors. This study investigates whether and how IRAP may be involved in the central effects of Ang IV and LVV-H7. We determined the effects of i.c.v. administration of Ang IV or LVV-H7 on hippocampal neurotransmitter levels using microdialysis in rats. We observed that Ang IV modulates hippocampal acetylcholine levels, whereas LVV-H7 does not. This discrepancy was reflected in the observation that Ang IV binds with micromolar affinity to the AT1 receptor whereas no binding affinity was observed for LVV-H7. Correspondingly, we demonstrated that the AT1 receptor is involved in the effects of Ang IV on hippocampal neurotransmitter levels and on spatial working memory in a plus maze spontaneous alternation task. However, the AT1 receptor was not involved in the spatial memory facilitating effect of LVV-H7. Finally, we demonstrated that Ang IV did not diffuse to the hippocampus following i.c.v. injection, suggesting an extrahippocampal site of action. We propose that AT1 receptors are implicated in the neurochemical and cognitive effects of Ang IV, whereas LVV-H7 may mediate its effects via IRAP.
Collapse
Affiliation(s)
- Dimitri De Bundel
- Research Group Experimental Pharmacology, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Wright JW, Harding JW. The brain angiotensin IV/AT4receptor system as a new target for the treatment of Alzheimer's disease. Drug Dev Res 2009. [DOI: 10.1002/ddr.20328] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
69
|
Weiland F, Verspohl EJ. Local formation of angiotensin peptides with paracrine activity by adipocytes. J Pept Sci 2009; 15:767-76. [DOI: 10.1002/psc.1174] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
70
|
Wright JW, Harding JW. The angiotensin AT4 receptor subtype as a target for the treatment of memory dysfunction associated with Alzheimer's disease. J Renin Angiotensin Aldosterone Syst 2009; 9:226-37. [PMID: 19126664 DOI: 10.1177/1470320308099084] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Over recent years antihypertensive drugs, particularly angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs), have been reported to have beneficial effects upon cognitive impairment. Such findings suggest that pharmacological manipulation of angiotensin ligands may be of clinical importance in slowing or halting the cognitive deterioration seen in vascular dementia and Alzheimer's disease. The mechanism(s) underlying these improvements in cognitive function remains unclear; however, important leads are emerging. The angiotensin AT4 receptor subtype, discovered by our laboratory in 1992, influences several important behaviours and physiologies, including learning and memory, and may play a role in this cognitive improvement. This review initially describes the therapeutic drugs approved by the Federal Drug Administration and new approaches presently being developed to treat Alzheimer's disease-induced cognitive impairment. Next, the biologically-active angiotensin ligands and their respective receptor subtypes are discussed, followed by the roles of angiotensin II, angiotensin IV, ACE inhibitors and ARBs in cognitive function. We conclude with a working hypothesis concerning the importance of the AT4 receptor subtype as a new potential drug target for the treatment of Alzheimer's disease-associated memory loss.
Collapse
Affiliation(s)
- John W Wright
- Department of Psychology, Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, P.O. Box 644820, Pullman, WA 99164-4820, USA.
| | | |
Collapse
|
71
|
Wilson WL, Munn C, Ross RC, Harding JW, Wright JW. The role of the AT4 and cholinergic systems in the Nucleus Basalis Magnocellularis (NBM): Effects on spatial memory. Brain Res 2009; 1272:25-31. [DOI: 10.1016/j.brainres.2009.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 02/19/2009] [Accepted: 03/09/2009] [Indexed: 10/21/2022]
|
72
|
Habituation-induced neural plasticity in the hippocampus and prefrontal cortex mediated by MMP-3. Behav Brain Res 2009; 203:27-34. [PMID: 19389428 DOI: 10.1016/j.bbr.2009.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 04/09/2009] [Accepted: 04/13/2009] [Indexed: 11/21/2022]
Abstract
Head-shake response (HSR) habituation was presently used to investigate the phenomena of spontaneous recovery and neural plasticity. Independent groups of rats were presented with five consecutive habituation sessions separated by inter-session intervals (ISIs) of 2, 24 or 72 h. At the conclusion of testing hippocampus and prefrontal cortex tissue samples were collected for determination of matrix metalloproteinase-3 (MMP-3:stromelysin-1) expression as a marker of neural plasticity. The results indicated that by the fifth session the 2 h ISI group showed no spontaneous recovery, the 72 h ISI group revealed nearly complete spontaneous recovery; while the 24 h ISI group showed intermediate recovery. MMP-3 expression in the hippocampus and prefrontal cortex was elevated in the 2 and 72 h ISI groups, but not in the 24 h group. A second experiment utilized 7-day osmotic pumps to intracerebroventricularly infuse an MMP-3 inhibitor for 6 days. The animals were then tested on the seventh day using the 2 h ISI protocol. Delivery of the MMP-3 inhibitor facilitated spontaneous recovery, thus compromising the animal's ability to appropriately habituate. This effect was accompanied by a significant inhibition of hippocampus and prefrontal cortex MMP-3 expression. These results suggest that elevations in hippocampus and prefrontal cortex MMP-3 expression contribute to this simplest form of learning and may be a mechanism underlying spontaneous recovery.
Collapse
|
73
|
De Bundel D, Smolders I, Vanderheyden P, Michotte Y. Ang II and Ang IV: unraveling the mechanism of action on synaptic plasticity, memory, and epilepsy. CNS Neurosci Ther 2009; 14:315-39. [PMID: 19040556 DOI: 10.1111/j.1755-5949.2008.00057.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The central angiotensin system plays a crucial role in cardiovascular regulation. More recently, angiotensin peptides have been implicated in stress, anxiety, depression, cognition, and epilepsy. Angiotensin II (Ang II) exerts its actions through AT(1) and AT(2) receptors, while most actions of its metabolite Ang IV were believed to be independent of AT(1) or AT(2) receptor activation. A specific binding site with high affinity for Ang IV was discovered and denominated "AT(4) receptor". The beneficiary effects of AT(4) ligands in animal models for cognitive impairment and epileptic seizures initiated the search for their mechanism of action. This proved to be a challenging task, and after 20 years of research, the nature of the "AT(4) receptor" remains controversial. Insulin-regulated aminopeptidase (IRAP) was first identified as the high-affinity binding site for AT(4) ligands. Recently, the hepatocyte growth factor receptor c-MET was also proposed as a receptor for AT(4) ligands. The present review focuses on the effects of Ang II and Ang IV on synaptic transmission and plasticity, learning, memory, and epileptic seizure activity. Possible interactions of Ang IV with the classical AT(1) and AT(2) receptor subtypes are evaluated, and other potential mechanisms by which AT(4) ligands may exert their effects are discussed. Identification of these mechanisms may provide a valuable target in the development in novel drugs for the treatment of cognitive disorders and epilepsy.
