51
|
The small GTPase RhoA, but not Rac1, is essential for conditioned aversive memory formation through regulation of actin rearrangements in rat dorsal hippocampus. Acta Pharmacol Sin 2013; 34:811-8. [PMID: 23564082 DOI: 10.1038/aps.2013.3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AIM Actin rearrangements are induced in the dorsal hippocampus after conditioned morphine withdrawal, and involved in the formation of conditioned place aversion. In the present study, we investigated the mechanisms underlying the actin rearrangements in rat dorsal hippocampus induced by conditioned morphine withdrawal. METHODS The RhoA-ROCK pathway inhibitor Y27632 (8.56 μg/1 μL per side) or the Rac1 inhibitor NSC23766 (25 μg/1 μL per side) was microinjected into the dorsal hippocampus of rats. Conditioned place aversion (CPA) induced by naloxone-precipitated morphine withdrawal was assessed. Crude synaptosomal fraction of hippocampus was prepared, and the amount of F-actin and G-actin was measured with an Actin Polymerization Assay Kit. RESULTS Conditioned morphine withdrawal significantly increased actin polymerization in the dorsal hippocampus at 1 h following the naloxone injection. Preconditioning with microinjection of Y27632, but not NSC23766, attenuated CPA, and blocked the increase in actin polymerization in the dorsal hippocampus. CONCLUSION Our results suggest that the small GTPase RhoA, but not Rac1, in the dorsal hippocampus is responsible for CPA formation, mainly through its regulation of actin rearrangements.
Collapse
|
52
|
Baudry M, Bi X. Learning and memory: an emergent property of cell motility. Neurobiol Learn Mem 2013; 104:64-72. [PMID: 23707799 DOI: 10.1016/j.nlm.2013.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 01/24/2023]
Abstract
In this review, we develop the argument that the molecular/cellular mechanisms underlying learning and memory are an adaptation of the mechanisms used by all cells to regulate cell motility. Neuronal plasticity and more specifically synaptic plasticity are widely recognized as the processes by which information is stored in neuronal networks engaged during the acquisition of information. Evidence accumulated over the last 25 years regarding the molecular events underlying synaptic plasticity at excitatory synapses has shown the remarkable convergence between those events and those taking place in cells undergoing migration in response to extracellular signals. We further develop the thesis that the calcium-dependent protease, calpain, which we postulated over 25 years ago to play a critical role in learning and memory, plays a central role in the regulation of both cell motility and synaptic plasticity. The findings discussed in this review illustrate the general principle that fundamental cell biological processes are used for a wide range of functions at the level of organisms.
Collapse
Affiliation(s)
- Michel Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA.
| | | |
Collapse
|
53
|
Aron Badin R, Spinnewyn B, Gaillard MC, Jan C, Malgorn C, Van Camp N, Dollé F, Guillermier M, Boulet S, Bertrand A, Savasta M, Auguet M, Brouillet E, Chabrier PE, Hantraye P. IRC-082451, a novel multitargeting molecule, reduces L-DOPA-induced dyskinesias in MPTP Parkinsonian primates. PLoS One 2013; 8:e52680. [PMID: 23300984 PMCID: PMC3536787 DOI: 10.1371/journal.pone.0052680] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 11/19/2012] [Indexed: 11/19/2022] Open
Abstract
The development of dyskinesias following chronic L-DOPA replacement therapy remains a major problem in the long-term treatment of Parkinson's disease. This study aimed at evaluating the effect of IRC-082451 (base of BN82451), a novel multitargeting hybrid molecule, on L-DOPA-induced dyskinesias (LIDs) and hypolocomotor activity in a non-human primate model of PD. IRC-082451 displays multiple properties: it inhibits neuronal excitotoxicity (sodium channel blocker), oxidative stress (antioxidant) and neuroinflammation (cyclooxygenase inhibitor) and is endowed with mitochondrial protective properties. Animals received daily MPTP injections until stably parkinsonian. A daily treatment with increasing doses of L-DOPA was administered to parkinsonian primates until the appearance of dyskinesias. Then, different treatment regimens and doses of IRC-082451 were tested and compared to the benchmark molecule amantadine. Primates were regularly filmed and videos were analyzed with specialized software. A novel approach combining the analysis of dyskinesias and locomotor activity was used to determine efficacy. This analysis yielded the quantification of the total distance travelled and the incidence of dyskinesias in 7 different body parts. A dose-dependent efficacy of IRC-082451 against dyskinesias was observed. The 5 mg/kg dose was best at attenuating the severity of fully established LIDs. Its effect was significantly different from that of amantadine since it increased spontaneous locomotor activity while reducing LIDs. This dose was effective both acutely and in a 5-day sub-chronic treatment. Moreover, positron emission tomography scans using radiolabelled dopamine demonstrated that there was no direct interference between treatment with IRC-082451 and dopamine metabolism in the brain. Finally, post-mortem analysis indicated that this reduction in dyskinesias was associated with changes in cFOS, FosB and ARC mRNA expression levels in the putamen. The data demonstrates the antidyskinetic efficacy of IRC-082451 in a primate model of PD with motor complications and opens the way to the clinical application of this treatment for the management of LIDs.
Collapse
Affiliation(s)
- Romina Aron Badin
- Molecular Imaging Research Center, Commissariat à l'Énergie Atomique, Fontenay-aux-Roses, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Takizawa H, Hiroi N, Funahashi A. Mathematical modeling of sustainable synaptogenesis by repetitive stimuli suggests signaling mechanisms in vivo. PLoS One 2012; 7:e51000. [PMID: 23284653 PMCID: PMC3530976 DOI: 10.1371/journal.pone.0051000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 10/30/2012] [Indexed: 11/19/2022] Open
Abstract
The mechanisms of long-term synaptic maintenance are a key component to understanding the mechanism of long-term memory. From biological experiments, a hypothesis arose that repetitive stimuli with appropriate intervals are essential to maintain new synapses for periods of longer than a few days. We successfully reproduce the time-course of relative numbers of synapses with our mathematical model in the same conditions as biological experiments, which used Adenosine-3', 5'-cyclic monophosphorothioate, Sp-isomer (Sp-cAMPS) as external stimuli. We also reproduce synaptic maintenance responsiveness to intervals of Sp-cAMPS treatment accompanied by PKA activation. The model suggests a possible mechanism of sustainable synaptogenesis which consists of two steps. First, the signal transduction from an external stimulus triggers the synthesis of a new signaling protein. Second, the new signaling protein is required for the next signal transduction with the same stimuli. As a result, the network component is modified from the first network, and a different signal is transferred which triggers the synthesis of another new signaling molecule. We refer to this hypothetical mechanism as network succession. We build our model on the basis of two hypotheses: (1) a multi-step network succession induces downregulation of SSH and COFILIN gene expression, which triggers the production of stable F-actin; (2) the formation of a complex of stable F-actin with Drebrin at PSD is the critical mechanism to achieve long-term synaptic maintenance. Our simulation shows that a three-step network succession is sufficient to reproduce sustainable synapses for a period longer than 14 days. When we change the network structure to a single step network, the model fails to follow the exact condition of repetitive signals to reproduce a sufficient number of synapses. Another advantage of the three-step network succession is that this system indicates a greater tolerance of parameter changes than the single step network.
Collapse
Affiliation(s)
- Hiromu Takizawa
- Dept. of Bioscience and Informatics, Keio University, Yokohama, Japan
| | - Noriko Hiroi
- Dept. of Bioscience and Informatics, Keio University, Yokohama, Japan
| | - Akira Funahashi
- Dept. of Bioscience and Informatics, Keio University, Yokohama, Japan
| |
Collapse
|
55
|
Swanger SA, Bassell GJ. Dendritic protein synthesis in the normal and diseased brain. Neuroscience 2012; 232:106-27. [PMID: 23262237 DOI: 10.1016/j.neuroscience.2012.12.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 11/21/2012] [Accepted: 12/01/2012] [Indexed: 01/25/2023]
Abstract
Synaptic activity is a spatially limited process that requires a precise, yet dynamic, complement of proteins within the synaptic micro-domain. The maintenance and regulation of these synaptic proteins is regulated, in part, by local mRNA translation in dendrites. Protein synthesis within the postsynaptic compartment allows neurons tight spatial and temporal control of synaptic protein expression, which is critical for proper functioning of synapses and neural circuits. In this review, we discuss the identity of proteins synthesized within dendrites, the receptor-mediated mechanisms regulating their synthesis, and the possible roles for these locally synthesized proteins. We also explore how our current understanding of dendritic protein synthesis in the hippocampus can be applied to new brain regions and to understanding the pathological mechanisms underlying varied neurological diseases.
