51
|
Yang J, Zhang L, Yu C, Yang XF, Wang H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res 2014; 2:1. [PMID: 24398220 PMCID: PMC3892095 DOI: 10.1186/2050-7771-2-1] [Citation(s) in RCA: 702] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 12/20/2013] [Indexed: 12/12/2022] Open
Abstract
Monocytes express various receptors, which monitor and sense environmental changes. Monocytes are highly plastic and heterogeneous, and change their functional phenotype in response to environmental stimulation. Evidence from murine and human studies has suggested that monocytosis can be an indicator of various inflammatory diseases. Monocytes can differentiate into inflammatory or anti-inflammatory subsets. Upon tissue damage or infection, monocytes are rapidly recruited to the tissue, where they can differentiate into tissue macrophages or dendritic cells. Given the rapid progress in monocyte research from broad spectrum of inflammatory diseases, there is a need to summarize our knowledge in monocyte heterogeneity and its impact in human disease. In this review, we describe the current understanding of heterogeneity of human and murine monocytes, the function of distinct subsets of monocytes, and a potential mechanism for monocyte differentiation. We emphasize that inflammatory monocyte subsets are valuable biomarkers for inflammatory diseases, including cardiovascular diseases.
Collapse
Affiliation(s)
- Jiyeon Yang
- Department of Pharmacology, Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Lixiao Zhang
- Department of Pharmacology, Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Caijia Yu
- Department of Pharmacology, Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Xiao-Feng Yang
- Department of Pharmacology, Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Hong Wang
- Department of Pharmacology, Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| |
Collapse
|
52
|
Liver-brain interactions in inflammatory liver diseases: implications for fatigue and mood disorders. Brain Behav Immun 2014; 35:9-20. [PMID: 24140301 DOI: 10.1016/j.bbi.2013.10.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/28/2013] [Accepted: 10/09/2013] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammatory liver diseases are often accompanied by behavior alterations including fatigue, mood disorders, cognitive dysfunction and sleep disturbances. These altered behaviors can adversely affect patient quality of life. The communication pathways between the inflamed liver and the brain that mediate changes in central neural activity leading to behavior alterations during liver inflammation are poorly understood. Neural and humoral communication pathways have been most commonly implicated as driving peripheral inflammation to brain signaling. Classically, the cytokines TNFα, IL-1β and IL-6 have received the greatest scientific attention as potential mediators of this communication pathway. In mice with liver inflammation we have identified a novel immune-mediated liver-to-brain communication pathway whereby CCR2(+) monocytes found within the peripheral circulation transmigrate into the brain parenchyma in response to MCP-1/CCL2 expressing activated microglia. Inhibition of cerebral monocyte infiltration in these mice significantly improved liver inflammation associated sickness behaviors. Importantly, in recent work we have found that at an earlier time point, when cerebral monocyte infiltration is not evident in mice with liver inflammation, increased monocyte:cerebral endothelial cell adhesive interactions are observed using intravital microscopy of the brain. These monocyte:cerebral endothelial cell adhesive interactions are P-selectin mediated, and inhibition of these interactions attenuated microglial activation and sickness behavior development. Delineating the pathways that the periphery uses to communicate with the brain during inflammatory liver diseases, and the central neurotransmitter systems that are altered through these communication pathways (e.g., serotonin, corticotrophin releasing hormone) to give rise to liver inflammation-associated sickness behaviors, will allow for the identification of novel therapeutic targets to decrease the burden of debilitating symptoms in these patients.
Collapse
|
53
|
P-selectin-mediated monocyte-cerebral endothelium adhesive interactions link peripheral organ inflammation to sickness behaviors. J Neurosci 2013; 33:14878-88. [PMID: 24027287 DOI: 10.1523/jneurosci.1329-13.2013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sickness behaviors, such as fatigue, mood alterations, and cognitive dysfunction, which result from changes in central neurotransmission, are prevalent in systemic inflammatory diseases and greatly impact patient quality of life. Although, microglia (resident cerebral immune cells) and cytokines (e.g., TNFα) are associated with changes in central neurotransmission, the link between peripheral organ inflammation, circulating cytokine signaling, and microglial activation remains poorly understood. Here we demonstrate, using cerebral intravital microscopy, that in response to liver inflammation, there is increased monocyte specific rolling and adhesion along cerebral endothelial cells (CECs). Peripheral TNFα-TNFR1 signaling and the adhesion molecule P-selectin are central mediators of these monocyte-CEC adhesive interactions which were found to be closely associated with microglial activation, decreased central neural excitability and sickness behavior development. Similar monocyte-CEC adhesive interactions were also observed in another mouse model of peripheral organ inflammation (i.e., 2,4-dinitrobenzene sulfonic acid-induced colitis). Our observations provide a clear link between peripheral organ inflammation and cerebral changes that impact behavior, which can potentially allow for novel therapeutic interventions in patients with systemic inflammatory diseases.
