51
|
Petrova V, Eva R. The Virtuous Cycle of Axon Growth: Axonal Transport of Growth-Promoting Machinery as an Intrinsic Determinant of Axon Regeneration. Dev Neurobiol 2018; 78:898-925. [PMID: 29989351 DOI: 10.1002/dneu.22608] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 02/02/2023]
Abstract
Injury to the brain and spinal cord has devastating consequences because adult central nervous system (CNS) axons fail to regenerate. Injury to the peripheral nervous system (PNS) has a better prognosis, because adult PNS neurons support robust axon regeneration over long distances. CNS axons have some regenerative capacity during development, but this is lost with maturity. Two reasons for the failure of CNS regeneration are extrinsic inhibitory molecules, and a weak intrinsic capacity for growth. Extrinsic inhibitory molecules have been well characterized, but less is known about the neuron-intrinsic mechanisms which prevent axon re-growth. Key signaling pathways and genetic/epigenetic factors have been identified which can enhance regenerative capacity, but the precise cellular mechanisms mediating their actions have not been characterized. Recent studies suggest that an important prerequisite for regeneration is an efficient supply of growth-promoting machinery to the axon; however, this appears to be lacking from non-regenerative axons in the adult CNS. In the first part of this review, we summarize the evidence linking axon transport to axon regeneration. We discuss the developmental decline in axon regeneration capacity in the CNS, and comment on how this is paralleled by a similar decline in the selective axonal transport of regeneration-associated receptors such as integrins and growth factor receptors. In the second part, we discuss the mechanisms regulating selective polarized transport within neurons, how these relate to the intrinsic control of axon regeneration, and whether they can be targeted to enhance regenerative capacity. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 00: 000-000, 2018.
Collapse
Affiliation(s)
- Veselina Petrova
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 OPY, United Kingdom
| | - Richard Eva
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 OPY, United Kingdom
| |
Collapse
|
52
|
Villarroel-Campos D, Schiavo G, Lazo OM. The many disguises of the signalling endosome. FEBS Lett 2018; 592:3615-3632. [PMID: 30176054 PMCID: PMC6282995 DOI: 10.1002/1873-3468.13235] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/29/2018] [Indexed: 01/09/2023]
Abstract
Neurons are highly complex and polarised cells that must overcome a series of logistic challenges to maintain homeostasis across their morphological domains. A very clear example is the propagation of neurotrophic signalling from distal axons, where target-released neurotrophins bind to their receptors and initiate signalling, towards the cell body, where nuclear and cytosolic responses are integrated. The mechanisms of propagation of neurotrophic signalling have been extensively studied and, eventually, the model of a 'signalling endosome', transporting activated receptors and associated complexes, has emerged. Nevertheless, the exact nature of this organelle remains elusive. In this Review, we examine the evidence for the retrograde transport of neurotrophins and their receptors in endosomes, outline some of their diverse physiological and pathological roles, and discuss the main interactors, morphological features and trafficking destinations of a highly flexible endosomal signalling organelle with multiple molecular signatures.
Collapse
Affiliation(s)
- David Villarroel-Campos
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, UK
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, UK.,UK Dementia Research Institute at UCL, London, UK.,Discoveries Centre for Regenerative and Precision Medicine, University College London Campus, UK
| | - Oscar Marcelo Lazo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, UK
| |
Collapse
|
53
|
Zygmunt M, Hoinkis D, Hajto J, Piechota M, Skupień-Rabian B, Jankowska U, Kędracka-Krok S, Rodriguez Parkitna J, Korostyński M. Expression of alternatively spliced variants of the Dclk1 gene is regulated by psychotropic drugs. BMC Neurosci 2018; 19:55. [PMID: 30208879 PMCID: PMC6134793 DOI: 10.1186/s12868-018-0458-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/06/2018] [Indexed: 01/05/2023] Open
Abstract
Background The long-term effects of psychotropic drugs are associated with the reversal of disease-related alterations through the reorganization and normalization of neuronal connections. Molecular factors that trigger drug-induced brain plasticity remain only partly understood. Doublecortin-like kinase 1 (Dclk1) possesses microtubule-polymerizing activity during synaptic plasticity and neurogenesis. However, the Dclk1 gene shows a complex profile of transcriptional regulation, with two alternative promoters and exon splicing patterns that suggest the expression of multiple isoforms with different kinase activities. Results Here, we applied next-generation sequencing to analyze changes in the expression of Dclk1 gene isoforms in the brain in response to several psychoactive drugs with diverse pharmacological mechanisms of action. We used bioinformatics tools to define the range and levels of Dclk1 transcriptional regulation in the mouse nucleus accumbens and prefrontal cortex. We also sought to investigate the presence of DCLK1-derived peptides using mass spectrometry. We detected 15 transcripts expressed from the Dclk1 locus (FPKM > 1), including 2 drug-regulated variants (fold change > 2). Drugs that act on serotonin receptors (5-HT2A/C) regulate a subset of Dclk1 isoforms in a brain-region-specific manner. The strongest influence was observed for the mianserin-induced expression of an isoform with intron retention. The drug-activated expression of novel alternative Dclk1 isoforms was validated using qPCR. The drug-regulated isoform contains genetic variants of DCLK1 that have been previously associated with schizophrenia and hyperactivity disorder in humans. We identified a short peptide that might originate from the novel DCLK1 protein product. Moreover, protein domains encoded by the regulated variant indicate their potential involvement in the negative regulation of the canonical DCLK1 protein. Conclusions In summary, we identified novel isoforms of the neuroplasticity-related gene Dclk1 that are expressed in the brain in response to psychotropic drug treatments. Electronic supplementary material The online version of this article (10.1186/s12868-018-0458-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Magdalena Zygmunt
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences, Smetna 12, 31-343, Krakow, Poland
| | - Dżesika Hoinkis
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences, Smetna 12, 31-343, Krakow, Poland
| | - Jacek Hajto
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences, Smetna 12, 31-343, Krakow, Poland
| | - Marcin Piechota
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences, Smetna 12, 31-343, Krakow, Poland
| | - Bożena Skupień-Rabian
- Laboratory of Proteomics and Mass Spectrometry, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Urszula Jankowska
- Laboratory of Proteomics and Mass Spectrometry, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sylwia Kędracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Rodriguez Parkitna
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences, Smetna 12, 31-343, Krakow, Poland
| | - Michał Korostyński
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences, Smetna 12, 31-343, Krakow, Poland.
| |
Collapse
|
54
|
Fontanet PA, Ríos AS, Alsina FC, Paratcha G, Ledda F. Pea3 Transcription Factors, Etv4 and Etv5, Are Required for Proper Hippocampal Dendrite Development and Plasticity. Cereb Cortex 2018; 28:236-249. [PMID: 27909004 DOI: 10.1093/cercor/bhw372] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 12/19/2022] Open
Abstract
The proper formation and morphogenesis of dendrites is essential to the establishment of neuronal connectivity. We report that 2 members of the Pea3 family of transcription factors, Etv4 and Etv5, are expressed in hippocampal neurons during the main period of dendritogenesis, suggesting that they have a function in dendrite development. Here, we show that these transcription factors are physiological regulators of growth and arborization of pyramidal cell dendrites in the developing hippocampus. Gain and loss of function assays indicate that Etv4 and Etv5 are required for proper development of hippocampal dendritic arbors and spines. We have found that in vivo deletion of either Etv4 or Etv5 in hippocampal neurons causes deficits in dendrite size and complexity, which are associated with impaired cognitive function. Additionally, our data support the idea that Etv4 and Etv5 are part of a brain-derived neurotrophic factor-mediated transcriptional program required for proper hippocampal dendrite connectivity and plasticity.
Collapse
Affiliation(s)
- Paula Aldana Fontanet
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine. University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Antonella Soledad Ríos
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine. University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Fernando Cruz Alsina
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine. University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Gustavo Paratcha
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine. University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Fernanda Ledda
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine. University of Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
55
|
Nieuwenhuis B, Haenzi B, Andrews MR, Verhaagen J, Fawcett JW. Integrins promote axonal regeneration after injury of the nervous system. Biol Rev Camb Philos Soc 2018; 93:1339-1362. [PMID: 29446228 PMCID: PMC6055631 DOI: 10.1111/brv.12398] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/23/2017] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
Integrins are cell surface receptors that form the link between extracellular matrix molecules of the cell environment and internal cell signalling and the cytoskeleton. They are involved in several processes, e.g. adhesion and migration during development and repair. This review focuses on the role of integrins in axonal regeneration. Integrins participate in spontaneous axonal regeneration in the peripheral nervous system through binding to various ligands that either inhibit or enhance their activation and signalling. Integrin biology is more complex in the central nervous system. Integrins receptors are transported into growing axons during development, but selective polarised transport of integrins limits the regenerative response in adult neurons. Manipulation of integrins and related molecules to control their activation state and localisation within axons is a promising route towards stimulating effective regeneration in the central nervous system.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
- Laboratory for Regeneration of Sensorimotor SystemsNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)1105 BAAmsterdamThe Netherlands
| | - Barbara Haenzi
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
| | | | - Joost Verhaagen
- Laboratory for Regeneration of Sensorimotor SystemsNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)1105 BAAmsterdamThe Netherlands
- Centre for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVrije Universiteit Amsterdam1081 HVAmsterdamThe Netherlands
| | - James W. Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
- Centre of Reconstructive NeuroscienceInstitute of Experimental Medicine142 20Prague 4Czech Republic
| |
Collapse
|
56
|
Zamani A, Xiao J, Turnley AM, Murray SS. Tropomyosin-Related Kinase B (TrkB) Regulates Neurite Outgrowth via a Novel Interaction with Suppressor of Cytokine Signalling 2 (SOCS2). Mol Neurobiol 2018; 56:1262-1275. [PMID: 29881947 DOI: 10.1007/s12035-018-1168-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 05/31/2018] [Indexed: 12/11/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is highly expressed in the hippocampus, where it can initiate signalling pathways leading to neurite outgrowth, neuron survival, spine maturation and increased synapse strength. Although suppressor of cytokine signalling 2 (SOCS2) is primarily known to negatively regulate cytokine signalling, it is also highly expressed in the hippocampus and exerts neuron-specific functions in the brain, effecting the length and architecture of neurons. However, little is known about the role of SOCS2 in the hippocampus. In this study, we hypothesised that SOCS2 may have a regulatory role in BDNF-dependent neurite growth and hippocampal neuronal function. Here our data demonstrate that SOCS2 interacts with the kinase domain of the BDNF receptor TrkB. Germline overexpression of SOCS2 results in a BDNF-dependent increase in hippocampal neurite outgrowth, whereas deletion of SOCS2 results in shorter neurite outgrowth. Expression of SOCS2 also results in increased ubiquitination of the juxtamembrane region of TrkB, and alters the trafficking of TrkB into recycling endosomes. Collectively, our data suggest a novel role for SOCS2 in interacting with and regulating the trafficking of TrkB, leading to increased neurite outgrowth in hippocampus neurons.