Collapse
Affiliation(s)
- Dimitri De Bundel
- Research Group Experimental Pharmacology, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | |
Collapse
|
74
|
Protective effect of candesartan in experimental ischemic stroke in the rat mediated by AT2 and AT4 receptors. J Hypertens 2008; 26:2008-15. [PMID: 18806625 DOI: 10.1097/hjh.0b013e32830dd5ee] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES The contribution of the AT2 and AT4 angiotensin receptors to the protective role of the AT1 receptor blocker candesartan in acute ischemic stroke was investigated. METHODS Embolic stroke was induced by injection of calibrated microspheres (50 microm) in the right internal carotid in Sprague-Dawley rats. RESULTS Inhibition of production of endogenous angiotensins by pretreatment for 24 h with lisinopril significantly increased mortality and infarct volume, whereas candesartan for 24 h reduced blood pressure to the same extent but had no deleterious effect. A more sustained pretreatment with candesartan for 5 days significantly decreased mortality, neurological deficit and infarct size. The AT2 receptor antagonist PD123319 and the AT4 receptor antagonist divalinal abolished the protective effect of 5 days' AT1 blockade. Combined blockade of AT2 and AT4 in candesartan pretreated rats resulted in an increased mortality, neurological deficit and infarct volume of similar magnitude to lisinopril pretreatment. Coadministration of lisinopril 24 h before surgery completely blunted the protective effect of candesartan pretreatment. Administration of exogenous angiotensin IV (1 nmol) reversed the deleterious effect of lisinopril pretreatment. CONCLUSION Protection against acute cerebral ischemia induced by AT1 blockade for 5 days is blood pressure independent and mediated by both AT2 and AT4 angiotensin receptors.
Collapse
|
75
|
Chai SY, Yeatman HR, Parker MW, Ascher DB, Thompson PE, Mulvey HT, Albiston AL. Development of cognitive enhancers based on inhibition of insulin-regulated aminopeptidase. BMC Neurosci 2008; 9 Suppl 2:S14. [PMID: 19090987 PMCID: PMC2604898 DOI: 10.1186/1471-2202-9-s2-s14] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The peptides angiotensin IV and LVV-hemorphin 7 were found to enhance memory in a number of memory tasks and reverse the performance deficits in animals with experimentally induced memory loss. These peptides bound specifically to the enzyme insulin-regulated aminopeptidase (IRAP), which is proposed to be the site in the brain that mediates the memory effects of these peptides. However, the mechanism of action is still unknown but may involve inhibition of the aminopeptidase activity of IRAP, since both angiotensin IV and LVV-hemorphin 7 are competitive inhibitors of the enzyme. IRAP also has another functional domain that is thought to regulate the trafficking of the insulin-responsive glucose transporter GLUT4, thereby influencing glucose uptake into cells. Although the exact mechanism by which the peptides enhance memory is yet to be elucidated, IRAP still represents a promising target for the development of a new class of cognitive enhancing agents.
Collapse
Affiliation(s)
- Siew Yeen Chai
- Howard Florey Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
- Centre for Neuroscience, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Holly R Yeatman
- Howard Florey Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
- Centre for Neuroscience, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael W Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - David B Ascher
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Philip E Thompson
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Hayley T Mulvey
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Anthony L Albiston
- Howard Florey Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
76
|
Jones ES, Vinh A, McCarthy CA, Gaspari TA, Widdop RE. AT2 receptors: functional relevance in cardiovascular disease. Pharmacol Ther 2008; 120:292-316. [PMID: 18804122 PMCID: PMC7112668 DOI: 10.1016/j.pharmthera.2008.08.009] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 08/07/2008] [Indexed: 12/24/2022]
Abstract
The renin angiotensin system (RAS) is intricately involved in normal cardiovascular homeostasis. Excessive stimulation by the octapeptide angiotensin II contributes to a range of cardiovascular pathologies and diseases via angiotensin type 1 receptor (AT1R) activation. On the other hand, tElsevier Inc.he angiotensin type 2 receptor (AT2R) is thought to counter-regulate AT1R function. In this review, we describe the enhanced expression and function of AT2R in various cardiovascular disease settings. In addition, we illustrate that the RAS consists of a family of angiotensin peptides that exert cardiovascular effects that are often distinct from those of Ang II. During cardiovascular disease, there is likely to be an increased functional importance of AT2R, stimulated by Ang II, or even shorter angiotensin peptide fragments, to limit AT1R-mediated overactivity and cardiovascular pathologies.
Collapse
Key Words
- angiotensin ii
- at2 receptor
- at1 receptor
- cardiovascular disease
- ace, angiotensin converting enzyme
- ace2, angiotensin converting enzyme 2
- ang ii, angiotensin ii
- ang iii, angiotensin iii
- ang iv, angiotensin iv
- ang (1–7), angiotensin (1–7)
- atbp50, at2r-binding protein of 50 kda
- atip-1, at2 receptor interacting protein-1
- at1r, angiotensin ii type 1 receptor
- at2r, angiotensin ii type 2 receptor
- at4r, angiotensin ii type 4 receptor
- bk, bradykinin
- bp, blood pressure
- cgmp, cyclic guanine 3′,5′-monophosphate
- ecm, extracellular matrix
- enos, endothelial nitric oxide synthase
- erk-1/2, extracellular-regulated kinases-1,2
- irap, insulin-regulated aminopeptidase
- l-name, ng-nitro-l arginine methyl ester
- lvh, left ventricular hypertrophy
- mapk, mitogen-activated protein kinase
- mcp-1, monocyte chemoattractant protein-1
- mi, myocardial infarction
- mmp, matrix metalloproteinase
- mrna, messenger ribonucleic acid
- nf-κβ, nuclear transcription factor-κβ
- no, nitric oxide
- o2−, superoxide
- pc12w, rat pheochromocytoma cell line
- ras, renin angiotensin system
- ros, reactive oxygen species
- shr, spontaneously hypertensive rat
- timp-1, tissue inhibitor of metalloproteinase-1
- tnfα, tumour-necrosis factor α
- vsmc, vascular smooth muscle cell
- wky, wistar-kyoto rat
Collapse
Affiliation(s)
- Emma S Jones
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
77
|
Albiston AL, Morton CJ, Ng HL, Pham V, Yeatman HR, Ye S, Fernando RN, De Bundel D, Ascher DB, Mendelsohn FAO, Parker MW, Chai SY. Identification and characterization of a new cognitive enhancer based on inhibition of insulin‐regulated aminopeptidase. FASEB J 2008; 22:4209-17. [DOI: 10.1096/fj.08-112227] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Anthony L. Albiston
- Howard Florey Institute, Florey Neurosciences InstitutesParkvilleVictoriaAustralia
| | - Craig J. Morton
- St. Vincent's Institute of Medical ResearchFitzroyVictoriaAustralia
| | - Hooi Ling Ng