Collapse
|
54
|
Hickman SE, El Khoury J. The neuroimmune system in Alzheimer's disease: the glass is half full. J Alzheimers Dis 2013; 33 Suppl 1:S295-302. [PMID: 22751176 DOI: 10.3233/jad-2012-129027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
It is well established that microglia, the neuroimmune cells of the brain, are associated with amyloid-β (Aβ) deposits in Alzheimer's disease (AD). However, the roles of these cells and other mononuclear phagocytes such as monocytes and macrophages in AD pathogenesis and progression have been elusive. Clues to mononuclear phagocyte involvement came with the demonstration that Aβ directly activates microglia and monocytes to produce neurotoxins, signifying that a receptor mediated interaction of Aβ with these cells may be critical for neurodegeneration seen in AD. Also, in AD brain, mononuclear phagocyte distribution changes from a uniform pattern that covers the brain parenchyma to distinct clusters intimately associated with areas of Aβ deposition, but the driving force behind this choreography was unclear. Here, we review our recent work identifying mononuclear phagocyte receptors for Aβ and unraveling mechanisms of recruitment of these cells to areas of Aβ deposition. While our findings and those of others have added significantly to our understanding of the role of the neuroimmune system in AD, the glass remains half full (or half empty) and a lot remains to be uncovered.
Collapse
Affiliation(s)
- Suzanne E Hickman
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | |
Collapse
|
55
|
Myelosuppressive conditioning using busulfan enables bone marrow cell accumulation in the spinal cord of a mouse model of amyotrophic lateral sclerosis. PLoS One 2013; 8:e60661. [PMID: 23593276 PMCID: PMC3620474 DOI: 10.1371/journal.pone.0060661] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 03/01/2013] [Indexed: 01/18/2023] Open
Abstract
Myeloablative preconditioning using irradiation is the most commonly used technique to generate rodents having chimeric bone marrow, employed for the study of bone marrow-derived cell accumulation in the healthy and diseased central nervous system. However, irradiation has been shown to alter the blood-brain barrier, potentially creating confounding artefacts. To better study the potential of bone marrow-derived cells to function as treatment vehicles for neurodegenerative diseases alternative preconditioning regimens must be developed. We treated transgenic mice that over-express human mutant superoxide dismutase 1, a model of amyotrophic lateral sclerosis, with busulfan to determine whether this commonly used chemotherapeutic leads to stable chimerism and promotes the entry of bone marrow-derived cells into spinal cord. Intraperitoneal treatment with busulfan at 60 mg/kg or 80 mg/kg followed by intravenous injection of green fluorescent protein-expressing bone marrow resulted in sustained levels of chimerism (∼80%). Bone marrow-derived cells accumulated in the lumbar spinal cord of diseased mice at advanced stages of pathology at both doses, with limited numbers of bone marrow derived cells observed in the spinal cords of similarly treated, age-matched controls; the majority of bone marrow-derived cells in spinal cord immunolabelled for macrophage antigens. Comparatively, significantly greater numbers of bone marrow-derived cells were observed in lumbar spinal cord following irradiative myeloablation. These results demonstrate bone marrow-derived cell accumulation in diseased spinal cord is possible without irradiative preconditioning.
Collapse
|
56
|
Zimmermann J, Krauthausen M, Hofer MJ, Heneka MT, Campbell IL, Müller M. CNS-targeted production of IL-17A induces glial activation, microvascular pathology and enhances the neuroinflammatory response to systemic endotoxemia. PLoS One 2013; 8:e57307. [PMID: 23468966 PMCID: PMC3584143 DOI: 10.1371/journal.pone.0057307] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/20/2013] [Indexed: 01/13/2023] Open
Abstract
Interleukin-17A (IL-17A) is a key cytokine modulating the course of inflammatory diseases. Whereas effector functions of IL-17A like induction of antimicrobial peptides and leukocyte infiltration could clearly be demonstrated for peripheral organs, CNS specific effects are not well defined and appear controversial. To further clarify the functional significance of IL-17A in the CNS, we generated a transgenic mouse line with astrocyte-restricted expression of the IL-17A gene. GFAP/IL-17A transgenic mice develop normally and do not show any signs of neurological dysfunction. However, histological characterization revealed astrocytosis and activation of microglia. Demyelination, neurodegeneration or prominent tissue damage was not observed but a vascular pathology mimicking microangiopathic features was evident. Histological and flow cytometric analysis demonstrated the absence of parenchymal infiltration of immune cells into the CNS of GFAP/IL-17A transgenic mice. In GFAP/IL-17A mice, LPS-induced endotoxemia led to a more pronounced microglial activation with expansion of a distinct CD45(high)/CD11b(+) population and increased induction of proinflammatory cytokines compared with controls. Our data argues against a direct role of IL-17A in mediating tissue damage during neuroinflammation. More likely IL-17A acts as a modulating factor in the network of induced cytokines. This novel mouse model will be a very useful tool to further characterize the role of IL-17A in neuroinflammatory disease models.