Collapse
Affiliation(s)
- Akram Zamani
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, 3010, Australia.
| | - Junhua Xiao
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Ann M Turnley
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Simon S Murray
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
57
|
Covarrubias-Pinto A, Acuña AI, Boncompain G, Papic E, Burgos PV, Perez F, Castro MA. Ascorbic acid increases SVCT2 localization at the plasma membrane by accelerating its trafficking from early secretory compartments and through the endocytic-recycling pathway. Free Radic Biol Med 2018; 120:181-191. [PMID: 29545069 DOI: 10.1016/j.freeradbiomed.2018.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/06/2018] [Accepted: 03/08/2018] [Indexed: 11/30/2022]
Abstract
Ascorbic acid (Asc) is an antioxidant molecule essential for physiological functions. The concentration of extracellular Asc increases during synaptic transmission and renal reabsorption. These phenomena induce an increase of the Sodium-dependent-Vitamin-C-transporter 2 (SVCT2) at plasma membrane (PM) localization, as we previously demonstrated in neuronal and non-neuronal cells. Hence, the aim of this study was to evaluate intracellular SVCT2 trafficking kinetics in response to Asc. We observed two peaks of SVCT2 localization and function at the PM (at 5-10 min, "acute response", and 30-60 min, "post-acute response") when cells were incubated with Asc. We defined that the post-acute response was dependent on SVCT2 located in early secretory compartments, and its trafficking was abolished with Tunicamycin and Brefeldin A treatment. Moreover, using the RUSH system to retain and synchronize cargo secretion through the secretory pathway we demonstrated that the post-acute response increases SVCT2 trafficking kinetics from the ER to the PM suggesting the retention of SVCT2 at the early secretory pathway when Asc is absent. However, these observations do not explain the increased SVCT2 levels at the PM during the "acute" response, suggesting the involvement of a faster mechanism in close proximity with the PM. To investigate the possible role of endosomal compartments, we tested the effect of endocytosis inhibition. Expression of dominant-negative (DN) versions of the GTPase-dynamin II and clathrin-accessory protein AP180 showed a significant increase in SVCT2 levels at the PM. Moreover, expression of Rab11-DN, a GTPase implicated in cargo protein recycling from endosomes to the PM showed a similar outcome, strongly indicating that Asc impacts SVCT2 trafficking during the acute response. Therefore, our results revealed two mechanisms by which Asc modulates SVCT2 levels at the PM, one at the early secretory pathway and another at the endocytic compartments. We propose that these two mechanisms have key protective implications in the homeostasis of metabolically active and specialized tissues.
Collapse
Affiliation(s)
- A Covarrubias-Pinto
- Biochemistry and Microbiology Institute, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - A I Acuña
- Biochemistry and Microbiology Institute, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - G Boncompain
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France
| | - E Papic
- Biochemistry and Microbiology Institute, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - P V Burgos
- Department of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile; Center for Cell Biology and Biomedicine, School of Sciences and School of Medicine, Universidad San Sebastián, Santiago, Chile
| | - F Perez
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France
| | - M A Castro
- Biochemistry and Microbiology Institute, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile; Research Initiative for Brain Rejuvenation (ReBrain), Chile.
| |
Collapse
|
58
|
O'Neill KM, Donohue KE, Omelchenko A, Firestein BL. The 3' UTRs of Brain-Derived Neurotrophic Factor Transcripts Differentially Regulate the Dendritic Arbor. Front Cell Neurosci 2018; 12:60. [PMID: 29563866 PMCID: PMC5845904 DOI: 10.3389/fncel.2018.00060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/19/2018] [Indexed: 12/13/2022] Open
Abstract
The patterning of dendrites is regulated by many factors, such as brain-derived neurotrophic factor (BDNF), which our laboratory has previously shown alters the dendritic arbor uniquely depending on the mode of extracellular application. In the current work, we examine how BDNF affects dendritogenesis in hippocampal neurons when it is overexpressed intracellularly by transcripts previously reported to be transported to distinct cellular compartments. The BDNF gene is processed at two different polyadenylation sites, leading to mRNA transcription with two different length 3′ untranslated regions (UTRs), and therefore, different mRNA localization preferences. We found that overexpression of BDNF mRNA with or without 3′ UTRs significantly alters dendritic branching compared to branching in control neurons as analyzed by Sholl distribution curves. Unexpectedly, we found that the overexpression of the shorter BDNF mRNA (reported to be preferentially targeted to the cell body) results in similar changes to Sholl curves compared to overexpression of the longer BDNF mRNA (reported to be preferentially targeted to both the cell body and dendrites). We also investigated whether the BDNF receptor TrkB mediates these changes and found that inhibiting TrkB blocks increases in Sholl curves, although at different distances depending on the transcript’s UTR. Finally, although it is not found in nature, we also examined the effects of overexpressing BDNF mRNA with the unique portion of the longer 3′ UTR since it was previously shown to be necessary for dendritic targeting of mRNA. We found that its overexpression increases Sholl curves at distances close to the cell body and that these changes also depend on TrkB activity. This work illustrates how the mRNA spatial code affects how BDNF alters local dendritogenesis and how TrkB may mediate these effects. Finally, our findings emphasize the importance of intracellular transport of BDNF mRNAs in the regulation of dendrite morphology.
Collapse
Affiliation(s)
- Kate M O'Neill
- Department of Cell Biology and Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States.,Graduate Program in Biomedical Engineering, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| | - Katherine E Donohue
- Department of Cell Biology and Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| | - Anton Omelchenko
- Department of Cell Biology and Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States.,Graduate Program in Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States.,Biomedical Engineering Graduate Faculty, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States.,Neuroscience Graduate Faculty, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| |
Collapse
|
59
|
Wnt/β-catenin signaling stimulates the expression and synaptic clustering of the autism-associated Neuroligin 3 gene. Transl Psychiatry 2018; 8:45. [PMID: 29503438 PMCID: PMC5835496 DOI: 10.1038/s41398-018-0093-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/30/2017] [Accepted: 11/21/2017] [Indexed: 02/07/2023] Open
Abstract
Synaptic abnormalities have been described in individuals with autism spectrum disorders (ASD). The cell-adhesion molecule Neuroligin-3 (Nlgn3) has an essential role in the function and maturation of synapses and NLGN3 ASD-associated mutations disrupt hippocampal and cortical function. Here we show that Wnt/β-catenin signaling increases Nlgn3 mRNA and protein levels in HT22 mouse hippocampal cells and primary cultures of rat hippocampal neurons. We characterized the activity of mouse and rat Nlgn3 promoter constructs containing conserved putative T-cell factor/lymphoid enhancing factor (TCF/LEF)-binding elements (TBE) and found that their activity is significantly augmented in Wnt/β-catenin cell reporter assays. Chromatin immunoprecipitation (ChIP) assays and site-directed mutagenesis experiments revealed that endogenous β-catenin binds to novel TBE consensus sequences in the Nlgn3 promoter. Moreover, activation of the signaling cascade increased Nlgn3 clustering and co- localization with the scaffold PSD-95 protein in dendritic processes of primary neurons. Our results directly link Wnt/β-catenin signaling to the transcription of the Nlgn3 gene and support a functional role for the signaling pathway in the dysregulation of excitatory/inhibitory neuronal activity, as is observed in animal models of ASD.
Collapse
|
60
|
Chen XQ, Sawa M, Mobley WC. Dysregulation of neurotrophin signaling in the pathogenesis of Alzheimer disease and of Alzheimer disease in Down syndrome. Free Radic Biol Med 2018; 114:52-61. [PMID: 29031834 PMCID: PMC5748266 DOI: 10.1016/j.freeradbiomed.2017.10.341] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/05/2017] [Accepted: 10/10/2017] [Indexed: 12/15/2022]
Abstract
Neurotrophic factors, including the members of the neurotrophin family, play important roles in the development and maintenance of the nervous system. Trophic factor signals must be transmitted over long distances from axons and dendrites to the cell bodies of neurons. A mode of signaling well suited to the challenge of robust long distance signaling is the signaling endosome. We review the biology of signaling endosomes and the "signaling endosome hypothesis". Evidence for disruption of signaling endosome function in disorders of the nervous system is also reviewed. Changes in endosome structure in Alzheimer disease (AD) and Down syndrome (DS) are present early in these disorders. Data for the APP products responsible are reviewed and the consequent changes in signaling from endosomes discussed. We conclude by pointing to the need for additional studies to explore the biology of signaling endosomes in normal neurons and to elucidate their role in the pathogenesis of neurodegeneration.
Collapse
Affiliation(s)
- Xu-Qiao Chen
- University of California, San Diego, La Jolla, CA 92093, United States.
| | - Mariko Sawa
- University of California, San Diego, La Jolla, CA 92093, United States
| | - William C Mobley
- University of California, San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
61
|
Vermehren-Schmaedick A, Jacob T, Vu TQ. Methodology for Detecting and Tracking Brain-Derived Neurotrophic Factor Complexes in Neurons Using Single Quantum Dots. BRAIN-DERIVED NEUROTROPHIC FACTOR (BDNF) 2018. [DOI: 10.1007/7657_2018_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
62
|
Ledda F, Paratcha G. Mechanisms regulating dendritic arbor patterning. Cell Mol Life Sci 2017; 74:4511-4537. [PMID: 28735442 PMCID: PMC11107629 DOI: 10.1007/s00018-017-2588-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 06/14/2017] [Accepted: 07/06/2017] [Indexed: 12/17/2022]
Abstract
The nervous system is populated by diverse types of neurons, each of which has dendritic trees with strikingly different morphologies. These neuron-specific morphologies determine how dendritic trees integrate thousands of synaptic inputs to generate different firing properties. To ensure proper neuronal function and connectivity, it is necessary that dendrite patterns are precisely controlled and coordinated with synaptic activity. Here, we summarize the molecular and cellular mechanisms that regulate the formation of cell type-specific dendrite patterns during development. We focus on different aspects of vertebrate dendrite patterning that are particularly important in determining the neuronal function; such as the shape, branching, orientation and size of the arbors as well as the development of dendritic spine protrusions that receive excitatory inputs and compartmentalize postsynaptic responses. Additionally, we briefly comment on the implications of aberrant dendritic morphology for nervous system disease.
Collapse
Affiliation(s)
- Fernanda Ledda
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Paraguay 2155, 3rd Floor, CABA, 1121, Buenos Aires, Argentina
| | - Gustavo Paratcha
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Paraguay 2155, 3rd Floor, CABA, 1121, Buenos Aires, Argentina.
| |
Collapse
|
63
|
Coutinho-Budd JC, Sheehan AE, Freeman MR. The secreted neurotrophin Spätzle 3 promotes glial morphogenesis and supports neuronal survival and function. Genes Dev 2017; 31:2023-2038. [PMID: 29138279 PMCID: PMC5733495 DOI: 10.1101/gad.305888.117] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/20/2017] [Indexed: 10/27/2022]
Abstract
Most glial functions depend on establishing intimate morphological relationships with neurons. Significant progress has been made in understanding neuron-glia signaling at synaptic and axonal contacts, but how glia support neuronal cell bodies is unclear. Here we explored the growth and functions of Drosophila cortex glia (which associate almost exclusively with neuronal cell bodies) to understand glia-soma interactions. We show that cortex glia tile with one another and with astrocytes to establish unique central nervous system (CNS) spatial domains that actively restrict glial growth, and selective ablation of cortex glia causes animal lethality. In an RNAi-based screen, we identified αSNAP (soluble NSF [N-ethylmalemeide-sensitive factor] attachment protein α) and several components of vesicle fusion and recycling machinery as essential for the maintenance of cortex glial morphology and continued contact with neurons. Interestingly, loss of the secreted neurotrophin Spätzle 3 (Spz3) phenocopied αSNAP phenotypes, which included loss of glial ensheathment of neuron cell bodies, increased neuronal cell death, and defects in animal behavior. Rescue experiments suggest that Spz3 can exert these effects only over very short distances. This work identifies essential roles for glial ensheathment of neuronal cell bodies in CNS homeostasis as well as Spz3 as a novel signaling factor required for maintenance of cortex glial morphology and neuron-glia contact.