Collapse
Affiliation(s)
- S A Swanger
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - G J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
56
|
Actin polymerization-dependent increase in synaptic Arc/Arg3.1 expression in the amygdala is crucial for the expression of aversive memory associated with drug withdrawal. J Neurosci 2012; 32:12005-17. [PMID: 22933785 DOI: 10.1523/jneurosci.0871-12.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aversive memories associated with drug withdrawal may contribute to persistent drug seeking. Molecular mechanisms that are critical for aversive memory formation have yet to be elucidated. Recently, we showed in a rat conditioned place aversion (CPA) model that synaptic actin polymerization in the amygdala were required for aversive memory information. Here, we demonstrated that actin polymerization within the amygdala triggered transportation of activity-regulated cytoskeletal-associated protein (Arc/Arg3.1) into amygdalar synapses. Increased synaptic Arc/Arg3.1 expression contributed to aversive memory formation by regulating synaptic AMPA receptor (AMPAR) endocytosis, as in vivo knockdown of amygdalar Arc/Arg3.1 with Arc/Arg3.1-shRNA prevented both AMPAR endocytosis and CPA formation. We also demonstrated that conditioned morphine withdrawal led to induction of LTD in the amygdala through AMPAR endocytosis. We further demonstrated that Arc/Arg3.1-regulated AMPAR endocytosis was GluR2 dependent, as intra-amygdala injection of Tat-GluR2(3Y), a GluR2-derived peptide that has been shown to specifically block regulated, but not constitutive, AMPAR endocytosis, prevented AMPAR endocytosis, LTD induction, and aversive memory formation. Therefore, this study extends previous studies on the role of actin polymerization in synaptic plasticity and memory formation by revealing the critical molecular events involved in aversive memory formation as well as LTD induction, and by showing that Arc/Arg3.1 is a crucial mediator for actin polymerization functions, and, thus, underscores the unknown details of how actin polymerization mediates synaptic plasticity and memory.
Collapse
|
57
|
Barker-Haliski ML, Pastuzyn ED, Keefe KA. Expression of the core exon-junction complex factor eukaryotic initiation factor 4A3 is increased during spatial exploration and striatally-mediated learning. Neuroscience 2012; 226:51-61. [PMID: 22982623 DOI: 10.1016/j.neuroscience.2012.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 08/21/2012] [Accepted: 09/04/2012] [Indexed: 12/25/2022]
Abstract
Regulation of dendritically localized mRNAs offers an important means by which neurons can sculpt precise signals at synapses. Arc is one such dendritically localized mRNA, and it has been shown to contain two exon-junction complexes (EJCs) within its 3'UTR. The EJC has been postulated to regulate cytoplasmic Arc mRNA availability through translation-dependent decay and thus contribute to synaptic plasticity. Core proteins of the EJC include eIF4A3, an RNA helicase, and Magoh, which stabilizes the interaction of eIF4A3 with target mRNAs. Arc mRNA expression is activity-regulated in numerous brain regions, including the dorsal striatum and hippocampus. Therefore in this study, the in vivo expression of these core EJC components was investigated in adult Sprague-Dawley rats to determine whether there are also behaviorally regulated changes in their expression. In the present work, there was no change in the expression of Magoh mRNA following spatial exploration, a paradigm previously reported to robustly and reliably upregulate Arc mRNA expression. Interestingly, however, there were increases in eIF4A3 mRNA levels in the dorsal striatum and hippocampus following spatial exploration, similar to previous reports for Arc mRNA. Furthermore, there were activity-dependent changes in eIF4A3 protein distribution and expression within the striatum following spatial exploration. Importantly, eIF4A3 protein colocalized with Arc mRNA in vivo. Like Arc mRNA expression, eIF4A3 mRNA expression in the dorsomedial striatum, but not dorsolateral striatum or hippocampus, significantly correlated with behavioral performance on a striatally-mediated, response-reversal learning task. This study provides direct evidence that a core EJC component, eIF4A3, shows activity-dependent changes in both mRNA and protein expression in the adult mammalian brain. These findings thus further implicate eIF4A3 as a key mediator of Arc mRNA availability underlying learning and memory processes in vivo.
Collapse
Affiliation(s)
- M L Barker-Haliski
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Room 201, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
58
|
Orsini CA, Maren S. Neural and cellular mechanisms of fear and extinction memory formation. Neurosci Biobehav Rev 2012; 36:1773-802. [PMID: 22230704 PMCID: PMC3345303 DOI: 10.1016/j.neubiorev.2011.12.014] [Citation(s) in RCA: 327] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 12/16/2011] [Accepted: 12/23/2011] [Indexed: 02/08/2023]
Abstract
Over the course of natural history, countless animal species have evolved adaptive behavioral systems to cope with dangerous situations and promote survival. Emotional memories are central to these defense systems because they are rapidly acquired and prepare organisms for future threat. Unfortunately, the persistence and intrusion of memories of fearful experiences are quite common and can lead to pathogenic conditions, such as anxiety and phobias. Over the course of the last 30 years, neuroscientists and psychologists alike have attempted to understand the mechanisms by which the brain encodes and maintains these aversive memories. Of equal interest, though, is the neurobiology of extinction memory formation as this may shape current therapeutic techniques. Here we review the extant literature on the neurobiology of fear and extinction memory formation, with a strong focus on the cellular and molecular mechanisms underlying these processes.
Collapse
Affiliation(s)
- Caitlin A. Orsini
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109-1043, USA
| | - Stephen Maren
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109-1043, USA
- Department of Neuroscience Program, University of Michigan, Ann Arbor, MI, 48109-1043, USA
| |
Collapse
|
59
|
Cannabinoid mitigation of neuronal morphological change important to development and learning: insight from a zebra finch model of psychopharmacology. Life Sci 2012; 92:467-75. [PMID: 22884809 DOI: 10.1016/j.lfs.2012.07.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/10/2012] [Accepted: 07/16/2012] [Indexed: 12/16/2022]
Abstract
Normal CNS development proceeds through late-postnatal stages of adolescent development. The activity-dependence of this development underscores the significance of CNS-active drug exposure prior to completion of brain maturation. Exogenous modulation of signaling important in regulating normal development is of particular concern. This mini-review presents a summary of the accumulated behavioral, physiological and biochemical evidence supporting such a key regulatory role for endocannabinoid signaling during late-postnatal CNS development. Our focus is on the data obtained using a unique zebra finch model of developmental psychopharmacology. This animal has allowed investigation of neuronal morphological effects essential to establishment and maintenance of neural circuitry, including processes related to synaptogenesis and dendritic spine dynamics. Altered neurophysiology that follows exogenous cannabinoid exposure during adolescent development has the potential to persistently alter cognition, learning and memory.
Collapse
|
60
|
Xu Z, Dong S, Du D, Jiang N, Sun P, Wang H, Yin L, Zhang X, Cao X, Zhen X, Hu Y. Generation and characterization of hD5 and C-terminal Mutant hD(5m) transgenic rats. Brain Res 2012; 1448:27-41. [PMID: 22386496 DOI: 10.1016/j.brainres.2012.01.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/21/2012] [Accepted: 01/28/2012] [Indexed: 11/17/2022]
Abstract
Dopamine D1-like receptors play important roles in many brain activities such as cognition and emotion. We have generated human hD5 and mutant human hD5 (hD(5m)) transgenic rats. The C-terminal juxtamembrane domain of mutant hD5 was identical to that of hD5 pseudogenes. The transgenes were driven by the CAMKII promoter that led the expression mainly in the cerebral cortex and hippocampus. We have used different dopamine receptor agonists to compare the pharmacological profiles of the human hD5 and hD(5m) receptors. The results showed that they exhibited distinct pharmacological properties. Our results of pharmacological studies indicated that the C-terminal of D5 receptor could play important roles in agonist binding affinity. Hippocampal long-term potentiation (LTP) evoked by tetanic stimulation was significantly reduced in both transgenic rats. In addition, we found that the overexpression of dopamine hD5 and hD(5m) receptors in the rat brain resulted in memory impairments. Interestingly, an atypical D1-like receptor agonist, SKF83959, could induce anxiety in hD(5m) receptor transgenic rats but had no effect on the anxiety-like behavior in D5 receptor transgenic and wild-type rats.
Collapse
Affiliation(s)
- Zhiliang Xu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Shahbabian K, Chartrand P. Control of cytoplasmic mRNA localization. Cell Mol Life Sci 2012; 69:535-52. [PMID: 21984598 PMCID: PMC11115051 DOI: 10.1007/s00018-011-0814-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 08/09/2011] [Accepted: 09/01/2011] [Indexed: 12/17/2022]
Abstract
mRNA localization is a mechanism used by various organisms to control the spatial and temporal production of proteins. This process is a highly regulated event that requires multiple cis- and trans-acting elements that mediate the accurate localization of target mRNAs. The intrinsic nature of localization elements, together with their interaction with different RNA-binding proteins, establishes control mechanisms that can oversee the transcript from its birth in the nucleus to its specific final destination. In this review, we aim to summarize the different mechanisms of mRNA localization, with a particular focus on the various control mechanisms that affect the localization of mRNAs in the cytoplasm.