Collapse
Affiliation(s)
| | | | - Markus J. Hofer
- Department of Neuropathology, University Clinic of Marburg and Giessen, Marburg, Germany
| | - Michael T. Heneka
- Department of Neurology, Universitätsklinikum Bonn, Bonn, Germany
- Clinical Neuroscience Unit, University of Bonn, Bonn, Germany
| | - Iain L. Campbell
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Marcus Müller
- Department of Neurology, Universitätsklinikum Bonn, Bonn, Germany
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
- * E-mail:
| |
Collapse
|
57
|
Browne TC, McQuillan K, McManus RM, O’Reilly JA, Mills KHG, Lynch MA. IFN-γ Production by Amyloid β–Specific Th1 Cells Promotes Microglial Activation and Increases Plaque Burden in a Mouse Model of Alzheimer’s Disease. THE JOURNAL OF IMMUNOLOGY 2013; 190:2241-51. [DOI: 10.4049/jimmunol.1200947] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
58
|
Imaging inflammatory leukocyte recruitment in kidney, lung and liver—challenges to the multi‐step paradigm. Immunol Cell Biol 2013; 91:281-9. [DOI: 10.1038/icb.2012.83] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
59
|
Characterization of nestin expression and vessel association in the ischemic core following focal cerebral ischemia in rats. Cell Tissue Res 2012; 351:383-95. [DOI: 10.1007/s00441-012-1538-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/23/2012] [Indexed: 12/23/2022]
|
60
|
Multiphoton imaging reveals a new leukocyte recruitment paradigm in the glomerulus. Nat Med 2012; 19:107-12. [PMID: 23242472 DOI: 10.1038/nm.3024] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 06/13/2012] [Indexed: 12/12/2022]
Abstract
In contrast with many capillary beds, the glomerulus readily supports leukocyte recruitment. However, little is known regarding the actions of leukocytes following their recruitment to glomeruli. We used multiphoton confocal microscopy to examine leukocyte behavior in the glomerular microvasculature. In normal glomeruli, neutrophils and monocytes were retained in capillaries for several minutes, remaining static or migrating intravascularly. Induction of glomerular inflammation resulted in an increase in the duration of retention of static and migratory leukocytes. In response to immune complex deposition, both static and migratory neutrophils generated oxidants in inflamed glomeruli via a Mac-1-dependent mechanism. Our results describe a new paradigm for glomerular inflammation, suggesting that the major effect of acute inflammation is to increase the duration of leukocyte retention in the glomerulus. Moreover, these findings describe a previously unknown form of multicellular intravascular patrolling that involves both monocytes and neutrophils, which may underlie the susceptibility of the glomerulus to inflammation.
Collapse
|
61
|
Roy M, Richard JF, Dumas A, Vallières L. CXCL1 can be regulated by IL-6 and promotes granulocyte adhesion to brain capillaries during bacterial toxin exposure and encephalomyelitis. J Neuroinflammation 2012; 9:18. [PMID: 22269426 PMCID: PMC3283467 DOI: 10.1186/1742-2094-9-18] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 01/23/2012] [Indexed: 12/25/2022] Open
Abstract
Background Granulocytes generally exert protective roles in the central nervous system (CNS), but recent studies suggest that they can be detrimental in experimental autoimmune encephalomyelitis (EAE), the most common model of multiple sclerosis. While the cytokines and adhesion molecules involved in granulocyte adhesion to the brain vasculature have started to be elucidated, the required chemokines remain undetermined. Methods CXCR2 ligand expression was examined in the CNS of mice suffering from EAE or exposed to bacterial toxins by quantitative RT-PCR and in situ hybridization. CXCL1 expression was analyzed in IL-6-treated endothelial cell cultures by quantitative RT-PCR and ELISA. Granulocytes were counted in the brain vasculature after treatment with a neutralizing anti-CXCL1 antibody using stereological techniques. Results CXCL1 was the most highly expressed ligand of the granulocyte receptor CXCR2 in the CNS of mice subjected to EAE or infused with lipopolysaccharide (LPS) or pertussis toxin (PTX), the latter being commonly used to induce EAE. IL-6 upregulated CXCL1 expression in brain endothelial cells by acting transcriptionally and mediated the stimulatory effect of PTX on CXCL1 expression. The anti-CXCL1 antibody reduced granulocyte adhesion to brain capillaries in the three conditions under study. Importantly, it attenuated EAE severity when given daily for a week during the effector phase of the disease. Conclusions This study identifies CXCL1 not only as a key regulator of granulocyte recruitment into the CNS, but also as a new potential target for the treatment of neuroinflammatory diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Monica Roy