- St. Vincent's Institute of Medical ResearchFitzroyVictoriaAustralia
| | - Vi Pham
- Howard Florey Institute, Florey Neurosciences InstitutesParkvilleVictoriaAustralia
| | - Holly R. Yeatman
- Howard Florey Institute, Florey Neurosciences InstitutesParkvilleVictoriaAustralia
| | - Siying Ye
- Howard Florey Institute, Florey Neurosciences InstitutesParkvilleVictoriaAustralia
- Department of PhysiologyDartmouth Medical SchoolHanoverNHUSA
| | - Ruani N. Fernando
- Howard Florey Institute, Florey Neurosciences InstitutesParkvilleVictoriaAustralia
- Division of Molecular Neurobiology, Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Dimitri De Bundel
- Howard Florey Institute, Florey Neurosciences InstitutesParkvilleVictoriaAustralia
- Research Group of Experimental Phar macology, Department of Pharmaceutical Chemistry, Drug Analysis and Drug InformationVrije UniversityBrusselBrusselsBelgium
| | - David B. Ascher
- St. Vincent's Institute of Medical ResearchFitzroyVictoriaAustralia
| | | | - Michael W. Parker
- Department of Biochemistry and Molecular BiologyBio21 Molecular Science and Biotechnology InstituteParkvilleVictoriaAustralia
- St. Vincent's Institute of Medical ResearchFitzroyVictoriaAustralia
| | - Siew Yeen Chai
- Howard Florey Institute, Florey Neurosciences InstitutesParkvilleVictoriaAustralia
- Centre for NeuroscienceUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
78
|
Fernando RN, Albiston AL, Chai SY. The insulin-regulated aminopeptidase IRAP is colocalised with GLUT4 in the mouse hippocampus - potential role in modulation of glucose uptake in neurones? Eur J Neurosci 2008; 28:588-98. [DOI: 10.1111/j.1460-9568.2008.06347.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
79
|
Akhavan MM, Emami-Abarghoie M, Sadighi-Moghaddam B, Safari M, Yousefi Y, Rashidy-Pour A. Hippocampal angiotensin II receptors play an important role in mediating the effect of voluntary exercise on learning and memory in rat. Brain Res 2008; 1232:132-8. [PMID: 18687315 DOI: 10.1016/j.brainres.2008.07.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 07/08/2008] [Accepted: 07/09/2008] [Indexed: 11/30/2022]
Abstract
The beneficial effects of physical activity and exercise on brain functions such as improvement in learning and memory are well documented. The aim of this study was to examine the possible role of hippocampal angiotensin II receptors in voluntary exercise-induced enhancement of learning and memory in rat. In order to block the hippocampal angiotension II receptors, the animals received a single injection of latex microbeads for delivery of [Sar1 Thr8]-Angiotensin II into the hippocampus. The animals were exposed to five consecutive nights of exercise and then their learning and memory were tested on the Morris water maze (MWM) task using a two-trial-per-day for five consecutive days. A probe trial was performed 2 days after the last training day. Our results showed that hippocampal angiotensin II receptor blockade reversed the exercise-induced improvement in learning and memory in rat.
Collapse
Affiliation(s)
- Maziar M Akhavan
- Department of Pharmacology, School of Medicine, Semnan University of Medical Sciences, Damghan road, Faculty of Medicine, Semnan, 35198-99951 Iran.
| | | | | | | | | | | |
Collapse
|
80
|
Braszko JJ, Wielgat P, Walesiuk A. Effect of D(3) dopamine receptors blockade on the cognitive effects of angiotensin IV in rats. Neuropeptides 2008; 42:301-9. [PMID: 18359517 DOI: 10.1016/j.npep.2008.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 12/24/2007] [Accepted: 02/01/2008] [Indexed: 02/06/2023]
Abstract
Our previous studies showed that D(1) and D(2) dopamine receptors are indispensable for the cognitive effects of angiotensin IV (Ang IV) and its des-Phe(6) derivative des-Phe(6)-Ang IV to occur. As most neuroleptics currently used in the treatment of schizophrenia have variable D(2)/D(3) dopaminolytic selectivity, in this study we searched for the role of the D(3) dopamine receptors in facilitating learning and improving memory actions of Ang IV and des-Phe(6)-Ang IV in rats. For this purpose, we evaluated the recall of the passive avoidance (PA) behaviour, object recognition (OR) memory, and the spatial working memory (WM) in rats treated with the intraperitoneal (i.p.) nafadotride (N[(n-butyl-2-pyrrolidinyl)methyl]-1-methoxy-4-cyanonaphtalene-2-carboxamide), a highly selective D(3) receptor blocker and then by an intracerebroventricular (i.c.v.) Ang IV or des-Phe(6)-Ang IV. Separate groups of rats receiving the same treatments were run to check for the possible participation of unspecific motor (open field) or emotioned (elevated "plus" maze) effects of our treatments in the results of the cognitive tests. The results revealed Ang IV to express its improving recall of PA, OR memory and WM action roughly similarly in all groups showing only minor or null significance of the D(3) receptors blockade. Interestingly, in the nafadotride pretreated rats, des-Phe(6)-Ang IV beneficial effect on the recall of the PA was weaker than that of Ang IV. Improvement of the spatial WM in an eight-arm radial maze, similar after Ang IV and des-Phe(6)-Ang IV, was not significantly affected by nafadotride. There were no motor and only minor anxiogenic effects of Ang IV and des-Phe(6)-Ang IV abolished by nafadotride in the former case. In conclusion, this study points to the minor significance of the D(3) dopamine receptors in the cognitive effects of Ang IV and to the interesting, though unexplained, inhibition by nafadotride of the des-Phe(6)-Ang IV effects.
Collapse
Affiliation(s)
- Jan J Braszko
- Departament of Clinical Pharmacology, Medical University of Bialystok, Bialystok, Poland.
| | | | | |
Collapse
|
81
|
Ligands to the (IRAP)/AT4 receptor encompassing a 4-hydroxydiphenylmethane scaffold replacing Tyr2. Bioorg Med Chem 2008; 16:6924-35. [PMID: 18556208 DOI: 10.1016/j.bmc.2008.05.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 05/09/2008] [Accepted: 05/22/2008] [Indexed: 01/28/2023]
Abstract
Analogues of the hexapeptide angiotensin IV (Ang IV, Val(1)-Tyr(2)-Ile(3)-His(4)-Pro(5)-Phe(6)) encompassing a 4-hydroxydiphenylmethane scaffold replacing Tyr(2) and a phenylacetic or benzoic acid moiety replacing His(4)-Pro(5)-Phe(6) have been synthesized and evaluated in biological assays. The analogues inhibited the proteolytic activity of cystinyl aminopeptidase (CAP), frequently referred to as the insulin-regulated aminopeptidase (IRAP), and were found less efficient as inhibitors of aminopeptidase N (AP-N). The best Ang IV mimetics in the series were approximately 20 times less potent than Ang IV as IRAP inhibitors. Furthermore, it was found that the ligands at best exhibited a 140 times lower binding affinity to the membrane-bound IRAP/AT4 receptor than Ang IV. Although the best compounds still exert lower activities than Ang IV, it is notable that these compounds comprise only two amino acid residues and are considerably less peptidic in character than the majority of the Ang IV analogues previously reported as IRAP inhibitors in the literature.