Collapse
Affiliation(s)
- Karen Shahbabian
- Department of Biochemistry, Université de Montréal, 2900 Edouard-Montpetit, Montréal, Qc Canada
| | - Pascal Chartrand
- Department of Biochemistry, Université de Montréal, 2900 Edouard-Montpetit, Montréal, Qc Canada
| |
Collapse
|
62
|
Fonseca R. Activity-dependent actin dynamics are required for the maintenance of long-term plasticity and for synaptic capture. Eur J Neurosci 2012; 35:195-206. [DOI: 10.1111/j.1460-9568.2011.07955.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
63
|
Network, cellular, and molecular mechanisms underlying long-term memory formation. Curr Top Behav Neurosci 2012; 15:73-115. [PMID: 22976275 DOI: 10.1007/7854_2012_229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The neural network stores information through activity-dependent synaptic plasticity that occurs in populations of neurons. Persistent forms of synaptic plasticity may account for long-term memory storage, and the most salient forms are the changes in the structure of synapses. The theory proposes that encoding should use a sparse code and evidence suggests that this can be achieved through offline reactivation or by sparse initial recruitment of the network units. This idea implies that in some cases the neurons that underwent structural synaptic plasticity might be a subpopulation of those originally recruited; However, it is not yet clear whether all the neurons recruited during acquisition are the ones that underwent persistent forms of synaptic plasticity and responsible for memory retrieval. To determine which neural units underlie long-term memory storage, we need to characterize which are the persistent forms of synaptic plasticity occurring in these neural ensembles and the best hints so far are the molecular signals underlying structural modifications of the synapses. Structural synaptic plasticity can be achieved by the activity of various signal transduction pathways, including the NMDA-CaMKII and ACh-MAPK. These pathways converge with the Rho family of GTPases and the consequent ERK 1/2 activation, which regulates multiple cellular functions such as protein translation, protein trafficking, and gene transcription. The most detailed explanation may come from models that allow us to determine the contribution of each piece of this fascinating puzzle that is the neuron and the neural network.
Collapse
|
64
|
Moonat S. Stress, epigenetics, and alcoholism. Alcohol Res 2012; 34:495-505. [PMID: 23584115 PMCID: PMC3860391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Acute and chronic stressors have been associated with alterations in mood and increased anxiety that may eventually result in the development of stress-related psychiatric disorders. Stress and associated disorders, including anxiety, are key factors in the development of alcoholism because alcohol consumption can temporarily reduce the drinker's dysphoria. One molecule that may help mediate the relationship between stress and alcohol consumption is brain-derived neurotrophic factor (BDNF), a protein that regulates the structure and function of the sites where two nerve cells interact and exchange nerve signals (i.e., synapses) and which is involved in numerous physiological processes. Aberrant regulation of BDNF signaling and alterations in synapse activity (i.e., synaptic plasticity) have been associated with the pathophysiology of stress-related disorders and alcoholism. Mechanisms that contribute to the regulation of genetic information without modification of the DNA sequence (i.e., epigenetic mechanisms) may play a role in the complex control of BDNF signaling and synaptic plasticity-for example, by modifying the structure of the DNA-protein complexes (i.e., chromatin) that make up the chromosomes and thereby modulating the expression of certain genes. Studies regarding the epigenetic control of BDNF signaling and synaptic plasticity provide a promising direction to understand the mechanisms mediating the interaction between stress and alcoholism.
Collapse
|
65
|
Tabatadze N, Tomas C, McGonigal R, Lin B, Schook A, Routtenberg A. Wnt transmembrane signaling and long-term spatial memory. Hippocampus 2011; 22:1228-41. [PMID: 22180023 DOI: 10.1002/hipo.20991] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2011] [Indexed: 01/18/2023]
Abstract
Transmembrane signaling mechanisms are critical for regulating the plasticity of neuronal connections underlying the establishment of long-lasting memory (e.g., Linden and Routtenberg (1989) Brain Res Rev 14:279-296; Sossin (1996) Trends Neurosci 19:215-218; Mayr and Montminy (2001) Nat Rev Mol Cell Biol 2:599-609; Chen et al. (2011) Nature 469:491-497). One signaling mechanism that has received surprisingly little attention in this regard is the well-known Wnt transmembrane signaling pathway even though this pathway in the adult plays a significant role, for example, in postsynaptic dendritic spine morphogenesis and presynaptic terminal neurotransmitter release (Inestrosa and Arenas (2010) Nat Rev Neurosci 11:77-86). The present report now provides the first evidence of Wnt signaling in spatial information storage processes. Importantly, this Wnt participation is specific and selective. Thus, spatial, but not cued, learning in a water maze selectively elevates the levels in hippocampus of Wnt 7 and Wnt 5a, but not the Wnt 3 isoform, indicating behavioral selectivity and isoform specificity. Wnt 7 elevation is subfield-specific: granule cells show an increase with no detectable change in CA3 neurons. Wnt 7 elevation is temporally specific: increased Wnt signaling is not observed during training, but is seen 7 days and, unexpectedly, 30 days later. If the Wnt elevation after learning is activity-dependent, then it may be possible to model this effect in primary hippocampal neurons in culture. Here, we evaluate the consequence of potassium or glutamate depolarization on Wnt signaling. This represents, to our knowledge, the first demonstration of an activation-dependent elevation of Wnt levels and surprisingly an increased number of Wnt-stained puncta in neurites suggestive of trafficking from the cell body to neuronal processes, probably dendrites. It is proposed that Wnt signaling pathways regulate long-term information storage in a behavioral-, cellular-, and isoform-specific manner.
Collapse
Affiliation(s)
- Nino Tabatadze
- Department of Psychology, Northwestern University, 2029 Sheridan Rd., Evanston, IL 60208, USA
| | | | | | | | | | | |
Collapse
|
66
|
Kumar V, Fahey PG, Jong YJI, Ramanan N, O'Malley KL. Activation of intracellular metabotropic glutamate receptor 5 in striatal neurons leads to up-regulation of genes associated with sustained synaptic transmission including Arc/Arg3.1 protein. J Biol Chem 2011; 287:5412-25. [PMID: 22179607 DOI: 10.1074/jbc.m111.301366] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The G-protein coupled receptor, metabotropic glutamate receptor 5 (mGluR5), is expressed on both cell surface and intracellular membranes in striatal neurons. Using pharmacological tools to differentiate membrane responses, we previously demonstrated that cell surface mGluR5 triggers rapid, transient cytoplasmic Ca(2+) rises, resulting in c-Jun N-terminal kinase, Ca(2+)/calmodulin-dependent protein kinase, and cyclic adenosine 3',5'-monophosphate-responsive element-binding protein (CREB) phosphorylation, whereas stimulation of intracellular mGluR5 induces long, sustained Ca(2+) responses leading to the phosphorylation of extracellular signal-regulated kinase (ERK1/2) and Elk-1 (Jong, Y. J., Kumar, V., and O'Malley, K. L. (2009) J. Biol. Chem. 284, 35827-35838). Using pharmacological, genetic, and bioinformatics approaches, the current findings show that both receptor populations up-regulate many immediate early genes involved in growth and differentiation. Activation of intracellular mGluR5 also up-regulates genes involved in synaptic plasticity including activity-regulated cytoskeletal-associated protein (Arc/Arg3.1). Mechanistically, intracellular mGluR5-mediated Arc induction is dependent upon extracellular and intracellular Ca(2+) and ERK1/2 as well as calmodulin-dependent kinases as known chelators, inhibitors, and a dominant negative Ca(2+)/calmodulin-dependent protein kinase II construct block Arc increases. Moreover, intracellular mGluR5-induced Arc expression requires the serum response transcription factor (SRF) as wild type but not SRF-deficient neurons show this response. Finally, increased Arc levels due to high K(+) depolarization is significantly reduced in response to a permeable but not an impermeable mGluR5 antagonist. Taken together, these data highlight the importance of intracellular mGluR5 in the cascade of events associated with sustained synaptic transmission.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
67
|
Holahan MR, Westby EP, Albert K. Comparison of the MK-801-induced appetitive extinction deficit with pressing for reward and associated pERK1/2 staining in prefrontal cortex and nucleus accumbens. Behav Brain Res 2011; 228:194-202. [PMID: 22182675 DOI: 10.1016/j.bbr.2011.11.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/18/2011] [Accepted: 11/30/2011] [Indexed: 01/30/2023]
Abstract
Administration of the noncompetitive N-methyl-d-aspartate (NMDA)-receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801) has been shown to produce extinction deficits on appetitive operant tasks. The present study sought to further explore this by comparing extinction pressing to pressing for the primary reward and examining associated neural correlates to determine if the MK-801 extinction profile resembled the behavioral and neural profile associated with pressing for primary reward. Immunohistochemical labeling of phosphorylated extracellular signal-regulated kinase-1 and -2(pERK1/2) in the prelimbic (PrL) and infralimbic (IL) cortices and nucleus accumbens shell (AcbSh) and core (AcbC) was examined after rewarded or extinction lever pressing conditions. A dose-response curve revealed a within-day extinction deficit following administration of 0.05 mg/kg MK-801. All doses of MK-801 were associated with reduced IL pERK1/2 staining but only the 0.05 mg/kg dose was associated with elevated AcbSh pERK1/2 labeling. Extinction pressing under the influence of MK-801 was elevated compared to that seen during rewarded pressing-whether on MK-801 or saline. Rewarded pressing following saline or MK-801 was associated with elevated pERK1/2 in the PrL with no similar patterns in the MK-801/extinction group. There was more pERK1/2 labeling in the AcbSh of the MK-801 extinction group than any other condition. These data suggest that the MK-801-induced extinction deficit may be due to the combination of an underactive cortical behavioral inhibition system and an overactive AcbSh reward system.
