51
|
Naumenko VC, Osipova DV, Tsybko AS. On the role of the selective silencer Freud-1 in the regulation of the brain 5-HT1A receptor gene expression. Mol Biol 2010. [DOI: 10.1134/s002689331005016x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
52
|
Szewczyk B, Albert PR, Rogaeva A, Fitzgibbon H, May WL, Rajkowska G, Miguel-Hidalgo JJ, Stockmeier CA, Woolverton WL, Kyle PB, Wang Z, Austin MC. Decreased expression of Freud-1/CC2D1A, a transcriptional repressor of the 5-HT1A receptor, in the prefrontal cortex of subjects with major depression. Int J Neuropsychopharmacol 2010; 13:1089-101. [PMID: 20392296 PMCID: PMC3089896 DOI: 10.1017/s1461145710000301] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Serotonin1A (5-HT(1A)) receptors are reported altered in the brain of subjects with major depressive disorder (MDD). Recent studies have identified transcriptional regulators of the 5-HT(1A) receptor and have documented gender-specific alterations in 5-HT(1A) transcription factor and 5-HT(1A) receptors in female MDD subjects. The 5' repressor element under dual repression binding protein-1 (Freud-1) is a calcium-regulated repressor that negatively regulates the 5-HT(1A) receptor gene. This study documented the cellular expression of Freud-1 in the human prefrontal cortex (PFC) and quantified Freud-1 protein in the PFC of MDD and control subjects as well as in the PFC of rhesus monkeys chronically treated with fluoxetine. Freud-1 immunoreactivity was present in neurons and glia and was co-localized with 5-HT(1A) receptors. Freud-1 protein level was significantly decreased in the PFC of male MDD subjects (37%, p=0.02) relative to gender-matched control subjects. Freud-1 protein was also reduced in the PFC of female MDD subjects (36%, p=0.18) but was not statistically significant. When the data was combined across genders and analysed by age, the decrease in Freud-1 protein level was greater in the younger MDD subjects (48%, p=0.01) relative to age-matched controls as opposed to older depressed subjects. Similarly, 5-HT(1A) receptor protein was significantly reduced in the PFC of the younger MDD subjects (48%, p=0.01) relative to age-matched controls. Adult male rhesus monkeys administered fluoxetine daily for 39 wk revealed no significant change in cortical Freud-1 or 5-HT(1A) receptor proteins compared to vehicle-treated control monkeys. Reduced protein expression of Freud-1 in MDD subjects may reflect dysregulation of this transcription factor, which may contribute to the altered regulation of 5-HT(1A) receptors observed in subjects with MDD. These data may also suggest that reductions in Freud-1 protein expression in the PFC may be associated with early onset of MDD.
Collapse
Affiliation(s)
- Bernadeta Szewczyk
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Kaufman L, Ayub M, Vincent JB. The genetic basis of non-syndromic intellectual disability: a review. J Neurodev Disord 2010; 2:182-209. [PMID: 21124998 PMCID: PMC2974911 DOI: 10.1007/s11689-010-9055-2] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 06/25/2010] [Indexed: 11/06/2022] Open
Abstract
Intellectual disability (ID), also referred to as mental retardation (MR), is frequently the result of genetic mutation. Where ID is present together with additional clinical symptoms or physical anomalies, there is often sufficient information available for the diagnosing physician to identify a known syndrome, which may then educe the identification of the causative defect. However, where co-morbid features are absent, narrowing down a specific gene can only be done by ‘brute force’ using the latest molecular genetic techniques. Here we attempt to provide a systematic review of genetic causes of cases of ID where no other symptoms or co-morbid features are present, or non-syndromic ID. We attempt to summarize commonalities between the genes and the molecular pathways of their encoded proteins. Since ID is a common feature of autism, and conversely autistic features are frequently present in individuals with ID, we also look at possible overlaps in genetic etiology with non-syndromic ID.
Collapse
|
54
|
Zhao M, Li XD, Chen Z. CC2D1A, a DM14 and C2 domain protein, activates NF-kappaB through the canonical pathway. J Biol Chem 2010; 285:24372-80. [PMID: 20529849 PMCID: PMC2915672 DOI: 10.1074/jbc.m109.100057] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CC2D1A is an evolutionarily conserved protein that contains four DM14 domains at the N terminus and a C2 domain at the C terminus. Loss-of-function mutations in CC2D1A have been linked to mental retardation in human, but the biochemical function of this protein is largely unknown. Here, we show that CC2D1A is a potent activator of NF-κB. The activation of NF-κB by CC2D1A requires its C2 domain. CC2D1A activates NF-κB in a manner that depends on the ubiquitin-conjugating enzyme Ubc13, TNF receptor-associated factor TRAF2, the protein kinase TAK1, and the IκB kinase (IKK) complex. In addition, the deubiquitination enzyme Cylindromatosis (CYLD) negatively regulates the activity of CC2D1A. These results suggest that CC2D1A activates NF-κB through the canonical IKK pathway.
Collapse
Affiliation(s)
- Meng Zhao
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9148, USA
| | | | | |
Collapse
|
55
|
Rafiq MA, Ansar M, Marshall CR, Noor A, Shaheen N, Mowjoodi A, Khan MA, Ali G, Amin-ud-Din M, Feuk L, Vincent JB, Scherer SW. Mapping of three novel loci for non-syndromic autosomal recessive mental retardation (NS-ARMR) in consanguineous families from Pakistan. Clin Genet 2010; 78:478-83. [DOI: 10.1111/j.1399-0004.2010.01405.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
56
|
Nakamura A, Naito M, Arai H, Fujita N. Mitotic phosphorylation of Aki1 at Ser208 by cyclin B1-Cdk1 complex. Biochem Biophys Res Commun 2010; 393:872-6. [PMID: 20171170 DOI: 10.1016/j.bbrc.2010.02.103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 02/16/2010] [Indexed: 12/23/2022]
Abstract
Akt kinase-interacting protein 1 (Aki1)/Freud-1/CC2D1A is localized in the cytosol, nucleus, and centrosome. Aki1 plays distinct roles depending on its localization. In the cytosol, it acts as a scaffold protein in the phosphoinositide 3-kinase (PI3K)/3-phosphoinositide-dependent protein kinase 1 (PDK1)/Akt pathway. In the nucleus, it is a transcriptional repressor of the serotonin-1A (5-HT1A) receptor. In the centrosome, it regulates spindle pole localization of the cohesin subunit Scc1, thereby mediating centriole cohesion during mitosis. Although the function of Aki1 has been well clarified, the regulatory machinery of Aki1 is poorly understood. We previously found that Aki1 in mitotic cells displayed reduced mobility on immunoblot analysis, but the reason for this was unclear. Here we show that the electrophoretic mobility shift of Aki1 is derived from mitotic phosphorylation. The cyclin B1-cyclin-dependent kinase 1 (Cdk1) complex was found to be one of the kinases responsible for Aki1 phosphorylation during mitosis. We identified the Ser(208) residue of Aki1 as a cyclin B1-Cdk1 phosphorylation site. Furthermore, cyclin B1-Cdk1 inhibitor treatment was shown to attenuate the level of Aki1 in complex with Scc1, suggesting that Aki1 phosphorylation by cyclin B1-Cdk1 contributes to Aki1-Scc1 complex formation. Our results indicate that cyclin B1-Cdk1 is a kinase of Aki1 during mitosis and that its phosphorylation of Aki1 may regulate mitotic function.