Collapse
|
82
|
McKinley MJ, Walker LL, Alexiou T, Allen AM, Campbell DJ, Di Nicolantonio R, Oldfield BJ, Denton DA. Osmoregulatory fluid intake but not hypovolemic thirst is intact in mice lacking angiotensin. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1533-43. [DOI: 10.1152/ajpregu.00848.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Water intakes in response to hypertonic, hypovolemic, and dehydrational stimuli were investigated in mice lacking angiotensin II as a result of deletion of the angiotensinogen gene (Agt−/− mice), and in C57BL6 wild-type (WT) mice. Baseline daily water intake in Agt−/− mice was approximately threefold that of WT mice because of a renal developmental disorder of the urinary concentrating mechanisms in Agt−/− mice. Intraperitoneal injection of hypertonic saline (0.4 and 0.8 mol/l NaCl) caused a similar dose-dependent increase in water intake in both Agt−/− and WT mice during the hour following injection. As well, Agt−/− mice drank appropriate volumes of water following water deprivation for 7 h. However, Agt−/− mice did not increase water or 0.3 mol/l NaCl intake in the 8 h following administration of a hypovolemic stimulus (30% polyethylene glycol sc), whereas WT mice increased intakes of both solutions during this time. Osmoregulatory regions of the brain [hypothalamic paraventricular and supraoptic nuclei, median preoptic nucleus, organum vasculosum of the lamina terminalis (OVLT), and subfornical organ] showed an increased number of neurons exhibiting Fos-immunoreactivity in response to intraperitoneal hypertonic NaCl in both Agt−/− mice and WT mice. Polyethylene glycol treatment increased Fos-immunoreactivity in the subfornical organ, OVLT, and supraoptic nuclei in WT mice but only increased Fos-immunoreactivity in the supraoptic nucleus in Agt−/− mice. These data show that brain angiotensin is not essential for the adequate functioning of neural pathways mediating osmoregulatory thirst. However, angiotensin II of either peripheral or central origin is probably necessary for thirst and salt appetite that results from hypovolemia.
Collapse
|
83
|
Ye S, Chai SY, Lew RA, Ascher DB, Morton CJ, Parker MW, Albiston AL. Identification of modulating residues defining the catalytic cleft of insulin-regulated aminopeptidase. Biochem Cell Biol 2008; 86:251-61. [DOI: 10.1139/o08-037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inhibition of insulin-regulated aminopeptidase (IRAP) has been demonstrated to facilitate memory in rodents, making IRAP a potential target for the development of cognitive enhancing therapies. In this study, we generated a 3-D model of the catalytic domain of IRAP based on the crystal structure of leukotriene A4 hydrolase (LTA4H). This model identified two key residues at the ‘entrance’ of the catalytic cleft of IRAP, Ala427 and Leu483, which present a more open arrangement of the S1 subsite compared with LTA4H. These residues may define the size and 3-D structure of the catalytic pocket, thereby conferring substrate and inhibitor specificity. Alteration of the S1 subsite by the mutation A427Y in IRAP markedly increased the rate of substrate cleavage V of the enzyme for a synthetic substrate, although a corresponding increase in the rate of cleavage of peptide substrates Leu-enkephalin and vasopressin was was not apparent. In contrast, [L483F]IRAP demonstrated a 30-fold decrease in activity due to changes in both substrate affinity and rate of substrate cleavage. [L483F]IRAP, although capable of efficiently cleaving the N-terminal cysteine from vasopressin, was unable to cleave the tyrosine residue from either Leu-enkephalin or Cyt6-desCys1-vasopressin (2–9), both substrates of IRAP. An 11-fold reduction in the affinity of the peptide inhibitor norleucine1-angiotensin IV was observed, whereas the affinity of angiotensin IV remained unaltered. In additionm we predict that the peptide inhibitors bind to the catalytic site, with the NH2-terminal P1 residue occupying the catalytic cleft (S1 subsite) in a manner similar to that proposed for peptide substrates.
Collapse
Affiliation(s)
- Siying Ye
- Howard Florey Institute, Florey Neurosciences Institutes, University of Melbourne, Parkville, Victoria 3010, Australia
- Centre for Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Siew Yeen Chai
- Howard Florey Institute, Florey Neurosciences Institutes, University of Melbourne, Parkville, Victoria 3010, Australia
- Centre for Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rebecca A. Lew
- Howard Florey Institute, Florey Neurosciences Institutes, University of Melbourne, Parkville, Victoria 3010, Australia
- Centre for Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - David B. Ascher
- Howard Florey Institute, Florey Neurosciences Institutes, University of Melbourne, Parkville, Victoria 3010, Australia
- Centre for Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Craig J. Morton
- Howard Florey Institute, Florey Neurosciences Institutes, University of Melbourne, Parkville, Victoria 3010, Australia
- Centre for Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael W. Parker
- Howard Florey Institute, Florey Neurosciences Institutes, University of Melbourne, Parkville, Victoria 3010, Australia
- Centre for Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anthony L. Albiston
- Howard Florey Institute, Florey Neurosciences Institutes, University of Melbourne, Parkville, Victoria 3010, Australia
- Centre for Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
84
|
Involvement of insulin-regulated aminopeptidase in the effects of the renin–angiotensin fragment angiotensin IV: a review. Heart Fail Rev 2007; 13:321-37. [DOI: 10.1007/s10741-007-9062-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 10/16/2007] [Indexed: 10/22/2022]
|
85
|
Grammatopoulos TN, Outeiro TF, Hyman BT, Standaert DG. Angiotensin II protects against alpha-synuclein toxicity and reduces protein aggregation in vitro. Biochem Biophys Res Commun 2007; 363:846-51. [PMID: 17900533 PMCID: PMC2707356 DOI: 10.1016/j.bbrc.2007.09.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 09/13/2007] [Indexed: 11/20/2022]
Abstract
In this study, we examined the effects of angiotensin II (AngII) in a genetic in vitro PD model produced by alpha-synuclein (alpha-syn) overexpression in the human neuroglioma H4 cell line. We observed a maximal decrease in alpha-syn-induced toxicity of 85% and reduction in inclusion formation by 19% when cultures were treated with AngII in the presence of the angiotensin type 1 (AT1) receptor antagonist losartan and AT2 receptor antagonist PD123319. When compared to AngII, the AT4 receptor agonist AngIV was moderately effective in protecting H4 cells against alpha-syn toxicity and did not significantly reduce inclusion formation. Here we show that AngII is protective against genetic, as well as neurotoxic models of PD. These data support the view that agents acting on the renin-angiotensin-system (RAS) may be useful in the prevention and/or treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Tom N Grammatopoulos
- MassGeneral Institute for Neurodegenerative Disease, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| | | | | | | |
Collapse
|
86
|
Albiston AL, Peck GR, Yeatman HR, Fernando R, Ye S, Chai SY. Therapeutic targeting of insulin-regulated aminopeptidase: heads and tails? Pharmacol Ther 2007; 116:417-27. [PMID: 17900701 DOI: 10.1016/j.pharmthera.2007.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 07/30/2007] [Indexed: 10/22/2022]
Abstract
Insulin-regulated aminopeptidase, IRAP, is an abundant protein that was initially cloned from a rat epididymal fat pad cDNA library as a marker protein for specialized vesicles containing the insulin-responsive glucose transporter GLUT4, wherein it is thought to participate in the tethering and trafficking of GLUT4 vesicles. The same protein was independently cloned from human placental cDNA library as oxytocinase and is proposed to have a primary role in the regulation of circulating oxytocin (OXY) during the later stages of pregnancy. More recently, IRAP was identified as the specific binding site for angiotensin IV, and we propose that it mediates the memory-enhancing effects of the peptide. This protein appears to have multiple physiological roles that are tissue- and domain-specific; thus the protein can be specifically targeted for treating different clinical conditions.