Collapse
Affiliation(s)
- Matthew R Holahan
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | | | | |
Collapse
|
68
|
Cao Y, Wu G, Fan B, Zheng F, Gao X, Liu N, Liu X, Huang N. High mobility group nucleosomal binding domain 2 protein protects bladder epithelial cells from Klebsiella pneumoniae invasion. Biol Pharm Bull 2011; 34:1065-71. [PMID: 21720014 DOI: 10.1248/bpb.34.1065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Due to the predominance of multiple-antibiotic-resistant Klebsiella pneumoniae strains, the search for new approaches for the prevention of K. pneumoniae infections is now under intensive investigation. The objective of the present study was to investigate the effects of high mobility group nucleosomal binding domain 2 (HMGN2) protein, which acts on the bladder epithelial cells T 24, on the invasion of K. pneumoniae 03183 and explore its possible mechanisms. Pretreatment with HMGN2 significantly reduced K. pneumoniae 03183 uptake by T 24 cells. In T 24 cells, there were no detectable cytotoxic effects of HMGN2 at any concentration between 32 and 256 µg/ml after 2 h incubation. HMGN2 exhibited no appreciable antibacterial activity against K. pneumoniae 03183. Fluorescence microscopy and flow cytometry analysis revealed that HMGN2 blocked K. pneumoniae 03183-induced actin polymerization. K. pneumoniae 03183-induced phosphorylation of extracellular signal-regulated kinase (ERK) and cofilin were prevented by pretreatment with HMGN2. These results indicated that pretreatment with HMGN2 inhibited cofilin phosphorylation and then induced actin disruption which may block ERK phosphorylation. These changes led to inhibition of K. pneumoniae 03183 invasion of T 24 bladder epithelial cells.
Collapse
Affiliation(s)
- Yue Cao
- Department of Pathophysiology, West China School of Preclinical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan Province 610041, China
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Korb E, Finkbeiner S. Arc in synaptic plasticity: from gene to behavior. Trends Neurosci 2011; 34:591-8. [PMID: 21963089 DOI: 10.1016/j.tins.2011.08.007] [Citation(s) in RCA: 275] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Revised: 08/26/2011] [Accepted: 08/30/2011] [Indexed: 10/17/2022]
Abstract
The activity-regulated cytoskeletal (Arc) gene encodes a protein that is critical for memory consolidation. Arc is one of the most tightly regulated molecules known: neuronal activity controls Arc mRNA induction, trafficking and accumulation, and Arc protein production, localization and stability. Arc regulates synaptic strength through multiple mechanisms and is involved in essentially every known form of synaptic plasticity. It also mediates memory formation and is implicated in multiple neurological diseases. In this review, we will discuss how Arc is regulated and used as a tool to study neuronal activity. We will also attempt to clarify how its molecular functions correspond to its requirement in various forms of plasticity, discuss Arc's role in behavior and disease, and highlight critical unresolved questions.
Collapse
Affiliation(s)
- Erica Korb
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | | |
Collapse
|
70
|
Moonat S, Sakharkar AJ, Zhang H, Pandey SC. The role of amygdaloid brain-derived neurotrophic factor, activity-regulated cytoskeleton-associated protein and dendritic spines in anxiety and alcoholism. Addict Biol 2011; 16:238-50. [PMID: 21182574 DOI: 10.1111/j.1369-1600.2010.00275.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Innate anxiety appears to be a robust factor in the promotion of alcohol intake, possibly due to the anxiolytic effects of self-medication with alcohol. Brain-derived neurotrophic factor (BDNF) and its downstream target, activity-regulated cytoskeleton-associated (Arc) protein, play a role in the regulation of synaptic function and structure. In order to examine the role of the BDNF-Arc system and associated dendritic spines in the anxiolytic effects of ethanol, we investigated the effects of acute ethanol exposure on anxiety-like behaviors of alcohol-preferring (P) and -nonpreferring (NP) rats. We also examined changes in the expression of BDNF and Arc, and dendritic spine density (DSD), in amygdaloid brain regions of P and NP rats with or without ethanol exposure. It was found that in comparison with NP rats, P rats displayed innate anxiety-like behaviors, and had lower mRNA and protein levels of both BDNF and Arc, and also had lower DSD in the central amygdala (CeA) and medial amygdala (MeA), but not in the basolateral amygdala (BLA). Acute ethanol treatment had an anxiolytic effect in P, but not in NP rats, and was associated with an increase in mRNA and protein levels of BDNF and Arc, and in DSD in the CeA and MeA, but not BLA. These results suggest that innate deficits in BDNF-Arc levels, and DSD, in the CeA and MeA may be involved in the anxiety-like and excessive alcohol-drinking behaviors of P rats, as ethanol increased these amygdaloid synaptic markers and produced anxiolytic effects in P rats, but not NP rats.
Collapse
Affiliation(s)
- Sachin Moonat
- Department of Psychiatry, University of Illinois at Chicago and Jesse Brown VA Medical Center, 820 S. Damen Avenue (M/C 151). Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
71
|
Ivanova TN, Matthews A, Gross C, Mappus RC, Gollnick C, Swanson A, Bassell GJ, Liu RC. Arc/Arg3.1 mRNA expression reveals a subcellular trace of prior sound exposure in adult primary auditory cortex. Neuroscience 2011; 181:117-26. [PMID: 21334422 DOI: 10.1016/j.neuroscience.2011.02.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 01/24/2011] [Accepted: 02/14/2011] [Indexed: 01/13/2023]
Abstract
Acquiring the behavioral significance of sound has repeatedly been shown to correlate with long term changes in response properties of neurons in the adult primary auditory cortex. However, the molecular and cellular basis for such changes is still poorly understood. To address this, we have begun examining the auditory cortical expression of an activity-dependent effector immediate early gene (IEG) with documented roles in synaptic plasticity and memory consolidation in the hippocampus: Arc/Arg3.1. For initial characterization, we applied a repeated 10 min (24 h separation) sound exposure paradigm to determine the strength and consistency of sound-evoked Arc/Arg3.1 mRNA expression in the absence of explicit behavioral contingencies for the sound. We used 3D surface reconstruction methods in conjunction with fluorescent in situ hybridization (FISH) to assess the layer-specific subcellular compartmental expression of Arc/Arg3.1 mRNA. We unexpectedly found that both the intranuclear and cytoplasmic patterns of expression depended on the prior history of sound stimulation. Specifically, the percentage of neurons with expression only in the cytoplasm increased for repeated versus singular sound exposure, while intranuclear expression decreased. In contrast, the total cellular expression did not differ, consistent with prior IEG studies of primary auditory cortex. Our results were specific for cortical layers 3-6, as there was virtually no sound driven Arc/Arg3.1 mRNA in layers 1-2 immediately after stimulation. Our results are consistent with the kinetics and/or detectability of cortical subcellular Arc/Arg3.1 mRNA expression being altered by the initial exposure to the sound, suggesting exposure-induced modifications in the cytoplasmic Arc/Arg3.1 mRNA pool.
Collapse
Affiliation(s)
- T N Ivanova
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Holloway CM, McIntyre CK. Post-training disruption of Arc protein expression in the anterior cingulate cortex impairs long-term memory for inhibitory avoidance training. Neurobiol Learn Mem 2011; 95:425-32. [PMID: 21315825 DOI: 10.1016/j.nlm.2011.02.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/24/2011] [Accepted: 02/02/2011] [Indexed: 12/28/2022]
Abstract
The activity-regulated-cytoskeletal-associated protein (Arc) has a well established role in memory consolidation and synaptic plasticity in the hippocampus and amygdala. However the role of Arc within the anterior cingulate cortex (ACC), an area of the brain involved in processing memory for pain, has yet to be examined. Here we sought to determine if Arc protein within neurons of the rat ACC is necessary for the consolidation of a single-trial, contextual inhibitory avoidance (IA) task. Immunohistochemistry and western blotting revealed an increase in Arc protein within the ACC following IA training in a shock-specific manner, suggesting that ACC Arc expression may play a critical role in the consolidation of the aversive task. To directly test this hypothesis, male Sprague-Dawley rats were trained on the IA task and given post-training intra-ACC infusions of Arc antisense oligodeoxynucleotides (ODNs), designed to suppress Arc translation, or control scrambled ODNs that do not suppress Arc translation. Memory retention was tested 48h after training. Arc antisense-induced disruption of Arc protein expression in the ACC impaired long-term memory for the IA task as compared to rats given intra-ACC infusions of the scrambled control ODNS, suggesting that Arc expression in the ACC is important for the consolidation of emotional memory. Results further indicate that knock down of Arc 6h after training impairs IA memory. This is consistent with time course findings indicating elevated Arc expression at 3 and 6h after IA training but not 12 or 48h. Taken together, these findings support the hypothesis that Arc expression in the ACC participates in synaptic plasticity that underlies long-term memory.