- Department of Endocrinology and Genomics, Laval University Hospital Research Center, 2705 Laurier Boulevard, Quebec G1V 4G2, QC, Canada
| | | | | | | |
Collapse
|
62
|
Nayak D, Zinselmeyer BH, Corps KN, McGavern DB. In vivo dynamics of innate immune sentinels in the CNS. INTRAVITAL 2012; 1:95-106. [PMID: 24078900 PMCID: PMC3784260 DOI: 10.4161/intv.22823] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The innate immune system is comprised of cellular sentinels that often serve as the first responders to injury and invading pathogens. Our basic understanding of innate immunity is derived from research conducted in peripheral lymphoid tissues. However, it is now recognized that most non-lymphoid tissues throughout the body are equipped with specialized innate immune cells that are uniquely adapted to the niches in which they reside. The central nervous system (CNS) is a particularly interesting compartment because it contains a population of post-mitotic cells (neurons) that are intolerant of robust, cytopathic inflammatory responses observed in many peripheral tissues. Thus, evolutionary adaptations have fitted the CNS with a unique array of innate immune sentinels that facilitate the development of local inflammatory responses but attempt to do so in a manner that preserves the integrity of its post-mitotic residents. Interestingly, studies have even suggested that CNS resident innate immune cells contribute to the homeostasis of this compartment and promote neural activity. In this review we discuss recent advances in our understanding of CNS innate immune sentinels and how novel imaging approaches such as intravital two-photon laser scanning microscopy (TPLSM) have shed light on these cells during states of health and disease.
Collapse
Affiliation(s)
- Debasis Nayak
- National Institute of Neurological Disorders and Stroke; National Institutes of Health; Bethesda, MD USA
| | - Bernd H. Zinselmeyer
- National Institute of Neurological Disorders and Stroke; National Institutes of Health; Bethesda, MD USA
| | - Kara N. Corps
- National Institute of Neurological Disorders and Stroke; National Institutes of Health; Bethesda, MD USA
| | - Dorian B. McGavern
- National Institute of Neurological Disorders and Stroke; National Institutes of Health; Bethesda, MD USA
| |
Collapse
|
63
|
Functional recovery after peripheral nerve injury is dependent on the pro-inflammatory cytokines IL-1β and TNF: implications for neuropathic pain. J Neurosci 2011; 31:12533-42. [PMID: 21880915 DOI: 10.1523/jneurosci.2840-11.2011] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
IL-1β and TNF are potential targets in the management of neuropathic pain after injury. However, the importance of the IL-1 and TNF systems for peripheral nerve regeneration and the mechanisms by which these cytokines mediate effects are to be fully elucidated. Here, we demonstrate that mRNA and protein levels of IL-1β and TNF are rapidly upregulated in the injured mouse sciatic nerve. Mice lacking both IL-1β and TNF, or both IL-1 type 1 receptor (IL-1R1) and TNF type 1 receptor (TNFR1), showed reduced nociceptive sensitivity (mechanical allodynia) compared with wild-type littermates after injury. Microinjecting recombinant IL-1β or TNF at the site of sciatic nerve injury in IL-1β- and TNF-knock-out mice restored mechanical pain thresholds back to levels observed in injured wild-type mice. Importantly, recovery of sciatic nerve function was impaired in IL-1β-, TNF-, and IL-1β/TNF-knock-out mice. Notably, the infiltration of neutrophils was almost completely prevented in the sciatic nerve distal stump of mice lacking both IL-1R1 and TNFR1. Systemic treatment of mice with an anti-Ly6G antibody to deplete neutrophils, cells that play an essential role in the genesis of neuropathic pain, did not affect recovery of neurological function and peripheral axon regeneration. Together, these results suggest that targeting specific IL-1β/TNF-dependent responses, such as neutrophil infiltration, is a better therapeutic strategy for treatment of neuropathic pain after peripheral nerve injury than complete blockage of cytokine production.