Collapse
Affiliation(s)
- Anthony L Albiston
- Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
87
|
Fernando RN, Luff SE, Albiston AL, Chai SY. Sub-cellular localization of insulin-regulated membrane aminopeptidase, IRAP to vesicles in neurons. J Neurochem 2007; 102:967-76. [PMID: 17504262 DOI: 10.1111/j.1471-4159.2007.04659.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Angiotensin IV and LVV-hemorphin 7 promote robust enhancing effects on learning and memory. These peptides are also competitive inhibitors of the insulin-regulated membrane aminopeptidase, suggesting that the biological actions of these peptides may result from inhibition of IRAP activity. However, the normal function of IRAP in the brain is yet to be determined. The present study investigated the sub-cellular distribution of IRAP in four neuronal cell lines and in the mouse brain. Using sub-cellular fractionation, IRAP was found to be enriched in low density microsomes, while lower levels of IRAP were also present in high density microsomes, plasma membrane and mitochondrial fractions. Dual-label immunohistochemistry confirmed the presence of IRAP in vesicles co-localized with the vesicular maker VAMP2, in the trans Golgi network co-localized with TGN 38 and in endosomes co-localized with EEA1. Finally using electron microscopy, IRAP specific immunoreactivity was predominantly associated with large 100-200 nm vesicles in hippocampal neurons. The location, appearance and size of these vesicles are consistent with neurosecretory vesicles. IRAP precipitate was also detected in intracellular structures including the rough endoplasmic reticulum, Golgi stack and mitochondrial membranes. The sub-cellular localization of IRAP in neurons demonstrated in the present study bears striking parallels with distribution of IRAP in insulin responsive cells, where the enzyme plays a role in insulin-regulated glucose uptake. Therefore, we propose that the function of IRAP in neurons may be similar to that in insulin responsive cells.
Collapse
Affiliation(s)
- Ruani N Fernando
- Howard Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
88
|
Grammatopoulos TN, Jones SM, Ahmadi FA, Hoover BR, Snell LD, Skoch J, Jhaveri VV, Poczobutt AM, Weyhenmeyer JA, Zawada WM. Angiotensin type 1 receptor antagonist losartan, reduces MPTP-induced degeneration of dopaminergic neurons in substantia nigra. Mol Neurodegener 2007; 2:1. [PMID: 17224059 PMCID: PMC1783655 DOI: 10.1186/1750-1326-2-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 01/15/2007] [Indexed: 12/21/2022] Open
Abstract
Background Recent attention has focused on understanding the role of the brain-renin-angiotensin-system (RAS) in stroke and neurodegenerative diseases. Direct evidence of a role for the brain-RAS in Parkinson's disease (PD) comes from studies demonstrating the neuroprotective effect of RAS inhibitors in several neurotoxin based PD models. In this study, we show that an antagonist of the angiotensin II (Ang II) type 1 (AT1) receptor, losartan, protects dopaminergic (DA) neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity both in primary ventral mesencephalic (VM) cultures as well as in the substantia nigra pars compacta (SNpc) of C57BL/6 mice (Fig. 1). Results In the presence of exogenous Ang II, losartan reduced MPP+ (5 μM) induced DA neuronal loss by 72% in vitro. Mice challenged with MPTP showed a 62% reduction in the number of DA neurons in the SNpc and a 71% decrease in tyrosine hydroxylase (TH) immunostaining of the striatum, whereas daily treatment with losartan lessened MPTP-induced loss of DA neurons to 25% and reduced the decrease in striatal TH+ immunostaining to 34% of control. Conclusion Our study demonstrates that the brain-RAS plays an important neuroprotective role in the MPTP model of PD and points to AT1 receptor as a potential novel target for neuroprotection.
Collapse
Affiliation(s)
- Tom N Grammatopoulos
- Division of Clinical Pharmacology and Toxicology, Department of Medicine, Denver and Health Sciences Center, Denver, Colorado 80262, USA
- Department of Pharmacology, University of Colorado at Denver and Health Sciences Center, Denver, Colorado 80262, USA
| | - Susan M Jones
- Division of Clinical Pharmacology and Toxicology, Department of Medicine, Denver and Health Sciences Center, Denver, Colorado 80262, USA
| | - Ferogh A Ahmadi
- Division of Clinical Pharmacology and Toxicology, Department of Medicine, Denver and Health Sciences Center, Denver, Colorado 80262, USA
- Neuroscience Program, Department of Medicine, Denver and Health Sciences Center, Denver, Colorado 80262, USA
| | - Brian R Hoover
- Department of Pharmacology, University of Colorado at Denver and Health Sciences Center, Denver, Colorado 80262, USA
| | - Lawrence D Snell
- Department of Pharmacology, University of Colorado at Denver and Health Sciences Center, Denver, Colorado 80262, USA
| | - Jesse Skoch
- Division of Clinical Pharmacology and Toxicology, Department of Medicine, Denver and Health Sciences Center, Denver, Colorado 80262, USA
| | - Vimal V Jhaveri
- Department of Pharmacology, University of Colorado at Denver and Health Sciences Center, Denver, Colorado 80262, USA
| | - Andy M Poczobutt
- Division of Clinical Pharmacology and Toxicology, Department of Medicine, Denver and Health Sciences Center, Denver, Colorado 80262, USA
| | - James A Weyhenmeyer
- Department of Cell and Structural Biology, University of Illinois, Urbana, Illinois 61801, USA
| | - W Michael Zawada
- Division of Clinical Pharmacology and Toxicology, Department of Medicine, Denver and Health Sciences Center, Denver, Colorado 80262, USA
- Neuroscience Program, Department of Medicine, Denver and Health Sciences Center, Denver, Colorado 80262, USA
| |
Collapse
|
89
|
Axén A, Andersson H, Lindeberg G, Rönnholm H, Kortesmaa J, Demaegdt H, Vauquelin G, Karlén A, Hallberg M. Small potent ligands to the insulin-regulated aminopeptidase (IRAP)/AT4 receptor. J Pept Sci 2007; 13:434-44. [PMID: 17559064 DOI: 10.1002/psc.859] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiotensin IV analogs encompassing aromatic scaffolds replacing parts of the backbone of angiotensin IV have been synthesized and evaluated in biological assays. Several of the ligands displayed high affinities to the insulin-regulated aminopeptidase (IRAP)/AT(4) receptor. Displacement of the C-terminal of angiotensin IV with an o-substituted aryl acetic acid derivative delivered the ligand 4, which exhibited the highest binding affinity (K(i) = 1.9 nM). The high affinity of this ligand provides support to the hypothesis that angiotensin IV adopts a gamma-turn in the C-terminal of its bioactive conformation. Ligand (4) inhibits both human IRAP and aminopeptidase N-activity and induces proliferation of adult neural stem cells at low concentrations. Furthermore, ligand 4 is degraded considerably more slowly in membrane preparations than angiotensin IV. Hence, it might constitute a suitable research tool for biological studies of the (IRAP)/AT(4) receptor.