Collapse
Affiliation(s)
- Crystal M Holloway
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080-3021, USA.
| | | |
Collapse
|
73
|
Activity-dependent calcium signaling and ERK-MAP kinases in neurons: a link to structural plasticity of the nucleus and gene transcription regulation. Cell Calcium 2010; 49:296-305. [PMID: 21163523 DOI: 10.1016/j.ceca.2010.11.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 11/15/2010] [Accepted: 11/16/2010] [Indexed: 12/11/2022]
Abstract
Activity-dependent gene expression is important for the formation and maturation of neuronal networks, neuronal survival and for plastic modifications within mature networks. At the level of individual neurons, expression of new protein is required for dendritic branching, synapse formation and elimination. Experience-driven synaptic activity induces membrane depolarization, which in turn evokes intracellular calcium transients that are decoded according to their source and strength by intracellular calcium sensing proteins. In order to activate the gene transcription machinery of the cell, calcium signals have to be conveyed from the site of their generation in the cytoplasm to the cell nucleus. This can occur via a variety of mechanisms and with different kinetics depending on the source and amplitude of calcium influx. One mechanism involves the propagation of calcium itself, leading to nuclear calcium transients that subsequently activate transcription. The mitogen-activated protein kinase (MAPK) cascade represents a second central signaling module that transduces information from the site of calcium signal generation at the plasma membrane to the nucleus. Nuclear signaling of the MAPK cascades catalyzes the phosphorylation of transcription factors but also regulates gene transcription more globally at the level of chromatin remodeling as well as through its recently identified role in the modulation of nuclear shape. Here we discuss the possible mechanisms by which the MAPKs ERK1 and ERK2, activated by synaptically evoked calcium influx, can signal to the nucleus and regulate gene transcription. Moreover, we describe how MAPK-dependent structural plasticity of the nuclear envelope enhances nuclear calcium signaling and suggest possible implications for the regulation of gene transcription in the context of nuclear geometry.
Collapse
|
74
|
Myosin IIb regulates actin dynamics during synaptic plasticity and memory formation. Neuron 2010; 67:603-17. [PMID: 20797537 DOI: 10.1016/j.neuron.2010.07.016] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2010] [Indexed: 01/15/2023]
Abstract
Reorganization of the actin cytoskeleton is essential for synaptic plasticity and memory formation. Presently, the mechanisms that trigger actin dynamics during these brain processes are poorly understood. In this study, we show that myosin II motor activity is downstream of LTP induction and is necessary for the emergence of specialized actin structures that stabilize an early phase of LTP. We also demonstrate that myosin II activity contributes importantly to an actin-dependent process that underlies memory consolidation. Pharmacological treatments that promote actin polymerization reversed the effects of a myosin II inhibitor on LTP and memory. We conclude that myosin II motors regulate plasticity by imparting mechanical forces onto the spine actin cytoskeleton in response to synaptic stimulation. These cytoskeletal forces trigger the emergence of actin structures that stabilize synaptic plasticity. Our studies provide a mechanical framework for understanding cytoskeletal dynamics associated with synaptic plasticity and memory formation.
Collapse
|
75
|
Kadam S, Smith-Hicks C, Smith DR, Worley P, Comi AM. Functional integration of new neurons into hippocampal networks and poststroke comorbidities following neonatal stroke in mice. Epilepsy Behav 2010; 18:344-57. [PMID: 20708575 PMCID: PMC2923452 DOI: 10.1016/j.yebeh.2010.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 05/05/2010] [Accepted: 05/07/2010] [Indexed: 12/22/2022]
Abstract
Stroke in the developing brain is an important cause of chronic neurological morbidities including neurobehavioral dysfunction and epilepsy. Here, we describe a mouse model of neonatal stroke resulting from unilateral carotid ligation that results in acute seizures, long-term hyperactivity, spontaneous lateralized circling behavior, impaired cognitive function, and epilepsy. Exploration-dependent induction of the immediate early gene Arc (activity-regulated cytoskeleton associated protein) in hippocampal neurons was examined in the general population of neurons versus neurons that were generated approximately 1 week after the ischemic insult and labeled with bromodeoxyuridine. Although Arc was inducible in a network-specific manner after severe neonatal stroke, it was impaired, not only in the ipsilateral injured but also in the contralateral uninjured hippocampi when examined 6 months after the neonatal stroke. Severity of both the stroke injury and the acquired poststroke epilepsy negatively correlated with Arc induction and new neuron integration into functional circuits in the injured hippocampi.
Collapse
Affiliation(s)
- S.D. Kadam
- Department of Neurology and Developmental Medicine, Kennedy Krieger Research Institute, Johns Hopkins University School of Medicine; Baltimore, MD-21205,Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD-21205
| | - C.L. Smith-Hicks
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD-21205
| | - D. R. Smith
- Neurogenetics and Behavior Center, Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218
| | - P.F. Worley
- Department of Neuroscience, Johns Hopkins University School of Medicine; Baltimore, MD-21205,Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD-21205
| | - A. M. Comi
- Department of Neurology and Developmental Medicine, Kennedy Krieger Research Institute, Johns Hopkins University School of Medicine; Baltimore, MD-21205,Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD-21205,Department of Pediatrics, Johns Hopkins University School of Medicine; Baltimore, MD-21205
| |
Collapse
|
76
|
Branco T, Häusser M. The single dendritic branch as a fundamental functional unit in the nervous system. Curr Opin Neurobiol 2010; 20:494-502. [DOI: 10.1016/j.conb.2010.07.009] [Citation(s) in RCA: 246] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 07/23/2010] [Accepted: 07/23/2010] [Indexed: 11/28/2022]
|
77
|
Time-dependent expression of Arc and zif268 after acquisition of fear conditioning. Neural Plast 2010; 2010:139891. [PMID: 20592749 PMCID: PMC2877205 DOI: 10.1155/2010/139891] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 01/31/2010] [Accepted: 02/22/2010] [Indexed: 12/02/2022] Open
Abstract
Memory consolidation requires transcription and translation of new protein. Arc, an effector immediate early gene, and zif268, a regulatory transcription factor, have been implicated in synaptic plasticity underlying learning and memory. This study explored the temporal expression profiles of these proteins in the rat hippocampus following fear conditioning. We observed a time-dependent increase of Arc protein in the dorsal hippocampus 30-to-90-minute post training, returning to basal levels at 4 h. Zif268 protein levels, however, gradually increased at 30-minute post training before peaking in expression at 60 minute. The timing of hippocampal Arc and zif268 expression coincides with the critical period for protein synthesis-dependent memory consolidation following fear conditioning. However, the expression of Arc protein appears to be driven by context exploration, whereas, zif268 expression may be more specifically related to associative learning. These findings suggest that altered Arc and zif268 expression are related to neural plasticity during the formation of fear memory.
Collapse
|
78
|
Chotiner JK, Nielson J, Farris S, Lewandowski G, Huang F, Banos K, de Leon R, Steward O. Assessment of the role of MAP kinase in mediating activity-dependent transcriptional activation of the immediate early gene Arc/Arg3.1 in the dentate gyrus in vivo. Learn Mem 2010; 17:117-29. [PMID: 20154358 DOI: 10.1101/lm.1585910] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Different physiological and behavioral events activate transcription of Arc/Arg3.1 in neurons in vivo, but the signal transduction pathways that mediate induction in particular situations remain to be defined. Here, we explore the relationships between induction of Arc/Arg3.1 transcription in dentate granule cells in vivo and activation of mitogen-activated protein (MAP) kinase as measured by extracellular-regulated kinase 1/2 (ERK1/2) phosphorylation. We show that ERK1/2 phosphorylation is strongly induced in dentate granule cells within minutes after induction of perforant path long-term potentiation (LTP). Phospho-ERK staining appears in nuclei within minutes after stimulation commences, and ERK phosphorylation returns to control levels within 60 min. Electroconvulsive seizures, which strongly induce prolonged Arc/Arg3.1 transcription in dentate granule cells, induced ERK1/2 phosphorylation in granule cells that returned to control levels within 30 min. Following 30, 60, and 120 min of exploration in a novel complex environment, Arc/Arg3.1 transcription was activated in many more granule cells than stained positively for p-ERK at all time points. Although Arc/Arg3.1 transcription was induced in most pyramidal neurons in CA1 following exploration, very few pyramidal neurons exhibited nuclear p-ERK1/2 staining. Local delivery of U0126 during the induction of perforant path LTP blocked transcriptional activation of Arc/Arg3.1 in a small region near the injection site and blocked Arc/Arg3.1 protein expression over a wider region. Our results indicate that activation of Arc/Arg3.1 transcription in dentate granule cells in vivo is mediated in part by MAP kinase activation, but other signaling pathways also contribute, especially in the case of Arc/Arg3.1 induction in response to experience.