Collapse
Affiliation(s)
- Akito Nakamura
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | | | | | | |
Collapse
|
57
|
|
58
|
Kieran N, Ou XM, Iyo AH. Chronic social defeat downregulates the 5-HT1A receptor but not Freud-1 or NUDR in the rat prefrontal cortex. Neurosci Lett 2010; 469:380-4. [PMID: 20026183 PMCID: PMC2815082 DOI: 10.1016/j.neulet.2009.12.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 12/10/2009] [Accepted: 12/12/2009] [Indexed: 12/22/2022]
Abstract
The serotonin 1A receptor (5-HT1A) and its associated transcriptional regulators, five prime repressor element under dual repression (Freud-1) and nuclear-deformed epidermal autoregulatory factor (NUDR/Deaf-1) have been previously found to be the repressors for 5-HT1A in the serotonergic raphe neurons, and are also altered in postmortem brains of individuals with major depressive disorder (MDD) and in rats exposed to chronic restraint stress. We sought to find out if rats exposed to chronic social defeat (CSD) stress also show altered expression of these genes. Adult male Wistar rats were exposed to CSD stress for four consecutive weeks following which they were sacrificed and gene expression assessed in the prefrontal cortex (PFC) by quantitative real-time polymerase chain reaction. While CSD had no significant effects on NUDR and Freud-1 mRNA levels, 5-HT1A mRNA levels were significantly downregulated in defeated animals. The data suggest that regulatory factors other than Freud-1 and NUDR may be involved in the regulation of 5-HT1A expression in PFC during CSD stress. Furthermore, decreased levels of 5-HT1A following social defeat in the PFC are consistent with human postmortem results for this receptor in major depression and demonstrate the possibility that this receptor is involved in the pathophysiology of depression and other stress related disorders.
Collapse
Affiliation(s)
- Niamh Kieran
- Department of Psychiatry and Human Behavior and Center for Psychiatric Neuroscience, University of Mississippi Medical Center, School of Medicine, Jackson, MS 39216 USA
| | - Xiao-Ming Ou
- Department of Psychiatry and Human Behavior and Center for Psychiatric Neuroscience, University of Mississippi Medical Center, School of Medicine, Jackson, MS 39216 USA
| | - Abiye H. Iyo
- Department of Psychiatry and Human Behavior and Center for Psychiatric Neuroscience, University of Mississippi Medical Center, School of Medicine, Jackson, MS 39216 USA
| |
Collapse
|
59
|
Nakamura A, Arai H, Fujita N. Centrosomal Aki1 and cohesin function in separase-regulated centriole disengagement. J Cell Biol 2009; 187:607-14. [PMID: 19948489 PMCID: PMC2806580 DOI: 10.1083/jcb.200906019] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 10/27/2009] [Indexed: 01/19/2023] Open
Abstract
Sister chromatid separation at anaphase is triggered by cleavage of the cohesin subunit Scc1, which is mediated by separase. Centriole disengagement also requires separase. This dual role of separase permits concurrent control of these events for accurate metaphase to anaphase transition. Although the molecular mechanism underlying sister chromatid cohesion has been clarified, that of centriole cohesion is poorly understood. In this study, we show that Akt kinase-interacting protein 1 (Aki1) localizes to centrosomes and regulates centriole cohesion. Aki1 depletion causes formation of multipolar spindles accompanied by centriole splitting, which is separase dependent. We also show that cohesin subunits localize to centrosomes and that centrosomal Scc1 is cleaved by separase coincidentally with chromatin Scc1, suggesting a role of Scc1 as a connector of centrioles as well as sister chromatids. Interestingly, Scc1 depletion strongly induces centriole splitting. Furthermore, Aki1 interacts with cohesin in centrosomes, and this interaction is required for centriole cohesion. We demonstrate that centrosome-associated Aki1 and cohesin play pivotal roles in preventing premature cleavage in centriole cohesion.
Collapse
Affiliation(s)
- Akito Nakamura
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Arai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naoya Fujita
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| |
Collapse
|
60
|
Hadjighassem MR, Austin MC, Szewczyk B, Daigle M, Stockmeier CA, Albert PR. Human Freud-2/CC2D1B: a novel repressor of postsynaptic serotonin-1A receptor expression. Biol Psychiatry 2009; 66:214-22. [PMID: 19423080 PMCID: PMC4084727 DOI: 10.1016/j.biopsych.2009.02.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 02/11/2009] [Accepted: 02/28/2009] [Indexed: 01/24/2023]
Abstract
BACKGROUND Altered expression of serotonin-1A (5-HT1A) receptors, both presynaptic in the raphe nuclei and post-synaptic in limbic and cortical target areas, has been implicated in mood disorders such as major depression and anxiety. Within the 5-HT1A receptor gene, a powerful dual repressor element (DRE) is regulated by two protein complexes: Freud-1/CC2D1A and a second, unknown repressor. Here we identify human Freud-2/CC2D1B, a Freud-1 homologue, as the second repressor. METHODS Freud-2 distribution was examined with Northern and Western blot, reverse transcriptase polymerase chain reaction, and immunohistochemistry/immunofluorescence; Freud-2 function was examined by electrophoretic mobility shift, reporter assay, and Western blot. RESULTS Freud-2 RNA was widely distributed in brain and peripheral tissues. Freud-2 protein was enriched in the nuclear fraction of human prefrontal cortex and hippocampus but was weakly expressed in the dorsal raphe nucleus. Freud-2 immunostaining was co-localized with 5-HT1A receptors, neuronal and glial markers. In prefrontal cortex, Freud-2 was expressed at similar levels in control and depressed male subjects. Recombinant hFreud-2 protein bound specifically to 5' or 3' human DRE adjacent to the Freud-1 site. Human Freud-2 showed strong repressor activity at the human 5-HT1A or heterologous promoter in human HEK-293 5-HT1A-negative cells and neuronal SK-N-SH cells, a model of postsynaptic 5-HT1A receptor-positive cells. Furthermore, small interfering RNA knockdown of endogenous hFreud-2 expression de-repressed 5-HT1A promoter activity and increased levels of 5-HT1A receptor protein in SK-N-SH cells. CONCLUSIONS Human Freud-2 binds to the 5-HT1A DRE and represses the human 5-HT1A receptor gene to regulate its expression in non-serotonergic cells and neurons.