Collapse
Affiliation(s)
- Jaeda C Coutinho-Budd
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Amy E Sheehan
- Vollum Institute, Oregon Health and Sciences University, Portland, Oregon 97239, USA
| | - Marc R Freeman
- Vollum Institute, Oregon Health and Sciences University, Portland, Oregon 97239, USA
| |
Collapse
|
64
|
Terenzio M, Schiavo G, Fainzilber M. Compartmentalized Signaling in Neurons: From Cell Biology to Neuroscience. Neuron 2017; 96:667-679. [PMID: 29096079 DOI: 10.1016/j.neuron.2017.10.015] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/27/2017] [Accepted: 10/09/2017] [Indexed: 12/18/2022]
Abstract
Neurons are the largest known cells, with complex and highly polarized morphologies. As such, neuronal signaling is highly compartmentalized, requiring sophisticated transfer mechanisms to convey and integrate information within and between sub-neuronal compartments. Here, we survey different modes of compartmentalized signaling in neurons, highlighting examples wherein the fundamental cell biological processes of protein synthesis and degradation, membrane trafficking, and organelle transport are employed to enable the encoding and integration of information, locally and globally within a neuron. Comparisons to other cell types indicate that neurons accentuate widely shared mechanisms, providing invaluable models for the compartmentalization and transfer mechanisms required and used by most eukaryotic cells.
Collapse
Affiliation(s)
- Marco Terenzio
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Giampietro Schiavo
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London WC1N 3BG, UK; Discoveries Centre for Regenerative and Precision Medicine at UCL, London WC1N 3BG, UK; UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Mike Fainzilber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
65
|
Eva R, Koseki H, Kanamarlapudi V, Fawcett JW. EFA6 regulates selective polarised transport and axon regeneration from the axon initial segment. J Cell Sci 2017; 130:3663-3675. [PMID: 28935671 PMCID: PMC5702059 DOI: 10.1242/jcs.207423] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/08/2017] [Indexed: 12/11/2022] Open
Abstract
Central nervous system (CNS) axons lose their intrinsic ability to regenerate upon maturity, whereas peripheral nervous system (PNS) axons do not. A key difference between these neuronal types is their ability to transport integrins into axons. Integrins can mediate PNS regeneration, but are excluded from adult CNS axons along with their Rab11 carriers. We reasoned that exclusion of the contents of Rab11 vesicles including integrins might contribute to the intrinsic inability of CNS neurons to regenerate, and investigated this by performing laser axotomy. We identify a novel regulator of selective axon transport and regeneration, the ARF6 guanine-nucleotide-exchange factor (GEF) EFA6 (also known as PSD). EFA6 exerts its effects from a location within the axon initial segment (AIS). EFA6 does not localise at the AIS in dorsal root ganglion (DRG) axons, and in these neurons, ARF6 activation is counteracted by an ARF GTPase-activating protein (GAP), which is absent from the CNS, ACAP1. Depleting EFA6 from cortical neurons permits endosomal integrin transport and enhances regeneration, whereas overexpressing EFA6 prevents DRG regeneration. Our results demonstrate that ARF6 is an intrinsic regulator of regenerative capacity, implicating EFA6 as a focal molecule linking the AIS, signalling and transport. This article has an associated First Person interview with the first author of the paper. Highlighted Article: EFA6 is shown to reside in the axon initial segment, where it functions to prevent growth-promoting molecules from entering mature CNS axons. Removing EFA6 elevates the regenerative potential of the axon.
Collapse
Affiliation(s)
- Richard Eva
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 OPY, U.K
| | - Hiroaki Koseki
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 OPY, U.K
| | | | - James W Fawcett
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 OPY, U.K .,Centre of Reconstructive Neuroscience, Institute of Experimental Medicine AVCR, Prague, Czech Republic
| |
Collapse
|
66
|
Garcia MD, Formoso K, Aparicio GI, Frasch ACC, Scorticati C. The Membrane Glycoprotein M6a Endocytic/Recycling Pathway Involves Clathrin-Mediated Endocytosis and Affects Neuronal Synapses. Front Mol Neurosci 2017; 10:296. [PMID: 28979185 PMCID: PMC5611492 DOI: 10.3389/fnmol.2017.00296] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/04/2017] [Indexed: 12/24/2022] Open
Abstract
Single point mutations or variations in the expression of the gene encoding the neuronal glycoprotein M6a have been associated with psychiatric disorders such as Alzheimer’s disease, depression and schizophrenia. In cultured neurons, M6a positively contributes to neurite extension, axon guidance, filopodia/spine outgrowth, and synapse formation. The endocytic processes of neuronal membrane proteins are linked to the differentiation, growth, signaling and plasticity of neurons. However, the roles of M6a and the precise mechanisms through which M6a internalizes and recycles back to the neuronal membrane are unknown. Here, by using a controlled in vitro assay, we showed that if 30–40% of M6a is endocytosed, the number of synapses in hippocampal neurons decreases. When re-establishing the levels of M6a at the cell surface, the number of synapses returned to normal values. M6a internalization involves clathrin-coated pits, probably by association between the adaptor protein 2 and the 251YEDI254 “tyrosine-based” motif located within the C-tail of M6a. Upon endocytosis, M6a is sorted to early endosome antigen 1- and Rab5-positive endosomes and then sorted back to the cell surface via Rab11-positive endosomes or to degradation via Rab7 and, finally LAMP-1-positive endosomes. Our results demonstrated that the levels of M6a at the cell surface modified the formation/maintenance of synapses, without altering the protein levels of synaptophysin or N-methyl-D-aspartate receptor type-1. This novel mechanism might be relevant during neuronal development, pruning and/or many of the neurological disorders in which the number of synapses is affected.
Collapse
Affiliation(s)
- Micaela D Garcia
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Karina Formoso
- Instituto de Investigaciones Biomédicas, Universidad Católica ArgentinaBuenos Aires, Argentina
| | - Gabriela I Aparicio
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Alberto C C Frasch
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Camila Scorticati
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| |
Collapse
|
67
|
Distinct effects on the dendritic arbor occur by microbead versus bath administration of brain-derived neurotrophic factor. Cell Mol Life Sci 2017; 74:4369-4385. [PMID: 28698933 DOI: 10.1007/s00018-017-2589-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/15/2017] [Accepted: 07/06/2017] [Indexed: 12/18/2022]
Abstract
Proper communication among neurons depends on an appropriately formed dendritic arbor, and thus, aberrant changes to the arbor are implicated in many pathologies, ranging from cognitive disorders to neurodegenerative diseases. Due to the importance of dendritic shape to neuronal network function, the morphology of dendrites is tightly controlled and is influenced by both intrinsic and extrinsic factors. In this work, we examine how brain-derived neurotrophic factor (BDNF), one of the most well-studied extrinsic regulators of dendritic branching, affects the arbor when it is applied locally via microbeads to cultures of hippocampal neurons. We found that local application of BDNF increases both proximal and distal branching in a time-dependent manner and that local BDNF application attenuates pruning of dendrites that occurs with neuronal maturation. Additionally, we examined whether cytosolic PSD-95 interactor (cypin), an intrinsic regulator of dendritic branching, plays a role in these changes and found strong evidence for the involvement of cypin in BDNF-promoted increases in dendrites after 24 but not 48 h of application. This current study extends our previous work in which we found that bath application of BDNF for 72 h, but not shorter times, increases proximal dendrite branching and that this increase occurs through transcriptional regulation of cypin. Moreover, this current work illustrates how dendritic branching is regulated differently by the same growth factor depending on its spatial localization, suggesting a novel pathway for modulation of dendritic branching locally.
Collapse
|
68
|
Abstract
Synaptic connections in the brain are continuously weakened or strengthened in response to changes in neuronal activity. This process, known as synaptic plasticity, is the cellular basis for learning and memory, and is thought to be altered in several neuronal disorders. An important aspect of synaptic plasticity is the tightly controlled trafficking and synaptic targeting of the AMPA-type glutamate receptors, which are the major mediators of fast excitatory transmission in the brain. This review addresses the role of Rab GTPases in AMPA receptor trafficking in neurons under basal conditions and during activity-induced synaptic plasticity, especially during long-term potentiation (LTP) and long-term depression (LTD). We highlight the importance of the tight spatio-temporal control of Rab activity and suggest that this is critical for proper neuronal functions. We also discuss how abnormal AMPA receptor trafficking and malfunctioning of Rabs can lead to neurologic disorders or memory problems.
Collapse
Affiliation(s)
- Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart , Stuttgart , Germany
| | - Katalin Schlett
- Department of Physiology and Neurobiology, Eötvös Loránd University , Budapest , Hungary.,MTA-ELTE NAP B Neuronal Cell Biology Research Group, Eötvös Loránd University , Budapest , Hungary
| |
Collapse
|
69
|
Tang T, Rios-Pilier J, Krimm R. Taste bud-derived BDNF maintains innervation of a subset of TrkB-expressing gustatory nerve fibers. Mol Cell Neurosci 2017; 82:195-203. [PMID: 28600222 DOI: 10.1016/j.mcn.2017.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/08/2017] [Accepted: 06/05/2017] [Indexed: 02/07/2023] Open
Abstract
Taste receptor cells transduce different types of taste stimuli and transmit this information to gustatory neurons that carry it to the brain. Taste receptor cells turn over continuously in adulthood, requiring constant new innervation from nerve fibers. Therefore, the maintenance of innervation to taste buds is an active process mediated by many factors, including brain-derived neurotrophic factor (BDNF). Specifically, 40% of taste bud innervation is lost when Bdnf is removed during adulthood. Here we speculated that not all gustatory nerve fibers express the BDNF receptor, TrkB, resulting in subsets of neurons that vary in their response to BDNF. However, it is also possible that the partial loss of innervation occurred because the Bdnf gene was not effectively removed. To test these possibilities, we first determined that not all gustatory nerve fibers express the TrkB receptor in adult mice. We then verified the efficiency of Bdnf removal specifically in taste buds of K14-CreER:Bdnf mice and found that Bdnf expression was reduced to 1%, indicating efficient Bdnf gene recombination. BDNF removal resulted in a 55% loss of TrkB-expressing nerve fibers, which was greater than the loss of P2X3-positive fibers (39%), likely because taste buds were innervated by P2X3+/TrkB- fibers that were unaffected by BDNF removal. We conclude that gustatory innervation consists of both TrkB-positive and TrkB-negative taste fibers and that BDNF is specifically important for maintaining TrkB-positive innervation to taste buds. In addition, although taste bud size was not affected by inducible Bdnf removal, the expression of the γ subunit of the ENaC channel was reduced. So, BDNF may regulate expression of some molecular components of taste transduction pathways.