Collapse
Affiliation(s)
- Jennifer K Chotiner
- Department of Anatomy and Neurobiology, Reeve-Irvine Research Center, University of California at Irvine, Irvine, California 92697, USA
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Spine Remodeling and Synaptic Modification. Mol Neurobiol 2010; 41:29-41. [DOI: 10.1007/s12035-009-8093-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 12/09/2009] [Indexed: 01/05/2023]
|
80
|
Moonat S, Starkman BG, Sakharkar A, Pandey SC. Neuroscience of alcoholism: molecular and cellular mechanisms. Cell Mol Life Sci 2010; 67:73-88. [PMID: 19756388 PMCID: PMC3747955 DOI: 10.1007/s00018-009-0135-y] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 07/28/2009] [Accepted: 08/13/2009] [Indexed: 01/21/2023]
Abstract
Alcohol use and abuse appear to be related to neuroadaptive changes at functional, neurochemical, and structural levels. Acute and chronic ethanol exposure have been shown to modulate function of the activity-dependent gene transcription factor, cAMP-responsive element binding (CREB) protein in the brain, which may be associated with the development of alcoholism. Study of the downstream effectors of CREB have identified several important CREB-related genes, such as neuropeptide Y, brain-derived neurotrophic factor, activity-regulated cytoskeleton-associated protein, and corticotrophin-releasing factor, that may play a crucial role in the behavioral effects of ethanol and molecular changes in the specific neurocircuitry that underlie both alcohol addiction and a genetic predisposition to alcoholism. Brain chromatin remodeling due to histone covalent modifications may also be involved in mediating the behavioral effects and neuroadaptive changes that occur during ethanol exposure. This review outlines progressive neuroscience research into molecular and epigenetic mechanisms of alcoholism.
Collapse
Affiliation(s)
- Sachin Moonat
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL USA
- Jesse Brown VA Medical Center, Chicago, IL USA
| | - Bela G. Starkman
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL USA
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL USA
- Jesse Brown VA Medical Center, Chicago, IL USA
| | - Amul Sakharkar
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL USA
- Jesse Brown VA Medical Center, Chicago, IL USA
| | - Subhash C. Pandey
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL USA
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL USA
- Jesse Brown VA Medical Center, Chicago, IL USA
- Department of Psychiatry, University of Illinois at Chicago and Jesse Brown VA Medical Center, 820 S. Damen Avenue (M/C 151), Chicago, IL 60612 USA
| |
Collapse
|
81
|
Abstract
Modification of neuronal connections is essential for the development of the nervous system and learning and memory functions of the mature brain. Structural modifications, such as modification of dendritic spines where the modified synapses reside, accompany and may even be required for these functional modifications. Recent advances in fluorescence microscopy, coupled with molecular approaches, prompted a rapid advance in the authors’ understanding of spine remodeling associated with synaptic plasticity, especially long-term potentiation. In this article, they review recent progress in this field, with focus on the potential functions of spine remodeling and key issues to be resolved.
Collapse
Affiliation(s)
- Yunlei Yang
- Department of Neurology, Mount Sinai School of Medicine,
New York, New York
| | - Qiang Zhou
- Department of Neurology, Mount Sinai School of Medicine,
New York, New York,
| |
Collapse
|
82
|
A transcription-dependent increase in miniature EPSC frequency accompanies late-phase plasticity in cultured hippocampal neurons. BMC Neurosci 2009; 10:124. [PMID: 19788723 PMCID: PMC2763873 DOI: 10.1186/1471-2202-10-124] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 09/29/2009] [Indexed: 11/10/2022] Open
Abstract
Background The magnitude and longevity of synaptic activity-induced changes in synaptic efficacy is quantified by measuring evoked responses whose potentiation requires gene transcription to persist for more than 2-3 hours. While miniature EPSCs (mEPSCs) are also increased in amplitude and/or frequency during long-term potentiation (LTP), it is not known how long such changes persist or whether gene transcription is required. Results We use whole-cell patch clamp recordings from dissociated hippocampal cultures to characterise for the first time the persistence and transcription dependency of mEPSC upregulation during synaptic potentiation. The persistence of recurrent action potential bursting in these cultures is transcription-, translation- and NMDA receptor-dependent thus providing an accessible model for long-lasting plasticity. Blockade of GABAA-receptors with bicuculline for 15 minutes induced action potential bursting in all neurons and was maintained in 50-60% of neurons for more than 6 hours. Throughout this period, the frequency but neither the amplitude of mEPSCs nor whole-cell AMPA currents was markedly increased. The transcription blocker actinomycin D abrogated, within 2 hours of burst induction, both action potential bursting and the increase in mEPSCs. Reversible blockade of action potentials during, but not after this 2 hour transcription period suppressed the increase in mEPSC frequency and the recovery of burst activity at a time point 6 hours after induction. Conclusion These results indicate that increased mEPSC frequency persists well beyond the 2 hour transcription-independent phase of plasticity in this model. This long-lasting mEPSC upregulation is transcription-dependent and requires ongoing action potential activity during the initial 2 hour period but not thereafter. Thus mEPSC upregulation may underlie the long term, transcription-dependent persistence of action potential bursting. This provides mechanistic insight to link gene candidates already identified by gene chip analysis to long lasting plasticity in this in vitro model.
Collapse
|
83
|
Panja D, Dagyte G, Bidinosti M, Wibrand K, Kristiansen AM, Sonenberg N, Bramham CR. Novel translational control in Arc-dependent long term potentiation consolidation in vivo. J Biol Chem 2009; 284:31498-511. [PMID: 19755425 DOI: 10.1074/jbc.m109.056077] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Regulation of translation factor activity plays a major role in protein synthesis-dependent forms of synaptic plasticity. We examined translational control across the critical period of Arc synthesis underlying consolidation of long term potentiation (LTP) in the dentate gyrus of intact, anesthetized rats. LTP induction by high frequency stimulation (HFS) evoked phosphorylation of the cap-binding protein eukaryotic initiation factor 4E (eIF4E) and dephosphorylation of eIF2alpha on a protracted time course matching the time-window of Arc translation. Local infusion of the ERK inhibitor U0126 inhibited LTP maintenance and Arc protein expression, blocked changes in eIF4E and eIF2alpha phosphorylation state, and prevented initiation complex (eIF4F) formation. Surprisingly, inhibition of the mTOR protein complex 1 (mTORC1) with rapamycin did not impair LTP maintenance or Arc synthesis nor did it inhibit eIF4F formation or phosphorylation of eIF4E. Rapamycin nonetheless blocked mTOR signaling to p70 S6 kinase and ribosomal protein S6 and inhibited synthesis of components of the translational machinery. Using immunohistochemistry and in situ hybridization, we show that Arc protein expression depends on dual, ERK-dependent transcription and translation. Arc translation is selectively blocked by pharmacological inhibition of mitogen-activated protein kinase-interacting kinase (MNK), the kinase coupling ERK to eIF4E phosphorylation. Furthermore, MNK signaling was required for eIF4F formation. These results support a dominant role for ERK-MNK signaling in control of translational initiation and Arc synthesis during LTP consolidation in the dentate gyrus. In contrast, mTORC1 signaling is activated but nonessential for Arc synthesis and LTP. The work, thus, identifies translational control mechanisms uniquely tuned to Arc-dependent LTP consolidation in live rats.
Collapse
Affiliation(s)
- Debabrata Panja
- Department of Biomedicine and Bergen Mental Health Research Center, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | | | | | | | | | | | | |
Collapse
|
84
|
Wang CC, Chai SC, Holahan MR. Effect of stimulus pre-exposure on inhibitory avoidance retrieval-associated changes in the phosphorylated form of the extracellular signal-regulated kinase-1 and -2 (pERK1/2). Neurobiol Learn Mem 2009; 93:66-76. [PMID: 19698796 DOI: 10.1016/j.nlm.2009.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 08/12/2009] [Accepted: 08/13/2009] [Indexed: 10/20/2022]
Abstract
One goal of the present study was to determine how pre-exposure to a set of contextual cues affected subsequent reinforced inhibitory avoidance task performance using those cues (latent inhibition model). In addition, immunohistochemical assessment of the phosphorylated (activated) form of the extracellular signal-regulated kinase-1 and -2 (pERK1/2) was examined. Adult, male Long Evans rats were randomly assigned into either pre-exposure (PE) or different pre-exposure (DPE) groups. All rats received 3days of contextual pre-exposure (same or different context as that used for reinforced training) and were trained, 24h later, on an inhibitory avoidance task (with or without shock). Rats were euthanized 24h after training; half with a retention test and half without. Behaviorally, the PE group showed reduced latencies to enter the dark/shock compartment during the retention test compared to the DPE group showing the latent inhibition phenomenon. Compared to the shocked and tested DPE group, the shocked and tested PE group showed fewer pERK1/2-ir neurons in the secondary motor cortex, the anterior cingulate, the pre- and infra-limbic cortices, and the central nucleus of the amygdala. These regions showed similar numbers of pERK1/2-labeled neurons when comparing the shocked and tested PE group with the nonshocked and tested PE group. This suggests the possibility that brain regions showing decreased pERK1/2 levels in association with attenuated inhibitory avoidance performance may be involved in different aspects of the memory retrieval process.
