51
|
Basal ganglia oscillations as biomarkers for targeting circuit dysfunction in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2020; 252:525-557. [PMID: 32247374 DOI: 10.1016/bs.pbr.2020.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oscillations are a naturally occurring phenomenon in highly interconnected dynamical systems. However, it is thought that excessive synchronized oscillations in brain circuits can be detrimental for many brain functions by disrupting neuronal information processing. Because synchronized basal ganglia oscillations are a hallmark of Parkinson's disease (PD), it has been suggested that aberrant rhythmic activity associated with symptoms of the disease could be used as a physiological biomarker to guide pharmacological and electrical neuromodulatory interventions. We here briefly review the various manifestations of basal ganglia oscillations observed in human subjects and in animal models of PD. In this context, we also review the evidence supporting a pathophysiological role of different oscillations for the suppression of voluntary movements as well as for the induction of excessive motor activity. In light of these findings, it is discussed how oscillations could be used to guide a more precise targeting of dysfunctional circuits to obtain improved symptomatic treatment of PD.
Collapse
|
52
|
Fischer P, Lipski WJ, Neumann WJ, Turner RS, Fries P, Brown P, Richardson RM. Movement-related coupling of human subthalamic nucleus spikes to cortical gamma. eLife 2020; 9:51956. [PMID: 32159515 PMCID: PMC7096181 DOI: 10.7554/elife.51956] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/11/2020] [Indexed: 11/13/2022] Open
Abstract
Cortico-basal ganglia interactions continuously shape the way we move. Ideas about how this circuit works are based largely on models those consider only firing rate as the mechanism of information transfer. A distinct feature of neural activity accompanying movement, however, is increased motor cortical and basal ganglia gamma synchrony. To investigate the relationship between neuronal firing in the basal ganglia and cortical gamma activity during movement, we analysed human ECoG and subthalamic nucleus (STN) unit activity during hand gripping. We found that fast reaction times were preceded by enhanced STN spike-to-cortical gamma phase coupling, indicating a role in motor preparation. Importantly, increased gamma phase coupling occurred independent of changes in mean STN firing rates, and the relative timing of STN spikes was offset by half a gamma cycle for ipsilateral vs. contralateral movements, indicating that relative spike timing is as relevant as firing rate for understanding cortico-basal ganglia information transfer.
Collapse
Affiliation(s)
- Petra Fischer
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Witold J Lipski
- Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Wolf-Julian Neumann
- Department of Neurology, Campus Mitte, Charite - Universitaetsmedizin Berlin, Berlin, Germany
| | - Robert S Turner
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, United States
| | - Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany.,Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Peter Brown
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, United States.,Harvard Medical School, Boston, United States
| |
Collapse
|
53
|
McGregor MM, Nelson AB. Circuit Mechanisms of Parkinson's Disease. Neuron 2019; 101:1042-1056. [PMID: 30897356 DOI: 10.1016/j.neuron.2019.03.004] [Citation(s) in RCA: 278] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/11/2019] [Accepted: 03/01/2019] [Indexed: 12/27/2022]
Abstract
Parkinson's disease (PD) is a complex, multi-system neurodegenerative disorder. The second most common neurodegenerative disorder after Alzheimer's disease, it affects approximately 1% of adults over age 60. Diagnosis follows the development of one or more of the core motor features of the disease, including tremor, slowing of movement (bradykinesia), and rigidity. However, there are numerous other motor and nonmotor disease manifestations. Many PD symptoms result directly from neurodegeneration; others are driven by aberrant activity patterns in surviving neurons. This latter phenomenon, PD circuit dysfunction, is an area of intense study, as it likely underlies our ability to treat many disease symptoms in the face of (currently) irreversible neurodegeneration. This Review will discuss key clinical features of PD and their basis in neural circuit dysfunction. We will first review important disease symptoms and some of the responsible neuropathology. We will then describe the basal ganglia-thalamocortical circuit, the major locus of PD-related circuit dysfunction, and some of the models that have influenced its study. We will review PD-related changes in network activity, subdividing findings into those that touch on the rate, rhythm, or synchronization of neurons. Finally, we suggest some critical remaining questions for the field and areas for new developments.