Collapse
Affiliation(s)
- Mahmoud R. Hadjighassem
- Ottawa Health Research Institute (Neuroscience)1, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H-8M5
| | - Mark C. Austin
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MI, U.S.A
| | - Bernadeta Szewczyk
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MI, U.S.A,Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Mireille Daigle
- Ottawa Health Research Institute (Neuroscience)1, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H-8M5
| | - Craig A. Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MI, U.S.A,Department of Psychiatry, Case Western Reserve University, Cleveland, OH, U.S.A
| | - Paul R. Albert
- Ottawa Health Research Institute (Neuroscience)1, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H-8M5,To whom correspondence should be addressed, phone: (613) 562-5800 ext. 8307, Fax: (613) 562-5403;
| |
Collapse
|
61
|
Iyo AH, Kieran N, Chandran A, Albert PR, Wicks I, Bissette G, Austin MC. Differential regulation of the serotonin 1 A transcriptional modulators five prime repressor element under dual repression-1 and nuclear-deformed epidermal autoregulatory factor by chronic stress. Neuroscience 2009; 163:1119-27. [PMID: 19647046 DOI: 10.1016/j.neuroscience.2009.07.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 07/15/2009] [Accepted: 07/23/2009] [Indexed: 02/07/2023]
Abstract
Chronic stress is known to affect brain areas involved in learning and emotional responses. These changes, thought to be related to the development of cognitive deficits are evident in major depressive disorder and other stress-related pathophysiologies. The serotonin-related transcription factors (Freud-1/CC2D1A; five prime repressor element under dual repression/coiled-coil C2 domain 1a, and NUDR/Deaf-1; nuclear-deformed epidermal autoregulatory factor) are two important regulators of the 5-HT1A receptor. Using Western blotting and quantitative real-time polymerase chain reaction (qPCR) we examined the expression of mRNA and proteins for Freud-1, NUDR, and the 5-HT1A receptor in the prefrontal cortex (PFC) of male rats exposed to chronic restraint stress (CRS; 6 h/day for 21 days). After 21 days of CRS, significant reductions in both Freud-1 mRNA and protein were observed in the PFC (36.8% and 32%, respectively; P<0.001), while the levels of both NUDR protein and mRNA did not change significantly. Consistent with reduced Freud-1 protein, 5-HT1A receptor mRNA levels were equally upregulated in the PFC, while protein levels actually declined, suggesting post-transcriptional receptor downregulation. The data suggest that CRS produces distinct alterations in the serotonin system specifically altering Freud-1 and the 5-HT1A receptor in the PFC of the male rat while having no effect on NUDR. These results point to the importance of understanding the mechanism for the differential regulation of Freud-1 and NUDR in the PFC as a basis for understanding the related effects of chronic stress on the serotonin system (serotonin-related transcription factors) and stress-related disorders like depression.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Chronic Disease
- Corticosterone/blood
- Gene Expression
- Male
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Polymerase Chain Reaction
- Prefrontal Cortex/metabolism
- RNA, Messenger/metabolism
- Radioimmunoassay
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Restraint, Physical
- Stress, Psychological/blood
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
- Transcription Factors
Collapse
Affiliation(s)
- A H Iyo
- Department of Psychiatry and Human Behavior, Center for Psychiatric Neuroscience, University of Mississippi Medical Center, School of Medicine, Jackson, MS 39216, USA.
| | | | | | | | | | | | | |
Collapse
|
62
|
Freud-1/Aki1, a novel PDK1-interacting protein, functions as a scaffold to activate the PDK1/Akt pathway in epidermal growth factor signaling. Mol Cell Biol 2008; 28:5996-6009. [PMID: 18662999 DOI: 10.1128/mcb.00114-08] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The phosphoinositide 3-kinase (PI3K)/3-phosphoinositide-dependent protein kinase 1 (PDK1)/Akt pathway regulates various cellular functions, especially cell survival and cell cycle progression. In contrast to other survival pathways, there have been few reports of scaffold proteins that regulate signaling cascade specificity in this pathway. Here we identify a 5' repressor element under dual-repression binding protein 1 (Freud-1)/Akt kinase-interacting protein 1 (Aki1) as a novel scaffold for the PDK1/Akt pathway. Freud-1/Aki1 (also known as CC2D1A) expression induced formation of a PDK1/Akt complex and regulated Akt activation in a concentration-dependent biphasic manner. Freud-1/Aki1 also associated with epidermal growth factor (EGF) receptor in response to EGF stimulation and was required for Akt activation induced by EGF, but not by insulin-like growth factor 1. Freud-1/Aki1 gene silencing decreased Akt kinase activity, resulting in induction of apoptosis and increased sensitivity toward chemotherapeutic agents. Our results suggest that Freud-1/Aki1 is a novel receptor-selective scaffold protein for the PDK1/Akt pathway and present a new activation mechanism of Akt.