Collapse
Affiliation(s)
- Chia-Chuan Wang
- School of Medicine, Fu-Jen Catholic University, Taipei Hsien 242, Taiwan
| | | | | |
Collapse
|
85
|
Abstract
The immediate early gene Arc is emerging as a versatile, finely tuned system capable of coupling changes in neuronal activity patterns to synaptic plasticity, thereby optimizing information storage in the nervous system. Here, we attempt to overview the Arc system spanning from transcriptional regulation of the Arc gene, to dendritic transport, metabolism, and translation of Arc mRNA, to post-translational modification, localization, and degradation of Arc protein. Within this framework we discuss the function of Arc in regulation of actin cytoskeletal dynamics underlying consolidation of long-term potentiation (LTP) and regulation of AMPA-type glutamate receptor endocytosis underlying long-term depression (LTD) and homeostatic plasticity. Behaviorally, Arc has a key role in consolidation of explicit and implicit forms of memory, with recent work implicating Arc in adaptation to stress as well as maladaptive plasticity connected to drug addiction. Arc holds considerable promise as a “master regulator” of protein synthesis-dependent forms of synaptic plasticity, but the mechanisms that modulate and switch Arc function are only beginning to be elucidated.
Collapse
|
86
|
Rex CS, Chen LY, Sharma A, Liu J, Babayan AH, Gall CM, Lynch G. Different Rho GTPase-dependent signaling pathways initiate sequential steps in the consolidation of long-term potentiation. ACTA ACUST UNITED AC 2009; 186:85-97. [PMID: 19596849 PMCID: PMC2712993 DOI: 10.1083/jcb.200901084] [Citation(s) in RCA: 232] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The releasable factor adenosine blocks the formation of long-term potentiation (LTP). These experiments used this observation to uncover the synaptic processes that stabilize the potentiation effect. Brief adenosine infusion blocked stimulation-induced actin polymerization within dendritic spines along with LTP itself in control rat hippocampal slices but not in those pretreated with the actin filament stabilizer jasplakinolide. Adenosine also blocked activity-driven phosphorylation of synaptic cofilin but not of synaptic p21-activated kinase (PAK). A search for the upstream origins of these effects showed that adenosine suppressed RhoA activity but only modestly affected Rac and Cdc42. A RhoA kinase (ROCK) inhibitor reproduced adenosine's effects on cofilin phosphorylation, spine actin polymerization, and LTP, whereas a Rac inhibitor did not. However, inhibitors of Rac or PAK did prolong LTP's vulnerability to reversal by latrunculin, a toxin which blocks actin filament assembly. Thus, LTP induction initiates two synaptic signaling cascades: one (RhoA-ROCK-cofilin) leads to actin polymerization, whereas the other (Rac-PAK) stabilizes the newly formed filaments.
Collapse
Affiliation(s)
- Christopher S Rex
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, USA.
| | | | | | | | | | | | | |
Collapse
|
87
|
Otsuka N, Tsuritani K, Sakurai T, Kato K, Matoba R, Itoh J, Okuyama S, Yamada K, Yoneda Y. Transcriptional induction and translational inhibition of Arc and Cugbp2 in mice hippocampus after transient global ischemia under normothermic condition. Brain Res 2009; 1287:136-45. [PMID: 19559013 DOI: 10.1016/j.brainres.2009.06.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 06/12/2009] [Accepted: 06/16/2009] [Indexed: 11/30/2022]
Abstract
Mild hypothermia protects against neuronal damage after transient global ischemia in experimental animals. The exact mechanism of this protective effect remains to be elucidated. The purpose of the present study was to investigate the molecular mechanisms relevant to different neurologic responses to hypothermia and normothermia. Transient global ischemia was induced in C57BL/6 mice by bilateral common carotid artery occlusion for 10 min. Hypothermia provided robust neuroprotection in the hippocampus region and dramatically reduced the mortality rate. Using adaptor-tagged competitive polymerase chain reaction, we obtained the relative transcription levels of 1210 genes in the hippocampal region and compared the expression patterns of these genes. Two genes, Activity-regulated cytoskeleton-associated protein (Arc) and CUG-binding protein-2 (Cugbp2), showed remarkable and persistent increases in their expression levels in normothermic mice, compared with in both sham and hypothermic mice. Despite the increased transcription of Arc and Cugbp2, an immunohistochemistry analysis did not show comparable increases in the translations of both genes. Only a transient increase in Arc protein was observed in the granule cells of the dentate gyrus at 6 h after reperfusion. A remarkable decrease in Cugbp2 protein was observed in the pyramidal cells of the hippocampal CA1-CA3, in accordance with the progress of neuronal degeneration. A decrease in Cugbp2 protein was not observed in hypothermic mice. These results suggest that transient global ischemia induces the translational inhibition of genes with increased expression not in hypothermic, but in normothermic mice. Thus, translational inhibition might play an important role in the progress of neuronal injury after transient global ischemia.
Collapse
Affiliation(s)
- Noboru Otsuka
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Falley K, Schütt J, Iglauer P, Menke K, Maas C, Kneussel M, Kindler S, Wouters FS, Richter D, Kreienkamp HJ. Shank1 mRNA: dendritic transport by kinesin and translational control by the 5'untranslated region. Traffic 2009; 10:844-57. [PMID: 19416473 DOI: 10.1111/j.1600-0854.2009.00912.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Dendritic mRNA transport coupled with local regulation of translation enables neurons to selectively alter the protein composition of individual postsynaptic sites. We have analyzed dendritic localization of shank1 mRNAs; shank proteins (shank1-3) are scaffolding molecules of the postsynaptic density (PSD) of excitatory synapses, which are crucial for PSD assembly and the formation of dendritic spines. Live cell imaging demonstrates saltatory movements of shank1 mRNA containing granules along microtubules in both anterograde and retrograde directions. A population of brain messenger ribonucleoprotein particles (mRNPs) containing shank1 mRNAs associates with the cargo-binding domain of the motor protein KIF5C. Through expression of dominant negative proteins, we show that dendritic targeting of shank1 mRNA granules involves KIF5C and the KIF5-associated RNA-binding protein staufen1. While transport of shank1 mRNAs follows principles previously outlined for other dendritic transcripts, shank1 mRNAs are distinguished by their translational regulation. Translation is strongly inhibited by a GC-rich 5(')untranslated region; in addition, internal ribosomal entry sites previously detected in other dendritic transcripts are absent in the shank1 mRNA. A concept emerges from our data in which dendritic transport of different mRNAs occurs collectively via a staufen1- and KIF5-dependent pathway, whereas their local translation is controlled individually by unique cis-acting elements.
Collapse
Affiliation(s)
- Katrin Falley
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf; Martinistrasse 52; 20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Abstract
The localization of mRNAs to subcellular compartments provides a mechanism for regulating gene expression with exquisite temporal and spatial control. Recent studies suggest that a large fraction of mRNAs localize to distinct cytoplasmic domains. In this Review, we focus on cis-acting RNA localization elements, RNA-binding proteins, and the assembly of mRNAs into granules that are transported by molecular motors along cytoskeletal elements to their final destination in the cell.