Collapse
|
64
|
Richard JF, Roy M, Audoy-Rémus J, Tremblay P, Vallières L. Crawling phagocytes recruited in the brain vasculature after pertussis toxin exposure through IL6, ICAM1 and ITGαM. Brain Pathol 2011; 21:661-71. [PMID: 21418369 DOI: 10.1111/j.1750-3639.2011.00490.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The cerebral vasculature is constantly patrolled by rod-shaped leukocytes crawling on the luminal endothelial surface. These cells are recruited in greater numbers after exposure to bacterial lipopolysaccharide (LPS) by a mechanism involving tumor necrosis factor (TNF), interleukin-1β (IL1β) and angiopoietin-2 (Angpt2). Here, we report that the population of crawling leukocytes, consisting mainly of granulocytes, is also increased in the brains of mice suffering from experimental autoimmune encephalomyelitis (EAE) or injected with pertussis toxin (PTX), which is commonly used to induce EAE. However, this recruitment occurs through an alternative mechanism, independent of Angpt2. In a series of experiments using DNA microarrays, knockout mice and neutralizing antibodies, we found that PTX acts indirectly on the endothelium in part through IL6, which is essential for the post-transcriptional upregulation of intercellular adhesion molecule 1 (ICAM1) in response to PTX but not to LPS. We also found that phagocytes adhere to brain capillaries through the interaction of integrin αM (ITGαM) with ICAM1 and an unidentified ligand. In conclusion, this study supports the concept that PTX promotes EAE, at least in part, by inducing vascular changes necessary for the recruitment of patrolling leukocytes.
Collapse
Affiliation(s)
- Jean-François Richard
- Department of Endocrinology and Genomics, Laval University Hospital Research Center, Quebec City, Quebec, Canada
| | | | | | | | | |
Collapse
|
65
|
Grisanti LA, Woster AP, Dahlman J, Sauter ER, Combs CK, Porter JE. α1-adrenergic receptors positively regulate Toll-like receptor cytokine production from human monocytes and macrophages. J Pharmacol Exp Ther 2011; 338:648-57. [PMID: 21571945 DOI: 10.1124/jpet.110.178012] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Catecholamines released from the sympathetic nervous system in response to stress or injury affect expression of inflammatory cytokines generated by immune cells. α(1)-Adrenergic receptors (ARs) are expressed on innate immune cell populations, but their subtype expression patterns and signaling characteristics are not well characterized. Primary human monocytes, a human monocytic cell line, and monocyte-derived macrophage cells were used to measure expression of the proinflammatory mediator interleukin (IL)-1β responding to lipopolysaccharide (LPS) in the presence or absence of α(1)-AR activation. Based on our previous findings, we hypothesized that α(1)-AR stimulation on innate immune cells positively regulates LPS-initiated IL-1β production. IL-1β production in response to LPS was synergistically higher for both monocytes and macrophages in the presence of the selective α(1)-AR agonist (R)-(-)-phenylephrine hydrochloride (PE). This synergistic IL-1β response could be blocked with a selective α(1)-AR antagonist as well as inhibitors of protein kinase C (PKC). Radioligand binding studies characterized a homogenous α(1B)-AR subtype population on monocytes, which changed to a heterogeneous receptor subtype expression pattern when differentiated to macrophages. Furthermore, increased p38 mitogen-activated protein kinase (MAPK) activation was observed only with concurrent PE and LPS stimulation, peaking after 120 and 30 min in monocytes and macrophages, respectively. Blocking the PKC/p38 MAPK signaling pathway in both innate immune cell types inhibited the synergistic IL-1β increase observed with concurrent PE and LPS treatments. This study characterizes α(1)-AR subtype expression on both human monocyte and macrophage cells and illustrates a mechanism by which increased IL-1β production can be modulated by α(1)-AR input.
Collapse
Affiliation(s)
- Laurel A Grisanti
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota School of Medicine and Health Sciences, 501 North Columbia Road, Grand Forks, ND 58202-9037, USA
| | | | | | | | | | | |
Collapse
|
66
|
Loppnow H, Buerke M, Werdan K, Rose-John S. Contribution of vascular cell-derived cytokines to innate and inflammatory pathways in atherogenesis. J Cell Mol Med 2011; 15:484-500. [PMID: 21199323 PMCID: PMC3922371 DOI: 10.1111/j.1582-4934.2010.01245.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 12/21/2010] [Indexed: 01/22/2023] Open
Abstract
Inflammation is a central element of atherogenesis. Innate pathways contribute to vascular inflammation. However, the initial molecular process(es) starting atherogenesis remain elusive. The various risk factors, represented by particular compounds (activators), may cause altered cellular functions in the endothelium (e.g. vascular endothelial cell activation or -dysfunction), in invading cells (e.g. inflammatory mediator production) or in local vessel wall cells (e.g. inflammatory mediators, migration), thereby triggering the innate inflammatory process. The cellular components of innate immunology include granulocytes, natural killer cells and monocytes. Among the molecular innate constituents are innate molecules, such as the toll-like receptors or innate cytokines. Interleukin-1 (IL-1) and IL-6 are among the innate cytokines. Cytokines are potent activators of a great number of cellular functions relevant to maintain or commove homeostasis of the vessel wall. Within the vessel wall, vascular smooth muscle cells (SMCs) can significantly contribute to the cytokine-dependent inflammatory network by: (i) production of cytokines, (ii) response to cytokines and (iii) cytokine-mediated interaction with invading leucocytes. The cytokines IL-1 and IL-6 are involved in SMC-leucocyte interaction. The IL-6 effects are proposed to be mediated by trans-signalling. Dysregulated cellular functions resulting from dysregulated cytokine production may be the cause of cell accumulation, subsequent low-density lipoprotein accumulation and deposition of extracellular matrix (ECM). The deposition of ECM, increased accumulation of leucocytes and altered levels of inflammatory mediators may constitute an 'innate-immunovascular-memory' resulting in an ever-growing response to anew invasion. Thus, SMC-fostered inflammation, promoted by invading innate cells, may be a potent component for development and acceleration of atherosclerosis.