Collapse
|
63
|
Ropers HH. Genetics of intellectual disability. Curr Opin Genet Dev 2008; 18:241-50. [DOI: 10.1016/j.gde.2008.07.008] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 07/15/2008] [Indexed: 11/16/2022]
|
64
|
CC2D2A, encoding a coiled-coil and C2 domain protein, causes autosomal-recessive mental retardation with retinitis pigmentosa. Am J Hum Genet 2008; 82:1011-8. [PMID: 18387594 DOI: 10.1016/j.ajhg.2008.01.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 01/10/2008] [Accepted: 01/22/2008] [Indexed: 12/16/2022] Open
Abstract
Autosomal-recessive inheritance is believed to be relatively common in mental retardation (MR), although only four genes for nonsyndromic autosomal-recessive mental retardation (ARMR) have been reported. In this study, we ascertained a consanguineous Pakistani family with ARMR in four living individuals from three branches of the family, plus an additional affected individual later identified as a phenocopy. Retinitis pigmentosa was present in affected individuals, but no other features suggestive of a syndromic form of MR were found. We used Affymetrix 500K microarrays to perform homozygosity mapping and identified a homozygous and haploidentical region of 11.2 Mb on chromosome 4p15.33-p15.2. Linkage analysis across this region produced a maximum two-point LOD score of 3.59. We sequenced genes within the critical region and identified a homozygous splice-site mutation segregating in the family, within a coiled-coil and C2 domain-containing gene, CC2D2A. This mutation leads to the skipping of exon 19, resulting in a frameshift and a truncated protein lacking the C2 domain. Conservation analysis for CC2D2A suggests a functional domain near the C terminus as well as the C2 domain. Preliminary functional studies of CC2D2A suggest a possible role in Ca(2+)-dependent signal transduction. Identifying the function of CC2D2A, and a possible common pathway with CC2D1A, in correct neuronal development and functioning may help identify possible therapeutic targets for MR.
Collapse
|
65
|
Mellström B, Savignac M, Gomez-Villafuertes R, Naranjo JR. Ca2+-Operated Transcriptional Networks: Molecular Mechanisms and In Vivo Models. Physiol Rev 2008; 88:421-49. [DOI: 10.1152/physrev.00041.2005] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Calcium is the most universal signal used by living organisms to convey information to many different cellular processes. In this review we present well-known and recently identified proteins that sense and decode the calcium signal and are key elements in the nucleus to regulate the activity of various transcriptional networks. When possible, the review also presents in vivo models in which the genes encoding these calcium sensors-transducers have been modified, to emphasize the critical role of these Ca2+-operated mechanisms in many physiological functions.
Collapse
|
66
|
Rogaeva A, Galaraga K, Albert PR. The Freud-1/CC2D1A family: transcriptional regulators implicated in mental retardation. J Neurosci Res 2008; 85:2833-8. [PMID: 17394259 DOI: 10.1002/jnr.21277] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The CC2D1A gene family consists of two homologous genes, Freud-1/CC2D1A and Freud-2/CC2D1B, that share conserved domains, including several DM14 domains that are specific to this protein family, a C-terminal helix-loop-helix domain, and a C2 calcium-dependent phospholipid binding domain. Although the function of Freud-2 is unknown, Freud-1 has been shown to function as a transcriptional repressor of the serotonin-1A receptor gene that binds to a novel DNA element (FRE, 5'-repressor element). The DNA binding and repressor activities of Freud-1 are inhibited by calcium-calmodulin-dependent protein kinase. Recently, a deletion in the CC2D1A gene has been linked to nonsyndromic mental retardation. This deletion results in the truncation of the helix-loop-helix DNA binding and the C2 domains, crucial for Freud-1 repressor activity, and hence is predicted to generate an inactive or weakly dominant negative protein. The possible mechanisms by which inactivation of Freud-1 could lead to abnormal cortical development and cognitive impairment and the potential roles of Freud-1 gene targets are discussed.
Collapse
Affiliation(s)
- Anastasia Rogaeva
- Ottawa Health Research Institute (Neuroscience) and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
67
|
Abstract
The identification of the genes mutated in autosomal recessive non-syndromic mental retardation (ARNSMR) has been very active recently. This report presents an overview of the current knowledge on clinical data in ARNSMR and progress in research. To date, 12 ARNSMR loci have been mapped, and three genes identified. Mutations in known ARNSMR genes have been detected so far in only a small number of families; their contribution to mental retardation in the general population might be limited. The ARNSMR-causing genes belong to different protein families, including serine proteases, Adenosine 5'-triphosphate-dependent Lon proteases and calcium-regulated transcriptional repressors. All of the mutations in the ARNSMR-causing genes are protein truncating, indicating a putative severe loss-of-function effect. The future objective will be the development of diagnostic kits for molecular diagnosis in mentally retarded individuals in order to offer at-risk families pre-natal diagnosis to detect affected offspring.
Collapse
|
68
|
Rogaeva A, Albert PR. The mental retardation gene CC2D1A/Freud-1 encodes a long isoform that binds conserved DNA elements to repress gene transcription. Eur J Neurosci 2007; 26:965-74. [PMID: 17714190 DOI: 10.1111/j.1460-9568.2007.05727.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The CC2D1A/Freud-1 gene has recently been linked to non-syndromic mental retardation and a short isoform of mouse Five prime REpressor Under Dual repression binding protein 1 (Freud-1) can repress the serotonin-1A (5-HT1A) receptor gene in rodent cells. In this study, we addressed the expression, localization and regulation of the human 5-HT1A receptor gene by a long isoform of human Freud-1 protein (Freud-1L). We show that human CC2D1A/Freud-1 RNA is expressed in brain and peripheral tissues and encodes short and long isoforms, which differ by an upstream in-frame translational start site. Whereas previous studies identified the short isoform of Freud-1 as the predominant isoform in rodent cells, we demonstrate that the long isoform is more abundant in human cells, especially in the nuclear fraction. The nuclear localization of Freud-1L was enriched upon inhibition of chromosome region maintenance 1/exportin 1-dependent nuclear export, indicating a dynamic regulation of Freud-1 nuclear localization. Consistent with a functional role in the nucleus, human Freud-1L bound specifically to its dual repressor element in the 5-HT1A receptor gene in vitro and repressed transcription from these sites. Importantly, chromatin immunoprecipitation using antibodies specific for human Freud-1L demonstrated that it is bound to the dual repressor element in chromatin, indicating a functional role in regulating the basal expression of the 5-HT1A receptor gene. Taken together, these results indicate that both the short and long isoforms of Freud-1 are expressed, although Freud-1L is the major isoform that regulates the human 5-HT1A receptor gene. Disruption of transcriptional regulation by mutation of Freud-1 may play a role in abnormal brain function leading to mental retardation.