Collapse
Affiliation(s)
- Tao Tang
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Jennifer Rios-Pilier
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Robin Krimm
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
70
|
Zahavi EE, Maimon R, Perlson E. Spatial-specific functions in retrograde neuronal signalling. Traffic 2017; 18:415-424. [DOI: 10.1111/tra.12487] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/16/2017] [Accepted: 04/05/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Eitan Erez Zahavi
- Department of Physiology and Pharmacology; Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
| | - Roy Maimon
- Department of Physiology and Pharmacology; Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
| | - Eran Perlson
- Department of Physiology and Pharmacology; Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
| |
Collapse
|
71
|
Human neural stem/progenitor cells derived from the olfactory epithelium express the TrkB receptor and migrate in response to BDNF. Neuroscience 2017; 355:84-100. [PMID: 28499977 DOI: 10.1016/j.neuroscience.2017.04.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 04/27/2017] [Accepted: 04/29/2017] [Indexed: 12/31/2022]
Abstract
Neurogenesis constitutively occurs in the olfactory epithelium of mammals, including humans. The fact that new neurons in the adult olfactory epithelium derive from resident neural stem/progenitor cells suggests a potential use for these cells in studies of neural diseases, as well as in neuronal cell replacement therapies. In this regard, some studies have proposed that the human olfactory epithelium is a source of neural stem/progenitor cells for autologous transplantation. Although these potential applications are interesting, it is important to understand the cell biology and/or whether human neural stem/progenitor cells in the olfactory epithelium sense external signals, such as brain-derived neurotrophic factor (BDNF), that is also found in other pro-neurogenic microenvironments. BDNF plays a key role in several biological processes, including cell migration. Thus, we characterized human neural stem/progenitor cells derived from the olfactory epithelium (hNS/PCs-OE) and studied their in vitro migratory response to BDNF. In the present study, we determined that hNS/PCs-OE express the protein markers Nestin, Sox2, Ki67 and βIII-tubulin. Moreover, the doubling time of hNS/PCs-OE was approximately 38h. Additionally, we found that hNS/PCs-OE express the BDNF receptor TrkB, and pharmacological approaches showed that the BDNF-induced (40ng/ml) migration of differentiated hNS/PCs-OE was affected by the compound K252a, which prevents TrkB activation. This observation was accompanied by changes in the number of vinculin adhesion contacts. Our results suggest that hNS/PCs-OE exhibit a migratory response to BDNF, accompanied by the turnover of adhesion contacts.
Collapse
|
72
|
Abstract
Neurons are highly polarized cells that exhibit one of the more complex morphology and function. Neuronal intracellular trafficking plays a key role in dictating the directionality and specificity of vesicle formation, transport and fusion, allowing the transmission of information in sophisticate cellular network. Thus, the integrity of protein trafficking and spatial organization is especially important in neuronal cells. RAB proteins, small monomeric GTPases belonging to the RAS superfamily, spatially and temporally orchestrate specific vesicular trafficking steps. In this review we summarise the known roles of RAB GTPases involved in the maintenance of neuronal vesicular trafficking in the central nervous system. In particular, we discriminate the axonal pre-synaptic trafficking and dendritic post-synaptic trafficking, to better underlie how a correct orchestration of vesicle movement is necessary to maintain neuronal polarity and then, to permit an accurate architecture and functionality of synaptic activity.
Collapse
Affiliation(s)
- Maria Lidia Mignogna
- a Molecular Genetics of Intellectual Disabilities Unit, Division of Neuroscience at IRCCS San Raffaele Scientific Institute , Milan , Italy
| | - Patrizia D'Adamo
- a Molecular Genetics of Intellectual Disabilities Unit, Division of Neuroscience at IRCCS San Raffaele Scientific Institute , Milan , Italy
| |
Collapse
|
73
|
Tejeda GS, Díaz-Guerra M. Integral Characterization of Defective BDNF/TrkB Signalling in Neurological and Psychiatric Disorders Leads the Way to New Therapies. Int J Mol Sci 2017; 18:ijms18020268. [PMID: 28134845 PMCID: PMC5343804 DOI: 10.3390/ijms18020268] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 01/15/2017] [Accepted: 01/23/2017] [Indexed: 11/23/2022] Open
Abstract
Enhancement of brain-derived neurotrophic factor (BDNF) signalling has great potential in therapy for neurological and psychiatric disorders. This neurotrophin not only attenuates cell death but also promotes neuronal plasticity and function. However, an important challenge to this approach is the persistence of aberrant neurotrophic signalling due to a defective function of the BDNF high-affinity receptor, tropomyosin-related kinase B (TrkB), or downstream effectors. Such changes have been already described in several disorders, but their importance as pathological mechanisms has been frequently underestimated. This review highlights the relevance of an integrative characterization of aberrant BDNF/TrkB pathways for the rational design of therapies that by combining BDNF and TrkB targets could efficiently promote neurotrophic signalling.
Collapse
Affiliation(s)
- Gonzalo S Tejeda
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain.
| | - Margarita Díaz-Guerra
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain.
| |
Collapse
|
74
|
Mendell AL, Atwi S, Bailey CDC, McCloskey D, Scharfman HE, MacLusky NJ. Expansion of mossy fibers and CA3 apical dendritic length accompanies the fall in dendritic spine density after gonadectomy in male, but not female, rats. Brain Struct Funct 2017; 222:587-601. [PMID: 27283589 PMCID: PMC5337402 DOI: 10.1007/s00429-016-1237-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 05/19/2016] [Indexed: 11/25/2022]
Abstract
Androgen loss is an important clinical concern because of its cognitive and behavioral effects. Changes in androgen levels are also suspected to contribute to neurological disease. However, the available data on the effects of androgen deprivation in areas of the brain that are central to cognition, like the hippocampus, are mixed. In this study, morphological analysis of pyramidal cells was used to investigate if structural changes could potentially contribute to the mixed cognitive effects that have been observed after androgen loss in males. Male Sprague-Dawley rats were orchidectomized or sham-operated. Two months later, their brains were Golgi-impregnated for morphological analysis. Morphological endpoints were studied in areas CA3 and CA1, with comparisons to females either intact or 2 months after ovariectomy. CA3 pyramidal neurons of orchidectomized rats exhibited marked increases in apical dendritic arborization. There were increases in mossy fiber afferent density in area CA3, as well as robust enhancements to dendritic structure in area CA3 of orchidectomized males, but not in CA1. Remarkably, apical dendritic length of CA3 pyramidal cells increased, while spine density declined. By contrast, in females overall dendritic structure was minimally affected by ovariectomy, while dendritic spine density was greatly reduced. Sex differences and subfield-specific effects of gonadal hormone deprivation on the hippocampal circuitry may help explain the different behavioral effects reported in males and females after gonadectomy, or other conditions associated with declining gonadal hormone secretion.
Collapse
Affiliation(s)
- Ari L Mendell
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Sarah Atwi
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Craig D C Bailey
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Dan McCloskey
- Nathan Kline Institute for Psychiatric Research, Center of Dementia Research, Orangeburg, NY, 10962, USA
- Department of Child and Adolescent Psychiatry, New York University Langone Medical Center, New York, NY, 10016, USA
- Department of Physiology and Neuroscience, New York University Langone Medical Center, New York, NY, 10016, USA
- Department of Psychiatry, New York University Langone Medical Center, New York, NY, 10016, USA
- Department of Psychology, College of Staten Island, City University of New York, New York, 10314, USA
| | - Helen E Scharfman
- Nathan Kline Institute for Psychiatric Research, Center of Dementia Research, Orangeburg, NY, 10962, USA
- Department of Child and Adolescent Psychiatry, New York University Langone Medical Center, New York, NY, 10016, USA
- Department of Physiology and Neuroscience, New York University Langone Medical Center, New York, NY, 10016, USA
- Department of Psychiatry, New York University Langone Medical Center, New York, NY, 10016, USA
| | - Neil J MacLusky
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
75
|
Gonzales E, Taylor SA, Davit-Spraul A, Thébaut A, Thomassin N, Guettier C, Whitington PF, Jacquemin E. MYO5B mutations cause cholestasis with normal serum gamma-glutamyl transferase activity in children without microvillous inclusion disease. Hepatology 2017; 65:164-173. [PMID: 27532546 DOI: 10.1002/hep.28779] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/17/2016] [Indexed: 12/11/2022]
Abstract
UNLABELLED Some patients with microvillus inclusion disease due to myosin 5B (MYO5B) mutations may develop cholestasis characterized by a progressive familial intrahepatic cholestasis-like phenotype with normal serum gamma-glutamyl transferase activity. So far MYO5B deficiency has not been reported in patients with such a cholestasis phenotype in the absence of intestinal disease. Using a new-generation sequencing approach, we identified MYO5B mutations in five patients with progressive familial intrahepatic cholestasis-like phenotype with normal serum gamma-glutamyl transferase activity without intestinal disease. CONCLUSION These data show that MYO5B deficiency may lead to isolated cholestasis and that MYO5B should be considered as an additional progressive familial intrahepatic cholestasis gene. (Hepatology 2017;65:164-173).
Collapse
Affiliation(s)
- Emmanuel Gonzales
- Pediatric Hepatology and Pediatric Liver Transplantation Unit and National Reference Centre for Rare Pediatric Liver Diseases, Bicêtre University Hospital, University of Paris-Sud, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France.,INSERM, UMR-S1174, Hepatinov, University of Paris-Sud, Orsay, France
| | - Sarah A Taylor
- Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Anne Davit-Spraul
- Department of Biochemistry, Bicêtre University Hospital, University of Paris-Sud, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Alice Thébaut
- Pediatric Hepatology and Pediatric Liver Transplantation Unit and National Reference Centre for Rare Pediatric Liver Diseases, Bicêtre University Hospital, University of Paris-Sud, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France.,INSERM, UMR-S1174, Hepatinov, University of Paris-Sud, Orsay, France
| | - Nadège Thomassin
- Department of Pediatrics, Grenoble University Hospital, Grenoble, France
| | - Catherine Guettier
- Department of Pathology, Bicêtre University Hospital, University of Paris-Sud, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Peter F Whitington
- Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Emmanuel Jacquemin
- Pediatric Hepatology and Pediatric Liver Transplantation Unit and National Reference Centre for Rare Pediatric Liver Diseases, Bicêtre University Hospital, University of Paris-Sud, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France.,INSERM, UMR-S1174, Hepatinov, University of Paris-Sud, Orsay, France
| |
Collapse
|
76
|
Protocol for culturing low density pure rat hippocampal neurons supported by mature mixed neuron cultures. J Neurosci Methods 2016; 277:38-45. [PMID: 27956052 DOI: 10.1016/j.jneumeth.2016.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/24/2016] [Accepted: 12/03/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND primary hippocampal neuron cultures allow for subcellular morphological dissection, easy access to drug treatment and electrophysiology analysis of individual neurons, and is therefore an ideal model for the study of neuron physiology. While neuron and glia mixed cultures are relatively easy to prepare, pure neurons are particular hard to culture at low densities which are suitable for morphology studies. This may be due to a lack of neurotrophic factors such as brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT3) and Glial cell line-derived neurotrophic factor (GDNF). NEW METHOD In this study we used a two step protocol in which neuron-glia mixed cultures were initially prepared for maturation to support the growth of young neurons plated at very low densities. COMPARISON WITH EXISTING METHODS Our protocol showed that neurotrophic support resulted in physiologically functional hippocampal neurons with larger cell body, increased neurite length and decreased branching and complexity compared to cultures prepared using a conventional method. CONCLUSION Our protocol provides a novel way to culture highly uniformed hippocampal neurons for acquiring high quality, neuron based data.