Collapse
Affiliation(s)
- Harald Loppnow
- Department of Internal Medicine III, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.
| | | | | | | |
Collapse
|
67
|
Bhat NR. Linking cardiometabolic disorders to sporadic Alzheimer's disease: a perspective on potential mechanisms and mediators. J Neurochem 2010; 115:551-62. [PMID: 20807313 DOI: 10.1111/j.1471-4159.2010.06978.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
There is increasing evidence that the incidence of Alzheimer's disease (AD) is significantly influenced by cardiovascular risk factors in association with a cluster of metabolic diseases including diabetes and atherosclerosis. The shared risk is also reflected in the dietary and lifestyle links to both metabolic disorders and AD-type cognitive dysfunction. Recent studies with genetic and diet-induced animal models have begun to illuminate convergent mechanisms and mediators between these two categories of disease conditions with distinct tissue-specific pathologies. Although it is clear that peripheral inflammation and insulin resistance are central to the pathogenesis of the disorders of metabolic syndrome, it seems that the same mechanisms are also in play across the blood-brain barrier that lead to AD-like molecular and cognitive changes. This review highlights these convergent mechanisms and discusses the role of cerebrovascular dysfunction as a conduit to brain emergence of these pathogenic processes that might also represent future therapeutic targets in AD in common with metabolic disorders.
Collapse
Affiliation(s)
- Narayan R Bhat
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| |
Collapse
|
68
|
Brynskikh AM, Zhao Y, Mosley RL, Li S, Boska MD, Klyachko NL, Kabanov AV, Gendelman HE, Batrakova EV. Macrophage delivery of therapeutic nanozymes in a murine model of Parkinson's disease. Nanomedicine (Lond) 2010; 5:379-96. [PMID: 20394532 DOI: 10.2217/nnm.10.7] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Parkinson's disease is a common progressive neurodegenerative disorder associated with profound nigrostriatal degeneration. Regrettably, no therapies are currently available that can attenuate disease progression. To this end, we developed a cell-based nanoformulation delivery system using the antioxidant enzyme catalase to attenuate neuroinflammatory processes linked to neuronal death. METHODS Nanoformulated catalase was obtained by coupling catalase to a synthetic polyelectrolyte of opposite charge, leading to the formation of a polyion complex micelle. The nanozyme was loaded into bone marrow macrophages and its transport to the substantia nigra pars compacta was evaluated in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated mice. RESULTS Therapeutic efficacy of bone marrow macrophages loaded with nanozyme was confirmed by twofold reductions in microgliosis as measured by CD11b expression. A twofold increase in tyrosine hydroxylase-expressing dopaminergic neurons was detected in nanozyme-treated compared with untreated MPTP-intoxicated mice. Neuronal survival was confirmed by magnetic resonance spectroscopic imaging. Bone marrow macrophage-loaded catalase showed sustained release of the enzyme in plasma. CONCLUSION These data support the importance of macrophage-based nanozyme carriage for Parkinson's disease therapies.
Collapse
Affiliation(s)
- Anna M Brynskikh
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Lee WY, Moriarty TJ, Wong CHY, Zhou H, Strieter RM, van Rooijen N, Chaconas G, Kubes P. An intravascular immune response to Borrelia burgdorferi involves Kupffer cells and iNKT cells. Nat Immunol 2010; 11:295-302. [PMID: 20228796 DOI: 10.1038/ni.1855] [Citation(s) in RCA: 255] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 02/12/2010] [Indexed: 12/11/2022]
Abstract
Here we investigate the dynamics of the hepatic intravascular immune response to a pathogen relevant to invariant natural killer T cells (iNKT cells). Immobilized Kupffer cells with highly ramified extended processes into multiple sinusoids could effectively capture blood-borne, disseminating Borrelia burgdorferi, creating a highly efficient surveillance and filtering system. After ingesting B. burgdorferi, Kupffer cells induced chemokine receptor CXCR3-dependent clustering of iNKT cells. Kupffer cells and iNKT cells formed stable contacts via the antigen-presenting molecule CD1d, which led to iNKT cell activation. An absence of iNKT cells caused B. burgdorferi to leave the blood and enter the joints more effectively. B. burgdorferi that escaped Kupffer cells entered the liver parenchyma and survived despite Ito cell responses. Kupffer cell-iNKT cell interactions induced a key intravascular immune response that diminished the dissemination of B. burgdorferi.