Collapse
Affiliation(s)
- Anastasia Rogaeva
- Ottawa Health Research Institute (Neuroscience), and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
69
|
Rogaeva A, Ou XM, Jafar-Nejad H, Lemonde S, Albert PR. Differential Repression by Freud-1/CC2D1A at a Polymorphic Site in the Dopamine-D2 Receptor Gene. J Biol Chem 2007; 282:20897-905. [PMID: 17535813 DOI: 10.1074/jbc.m610038200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Freud-1/CC2D1A is a transcriptional repressor of the serotonin-1A receptor gene and was recently genetically linked to non-syndromic mental retardation. To identify new Freud-1 gene targets, data base mining for Freud-1 recognition sequences was done. A highly homologous intronic element (D2-DRE) was identified in the human dopamine-D2 receptor (DRD2) gene, and the role of Freud-1 in regulating the gene at this site was assessed. Recombinant Freud-1 bound specifically to the D2-DRE, and a major protein-D2-DRE complex was identified in nuclear extracts that was supershifted using Freud-1-specific antibodies. Endogenous Freud-1 binding to the D2-DRE in cells was detected using chromatin immunoprecipitation. The D2-DRE conferred strong repressor activity in transcriptional reporter assays that was dependent on the Freud-1 recognition sequence. In three different human cell lines, the level of Freud-1 protein was inversely related to DRD2 expression. Knockdown of endogenous Freud-1 using small interfering RNA resulted in an up-regulation of DRD2 RNA and binding sites, demonstrating a crucial role for Freud-1 in DRD2 regulation. A previously uncharacterized single nucleotide A/G polymorphism (rs2734836) was located adjacent to the D2-DRE and conferred allele-specific Freud-1 binding and repression, with the major G-allele having reduced activity. These studies demonstrate a key role for Freud-1 to regulate DRD2 expression and provide the first mechanistic insights into its transcriptional regulation. Allele-specific regulation of DRD2 expression by Freud-1 may possibly associate with psychiatric disorders or mental retardation.
Collapse
Affiliation(s)
- Anastasia Rogaeva
- Ottawa Health Research Institute (Neuroscience) and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H-8M5, Canada
| | | | | | | | | |
Collapse
|
70
|
Albert P, Hadjighasem M, Czesak M, Rogaeva A, Remes-Lenicov F, Jacobsen K, Daigle M. Identification of Novel Transcriptional Regulators in the Nervous System. Front Neurosci 2007. [DOI: 10.1201/9781420005752.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
71
|
Cornelisse LN, Van der Harst JE, Lodder JC, Baarendse PJJ, Timmerman AJ, Mansvelder HD, Spruijt BM, Brussaard AB. Reduced 5-HT1A- and GABAB receptor function in dorsal raphé neurons upon chronic fluoxetine treatment of socially stressed rats. J Neurophysiol 2007; 98:196-204. [PMID: 17460100 DOI: 10.1152/jn.00109.2007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Autoinhibitory serotonin 1A receptors (5-HT(1A)) in dorsal raphé nucleus (DRN) have been implicated in chronic depression and in actions of selective serotonin reuptake inhibitors (SSRI). Due to experimental limitations, it was never studied at single-cell level whether changes in 5-HT(1A) receptor functionality occur in depression and during SSRI treatment. Here we address this question in a social stress paradigm in rats that mimics anhedonia, a core symptom of depression. We used whole cell patch-clamp recordings of 5-HT- and baclophen-induced G-protein-coupled inwardly rectifying potassium (GIRK) currents as a measure of 5-HT(1A)- and GABA(B) receptor functionality. 5-HT(1A)- and GABA(B) receptor-mediated GIRK-currents were not affected in socially stressed rats, suggesting that there was no abnormal (auto)inhibition in the DRN on social stress. However, chronic fluoxetine treatment of socially stressed rats restored anticipatory behavior and reduced the responsiveness of 5-HT(1A) receptor-mediated GIRK currents. Because GABA(B) receptor-induced GIRK responses were also suppressed, fluoxetine does not appear to desensitize 5-HT(1A) receptors but rather one of the downstream components shared with GABA(B) receptors. This fluoxetine effect on GIRK currents was also present in healthy animals and was independent of the animal's "depressed" state. Thus our data show that symptoms of depression after social stress are not paralleled by changes in 5-HT(1A) receptor signaling in DRN neurons, but SSRI treatment can alleviate these behavioral symptoms while acting strongly on the 5-HT(1A) receptor signaling pathway.
Collapse
Affiliation(s)
- L N Cornelisse
- Dept of Experimental Neurophysiology, CNCR, VU Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Jaekel R, Klein T. The Drosophila Notch Inhibitor and Tumor Suppressor Gene lethal (2) giant discs Encodes a Conserved Regulator of Endosomal Trafficking. Dev Cell 2006; 11:655-69. [PMID: 17084358 DOI: 10.1016/j.devcel.2006.09.019] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 07/12/2006] [Accepted: 09/21/2006] [Indexed: 11/19/2022]
Abstract
Notch signaling is involved in many developmental and pathological processes, and its activity must be precisely controlled in order to prevent aberrant development and disease. We have previously shown that the tumor suppressor gene lethal (2) giant discs (lgd) is required to prevent ectopic activation of Notch in developmental processes in Drosophila. Here we show that lgd is required in all imaginal disc cells to suppress the activity of the Notch pathway. lgd encodes a member of a poorly characterized protein family present in all animals, which includes a member that is involved in an inheritable form of mental retardation in humans. Our analysis reveals that Lgd is required for endosomal trafficking of Notch and other proteins. In the absence of Lgd, Notch is activated in a ligand-independent manner in probably all imaginal disc cells in an endosomal compartment downstream of the block in hrs mutants.