Collapse
|
77
|
Woodruff G, Reyna SM, Dunlap M, Van Der Kant R, Callender JA, Young JE, Roberts EA, Goldstein LSB. Defective Transcytosis of APP and Lipoproteins in Human iPSC-Derived Neurons with Familial Alzheimer's Disease Mutations. Cell Rep 2016; 17:759-773. [PMID: 27732852 PMCID: PMC5796664 DOI: 10.1016/j.celrep.2016.09.034] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 07/22/2016] [Accepted: 09/12/2016] [Indexed: 12/16/2022] Open
Abstract
We investigated early phenotypes caused by familial Alzheimer's disease (fAD) mutations in isogenic human iPSC-derived neurons. Analysis of neurons carrying fAD PS1 or APP mutations introduced using genome editing technology at the endogenous loci revealed that fAD mutant neurons had previously unreported defects in the recycling state of endocytosis and soma-to-axon transcytosis of APP and lipoproteins. The endocytosis reduction could be rescued through treatment with a β-secretase inhibitor. Our data suggest that accumulation of β-CTFs of APP, but not Aβ, slow vesicle formation from an endocytic recycling compartment marked by the transcytotic GTPase Rab11. We confirm previous results that endocytosis is affected in AD and extend these to uncover a neuron-specific defect. Decreased lipoprotein endocytosis and transcytosis to the axon suggest that a neuron-specific impairment in endocytic axonal delivery of lipoproteins and other key materials might compromise synaptic maintenance in fAD.
Collapse
Affiliation(s)
- Grace Woodruff
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sol M Reyna
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mariah Dunlap
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rik Van Der Kant
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Julia A Callender
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jessica E Young
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elizabeth A Roberts
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lawrence S B Goldstein
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
78
|
Ortiz-López L, Vega-Rivera NM, Babu H, Ramírez-Rodríguez GB. Brain-Derived Neurotrophic Factor Induces Cell Survival and the Migration of Murine Adult Hippocampal Precursor Cells During Differentiation In Vitro. Neurotox Res 2016; 31:122-135. [DOI: 10.1007/s12640-016-9673-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/01/2016] [Accepted: 09/20/2016] [Indexed: 01/09/2023]
|
79
|
Rab11 and phosphoinositides: A synergy of signal transducers in the control of vesicular trafficking. Adv Biol Regul 2016; 63:132-139. [PMID: 27658318 DOI: 10.1016/j.jbior.2016.09.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 09/13/2016] [Indexed: 12/11/2022]
Abstract
Rab11 and phosphoinositides are signal transducers able to direct the delivery of membrane components to the cell surface. Rab11 is a small GTPase that, by cycling from an active to an inactive state, controls key events of vesicular transport, while phosphoinositides are major determinants of membrane identity, modulating compartmentalized small GTPase function. By sharing common effectors, these two signal transducers synergistically direct vesicular traffic to specific intracellular membranes. This review focuses on the latest advances regarding the mechanisms that ensure the compartmentalized regulation of Rab11 function through its interaction with phosphoinositides.
Collapse
|
80
|
Ledda F, Paratcha G. Assembly of Neuronal Connectivity by Neurotrophic Factors and Leucine-Rich Repeat Proteins. Front Cell Neurosci 2016; 10:199. [PMID: 27555809 PMCID: PMC4977320 DOI: 10.3389/fncel.2016.00199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/29/2016] [Indexed: 11/13/2022] Open
Abstract
Proper function of the nervous system critically relies on sophisticated neuronal networks interconnected in a highly specific pattern. The architecture of these connections arises from sequential developmental steps such as axonal growth and guidance, dendrite development, target determination, synapse formation and plasticity. Leucine-rich repeat (LRR) transmembrane proteins have been involved in cell-type specific signaling pathways that underlie these developmental processes. The members of this superfamily of proteins execute their functions acting as trans-synaptic cell adhesion molecules involved in target specificity and synapse formation or working in cis as cell-intrinsic modulators of neurotrophic factor receptor trafficking and signaling. In this review, we will focus on novel physiological mechanisms through which LRR proteins regulate neurotrophic factor receptor signaling, highlighting the importance of these modulatory events for proper axonal extension and guidance, tissue innervation and dendrite morphogenesis. Additionally, we discuss few examples linking this set of LRR proteins to neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Fernanda Ledda
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine-University of Buenos Aires (UBA) Buenos Aires, Argentina
| | - Gustavo Paratcha
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine-University of Buenos Aires (UBA) Buenos Aires, Argentina
| |
Collapse
|
81
|
Yamashita N, Kuruvilla R. Neurotrophin signaling endosomes: biogenesis, regulation, and functions. Curr Opin Neurobiol 2016; 39:139-45. [PMID: 27327126 DOI: 10.1016/j.conb.2016.06.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/05/2016] [Indexed: 11/29/2022]
Abstract
In the nervous system, communication between neurons and their post-synaptic target cells is critical for the formation, refinement and maintenance of functional neuronal connections. Diffusible signals secreted by target tissues, exemplified by the family of neurotrophins, impinge on nerve terminals to influence diverse developmental events including neuronal survival and axonal growth. Key mechanisms of action of target-derived neurotrophins include the cell biological processes of endocytosis and retrograde trafficking of their Trk receptors from growth cones to cell bodies. In this review, we summarize the molecular mechanisms underlying this endosome-mediated signaling, focusing on the instructive role of neurotrophin signaling itself in directing its own trafficking. Recent studies have linked impaired neurotrophin trafficking to neurodevelopmental disorders, highlighting the relevance of neurotrophin endosomes in human health.
Collapse
Affiliation(s)
- Naoya Yamashita
- Department of Biology, Johns Hopkins University, 3400N. Charles St, 224 Mudd Hall, Baltimore, MD 21218, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, 3400N. Charles St, 224 Mudd Hall, Baltimore, MD 21218, USA.
| |
Collapse
|
82
|
Gonzalez A, Moya-Alvarado G, Gonzalez-Billaut C, Bronfman FC. Cellular and molecular mechanisms regulating neuronal growth by brain-derived neurotrophic factor. Cytoskeleton (Hoboken) 2016; 73:612-628. [PMID: 27223597 DOI: 10.1002/cm.21312] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 12/31/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) and its receptors TrkB and p75 regulate dendritic and axonal growth during development and maintenance of the mature nervous system; however, the cellular and molecular mechanisms underlying this process are not fully understood. In recent years, several advances have shed new light on the processes behind the regulation of BDNF-mediated structural plasticity including control of neuronal transcription, local translation of proteins, and regulation of cytoskeleton and membrane dynamics. In this review, we summarize recent advances in the field of BDNF signaling in neurons to induce neuronal growth. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andres Gonzalez
- MINREB and Center for Ageing and Regeneration (CARE UC), Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Guillermo Moya-Alvarado
- MINREB and Center for Ageing and Regeneration (CARE UC), Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christian Gonzalez-Billaut
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile and Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Francisca C Bronfman
- MINREB and Center for Ageing and Regeneration (CARE UC), Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
83
|
Increased expression of endocytosis-Related proteins in rat hippocampus following 10-day electroconvulsive seizure treatment. Neurosci Lett 2016; 624:85-91. [PMID: 27177725 DOI: 10.1016/j.neulet.2016.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 12/16/2022]
Abstract
Although electroconvulsive therapy (ECT) is clinically used for severe depression and drug-resistant Parkinson's disease, its exact biological background and mechanism have not yet been fully elucidated. Two potential explanations have been presented so far to explain the increased neuroplastic and resilient profiles of multiple ECT administrations. One is the alteration of central neurotransmitter receptor densities and the other is the expressional upregulation of brain derived neurotrophic factor in various brain regions with enhanced hippocampal neurogenesis and mossy fiber sprouting. In the present report, western blot analyses revealed significantly upregulated expression of various endocytosis-related proteins following 10-day electroconvulsive seizure (ECS) treatment in rat hippocampal homogenates and hippocampal lipid raft fractions extracted using an ultracentrifugation procedure. Upregulated proteins included endocytosis-related scaffolding proteins (caveolin-1, flotillin-1, and heavy and light chains of clathrin) and small GTPases (Rab5, Rab7, Rab11, and Rab4) specifically expressed on various types of endosomes. Two scaffolding proteins, caveolin-1 and flotillin-1, were also increased in the lipid raft fraction. Together with our previous finding of increased autophagy-related proteins in the hippocampal region, the present results suggest membrane trafficking machinery is enhanced following 10-day ECS treatment. We consider that the membrane trafficking machinery that transports functional proteins in the neuronal cells and from or into the synaptic membranes is one of the new candidates supporting the cellular and behavioral neuroplastic profiles of ECS treatments in animal experiments and ECT administrations in clinical settings.
Collapse
|
84
|
Kalirin is required for BDNF-TrkB stimulated neurite outgrowth and branching. Neuropharmacology 2016; 107:227-238. [PMID: 27036892 DOI: 10.1016/j.neuropharm.2016.03.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/03/2016] [Accepted: 03/28/2016] [Indexed: 01/19/2023]
Abstract
Exogenous brain-derived neurotrophic factor (BDNF), acting through TrkB, is known to promote neurite formation and branching. This response to BDNF was eliminated by inhibition of TrkB kinase and by specific inhibition of the GEF1 domain of Kalirin, which activates Rac1. Neurons from Kalrn knockout mice were unable to activate Rac1 in response to BDNF. BDNF-triggered neurite outgrowth was abolished when Kalrn expression was reduced using shRNA that targets all of the major Kalrn isoforms, and reduced in neurons from Kalrn knockout mice. The Kalrn isoforms expressed early in development also include a GEF2 domain that activates RhoA. However, BDNF-stimulated neurite outgrowth in Kalrn knockout neurons was rescued by expression of Kalirin-7, which includes only the GEF1 domain but lacks the GEF2 domain. Dendritic morphogenesis, which requires spatially restricted, coordinated changes in the actin cytoskeleton and in the organization of microtubules, involves essential contributions from multiple Rho GEFs. Since Tiam1, another Rho GEF, is also required for BDNF-stimulated neurite outgrowth, an inhibitory fragment of Tiam1 (PHn-CC-EX) was tested and found to interfere with both Kalirin and Tiam1 GEF activity. The prolonged TrkB activation observed in response to BDNF in Kalrn knockout neurons and the altered time course and extent of ERK, CREB and Akt activation observed in the absence of Kalrn would be expected to alter the response of these neurons to other regulatory factors.