Collapse
Affiliation(s)
- Woo-Yong Lee
- Department of Physiology & Pharmacology, University of Calgary, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
PURPOSE OF REVIEW Monocytes play multiple roles in immune system functions and inflammatory diseases such as atherosclerosis. These roles are coupled to diverse trafficking and cellular migration behaviors. Here, we review recent advances in our understanding of such behaviors with emphasis on broad scale trafficking patterns and the cellular and molecular mechanisms regulating diapedesis, a central aspect of trafficking. RECENT FINDINGS Monocytes consist of 'inflammatory' and 'resident' subsets, which exhibit differential functions and trafficking properties. Notably, the spleen has recently been identified as a reservoir of inflammatory monocytes, which are readily recruited to injured myocardium and possibly other tissues. Resident monocytes have been shown to undergo long-range crawling within the lumen of the microvasculature, which facilitates immune surveillance and rapid response to infection. Monocyte diapedesis has been demonstrated to utilize both para and transcellular migration routes facilitated by endothelial 'transmigratory cups'. A significant number of new adhesion molecules and signaling pathways have recently been uncovered as functional mediators and modulators of these processes. SUMMARY Our improving understanding of monocyte trafficking and migration mechanisms has begun to shed light on the functions of these often enigmatic cells. Continued progress in this area will be critical for elucidating roles of monocytes in disease and for developing therapeutics that target monocytes.
Collapse
|
71
|
Abstract
Chronic inflammation drives atherosclerosis, the leading cause of cardiovascular disease. Over the past two decades, data have emerged showing that immune cells are involved in the pathogenesis of atherosclerotic plaques. The accumulation and continued recruitment of leukocytes are associated with the development of 'vulnerable' plaques. These plaques are prone to rupture, leading to thrombosis, myocardial infarction or stroke, all of which are frequent causes of death. Plaque macrophages account for the majority of leukocytes in plaques, and are believed to differentiate from monocytes recruited from circulating blood. However, monocytes represent a heterogenous circulating population of cells. Experiments are needed to address whether monocyte recruitment to plaques and effector functions, such as the formation of foam cells, the production of nitric oxide and reactive oxygen species, and proteolysis are critical for the development and rupture of plaques, and thus for the pathophysiology of atherosclerosis, as well as elucidate the precise mechanisms involved.
Collapse
|
72
|
Fukuhara S, Sako K, Noda K, Nagao K, Miura K, Mochizuki N. Tie2 is tied at the cell-cell contacts and to extracellular matrix by angiopoietin-1. Exp Mol Med 2009; 41:133-9. [PMID: 19293632 DOI: 10.3858/emm.2009.41.3.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Angiopoietin-1 (Ang1) binds to and activates Tie2 receptor tyrosine kinase. Ang1-Tie2 signal has been proposed to exhibit two opposite roles in the controlling blood vessels. One is vascular stabilization and the other is vascular angiogenesis. There has been no answer to the question as to how Tie2 induces two opposite responses to the same ligand. Our group and Dr. Alitalos group have demonstrated that trans-associated Tie2 at cell-cell contacts and extracellular matrix (ECM)-anchored Tie2 play distinct roles in the endothelial cells. The complex formation depends on the presence or absence of cell-cell adhesion. Here, we review how Ang1-Tie2 signal regulates vascular maintenance and angiogenesis. We further point to the unanswered questions that must be clarified to extend our knowledge of vascular biology and to progress basic knowledge to the treatment of the diseases in which Ang1-Tie2-mediated signal is central.