Collapse
Affiliation(s)
- Andreas Axén
- Department of Medicinal Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Esch JHV, Danser AJ. Local Angiotensin Generation and AT2 Receptor Activation. FRONTIERS IN RESEARCH OF THE RENIN-ANGIOTENSIN SYSTEM ON HUMAN DISEASE 2007. [PMCID: PMC7119946 DOI: 10.1007/978-1-4020-6372-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
91
|
Wright JW, Brown TE, Harding JW. Inhibition of hippocampal matrix metalloproteinase-3 and -9 disrupts spatial memory. Neural Plast 2006; 2007:73813. [PMID: 17502908 PMCID: PMC1838960 DOI: 10.1155/2007/73813] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 09/21/2006] [Accepted: 09/26/2006] [Indexed: 11/24/2022] Open
Abstract
Memory consolidation requires synaptic reconfiguration dependent upon extracellular matrix (ECM) molecules interacting with cell adhesion molecules. Matrix metalloproteinase (MMP) activity is responsible for transient alterations in the ECM that may be prerequisite to hippocampal-dependent learning. In support of this hypothesis we have measured increases in MMP-3 and MMP-9 levels within the hippocampus and
prefrontal cortex during Morris water maze training. The present investigation extends these findings by determining that infusion of an MMP inhibitor (FN-439) into the dorsal hippocampus disrupted acquisition of this task. In vitro fluorescence enzyme assays to determine the specificity of FN-439 against the catalytic domains of MMP-3 and MMP-9 indicated mean ± SEM IC50s of 16.2 ± 7.8 and 210.5 ± 37.8 μM, respectively, while in situ zymography using hippocampal sections treated with FN-439 indicated significant reductions in MMP gelatinase activity. These results suggest that compromising the ability of the dorsal hippocampus to reconfigure ECM molecules by inhibiting MMP activity interferes with appropriate spatial
memory acquisition, and support a role for hippocampal MMPs in the phenomena of spatial memory acquisition and storage.
Collapse
Affiliation(s)
- John W. Wright
- Department of Psychology, Washington State University, Pullman, WA 99164-4820, USA
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University,
Pullman, WA 99164-6520, USA
- Programs in Neuroscience and Biotechnology, Washington State University, Pullman, WA 99164-6520, USA
- *John W. Wright:
| | - Travis E. Brown
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University,
Pullman, WA 99164-6520, USA
- Programs in Neuroscience and Biotechnology, Washington State University, Pullman, WA 99164-6520, USA
| | - Joseph W. Harding
- Department of Psychology, Washington State University, Pullman, WA 99164-4820, USA
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University,
Pullman, WA 99164-6520, USA
- Programs in Neuroscience and Biotechnology, Washington State University, Pullman, WA 99164-6520, USA
| |
Collapse
|
92
|
Demaegdt H, Lenaerts PJ, Swales J, De Backer JP, Laeremans H, Le MT, Kersemans K, Vogel LK, Michotte Y, Vanderheyden P, Vauquelin G. Angiotensin AT4 receptor ligand interaction with cystinyl aminopeptidase and aminopeptidase N: [125I]Angiotensin IV only binds to the cystinyl aminopeptidase apo-enzyme. Eur J Pharmacol 2006; 546:19-27. [PMID: 16919623 DOI: 10.1016/j.ejphar.2006.07.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 06/07/2006] [Accepted: 07/13/2006] [Indexed: 10/24/2022]
Abstract
Due to its high affinity for [(125)I]Angiotensin IV, cystinyl aminopeptidase (CAP) has recently been assigned as the 'angiotensin AT(4) receptor'. Since the aminopeptidase N (AP-N) activity is also susceptible to inhibition by Angiotensin IV, it might represent an additional target for this peptide. Based on [(125)I]Angiotensin IV binding and catalytic activity measurements, we compared the ligand interaction properties of recombinant human CAP and human AP-N. Both enzymes displayed distinct pharmacological profiles. Although their activity is inhibited by Angiotensin IV and LVV-hemorphin 7, both peptides are more potent CAP-inhibitors. On the other hand, substance P and l-methionine have a higher potency for AP-N. High affinity binding of [(125)I]Angiotensin IV to CAP occurs in the presence of chelators but not to AP-N in either the absence or presence of chelators. These differences were exploited to determine whether CAP and/or AP-N are present in different cell lines (CHO-K1, COS-7, HEK293, SK-N-MC and MDBK). We provide evidence that CAP predominates in these cell lines and that, comparatively, CHO-K1 cells display the highest level of this enzyme.
Collapse
Affiliation(s)
- Heidi Demaegdt
- Research Group on Experimental Pharmacology, Department of Molecular and Biochemical Pharmacology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Stragier B, Clinckers R, Meurs A, De Bundel D, Sarre S, Ebinger G, Michotte Y, Smolders I. Involvement of the somatostatin-2 receptor in the anti-convulsant effect of angiotensin IV against pilocarpine-induced limbic seizures in rats. J Neurochem 2006; 98:1100-13. [PMID: 16771832 DOI: 10.1111/j.1471-4159.2006.03942.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The anti-convulsant properties of angiotensin IV (Ang IV), an inhibitor of insulin-regulated aminopeptidase (IRAP) and somatostatin-14, a substrate of IRAP, were evaluated in the acute pilocarpine rat seizure model. Simultaneously, the neurochemical changes in the hippocampus were monitored using in vivo microdialysis. Intracerebroventricularly (i.c.v.) administered Ang IV or somatostatin-14 caused a significant increase in the hippocampal extracellular dopamine and serotonin levels and protected rats against pilocarpine-induced seizures. These effects of Ang IV were both blocked by concomitant i.c.v. administration of the somatostatin receptor-2 antagonist cyanamid 154806. These results reveal a possible role for dopamine and serotonin in the anti-convulsant effect of Ang IV and somatostatin-14. Our study suggests that the ability of Ang IV to inhibit pilocarpine-induced convulsions is dependent on somatostatin receptor-2 activation, and is possibly mediated via the inhibition of IRAP resulting in an elevated concentration of somatostatin-14 in the brain.