Collapse
|
85
|
Alsina FC, Hita FJ, Fontanet PA, Irala D, Hedman H, Ledda F, Paratcha G. Lrig1 is a cell-intrinsic modulator of hippocampal dendrite complexity and BDNF signaling. EMBO Rep 2016; 17:601-16. [PMID: 26935556 DOI: 10.15252/embr.201541218] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/28/2016] [Indexed: 11/09/2022] Open
Abstract
Even though many extracellular factors have been identified as promoters of general dendritic growth and branching, little is known about the cell-intrinsic modulators that allow neurons to sculpt distinctive patterns of dendrite arborization. Here, we identify Lrig1, a nervous system-enriched LRR protein, as a key physiological regulator of dendrite complexity of hippocampal pyramidal neurons. Lrig1-deficient mice display morphological changes in proximal dendrite arborization and defects in social interaction. Specifically, knockdown of Lrig1 enhances both primary dendrite formation and proximal dendritic branching of hippocampal neurons, two phenotypes that resemble the effect of BDNF on these neurons. In addition, we show that Lrig1 physically interacts with TrkB and attenuates BDNF signaling. Gain and loss of function assays indicate that Lrig1 restricts BDNF-induced dendrite morphology. Together, our findings reveal a novel and essential role of Lrig1 in regulating morphogenic events that shape the hippocampal circuits and establish that the assembly of TrkB with Lrig1 represents a key mechanism for understanding how specific neuronal populations expand the repertoire of responses to BDNF during brain development.
Collapse
Affiliation(s)
- Fernando Cruz Alsina
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET School of Medicine University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Francisco Javier Hita
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET School of Medicine University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Paula Aldana Fontanet
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET School of Medicine University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Dolores Irala
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET School of Medicine University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Håkan Hedman
- Oncology Research Laboratory, Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Fernanda Ledda
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET School of Medicine University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Gustavo Paratcha
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET School of Medicine University of Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
86
|
Nakazawa T, Hashimoto R, Sakoori K, Sugaya Y, Tanimura A, Hashimotodani Y, Ohi K, Yamamori H, Yasuda Y, Umeda-Yano S, Kiyama Y, Konno K, Inoue T, Yokoyama K, Inoue T, Numata S, Ohnuma T, Iwata N, Ozaki N, Hashimoto H, Watanabe M, Manabe T, Yamamoto T, Takeda M, Kano M. Emerging roles of ARHGAP33 in intracellular trafficking of TrkB and pathophysiology of neuropsychiatric disorders. Nat Commun 2016; 7:10594. [PMID: 26839058 PMCID: PMC4742909 DOI: 10.1038/ncomms10594] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/04/2016] [Indexed: 12/20/2022] Open
Abstract
Intracellular trafficking of receptor proteins is essential for neurons to detect various extracellular factors during the formation and refinement of neural circuits. However, the precise mechanisms underlying the trafficking of neurotrophin receptors to synapses remain elusive. Here, we demonstrate that a brain-enriched sorting nexin, ARHGAP33, is a new type of regulator for the intracellular trafficking of TrkB, a high-affinity receptor for brain-derived neurotrophic factor. ARHGAP33 knockout (KO) mice exhibit reduced expression of synaptic TrkB, impaired spine development and neuropsychiatric disorder-related behavioural abnormalities. These deficits are rescued by specific pharmacological enhancement of TrkB signalling in ARHGAP33 KO mice. Mechanistically, ARHGAP33 interacts with SORT1 to cooperatively regulate TrkB trafficking. Human ARHGAP33 is associated with brain phenotypes and reduced SORT1 expression is found in patients with schizophrenia. We propose that ARHGAP33/SORT1-mediated TrkB trafficking is essential for synapse development and that the dysfunction of this mechanism may be a new molecular pathology of neuropsychiatric disorders. The molecular mechanisms of neurotrophin receptor trafficking are only partially understood. Here the authors show that ARHGAP33 interacts with SORT1 to regulate TrkB trafficking, the dysfunction of which impairs synapse development and leads to schizophrenia-related behavioural abnormalities in mice.
Collapse
Affiliation(s)
- Takanobu Nakazawa
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.,Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871, Japan
| | - Ryota Hashimoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita 565-0871, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita 565-0871, Japan
| | - Kazuto Sakoori
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuki Sugaya
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Asami Tanimura
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuki Hashimotodani
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kazutaka Ohi
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Hidenaga Yamamori
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita 565-0871, Japan.,Department of Molecular Neuropsychiatry, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Yuka Yasuda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Satomi Umeda-Yano
- Department of Molecular Neuropsychiatry, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Yuji Kiyama
- Division of Neuronal Network, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Kohtarou Konno
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Takeshi Inoue
- Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Kazumasa Yokoyama
- Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Takafumi Inoue
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Shusuke Numata
- Department of Psychiatry, Course of Integrated Brain Sciences, School of Medicine, University of Tokushima, Tokushima 770-8503, Japan
| | - Tohru Ohnuma
- Department of Psychiatry, Juntendo University School of Medicine, Tokyo 113-0033, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Japan
| | - Hitoshi Hashimoto
- iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita 565-0871, Japan.,Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Toshiya Manabe
- Division of Neuronal Network, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Tadashi Yamamoto
- Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son 904-0495, Japan
| | - Masatoshi Takeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita 565-0871, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita 565-0871, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
87
|
Lipka J, Kapitein LC, Jaworski J, Hoogenraad CC. Microtubule-binding protein doublecortin-like kinase 1 (DCLK1) guides kinesin-3-mediated cargo transport to dendrites. EMBO J 2016; 35:302-18. [PMID: 26758546 DOI: 10.15252/embj.201592929] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/08/2015] [Indexed: 01/02/2023] Open
Abstract
In neurons, the polarized distribution of vesicles and other cellular materials is established through molecular motors that steer selective transport between axons and dendrites. It is currently unclear whether interactions between kinesin motors and microtubule-binding proteins can steer polarized transport. By screening all 45 kinesin family members, we systematically addressed which kinesin motors can translocate cargo in living cells and drive polarized transport in hippocampal neurons. While the majority of kinesin motors transport cargo selectively into axons, we identified five members of the kinesin-3 (KIF1) and kinesin-4 (KIF21) subfamily that can also target dendrites. We found that microtubule-binding protein doublecortin-like kinase 1 (DCLK1) labels a subset of dendritic microtubules and is required for KIF1-dependent dense-core vesicles (DCVs) trafficking into dendrites and dendrite development. Our study demonstrates that microtubule-binding proteins can provide local signals for specific kinesin motors to drive polarized cargo transport.
Collapse
Affiliation(s)
- Joanna Lipka
- Cell Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Lukas C Kapitein
- Cell Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jacek Jaworski
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Casper C Hoogenraad
- Cell Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
88
|
Meabon JS, de Laat R, Ieguchi K, Serbzhinsky D, Hudson MP, Huber BR, Wiley JC, Bothwell M. Intracellular LINGO-1 negatively regulates Trk neurotrophin receptor signaling. Mol Cell Neurosci 2015; 70:1-10. [PMID: 26546150 DOI: 10.1016/j.mcn.2015.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 10/08/2015] [Accepted: 11/02/2015] [Indexed: 11/30/2022] Open
Abstract
Neurotrophins, essential regulators of many aspects of neuronal differentiation and function, signal via four receptors, p75, TrkA, TrkB and TrkC. The three Trk paralogs are members of the LIG superfamily of membrane proteins, which share extracellular domains consisting of leucine-rich repeat and C2 Ig domains. Another LIG protein, LINGO-1 has been reported to bind and influence signaling of p75 as well as TrkA, TrkB and TrkC. Here we examine the manner in which LINGO-1 influences the function of TrkA, TrkB and TrkC. We report that Trk activation promotes Trk association with LINGO-1, and that this association promotes Trk degradation by a lysosomal mechanism. This mechanism resembles the mechanism by which another LIG protein, LRIG1, promotes lysosomal degradation of receptor tyrosine kinases such as the EGF receptor. We present evidence indicating that the Trk/LINGO-1 interaction occurs, in part, within recycling endosomes. We show that a mutant form of LINGO-1, with much of the extracellular domain deleted, has the capacity to enhance TrkA signaling in PC12 cells, possibly by acting as an inhibitor of Trk down-regulation by full length LINGO-1. We propose that LINGO-1 functions as a negative feedback regulator of signaling by cognate receptor tyrosine kinases including TrkA, TrkB and TrkC.
Collapse
Affiliation(s)
- James S Meabon
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; Mental Illness Research Education and Clinical Center, VA Medical Center, Seattle, WA 98108, USA
| | | | - Katsuaki Ieguchi
- Department of Pharmacology, Tokyo Women's Medical University, Tokyo, Japan
| | | | - Mark P Hudson
- Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, USA
| | - B Russel Huber
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jesse C Wiley
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Mark Bothwell
- Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
89
|
Arias CI, Siri SO, Conde C. Involvement of SARA in Axon and Dendrite Growth. PLoS One 2015; 10:e0138792. [PMID: 26405814 PMCID: PMC4583221 DOI: 10.1371/journal.pone.0138792] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/03/2015] [Indexed: 11/19/2022] Open
Abstract
SARA (Smad Anchor for Receptor Activation) plays a crucial role in Rab5-mediated endocytosis in cell lines localizing to early endosomes where it regulates morphology and function. Here, we analyzed the role of SARA during neuronal development and tested whether it functions as a regulator of endocytic trafficking of selected axonal and membrane proteins. Suppression of SARA perturbs the appearance of juxtanuclear endocytic recycling compartments and the neurons show long axons with large growth cones. Furthermore, surface distribution of the cell adhesion molecule L1 in axons and the fusion of vesicles containing transferring receptor (TfR) in dendrites were increased in neurons where SARA was silenced. Conversely, SARA overexpression generated large early endosomes and reduced neurite outgrowth. Taken together, our findings suggest a significant contribution of SARA to key aspects of neuronal development, including neurite formation.