Collapse
Affiliation(s)
- Robert Jaekel
- Institute for Genetics, University of Cologne, Zülpicherstrasse 47, 50674 Cologne, Germany
| | | |
Collapse
|
73
|
Ou XM, Chen K, Shih JC. Monoamine oxidase A and repressor R1 are involved in apoptotic signaling pathway. Proc Natl Acad Sci U S A 2006; 103:10923-8. [PMID: 16829576 PMCID: PMC1544150 DOI: 10.1073/pnas.0601515103] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Monoamine oxidase A (MAO A) degrades serotonin, norepinephrine, and dopamine and produces reactive oxygen that may cause neuronal cell death. We have previously reported that a novel transcription factor R1 (RAM2/CDCA7L/JPO2) inhibits the MAO A promoter and enzymatic activities. This study reports the roles of MAO A and R1 in apoptosis and proliferation. We have found that in serum starvation-induced apoptosis, p38 kinase, MAO A, and caspase-3 were increased, whereas Bcl-2 and R1 were reduced. Using a p38 kinase inhibitor, R1 overexpression, and MAO A inhibitor, we have shown that MAO A and R1 are downstream of p38 kinase and Bcl-2, but upstream of caspase-3. Inhibition of MAO A prevents cell apoptosis. This notion was further supported by the finding that serum starvation-induced apoptosis is reduced in cortical brain cells from MAO A-deficient mice compared with WT. In addition, we found that MAO A and R1 are involved in the c-Myc-induced proliferative signaling pathway in the presence of serum. Immunoprecipitation and immunohistochemistry experiments indicate that the oncogene c-Myc colocalizes with R1 and induces R1 gene expression. Using R1 overexpression, R1 small interfering RNA, and a MAO A inhibitor, we found that R1 and MAO A act upstream of cyclin D1 and E2F1. In summary, this study demonstrates the functions of MAO A and its repressor R1 in apoptotic signaling pathways.
Collapse
Affiliation(s)
- Xiao-Ming Ou
- *Department of Molecular Pharmacology and Toxicology, School of Pharmacy, and
| | - Kevin Chen
- *Department of Molecular Pharmacology and Toxicology, School of Pharmacy, and
| | - Jean C. Shih
- *Department of Molecular Pharmacology and Toxicology, School of Pharmacy, and
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
74
|
Calderón-Rosete G, Flores G, Rodríguez-Sosa L. Diurnal rhythm in the levels of the serotonin 5-HT1A receptors in the crayfish eyestalk. Synapse 2006; 59:368-73. [PMID: 16447179 DOI: 10.1002/syn.20252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The crayfish eyestalk (ES) has been postulated as a possible circadian clock. 5-Hydroxytryptamine (5-HT) has been shown to play the role of a neurotransmitter or a modulator in the ES. However, little is known about the 5-HT receptors in the ES. The purpose of this work is to determine the specific binding sites using [(3)H]8-hydroxy-2(di-n-propylamino)tetralin ([(3)H]8-OH-DPAT), a specific agonist of the 5-HT(1A) receptor, and to characterize the diurnal rhythm in the binding by an autoradiography procedure in the crayfish ES. Data show the presence of a circadian rhythmicity in the level of the 5-HT(1A) receptors, principally in two regions: (a) the complex retina (R)-lamina ganglionaris (LG), with the acrophase at dusk and (b) the medulla terminalis (MT), where it was in antiphase. It is suggested that (1) the expression of levels of 5-HT(1A) receptors is modulated by light-dark (LD) cycles, (2) the level of 5-HT(1A) receptors in the R-LG and MT are in antiphase during the 24-h cycle, and (3) there is a different mechanism of action of LD cycles in each of these two anatomical regions of the crayfish ES.
Collapse
Affiliation(s)
- Gabina Calderón-Rosete
- División de Estudios de Posgrado e Investigación, Facultad de Medicina, UNAM., Av. Universidad 3000, Circuito Interior, Unidad de Posgrado, 1er. Piso., 04510 México D. F., México
| | | | | |
Collapse
|
75
|
Ou XM, Chen K, Shih JC. Glucocorticoid and androgen activation of monoamine oxidase A is regulated differently by R1 and Sp1. J Biol Chem 2006; 281:21512-21525. [PMID: 16728402 DOI: 10.1074/jbc.m600250200] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Monoamine oxidase (MAO) A is a key enzyme for the degradation of neurotransmitters serotonin, norepinephrine, and dopamine. There are three consensus glucocorticoid/androgen response elements and four Sp1-binding sites in the human monoamine oxidase A 2-kb promoter. A novel transcription factor R1 (RAM2/CDCA7L) interacts with Sp1-binding sites and represses MAO A gene expression. Luciferase assays show that glucocorticoid (dexamethasone) and androgen (R1881) increase MAO A promoter and catalytic activities in human neuroblastoma and glioblastoma cells. Gel-shift analysis demonstrates that glucocorticoid/androgen receptors interact directly with the third glucocorticoid/androgen response element. Glucocorticoid/androgen receptors also interact with Sp1-binding sites indirectly via transcription factor Sp1. In addition, dexamethasone induces R1 translocation from the cytosol to the nucleus in a time-dependent manner in both the neuroblastoma and wild-type UW228 cell lines but not in R1 knock-down UW228 cells. In summary, this study shows that glucocorticoid enhances monoamine oxidase A gene expression by 1) regulation of R1 translocation; 2) direct interaction of the glucocorticoid receptor with the third glucocorticoid/androgen response element; and 3) indirect interaction of glucocorticoid receptor with the Sp1 or R1 transcription factor on Sp1-binding sites of the MAO A promoter. Androgen also up-regulates MAO A gene expression by direct interaction of androgen receptor with the third glucocorticoid/androgen response element. Androgen receptor indirectly interacts with the Sp1, but not R1 transcription factor, on Sp1-binding sites. This study provides new insights on the differential regulation of MAO A by glucocorticoid and androgen.
Collapse
Affiliation(s)
- Xiao-Ming Ou
- Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, Los Angeles, California 90033
| | - Kevin Chen
- Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, Los Angeles, California 90033
| | - Jean C Shih
- Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, Los Angeles, California 90033; Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033.
| |
Collapse
|
76
|
Abstract
The serotonin system is implicated in major depression and suicide and is negatively regulated by somatodendritic 5-HT1A autoreceptors. Desensitization of 5-HT1A autoreceptors is implicated in the 2- to 3-week latency for antidepressant treatments. Alterations in 5-HT1A receptor levels are reported in depression and suicide, and gene knockout of the 5-HT1A receptor results in an anxiety phenotype, suggesting that abnormal transcriptional regulation of this receptor gene may underlie these disorders. The 5-HT1A receptor gene is negatively regulated in neurons by repressors including REST/NRSF, Freud-1, NUDR/Deaf-1, and Hes5. The association with major depression, suicide, and panic disorder of a new functional 5-HT1A polymorphism at C(-1019)G that selectively blocks repression of the 5-HT1A autoreceptor by NUDR further suggests a causative role for altered regulation of this receptor in predisposition to mental illness. The authors review evidence that altered transcription of the 5-HT1A receptor can affect the serotonin system and limbic and cortical areas, leading to predisposition to depression.