Collapse
Affiliation(s)
- Kelsey C Martin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095-1737, USA.
| | | |
Collapse
|
90
|
Abstract
In a manner unique among activity-regulated immediate early genes (IEGs), mRNA encoded by Arc (also known as Arg3.1) undergoes rapid transport to dendrites and local synaptic translation. Despite this intrinsic appeal, relatively little is known about the neuronal and behavioral functions of Arc or its molecular mechanisms of action. Here, we attempt to distill recent advances on Arc spanning its transcriptional and translational regulation, the functions of the Arc protein in multiple forms of neuronal plasticity [long-term potentiation (LTP), long-term depression (LTD), and homeostatic plasticity], and its broader role in neural networks of behaving animals. Worley and colleagues have shown that Arc interacts with endophilin and dynamin, creating a postsynaptic trafficking endosome that selectively modifies the expression of AMPA-type glutamate receptors at the excitatory synapses. Both LTD and homeostatic plasticity in the hippocampus are critically dependent on Arc-mediated endocytosis of AMPA receptors. LTD evoked by activation of metabotropic glutamate receptors depends on rapid Arc translation controlled by elongation factor 2. Bramham and colleagues have shown that sustained translation of newly induced Arc mRNA is necessary for cofilin phosphorylation and stable expansion of the F-actin cytoskeleton underlying LTP consolidation in the dentate gyrus of live rats. In addition to regulating F-actin, Arc synthesis maintains the activity of key translation factors during LTP consolidation. This process of Arc-dependent consolidation is activated by the secretory neurotrophin, BDNF. Moore and colleagues have shown that Arc mRNA is a natural target for nonsense-mediated mRNA decay (NMD) by virtue of its two conserved 3'-UTR introns. NMD and other related translation-dependent mRNA decay mechanisms may serve as critical brakes on protein expression that contribute to the fine spatial-temporal control of Arc synthesis. In studies in behaving rats, Guzowski and colleagues have shown that location-specific firing of CA3 and CA1 hippocampal neurons in the presence of theta rhythm provides the necessary stimuli for activation of Arc transcription. The impact of Arc transcription in memory processes may depend on the specific context of coexpressed IEGs, in addition to posttranscriptional regulation of Arc by neuromodulatory inputs from the amygdala and other brain regions. In sum, Arc is emerging as a versatile, finely tuned system capable of coupling changes in neuronal activity patterns to diverse forms of synaptic plasticity, thereby optimizing information storage in active networks.
Collapse
|
91
|
Ploski JE, Pierre VJ, Smucny J, Park K, Monsey MS, Overeem KA, Schafe GE. The activity-regulated cytoskeletal-associated protein (Arc/Arg3.1) is required for memory consolidation of pavlovian fear conditioning in the lateral amygdala. J Neurosci 2008; 28:12383-95. [PMID: 19020031 PMCID: PMC6671728 DOI: 10.1523/jneurosci.1662-08.2008] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 09/12/2008] [Accepted: 10/09/2008] [Indexed: 11/21/2022] Open
Abstract
The activity-regulated cytoskeletal-associated protein (Arc/Arg3.1) is an immediate early gene that has been widely implicated in hippocampal-dependent learning and memory and is believed to play an integral role in synapse-specific plasticity. Here, we examined the role of Arc/Arg3.1 in amygdala-dependent Pavlovian fear conditioning. We first examined the regulation of Arc/Arg3.1 mRNA and protein after fear conditioning and LTP-inducing stimulation of thalamic inputs to the lateral amygdala (LA). Quantitative real-time PCR, in situ hybridization, Western blotting and immunohistochemistry revealed a significant upregulation of Arc/Arg3.1 mRNA and protein in the LA relative to controls. In behavioral experiments, intra-LA infusion of an Arc/Arg3.1 antisense oligodeoxynucleotide (ODN) was observed to be anatomically restricted to the LA, taken up by LA cells, and to promote significant knockdown of Arc/Arg3.1 protein. Rats given intra-LA infusions of multiple doses of the Arc/Arg3.1 ODN showed an impairment of LTM (tested approximately 24 later), but no deficit in STM (tested 3 h later) relative to controls infused with scrambled ODN. Finally, to determine whether upregulation of Arc/Arg3.1 occurs downstream of ERK/MAPK activation, we examined Arc/Arg3.1 expression in rats given intra-LA infusion of the MEK inhibitor U0126. Relative to vehicle controls, infusion of U0126 impaired training-induced increases in Arc/Arg3.1 expression. These findings suggest that Arc/Arg3.1 expression in the amygdala is required for fear memory consolidation, and further suggest that Arc/Arg3.1 regulation in the LA is downstream of the ERK/MAPK signaling pathway.
Collapse
Affiliation(s)
| | | | - Jason Smucny
- Department of Psychology and
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut 06520, and
| | | | | | - Kathie A. Overeem
- Department of Psychology and
- University of Canterbury, Christchurch 8140, New Zealand
| | - Glenn E. Schafe
- Department of Psychology and
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut 06520, and
| |
Collapse
|
92
|
Local protein synthesis, actin dynamics, and LTP consolidation. Curr Opin Neurobiol 2008; 18:524-31. [DOI: 10.1016/j.conb.2008.09.013] [Citation(s) in RCA: 230] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 09/17/2008] [Accepted: 09/17/2008] [Indexed: 12/30/2022]
|
93
|
Houser CR, Huang CS, Peng Z. Dynamic seizure-related changes in extracellular signal-regulated kinase activation in a mouse model of temporal lobe epilepsy. Neuroscience 2008; 156:222-37. [PMID: 18675888 DOI: 10.1016/j.neuroscience.2008.07.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 07/02/2008] [Accepted: 07/02/2008] [Indexed: 10/21/2022]
Abstract
Extracellular signal-regulated kinase (ERK) is highly sensitive to regulation by neuronal activity and is critically involved in several forms of synaptic plasticity. These features suggested that alterations in ERK signaling might occur in epilepsy. Previous studies have described increased ERK phosphorylation immediately after the induction of severe seizures, but patterns of ERK activation in epileptic animals during the chronic period have not been determined. Thus, the localization and abundance of phosphorylated extracellular signal-regulated kinase (pERK) were examined in a pilocarpine model of recurrent seizures in C57BL/6 mice during the seizure-free period and at short intervals after spontaneous seizures. Immunolabeling of pERK in control animals revealed an abundance of distinctly-labeled neurons within the hippocampal formation. However, in pilocarpine-treated mice during the seizure-free period, the numbers of pERK-labeled neurons were substantially decreased throughout much of the hippocampal formation. Double labeling with a general neuronal marker suggested that the decrease in pERK-labeled neurons was not due primarily to cell loss. The decreased ERK phosphorylation in seizure-prone animals was interpreted as a compensatory response to increased neuronal excitability within the network. Nevertheless, striking increases in pERK labeling occurred at the time of spontaneous seizures and were evident in large populations of neurons at very short intervals (as early as 2 min) after detection of a behavioral seizure. These findings suggest that increased pERK labeling could be one of the earliest immunohistochemical indicators of neurons that are activated at the time of a spontaneous seizure.
Collapse
Affiliation(s)
- C R Houser
- Department of Neurobiology, CHS 73-235, David Geffen School of Medicine at the University of California, Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-1763, USA.
| | | | | |
Collapse
|
94
|
Schwarz JM, Liang SL, Thompson SM, McCarthy MM. Estradiol induces hypothalamic dendritic spines by enhancing glutamate release: a mechanism for organizational sex differences. Neuron 2008; 58:584-98. [PMID: 18498739 DOI: 10.1016/j.neuron.2008.03.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 01/18/2008] [Accepted: 03/04/2008] [Indexed: 10/22/2022]
Abstract
The naturally occurring sex difference in dendritic spine number on hypothalamic neurons offers a unique opportunity to investigate mechanisms establishing synaptic patterning during perinatal sensitive periods. A major advantage of the rat as a model of sexual differentiation is that treatment of neonatal females with estradiol will permanently induce the male phenotype. During the development of other systems, exuberant innervation is followed by activity-dependent pruning necessary for elimination of spurious synapses. In contrast, we demonstrate that estradiol-induced organization in the hypothalamus involves the induction of new synapses on dendritic spines. Activation of estrogen receptors by estradiol triggers a nongenomic activation of PI3 kinase that results in enhanced glutamate release from presynaptic neurons. Subsequent activation of ionotropic glutamate receptors activates MAP kinases, thereby inducing dendritic spine formation. These results reveal a transneuronal mechanism by which estradiol acts during a sensitive period to establish a profound and lasting sex difference in hypothalamic synaptic patterning.
Collapse
Affiliation(s)
- Jaclyn M Schwarz
- Program in Neuroscience, University of Maryland, Baltimore, Baltimore, MD 212101, USA.
| | | | | | | |
Collapse
|
95
|
Cingolani LA, Goda Y. Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat Rev Neurosci 2008; 9:344-56. [PMID: 18425089 DOI: 10.1038/nrn2373] [Citation(s) in RCA: 592] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Synapse regulation exploits the capacity of actin to function as a stable structural component or as a dynamic filament. Beyond its well-appreciated role in eliciting visible morphological changes at the synapse, the emerging picture points to an active contribution of actin to the modulation of the efficacy of pre- and postsynaptic terminals. Moreover, by engaging distinct pools of actin and divergent signalling pathways, actin-dependent morphological plasticity could be uncoupled from modulation of synaptic strength. The aim of this Review is to highlight some of the recent progress in elucidating the role of the actin cytoskeleton in synaptic function.
Collapse
Affiliation(s)
- Lorenzo A Cingolani
- MRC Laboratory for Molecular Cell Biology and MRC Cell Biology Unit, University College London, Gower Street, London, WC1E 6BT, UK
| | | |
Collapse
|