Collapse
Affiliation(s)
| | - Sebastián Omar Siri
- Laboratorio Neurobiología, INIMEC-CONICET, Córdoba, Argentina
- Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto Universitario de Ciencias Biomédicas de Córdoba, Córdoba, Argentina
| | - Cecilia Conde
- Laboratorio Neurobiología, INIMEC-CONICET, Córdoba, Argentina
- Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto Universitario de Ciencias Biomédicas de Córdoba, Córdoba, Argentina
| |
Collapse
|
90
|
Zou W, Yadav S, DeVault L, Jan YN, Sherwood DR. RAB-10-Dependent Membrane Transport Is Required for Dendrite Arborization. PLoS Genet 2015; 11:e1005484. [PMID: 26394140 PMCID: PMC4578882 DOI: 10.1371/journal.pgen.1005484] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 08/05/2015] [Indexed: 01/07/2023] Open
Abstract
Formation of elaborately branched dendrites is necessary for the proper input and connectivity of many sensory neurons. Previous studies have revealed that dendritic growth relies heavily on ER-to-Golgi transport, Golgi outposts and endocytic recycling. How new membrane and associated cargo is delivered from the secretory and endosomal compartments to sites of active dendritic growth, however, remains unknown. Using a candidate-based genetic screen in C. elegans, we have identified the small GTPase RAB-10 as a key regulator of membrane trafficking during dendrite morphogenesis. Loss of rab-10 severely reduced proximal dendritic arborization in the multi-dendritic PVD neuron. RAB-10 acts cell-autonomously in the PVD neuron and localizes to the Golgi and early endosomes. Loss of function mutations of the exocyst complex components exoc-8 and sec-8, which regulate tethering, docking and fusion of transport vesicles at the plasma membrane, also caused proximal dendritic arborization defects and led to the accumulation of intracellular RAB-10 vesicles. In rab-10 and exoc-8 mutants, the trans-membrane proteins DMA-1 and HPO-30, which promote PVD dendrite stabilization and branching, no longer localized strongly to the proximal dendritic membranes and instead were sequestered within intracellular vesicles. Together these results suggest a crucial role for the Rab10 GTPase and the exocyst complex in controlling membrane transport from the secretory and/or endosomal compartments that is required for dendritic growth. Dendrites are cellular extensions from neurons that gather information from other neurons or cues from the external environment to convey to the nervous system of an organism. Dendrites are often extensively branched, raising the question of how neurons supply plasma membrane and dendrite specific proteins from the source of synthesis inside the cell to developing dendrites. We have examined membrane trafficking in the PVD neuron in the nematode worm C. elegans to investigate how new membrane and dendrite proteins are trafficked. The PVD neuron is easy to visualize and has remarkably long and widely branched dendrites positioned along the skin of the worm, which transmits information about harsh touch and cold temperature to the nervous system. We have discovered that a key organizer of vesicle trafficking, the RAB-10 protein, localizes to membrane vesicles and is required to traffic these vesicles that contain plasma membrane and dendrite proteins to the growing PVD dendrite. Further, our work revealed that a complex of proteins, termed the exocyst, that helps fuse membrane vesicles at the plasma membrane, localizes with RAB-10 and is required for dendrite branching. Together, our work has revealed a novel mechanism for how neurons build dendrites that could be used to help repair damaged neurons in human diseases and during aging.
Collapse
Affiliation(s)
- Wei Zou
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Smita Yadav
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco, San Francisco, California, United States of America
| | - Laura DeVault
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco, San Francisco, California, United States of America
| | - Yuh Nung Jan
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco, San Francisco, California, United States of America
| | - David R. Sherwood
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
91
|
Abstract
Peripheral axonal regeneration requires surface-expanding membrane addition. The continuous incorporation of new membranes into the axolemma allows the pushing force of elongating microtubules to drive axonal growth cones forwards. Hence, a constant supply of membranes and cytoskeletal building blocks is required, often for many weeks. In human peripheral nerves, axonal tips may be more than 1 m away from the neuronal cell body. Therefore, in the initial phase of regeneration, membranes are derived from pre-existing vesicles or synthesised locally. Only later stages of axonal regeneration are supported by membranes and proteins synthesised in neuronal cell bodies, considering that the fastest anterograde transport mechanisms deliver cargo at 20 cm/day. Whereas endocytosis and exocytosis of membrane vesicles are balanced in intact axons, membrane incorporation exceeds membrane retrieval during regeneration to compensate for the loss of membranes distal to the lesion site. Physiological membrane turnover rates will not be established before the completion of target reinnervation. In this review, the current knowledge on membrane traffic in axonal outgrowth is summarised, with a focus on endosomal vesicles as the providers of membranes and carriers of growth factor receptors required for initiating signalling pathways to promote the elongation and branching of regenerating axons in lesioned peripheral nerves.
Collapse
Affiliation(s)
- Barbara Hausott
- Division of Neuroanatomy, Department of Anatomy, Histology and Embryology, Medical University Innsbruck, 6020, Innsbruck, Austria
| | - Lars Klimaschewski
- Division of Neuroanatomy, Department of Anatomy, Histology and Embryology, Medical University Innsbruck, 6020, Innsbruck, Austria
| |
Collapse
|
92
|
Schmieg N, Thomas C, Yabe A, Lynch DS, Iglesias T, Chakravarty P, Schiavo G. Novel Kidins220/ARMS Splice Isoforms: Potential Specific Regulators of Neuronal and Cardiovascular Development. PLoS One 2015; 10:e0129944. [PMID: 26083449 PMCID: PMC4470590 DOI: 10.1371/journal.pone.0129944] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/14/2015] [Indexed: 01/19/2023] Open
Abstract
Kidins220/ARMS is a transmembrane protein playing a crucial role in neuronal and cardiovascular development. Kidins220/ARMS is a downstream target of neurotrophin receptors and interacts with several signalling and trafficking factors. Through computational modelling, we found two potential sites for alternative splicing of Kidins220/ARMS. The first is located between exon 24 and exon 29, while the second site replaces exon 32 by a short alternative terminal exon 33. Here we describe the conserved occurrence of several Kidins220/ARMS splice isoforms at RNA and protein levels. Kidins220/ARMS splice isoforms display spatio-temporal regulation during development with distinct patterns in different neuronal populations. Neurotrophin receptor stimulation in cortical and hippocampal neurons and neuroendocrine cells induces specific Kidins220/ARMS splice isoforms and alters the appearance kinetics of the full-length transcript. Remarkably, alternative terminal exon splicing generates Kidins220/ARMS variants with distinct cellular localisation: Kidins220/ARMS containing exon 32 is targeted to the plasma membrane and neurite tips, whereas Kidins220/ARMS without exon 33 mainly clusters the full-length protein in a perinuclear intracellular compartment in PC12 cells and primary neurons, leading to a change in neurotrophin receptor expression. Overall, this study demonstrates the existence of novel Kidins220/ARMS splice isoforms with unique properties, revealing additional complexity in the functional regulation of neurotrophin receptors, and potentially other signalling pathways involved in neuronal and cardiovascular development.
Collapse
Affiliation(s)
- Nathalie Schmieg
- Molecular Neuropathobiology Laboratory, Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
- The Francis Crick Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, United Kingdom
| | - Claire Thomas
- The Francis Crick Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, United Kingdom
| | - Arisa Yabe
- The Francis Crick Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, United Kingdom
| | - David S. Lynch
- Molecular Neuropathobiology Laboratory, Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
- Leonard Wolfson Centre for Experimental Neurology, University College London, 8 Queen Anne Street, London W1G 9LD, United Kingdom
| | - Teresa Iglesias
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid 28029, Spain
- CIBERNED (ISCIII), C/ Valderrebollo 5, Madrid 28031, Spain
| | - Probir Chakravarty
- The Francis Crick Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, United Kingdom
| | - Giampietro Schiavo
- Molecular Neuropathobiology Laboratory, Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
- * E-mail:
| |
Collapse
|
93
|
Song M, Giza J, Proenca CC, Jing D, Elliott M, Dincheva I, Shmelkov SV, Kim J, Schreiner R, Huang SH, Castrén E, Prekeris R, Hempstead BL, Chao MV, Dictenberg JB, Rafii S, Chen ZY, Rodriguez-Boulan E, Lee FS. Slitrk5 Mediates BDNF-Dependent TrkB Receptor Trafficking and Signaling. Dev Cell 2015; 33:690-702. [PMID: 26004511 DOI: 10.1016/j.devcel.2015.04.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/25/2015] [Accepted: 04/08/2015] [Indexed: 11/25/2022]
Abstract
Recent studies in humans and in genetic mouse models have identified Slit- and NTRK-like family (Slitrks) as candidate genes for neuropsychiatric disorders. All Slitrk isotypes are highly expressed in the CNS, where they mediate neurite outgrowth, synaptogenesis, and neuronal survival. However, the molecular mechanisms underlying these functions are not known. Here, we report that Slitrk5 modulates brain-derived neurotrophic factor (BDNF)-dependent biological responses through direct interaction with TrkB receptors. Under basal conditions, Slitrk5 interacts primarily with a transsynaptic binding partner, protein tyrosine phosphatase δ (PTPδ); however, upon BDNF stimulation, Slitrk5 shifts to cis-interactions with TrkB. In the absence of Slitrk5, TrkB has a reduced rate of ligand-dependent recycling and altered responsiveness to BDNF treatment. Structured illumination microscopy revealed that Slitrk5 mediates optimal targeting of TrkB receptors to Rab11-positive recycling endosomes through recruitment of a Rab11 effector protein, Rab11-FIP3. Thus, Slitrk5 acts as a TrkB co-receptor that mediates its BDNF-dependent trafficking and signaling.
Collapse
Affiliation(s)
- Minseok Song
- Department of Psychiatry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Joanna Giza
- Department of Psychiatry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Catia C Proenca
- Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Deqiang Jing
- Department of Psychiatry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Mark Elliott
- Department of Psychiatry, University of California at San Francisco, 600 16th Street, San Francisco, CA 94158, USA
| | - Iva Dincheva
- Department of Psychiatry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Sergey V Shmelkov
- Department of Biochemistry and Molecular Pharmacology, Langone Medical Center, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Jihye Kim
- Department of Psychiatry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA; Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Ryan Schreiner
- Dyson Vision Research Institute, Department of Ophthalmology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Shu-Hong Huang
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine and the Collaborative Innovation Center for Brain Science, Shandong University, No. 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Eero Castrén
- Neuroscience Centre, University of Helsinki, 00790 Helsinki, Finland
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Barbara L Hempstead
- Division of Hematology/Medical Oncology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Moses V Chao
- Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Jason B Dictenberg
- AccelBio, DMC Advanced Biotechnology Incubator, Brooklyn, NY 11226, USA; Department of Cell Biology, SUNY Downstate Medical School, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | - Shahin Rafii
- Department of Genetic Medicine, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Zhe-Yu Chen
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine and the Collaborative Innovation Center for Brain Science, Shandong University, No. 44 Wenhua Xi Road, Jinan, Shandong 250012, China.
| | - Enrique Rodriguez-Boulan
- Dyson Vision Research Institute, Department of Ophthalmology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA.
| | - Francis S Lee
- Department of Psychiatry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA; Department of Pharmacology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| |
Collapse
|
94
|
Sui WH, Huang SH, Wang J, Chen Q, Liu T, Chen ZY. Myosin Va mediates BDNF-induced postendocytic recycling of full-length TrkB and its translocation into dendritic spines. J Cell Sci 2015; 128:1108-22. [PMID: 25632160 DOI: 10.1242/jcs.160259] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal survival, neurite outgrowth and synaptic plasticity by activating the receptor tropomyosin receptor kinase B (TrkB, also known as NTRK2). TrkB has been shown to undergo recycling after BDNF stimulation. We have previously reported that full-length TrkB (TrkB-FL) are recycled through a Rab11-dependent pathway upon BDNF stimuli, which is important for the translocation of TrkB-FL into dendritic spines and for the maintenance of prolonged BDNF downstream signaling during long-term potentiation (LTP). However, the identity of the motor protein that mediates the local transfer of recycled TrkB-FL back to the plasma membrane remains unclear. Here, we report that the F-actin-based motor protein myosin Va (Myo5a) mediates the postendocytic recycling of TrkB-FL. Blocking the interaction between Rab11 and Myo5a by use of a TAT-tagged peptide consisting of amino acids 55-66 of the Myo5a ExonE domain weakened the association between TrkB-FL and Myo5a and thus impaired TrkB-FL recycling and BDNF-induced TrkB-FL translocation into dendritic spines. Finally, inhibiting Myo5a-mediated TrkB-FL recycling led to a significant reduction in prolonged BDNF downstream signaling. Taken together, these results show that Myo5a mediates BDNF-dependent TrkB-FL recycling and contributes to BDNF-induced TrkB spine translocation and prolonged downstream signaling.