Collapse
Affiliation(s)
- Bart Stragier
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Abstract
Since the first identification of renin by Tigerstedt and Bergmann in 1898, the renin-angiotensin system (RAS) has been extensively studied. The current view of the system is characterized by an increased complexity, as evidenced by the discovery of new functional components and pathways of the RAS. In recent years, the pathophysiological implications of the system have been the main focus of attention, and inhibitors of the RAS such as angiotensin-converting enzyme (ACE) inhibitors and angiotensin (ANG) II receptor blockers have become important clinical tools in the treatment of cardiovascular and renal diseases such as hypertension, heart failure, and diabetic nephropathy. Nevertheless, the tissue RAS also plays an important role in mediating diverse physiological functions. These focus not only on the classical actions of ANG on the cardiovascular system, namely, the maintenance of cardiovascular homeostasis, but also on other functions. Recently, the research efforts studying these noncardiovascular effects of the RAS have intensified, and a large body of data are now available to support the existence of numerous organ-based RAS exerting diverse physiological effects. ANG II has direct effects at the cellular level and can influence, for example, cell growth and differentiation, but also may play a role as a mediator of apoptosis. These universal paracrine and autocrine actions may be important in many organ systems and can mediate important physiological stimuli. Transgenic overexpression and knock-out strategies of RAS genes in animals have also shown a central functional role of the RAS in prenatal development. Taken together, these findings may become increasingly important in the study of organ physiology but also for a fresh look at the implications of these findings for organ pathophysiology.
Collapse
Affiliation(s)
- Martin Paul
- Institute of Clinical Pharmacology and Toxicology, Campus Benjamin Franklin, Charité-University Medicine Berlin, Berlin, Germany
| | | | | |
Collapse
|
95
|
Braszko JJ. D2 dopamine receptor blockade prevents cognitive effects of Ang IV and des-Phe6 Ang IV. Physiol Behav 2006; 88:152-9. [PMID: 16690090 DOI: 10.1016/j.physbeh.2006.03.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 01/27/2006] [Accepted: 03/27/2006] [Indexed: 10/24/2022]
Abstract
Angiotensins, especially angiotensin IV (Ang IV), have recently been found to be potent cognitive enhancers in rodents. However, the precise mechanisms of their memory improving effects remain unknown. In this study we tested the hypothesis that D2 dopamine receptors at least partially mediate cognitive effects of Ang IV and its derivative des-Phe6 Ang IV. Namely, the well known cognitive effects of both peptides [facilitation of a conditioned avoidance responses (CARs) acquisition, increase of a passive avoidance behavior (PAB) retrieval, and improvement of object recognition] were evaluated in rats either pretreated or not with a selective D2 dopamine receptor antagonist remoxipride {(S)-(-)-3-Bromo-N-[(1-ethyl-2-pyrrolidinylOmethyl]2,6-dimethoxybenzamide hydrochloride}. To control for the unspecific motor and emotional effects of our treatments that could confound results of the memory tests we used respectively, 'open' field and elevated 'plus' maze tests. Ang IV as well as des-Phe6 Ang IV remarkably improved learning of CARs, recall of PAB and recognition of the previously seen objects. D2 receptors blockade by remoxipride abolished all these effects of both peptides. In the elevated 'plus' maze remoxipride abolished anxiogenic effects of both Ang IV and des-Phe6 Ang IV. Also, the drug followed by Ang IV decreased number of crossings and by des-Phe6 Ang IV number of crossings and rearings. The results point to importance of the functional D2 dopamine receptors in cognitive effects of Ang IV and its naturally occurring product devoid of C-terminal Phe6.
Collapse
Affiliation(s)
- J J Braszko
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15 A, PL-15274 Bialystok, Poland.
| |
Collapse
|
96
|
von Bohlen und Halbach O, Albrecht D. The CNS renin-angiotensin system. Cell Tissue Res 2006; 326:599-616. [PMID: 16555051 DOI: 10.1007/s00441-006-0190-8] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 02/20/2006] [Indexed: 01/24/2023]
Abstract
The renin-angiotensin system (RAS) is one of the best-studied enzyme-neuropeptide systems in the brain and can serve as a model for the action of peptides on neuronal function in general. It is now well established that the brain has its own intrinsic RAS with all its components present in the central nervous system. The RAS generates a family of bioactive angiotensin peptides with variable biological and neurobiological activities. These include angiotensin-(1-8) [Ang II], angiotensin-(3-8) [Ang IV], and angiotensin-(1-7) [Ang-(1-7)]. These neuroactive forms of angiotensin act through specific receptors. Only Ang II acts through two different high-specific receptors, termed AT1 and AT2. Neuronal AT1 receptors mediate the stimulatory actions of Ang II on blood pressure, water and salt intake, and the secretion of vasopressin. In contrast, neuronal AT2 receptors have been implicated in the stimulation of apoptosis and as being antagonistic to AT1 receptors. Among the many potential effects mediated by stimulation of AT2 are neuronal regeneration after injury and the inhibition of pathological growth. Ang-(1-7) mediates its antihypertensive effects by stimulating the synthesis and release of vasodilator prostaglandins and nitric oxide and by potentiating the hypotensive effects of bradykinin. New data concerning the roles of Ang IV and Ang-(1-7) in cognition also support the existence of complex site-specific interactions between multiple angiotensins and multiple receptors in the mediation of important central functions of the RAS. Thus, the RAS of the brain is involved not only in the regulation of blood pressure, but also in the modulation of multiple additional functions in the brain, including processes of sensory information, learning, and memory, and the regulation of emotional responses.
Collapse
Affiliation(s)
- O von Bohlen und Halbach
- Interdisciplinary Center for Neurosciences (IZN), Department of Neuroanatomy, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany.
| | | |
Collapse
|
97
|
Meighan SE, Meighan PC, Choudhury P, Davis CJ, Olson ML, Zornes PA, Wright JW, Harding JW. Effects of extracellular matrix-degrading proteases matrix metalloproteinases 3 and 9 on spatial learning and synaptic plasticity. J Neurochem 2006; 96:1227-41. [PMID: 16464240 DOI: 10.1111/j.1471-4159.2005.03565.x] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rats learning the Morris water maze exhibit hippocampal changes in synaptic morphology and physiology that manifest as altered synaptic efficacy. Learning requires structural changes in the synapse, and multiple cell adhesion molecules appear to participate. The activity of these cell adhesion molecules is, in large part, dependent on their interaction with the extracellular matrix (ECM). Given that matrix metalloproteinases (MMPs) are responsible for transient alterations in the ECM, we predicted that MMP function is critical for hippocampal-dependent learning. In support of this, it was observed that hippocampal MMP-3 and -9 increased transiently during water maze acquisition as assessed by western blotting and mRNA analysis. The ability of the NMDA receptor channel blocker MK801 to attenuate these changes indicated that the transient MMP changes were in large part dependent upon NMDA receptor activation. Furthermore, inhibition of MMP activity with MMP-3 and -9 antisense oligonucleotides and/or MMP inhibitor FN-439 altered long-term potentiation and prevented acquisition in the Morris water maze. The learning-dependent MMP alterations were shown to modify the stability of the actin-binding protein cortactin, which plays an essential role in regulating the dendritic cytoskeleton and synaptic efficiency. Together these results indicate that changes in MMP function are critical to synaptic plasticity and hippocampal-dependent learning.