Collapse
Affiliation(s)
- Paul R Albert
- Ottawa Health Research Institute, Neuroscience University of Ottawa, Ottawa, Canada
| | | |
Collapse
|
77
|
Lüttgen M, Ogren SO, Meister B. 5-HT1A receptor mRNA and immunoreactivity in the rat medial septum/diagonal band of Broca—relationships to GABAergic and cholinergic neurons. J Chem Neuroanat 2005; 29:93-111. [PMID: 15652697 DOI: 10.1016/j.jchemneu.2004.09.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Revised: 08/30/2004] [Accepted: 09/12/2004] [Indexed: 01/28/2023]
Abstract
Activation of 5-HT1A receptors results in a variety of physiological responses, depending on their localization on neurons with different phenotypes in the brain. This study investigated the localization of 5-HT1A receptor mRNA and 5-HT1A receptor immunoreactivity in cell bodies of the rat septal complex using in situ hybridization and immunohistochemistry. In adjacent sections of the medial septum/diagonal band of Broca (MSDB), the distribution of cell bodies expressing 5-HT1A receptor mRNA was closely related to cells labeled with oligonucleotide probes to GAD (glutamic acid decarboxylase), VAChT (vesicular acetylcholine transporter) or parvalbumin mRNA. Using antiserum to GAD and antibodies to GABA, 5-HT1A receptor immunoreactivity was demonstrated in a majority of GABAergic cells in the MSDB. 5-HT1A receptor-immunoreactive GABAergic cells in the MSDB were also demonstrated to contain the calcium-binding protein parvalbumin, a marker for septohippocampal projecting GABAergic neurons. In the lateral septum, 5-HT1A receptor immunoreactivity was colocalized with the calcium-binding protein calbindin D-28k, a marker for septal GABAergic somatospiny neurons. 5-HT1A receptor immunoreactivity was also detected in a subpopulation of VAChT-containing cholinergic neurons of the MSDB. In MSDB neurons, colocalization of 5-HT1A and 5-HT2A receptor immunoreactivities was demonstrated. These observations suggest that serotonin via 5-HT1A receptors may represent an important modulator of hippocampal transmission important for cognitive and emotional functions through actions on both GABAergic and cholinergic neurons of the rat septal complex. In addition, 5-HT may exert its effects in the MSDB via cells expressing both 5-HT1A and 5-HT2A receptors.
Collapse
Affiliation(s)
- M Lüttgen
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
78
|
Raymer KA, Waters RF, Price CR. Proposed multigenic Composite Inheritance in major depression. Med Hypotheses 2005; 65:158-72. [PMID: 15893135 DOI: 10.1016/j.mehy.2004.11.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Accepted: 11/18/2004] [Indexed: 11/26/2022]
Abstract
Various rationale have been considered in the familial inheritance pattern of major depression ranging from simple one-gene Mendelian inheritance to pseudo-additive gene action. We instead predict broad genetic expressivity patterns in the progeny of parents where at least one parent has recurrent major depression. In keeping with this idea, we feel that recurrent major depression could involve an expression imbalance of "normal" genes either exclusively or along with allelic variation(s). The patterns of pathology are theoretically conceptualized as qualitative and quantitative, meaning that expressivity of the genetic pattern in these children may range from minimal to complete even among siblings. Thus, prediction of the particular genetic pattern expressed by a particular child might prove difficult. The complex inheritance pattern that we propose is referred to as Composite Inheritance. Composite Inheritance considers that both the up- and down-regulation of luxury genes and housekeeping genes are involved in this dichotomous qualitative inheritance pattern and also the wide quantitative expressivity. The luxury genes include such genes as those coding for the neurotransmitter transporters and receptors. The housekeeping genes found to date include those that code for proteins involved in gene transcription, secondary signaling systems, fatty acid metabolism and transport, and intracellular calcium homeostasis. Other luxury and housekeeping genes no doubt remain to be discovered. Our current research utilizes an empirical approach involving advanced genomics and specialized pattern recognition mathematics in families having at least one parent with recurrent major depression. The goal of our research is to develop a pattern recognition system of genetic expressivity in major depression to which prevention and early intervention may be tailored.
Collapse
Affiliation(s)
- Katherine A Raymer
- Southwest College of Naturopathic Medicine and Health Sciences, Research Department, 2140 E. Broadway Road, Tempe, Arizona 85282, USA
| | | | | |
Collapse
|
79
|
Neumeister A, Young T, Stastny J. Implications of genetic research on the role of the serotonin in depression: emphasis on the serotonin type 1A receptor and the serotonin transporter. Psychopharmacology (Berl) 2004; 174:512-24. [PMID: 15249991 DOI: 10.1007/s00213-004-1950-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Accepted: 05/28/2004] [Indexed: 10/26/2022]
Abstract
Serotonin systems appear to play a key role in the pathophysiology of major depressive disorder. Consequently, ongoing research determines whether serotonin related genes account for the very robust differential behavioral and neural mechanisms that discriminate patients with depression from healthy controls. Serotonin type 1(A) receptors and the serotonin transporters are reduced in depression, and recent genetic research in animals and humans has implicated both in depression. Preclinical studies have utilized a variety of animal models that have been used to explain pathophysiological mechanisms in humans, although it is not clear at all whether these models constitute relevant models for depression in humans. However, data from preclinical studies can generate hypotheses that are tested in humans by combining genetic data with behavioral and physiological challenge paradigms and neuroimaging. These studies will enhance our understanding about combined influences from multiple interacting genes, as well as from environmental factors on brain circuits and their function, and about how these mechanisms may contribute to the pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Alexander Neumeister
- Clinical Neuroscience Division, Department of Psychiatry, VA National Center for PTSD (116-A), Yale University School of Medicine, 950 Campbell Avenue, West Haven, CT 06516, USA.