Collapse
Affiliation(s)
- Wen-Hai Sui
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, CAS Center for Excellence in Brain Science, School of Medicine, Shandong University, No.44 Wenhua Xi Road, Jinan, Shandong 250012, P.R. China
| | - Shu-Hong Huang
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, CAS Center for Excellence in Brain Science, School of Medicine, Shandong University, No.44 Wenhua Xi Road, Jinan, Shandong 250012, P.R. China
| | - Jue Wang
- Central Research Laboratory, The Second Hospital of Shandong University, No.247 Beiyuan Dajie, Jinan, Shandong 250033, P.R. China
| | - Qun Chen
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, CAS Center for Excellence in Brain Science, School of Medicine, Shandong University, No.44 Wenhua Xi Road, Jinan, Shandong 250012, P.R. China
| | - Ting Liu
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, CAS Center for Excellence in Brain Science, School of Medicine, Shandong University, No.44 Wenhua Xi Road, Jinan, Shandong 250012, P.R. China
| | - Zhe-Yu Chen
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, CAS Center for Excellence in Brain Science, School of Medicine, Shandong University, No.44 Wenhua Xi Road, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
95
|
A. Karpov O, W. Fearnley G, A. Smith G, Kankanala J, J. McPherson M, C. Tomlinson D, A. Harrison M, Ponnambalam S. Receptor tyrosine kinase structure and function in health and disease. AIMS BIOPHYSICS 2015. [DOI: 10.3934/biophy.2015.4.476] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
96
|
Ozek C, Kanoski SE, Zhang ZY, Grill HJ, Bence KK. Protein-tyrosine phosphatase 1B (PTP1B) is a novel regulator of central brain-derived neurotrophic factor and tropomyosin receptor kinase B (TrkB) signaling. J Biol Chem 2014; 289:31682-31692. [PMID: 25288805 DOI: 10.1074/jbc.m114.603621] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Neuronal protein-tyrosine phosphatase 1B (PTP1B) deficiency in mice results in enhanced leptin signaling and protection from diet-induced obesity; however, whether additional signaling pathways in the brain contribute to the metabolic effects of PTP1B deficiency remains unclear. Here, we show that the tropomyosin receptor kinase B (TrkB) receptor is a direct PTP1B substrate and implicate PTP1B in the regulation of the central brain-derived neurotrophic factor (BDNF) signaling. PTP1B interacts with activated TrkB receptor in mouse brain and human SH-SY5Y neuroblastoma cells. PTP1B overexpression reduces TrkB phosphorylation and activation of downstream signaling pathways, whereas PTP1B inhibition augments TrkB signaling. Notably, brains of Ptpn1(-/-) mice exhibit enhanced TrkB phosphorylation, and Ptpn1(-/-) mice are hypersensitive to central BDNF-induced increase in core temperature. Taken together, our findings demonstrate that PTP1B is a novel physiological regulator of TrkB and that enhanced BDNF/TrkB signaling may contribute to the beneficial metabolic effects of PTP1B deficiency.
Collapse
Affiliation(s)
- Ceren Ozek
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Scott E Kanoski
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, California 90089, and
| | - Zhong-Yin Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, Indiana 46202
| | - Harvey J Grill
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kendra K Bence
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104,.
| |
Collapse
|
97
|
The role of rab proteins in neuronal cells and in the trafficking of neurotrophin receptors. MEMBRANES 2014; 4:642-77. [PMID: 25295627 PMCID: PMC4289860 DOI: 10.3390/membranes4040642] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/27/2014] [Accepted: 09/16/2014] [Indexed: 12/11/2022]
Abstract
Neurotrophins are a family of proteins that are important for neuronal development, neuronal survival and neuronal functions. Neurotrophins exert their role by binding to their receptors, the Trk family of receptor tyrosine kinases (TrkA, TrkB, and TrkC) and p75NTR, a member of the tumor necrosis factor (TNF) receptor superfamily. Binding of neurotrophins to receptors triggers a complex series of signal transduction events, which are able to induce neuronal differentiation but are also responsible for neuronal maintenance and neuronal functions. Rab proteins are small GTPases localized to the cytosolic surface of specific intracellular compartments and are involved in controlling vesicular transport. Rab proteins, acting as master regulators of the membrane trafficking network, play a central role in both trafficking and signaling pathways of neurotrophin receptors. Axonal transport represents the Achilles' heel of neurons, due to the long-range distance that molecules, organelles and, in particular, neurotrophin-receptor complexes have to cover. Indeed, alterations of axonal transport and, specifically, of axonal trafficking of neurotrophin receptors are responsible for several human neurodegenerative diseases, such as Huntington's disease, Alzheimer's disease, amyotrophic lateral sclerosis and some forms of Charcot-Marie-Tooth disease. In this review, we will discuss the link between Rab proteins and neurotrophin receptor trafficking and their influence on downstream signaling pathways.
Collapse
|
98
|
Calsyntenin-1 regulates axon branching and endosomal trafficking during sensory neuron development in vivo. J Neurosci 2014; 34:9235-48. [PMID: 25009257 DOI: 10.1523/jneurosci.0561-14.2014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Precise regulation of axon branching is crucial for neuronal circuit formation, yet the mechanisms that control branch formation are not well understood. Moreover, the highly complex morphology of neurons makes them critically dependent on protein/membrane trafficking and transport systems, although the functions for membrane trafficking in neuronal morphogenesis are largely undefined. Here we identify a kinesin adaptor, Calsyntenin-1 (Clstn-1), as an essential regulator of axon branching and neuronal compartmentalization in vivo. We use morpholino knockdown and a Clstn-1 mutant to show that Clstn-1 is required for formation of peripheral but not central sensory axons, and for peripheral axon branching in zebrafish. We used live imaging of endosomal trafficking in vivo to show that Clstn-1 regulates transport of Rab5-containing endosomes from the cell body to specific locations of developing axons. Our results suggest a model in which Clstn-1 patterns separate axonal compartments and define their ability to branch by directing trafficking of specific endosomes.
Collapse
|
99
|
Pla P, Orvoen S, Saudou F, David DJ, Humbert S. Mood disorders in Huntington's disease: from behavior to cellular and molecular mechanisms. Front Behav Neurosci 2014; 8:135. [PMID: 24795586 PMCID: PMC4005937 DOI: 10.3389/fnbeh.2014.00135] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/03/2014] [Indexed: 01/29/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder that is best known for its effect on motor control. Mood disturbances such as depression, anxiety, and irritability also have a high prevalence in patients with HD, and often start before the onset of motor symptoms. Various rodent models of HD recapitulate the anxiety/depressive behavior seen in patients. HD is caused by an expanded polyglutamine stretch in the N-terminal part of a 350 kDa protein called huntingtin (HTT). HTT is ubiquitously expressed and is implicated in several cellular functions including control of transcription, vesicular trafficking, ciliogenesis, and mitosis. This review summarizes progress in efforts to understand the cellular and molecular mechanisms underlying behavioral disorders in patients with HD. Dysfunctional HTT affects cellular pathways that are involved in mood disorders or in the response to antidepressants, including BDNF/TrkB and serotonergic signaling. Moreover, HTT affects adult hippocampal neurogenesis, a physiological phenomenon that is implicated in some of the behavioral effects of antidepressants and is linked to the control of anxiety. These findings are consistent with the emerging role of wild-type HTT as a crucial component of neuronal development and physiology. Thus, the pathogenic polyQ expansion in HTT could lead to mood disorders not only by the gain of a new toxic function but also by the perturbation of its normal function.
Collapse
Affiliation(s)
- Patrick Pla
- Institut Curie Orsay, France ; CNRS UMR3306 Orsay, France ; INSERM U1005 Orsay, France ; Faculté des Sciences, Université Paris-Sud Orsay, France
| | - Sophie Orvoen
- EA3544, Faculté de Pharmacie, Université Paris-Sud Châtenay-Malabry, France
| | - Frédéric Saudou
- Institut Curie Orsay, France ; CNRS UMR3306 Orsay, France ; INSERM U1005 Orsay, France
| | - Denis J David
- EA3544, Faculté de Pharmacie, Université Paris-Sud Châtenay-Malabry, France
| | - Sandrine Humbert
- Institut Curie Orsay, France ; CNRS UMR3306 Orsay, France ; INSERM U1005 Orsay, France
| |
Collapse
|
100
|
Vermehren-Schmaedick A, Krueger W, Jacob T, Ramunno-Johnson D, Balkowiec A, Lidke KA, Vu TQ. Heterogeneous intracellular trafficking dynamics of brain-derived neurotrophic factor complexes in the neuronal soma revealed by single quantum dot tracking. PLoS One 2014; 9:e95113. [PMID: 24732948 PMCID: PMC3986401 DOI: 10.1371/journal.pone.0095113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/23/2014] [Indexed: 01/19/2023] Open
Abstract
Accumulating evidence underscores the importance of ligand-receptor dynamics in shaping cellular signaling. In the nervous system, growth factor-activated Trk receptor trafficking serves to convey biochemical signaling that underlies fundamental neural functions. Focus has been placed on axonal trafficking but little is known about growth factor-activated Trk dynamics in the neuronal soma, particularly at the molecular scale, due in large part to technical hurdles in observing individual growth factor-Trk complexes for long periods of time inside live cells. Quantum dots (QDs) are intensely fluorescent nanoparticles that have been used to study the dynamics of ligand-receptor complexes at the plasma membrane but the value of QDs for investigating ligand-receptor intracellular dynamics has not been well exploited. The current study establishes that QD conjugated brain-derived neurotrophic factor (QD-BDNF) binds to TrkB receptors with high specificity, activates TrkB downstream signaling, and allows single QD tracking capability for long recording durations deep within the soma of live neurons. QD-BDNF complexes undergo internalization, recycling, and intracellular trafficking in the neuronal soma. These trafficking events exhibit little time-synchrony and diverse heterogeneity in underlying dynamics that include phases of sustained rapid motor transport without pause as well as immobility of surprisingly long-lasting duration (several minutes). Moreover, the trajectories formed by dynamic individual BDNF complexes show no apparent end destination; BDNF complexes can be found meandering over long distances of several microns throughout the expanse of the neuronal soma in a circuitous fashion. The complex, heterogeneous nature of neuronal soma trafficking dynamics contrasts the reported linear nature of axonal transport data and calls for models that surpass our generally limited notions of nuclear-directed transport in the soma. QD-ligand probes are poised to provide understanding of how the molecular mechanisms underlying intracellular ligand-receptor trafficking shape cell signaling under conditions of both healthy and dysfunctional neurological disease models.
Collapse
Affiliation(s)
- Anke Vermehren-Schmaedick
- Department of Biomedical Engineering and Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Wesley Krueger
- Department of Physics & Astronomy, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Thomas Jacob
- Department of Biomedical Engineering and Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Damien Ramunno-Johnson
- Department of Biomedical Engineering and Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Agnieszka Balkowiec
- Department of Integrative Biosciences, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Keith A. Lidke
- Department of Physics & Astronomy, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Tania Q. Vu
- Department of Biomedical Engineering and Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|