Collapse
Affiliation(s)
- Starla E Meighan
- Department of Veterinary Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, Washington 99164, USA.
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Axén A, Lindeberg G, Demaegdt H, Vauquelin G, Karlén A, Hallberg M. Cyclic insulin-regulated aminopeptidase (IRAP)/AT4 receptor ligands. J Pept Sci 2006; 12:705-13. [PMID: 16967438 DOI: 10.1002/psc.782] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The angiotensin IV receptor (AT4 receptor) is the insulin-regulated aminopeptidase enzyme (IRAP, EC 3.4.11.3). This membrane-spanning enzyme belongs to the M1 family of zinc-dependent metallo-peptidases. It has been proposed that AT4 receptor ligands exert their physiological effects by binding to the active site of IRAP and thereby inhibiting the catalytic activity of the enzyme. The biological activity of a large series of linear angiotensin IV analogs was previously disclosed. Herein, the synthesis and biological evaluation of a series of angiotensin IV analogs, encompassing macrocyclic ring systems of different sizes, are presented. It is demonstrated that disulfide cyclizations of angiotensin IV can deliver ligands with high IRAP/AT4 receptor affinity. One ligand, with an 11-membered ring system (4), inhibited human IRAP and aminopeptidase N (AP-N) activity with similar potency as angiotensin IV but was considerably more stable than angiotensin IV toward enzymatic degradation. The compound provides a promising starting point for further optimization toward more drug-like derivatives. The cyclic constrained analogs allowed us to propose a tentative bioactive conformation of angiotensin IV and it seems that the peptide adopts an inverse gamma-turn at the C-terminal.
Collapse
Affiliation(s)
- Andreas Axén
- Department of Medicinal Chemistry, Uppsala University, Box 574, SE-75123 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
99
|
Davis CJ, Kramár EA, De A, Meighan PC, Simasko SM, Wright JW, Harding JW. AT4 receptor activation increases intracellular calcium influx and induces a non-N-methyl-D-aspartate dependent form of long-term potentiation. Neuroscience 2005; 137:1369-79. [PMID: 16343778 DOI: 10.1016/j.neuroscience.2005.10.051] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 09/19/2005] [Accepted: 10/18/2005] [Indexed: 11/17/2022]
Abstract
The angiotensin 4 receptor (AT4) subtype is heavily distributed in the dentate gyrus and CA1-CA3 subfields of the hippocampus. Neuronal pathways connecting these subfields are believed to be activated during learning and memory processing. ur laboratory previously demonstrated that application of the AT4 agonist, Norleucine1-angiotensin IV, enhanced baseline synaptic transmission and long-term potentiation, whereas perfusion with the AT4 antagonist, Norleucine1-Leu3-psi(CH2-NH2)3-4-angiotensin IV disrupted long-term potentiation stabilization in area CA1. The objective of the present study was to identify the mechanism(s) responsible for Norleucine1-angiotensin IV-induced increase in hippocampal long-term potentiation. Hippocampal slices perfused with Norleucine1-angiotensin IV for 20 min revealed a notable increase in baseline responses in a non-reversible manner and were blocked by the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione disodium salt. Infusions of Norleucine1-angiotensin IV prior to, but not after theta burst stimulation, significantly enhanced long-term potentiation compared with control slices. Further, N-methyl-D-aspartate receptor-independent long-term potentiation could be induced by tetanization during the perfusion of Norleucine1-angiotensin IV in the presence of the N-methyl-D-aspartate antagonist, D,L-2-amino-5-phosphonovaleric acid. Blockade of select voltage dependent calcium channels significantly reduced Norleucine1-angiotensin IV-induced increase in baseline responses and subsequent long-term potentiation suggesting that AT4 receptor activation increases intracellular calcium levels via altering voltage dependent calcium channels and triggers an N-methyl-D-aspartate-independent form of long-term potentiation. In support of this notion the application of Nle1-angiotensin IV to cultured rat hippocampal neurons resulted in increased intracellular calcium derived exclusively from extracellular sources. Consistent with these observations Nle1-angiotensin IV was capable of augmenting the uptake of 45Ca2+ into rat hippocampal slices. Taken together, these data indicate that increased calcium influx through postsynaptic calcium channels contribute to Norleucine1-angiotensin IV-induced enhancement of long-term potentiation.
Collapse
Affiliation(s)
- C J Davis
- Department of Psychology, Washington State University, Pullman, WA 99164-6520, USA.
| | | | | | | | | | | | | |
Collapse
|
100
|
Fogari R, Mugellini A, Zoppi A, Lazzari P, Destro M, Rinaldi A, Preti P. Effect of telmisartan/hydrochlorothiazide vs lisinopril/hydrochlorothiazide combination on ambulatory blood pressure and cognitive function in elderly hypertensive patients. J Hum Hypertens 2005; 20:177-85. [PMID: 16306998 DOI: 10.1038/sj.jhh.1001964] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aim of this study was to compare the effects of telmisartan/hydrochlorothiazide (HCTZ) vs lisinopril/HCTZ combination on ambulatory blood pressure and cognitive function in elderly hypertensive patients. A total of 160 patients, 76 men and 84 women, aged 61-75 years, with sitting diastolic blood pressure (DBP)>90 mmHg and <110 mmHg and systolic blood pressure (SBP)>140 mmHg were randomized to receive temisartan 80 mg/HCTZ 12.5 mg o.d. or lisinopril 20 mg/HCTZ 12.5 mg o.d. for 24 weeks, according to a prospective, open-label, blinded end point, parallel-group design. At the end of a 2-week wash-out period and after 12 and 24 weeks of active treatment, 24-h noninvasive ambulatory BP monitoring (ABPM) was performed and cognitive function was evaluated through six different tests (verbal fluency, Boston naming test, word-list memory, word-list recall, word-list recognition and Trails B). Both treatments significantly reduced ambulatory BP. However, the telmisartan/HCTZ combination produced a greater reduction in 24-h, day-time and night time ABPM values. Lisinopril/HCTZ did not induce significant changes in any of the cognitive function test scores at any time of the study, whereas at both 12 and 24 weeks telmisartan/HCTZ significantly improved the word-list memory score (+17.1 and +15.7%, respectively, P<0.05 vs baseline), the word-list recall score (+13.5 and +16.9%, P<0.05) and the Trails B score (-33 and -30.5%, P<0.05). These results suggest that in elderly hypertensive patients treatment with telmisartan/HCTZ produces a slightly greater reduction in ambulatory BP than lisinopril/HCTZ combination and, unlike this latter, improves some of the components of cognitive function, particularly episodic memory and visuospatial abilities.
Collapse
Affiliation(s)
- R Fogari
- Department of Internal Medicine and Therapeutics, Clinica Medica II, IRCCS Policlinico S. Matteo, University of Pavia, Pavia, Italy.
| | | | | | | | | | | | | |
Collapse
|