| | | | | |
Collapse
|
80
|
Rumajogee P, Vergé D, Hanoun N, Brisorgueil MJ, Hen R, Lesch KP, Hamon M, Miquel MC. Adaption of the serotoninergic neuronal phenotype in the absence of 5-HT autoreceptors or the 5-HT transporter: involvement of BDNF and cAMP. Eur J Neurosci 2004; 19:937-44. [PMID: 15009141 DOI: 10.1111/j.0953-816x.2004.03194.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Serotonin 5-HT1A and 5-HT1B receptors and the 5-HT transporter are key regulators of the serotoninergic neuronal phenotype. We show here that genetic deletion of any of these elements differentially regulates 5-HT neuronal number in rostral raphe cultures from E14 mice. Serotonin neuronal number was increased by almost four-fold and 1.8-fold in cultures from 5-HT1AR-/- and 5-HT1BR-/- mice, respectively. In contrast, the lack of serotonin transporter expression was associated with a 50% decrease in 5-HT neuronal number. In raphe cultures from the rat, BDNF and cAMP have been shown to up-regulate the neuronal serotoninergic phenotype through TrkB-dependent mechanisms [Rumajogee et al. (2002) J. Neurochem., 83, 1525-1528]. Similar tyrosine kinase-dependent up-regulating effects, in the absence of serotoninergic key-elements are reported here, on both 5-HT neuronal number and neurites length. However, the extents of BDNF-triggered and cAMP-triggered effects on serotoninergic neuritic length were approximately 1.5-fold higher in 5-HT1AR-/- mutants. These findings show that the up-regulatory mechanisms triggered by BDNF on serotoninergic neuronal number and neurite extension are different and that the latter are partially linked to 5-HT, probably through 5-HT1A autoreceptors. Together, these data suggest that serotonin autoreceptors, mainly 5-HT1A but also 5-HT1B, may be responsible for a tonic auto-inhibitory effect of 5-HT itself on the serotoninergic neuronal phenotype during embryonic development, particularly marked in the absence of the 5-HT transporter.
Collapse
Affiliation(s)
- Prakasham Rumajogee
- Laboratoire de Neurobiologie des Signaux Intercellulaires, CNRS UMR 7101, Université Pierre et Marie Curie, 7 quai Saint-Bernard, 75005 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
81
|
|
82
|
Lemonde S, Rogaeva A, Albert PR. Cell type-dependent recruitment of trichostatin A-sensitive repression of the human 5-HT1A receptor gene. J Neurochem 2004; 88:857-68. [PMID: 14756806 DOI: 10.1046/j.1471-4159.2003.02223.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Regulation of serotonin (5-HT)1A receptor expression in brain is implicated in mood disorders such as depression and anxiety. Transcriptional activity of the human 5-HT1A receptor gene was strongly repressed by a negative regulatory region containing a consensus repressor element-1 (RE-1) and two copies of the dual repressor element (DRE) identified in the rat 5-HT1A receptor gene. REST/NRSF, a silencer of neuronal genes, bound the 5-HT1A RE-1 and repressed the 5-HT1A promoter. Inactivation of RE-1 completely abolished REST-mediated repression, but resulted in only partial (15-50%) de-repression of basal 5-HT1A promoter activity. The human 5-HT1A DRE sequences bound specifically to the novel repressor Freud-1 (5'repressor element under dual repression binding protein-1) and conferred repressor activity at 5-HT1A or SV40 promoters. In 5-HT1A-negative cells [L6, human embryonic kidney (HEK) 293], the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) abolished repression mediated by both RE-1/REST and DRE/Freud-1, and induced almost complete de-repression of the 5-HT1A gene. By contrast, in 5-HT1A-expressing neuronal cells (RN46A, SN-48) TSA blocked RE-1/REST repression, but did not affect DRE/Freud-1-mediated repression. Thus in contrast to REST, Freud-1 mediates HDAC-independent repression of the 5-HT1A receptor promoter in neuronal 5-HT1A-positive cells, suggesting that HDAC recruitment might influence neuron-specific gene expression by further silencing expression in non-neuronal tissue.
Collapse
MESH Headings
- Animals
- Brain/cytology
- Brain/drug effects
- Brain/metabolism
- Carrier Proteins
- Cell Line
- Cloning, Molecular/methods
- Dose-Response Relationship, Drug
- Electrophoretic Mobility Shift Assay/methods
- Embryo, Mammalian
- Enhancer Elements, Genetic
- Gene Expression Regulation/drug effects
- Gene Silencing/drug effects
- Humans
- Hydroxamic Acids/pharmacology
- In Vitro Techniques
- Kidney
- Luciferases/metabolism
- Molecular Sequence Data
- Myoblasts/drug effects
- Neurons/drug effects
- Neurons/metabolism
- Promoter Regions, Genetic
- Protein Synthesis Inhibitors/pharmacology
- Rats
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Repressor Proteins/metabolism
- Transcription Factors/metabolism
- Transfection
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- Sylvie Lemonde
- Ottawa Health Research Institute, Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | | | | |
Collapse
|
83
|
Couve A, Restituito S, Brandon JM, Charles KJ, Bawagan H, Freeman KB, Pangalos MN, Calver AR, Moss SJ. Marlin-1, a novel RNA-binding protein associates with GABA receptors. J Biol Chem 2004; 279:13934-43. [PMID: 14718537 DOI: 10.1074/jbc.m311737200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GABA(B) receptors are heterodimeric G protein-coupled receptors that mediate slow synaptic inhibition in the central nervous system. Whereas heterodimerization between GABA(B) receptor GABA(B)R1 and GABA(B)R2 subunits is essential for functional expression, how neurons coordinate the assembly of these critical receptors remains to be established. Here we have identified Marlin-1, a novel GABA(B) receptor-binding protein that associates specifically with the GABA(B)R1 subunit in yeast, tissue culture cells, and neurons. Marlin-1 is expressed in the brain and exhibits a granular distribution in cultured hippocampal neurons. Marlin-1 binds different RNA species including the 3'-untranslated regions of both the GABA(B)R1 and GABA(B)R2 mRNAs in vitro and also associates with RNA in cultured neurons. Inhibition of Marlin-1 expression via small RNA interference technology results in enhanced intracellular levels of the GABA(B)R2 receptor subunit without affecting the level of GABA(B)R1. Together our results suggest that Marlin-1 functions to regulate the cellular levels of GABA(B) R2 subunits, which may have significant effects on the production of functional GABA(B) receptor heterodimers. Therefore, our observations provide an added level of regulation for the control of GABA(B) receptor expression and for the efficacy of inhibitory synaptic transmission.
Collapse
Affiliation(s)
- Andrés Couve
- Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|