Collapse
|
73
|
Molecular mechanisms of leukocyte trafficking in T-cell-mediated skin inflammation: insights from intravital imaging. Expert Rev Mol Med 2009; 11:e25. [DOI: 10.1017/s146239940900115x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Infiltration of T cells is a key step in the pathogenesis of the inflammatory skin diseases atopic dermatitis, allergic contact dermatitis and psoriasis. Understanding the mechanisms of T cell recruitment to the skin is therefore of fundamental importance for the discovery and application of novel therapies for these conditions. Studies of both clinical samples and experimental models of skin inflammation have implicated specific adhesion molecules and chemokines in lymphocyte recruitment. In particular, recent studies using advanced in vivo imaging techniques have greatly increased our understanding of the kinetics and molecular basis of this process. In this review, we summarise the current understanding of the cellular immunology of antigen-driven dermal inflammation and the roles of adhesion molecules and chemokines. We focus on results obtained using intravital microscopy to examine the dermal microvasculature and interstitium to determine the mechanisms of T cell recruitment and migration in experimental models of T-cell-mediated skin inflammation.
Collapse
|
74
|
Jung H, Bhangoo S, Banisadr G, Freitag C, Ren D, White FA, Miller RJ. Visualization of chemokine receptor activation in transgenic mice reveals peripheral activation of CCR2 receptors in states of neuropathic pain. J Neurosci 2009; 29:8051-62. [PMID: 19553445 PMCID: PMC3097108 DOI: 10.1523/jneurosci.0485-09.2009] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 05/07/2009] [Accepted: 05/15/2009] [Indexed: 12/24/2022] Open
Abstract
CCR2 chemokine receptor signaling has been implicated in the generation of diverse types of neuropathology, including neuropathic pain. For example, ccr2 knock-out mice are resistant to the establishment of neuropathic pain, and mice overexpressing its ligand, monocyte chemoattractant protein-1 (MCP1; also known as CCL2), show enhanced pain sensitivity. However, whether CCR2 receptor activation occurs in the central or peripheral nervous system in states of neuropathic pain has not been clear. We developed a novel method for visualizing CCR2 receptor activation in vivo by generating bitransgenic reporter mice in which the chemokine receptor CCR2 and its ligand MCP1 were labeled by the fluorescent proteins enhanced green fluorescent protein and monomeric red fluorescent protein-1, respectively. CCR2 receptor activation under conditions such as acute inflammation and experimental autoimmune encephalomyelitis could be faithfully visualized by using these mice. We examined the status of CCR2 receptor activation in a demyelination injury model of neuropathic pain and found that MCP1-induced CCR2 receptor activation mainly occurred in the peripheral nervous system, including the injured peripheral nerve and dorsal root ganglia. These data explain the rapid antinociceptive effects of peripherally administered CCR2 antagonists under these circumstances, suggesting that CCR2 antagonists may ameliorate pain by inhibiting CCR2 receptor activation in the periphery. The method developed here for visualizing CCR2 receptor activation in vivo may be extended to G-protein-coupled receptors (GPCRs) in general and will be valuable for studying intercellular GPCR-mediated communication in vivo.
Collapse
Affiliation(s)
- Hosung Jung
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, Illinois 60611, and
| | - Sonia Bhangoo
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, Illinois 60611, and
| | - Ghazal Banisadr
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, Illinois 60611, and
| | - Caroline Freitag
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, Illinois 60611, and
| | - Dongjun Ren
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, Illinois 60611, and
| | - Fletcher A. White
- Departments of Cell Biology, Neurobiology, and Anatomy, and
- Anesthesiology, Loyola University Chicago, Maywood, Illinois 60153
| | - Richard J. Miller
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, Illinois 60611, and
| |
Collapse
|
75
|
|
76
|
|
77
|
Abstract
OBJECTIVE To determine the relative importance of clinical presentation, laboratory studies, and ultrasonography in the diagnosis of acute scrotum, and to suggest an effective method of management. SUBJECTS AND METHODS Forty patients who were hospitalized between January 2002 and December 2002 for acute scrotum were studied with respect to history, physical examination, blood tests, urine analysis including culture, and scrotal ultrasonography with color Doppler study. RESULTS Epididymitis (n = 24) was the commonest cause of acute scrotum followed by testicular torsion (n = 11), torsion of testicular appendages (n = 4), and idiopathic scrotal edema (n = 1). Both mean age (40.7 vs. 13.8 years), and average duration of pain at presentation (4.5 days vs. 19.1 h) were higher in patients with epididymitis than in torsion. Onset was usually insidious in epididymitis, sudden in testicular torsion, and variable in torsion of testicular appendages. The majority (87.5%) of patients with epididymitis were managed conservatively. The testis was salvaged in 81.8% of patients with testicular torsion. The accuracy of ultrasonography was only 72.7% in testicular torsion, but was good in epididymitis. CONCLUSION Our results show that a careful clinical evaluation, by an experienced examiner, provides the correct diagnosis in acute scrotum rather than ultrasonography. It is of utmost importance to exclude testicular torsion in those who are younger than 16 years and whose pain duration is less than 24 h.
Collapse
Affiliation(s)
- Fawzi Abul
- Department of Surgery, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | | | | |
Collapse
|