Collapse
Affiliation(s)
- Matthew M McGregor
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA; Department of Neurology, UCSF, San Francisco, CA 94158, USA
| | - Alexandra B Nelson
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA; Department of Neurology, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA.
| |
Collapse
|
54
|
Bigelow MD, Kouzani AZ. Neural stimulation systems for the control of refractory epilepsy: a review. J Neuroeng Rehabil 2019; 16:126. [PMID: 31665058 PMCID: PMC6820988 DOI: 10.1186/s12984-019-0605-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022] Open
Abstract
Epilepsy affects nearly 1% of the world's population. A third of epilepsy patients suffer from a kind of epilepsy that cannot be controlled by current medications. For those where surgery is not an option, neurostimulation may be the only alternative to bring relief, improve quality of life, and avoid secondary injury to these patients. Until recently, open loop neurostimulation was the only alternative for these patients. However, for those whose epilepsy is applicable, the medical approval of the responsive neural stimulation and the closed loop vagal nerve stimulation systems have been a step forward in the battle against uncontrolled epilepsy. Nonetheless, improvements can be made to the existing systems and alternative systems can be developed to further improve the quality of life of sufferers of the debilitating condition. In this paper, we first present a brief overview of epilepsy as a disease. Next, we look at the current state of biomarker research in respect to sensing and predicting epileptic seizures. Then, we present the current state of open loop neural stimulation systems. We follow this by investigating the currently approved, and some of the recent experimental, closed loop systems documented in the literature. Finally, we provide discussions on the current state of neural stimulation systems for controlling epilepsy, and directions for future studies.
Collapse
Affiliation(s)
- Matthew D Bigelow
- School of Engineering, Deakin University, Geelong, Victoria, 3216, Australia
| | - Abbas Z Kouzani
- School of Engineering, Deakin University, Geelong, Victoria, 3216, Australia.
| |
Collapse
|
55
|
Petkos K, Guiho T, Degenaar P, Jackson A, Brown P, Denison T, Drakakis EM. A high-performance 4 nV (√Hz) -1 analog front-end architecture for artefact suppression in local field potential recordings during deep brain stimulation. J Neural Eng 2019; 16:066003. [PMID: 31151118 PMCID: PMC6877351 DOI: 10.1088/1741-2552/ab2610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Recording of local field potentials (LFPs) during deep brain stimulation (DBS) is necessary to investigate the instantaneous brain response to stimulation, minimize time delays for closed-loop neurostimulation and maximise the available neural data. To our knowledge, existing recording systems lack the ability to provide artefact-free high-frequency (>100 Hz) LFP recordings during DBS in real time primarily because of the contamination of the neural signals of interest by the stimulation artefacts. APPROACH To solve this problem, we designed and developed a novel, low-noise and versatile analog front-end (AFE) that uses a high-order (8th) analog Chebyshev notch filter to suppress the artefacts originating from the stimulation frequency. After defining the system requirements for concurrent LFP recording and DBS artefact suppression, we assessed the performance of the realised AFE by conducting both in vitro and in vivo experiments using unipolar and bipolar DBS (monophasic pulses, amplitude ranging from 3 to 6 V peak-to-peak, frequency 140 Hz and pulse width 100 µs). A full performance comparison between the proposed AFE and an identical AFE, equipped with an 8th order analog Bessel notch filter, was also conducted. MAIN RESULTS A high-performance, 4 nV ([Formula: see text])-1 AFE that is capable of recording nV-scale signals was designed in accordance with the imposed specifications. Under both in vitro and in vivo experimental conditions, the proposed AFE provided real-time, low-noise and artefact-free LFP recordings (in the frequency range 0.5-250 Hz) during stimulation. Its sensing and stimulation artefact suppression capabilities outperformed the capabilities of the AFE equipped with the Bessel notch filter. SIGNIFICANCE The designed AFE can precisely record LFP signals, in and without the presence of either unipolar or bipolar DBS, which renders it as a functional and practical AFE architecture to be utilised in a wide range of applications and environments. This work paves the way for the development of externalized research tools for closed-loop neuromodulation that use low- and higher-frequency LFPs as control signals.
Collapse
Affiliation(s)
- Konstantinos Petkos
- Department of Bioengineering, Imperial College London, London, United Kingdom. Center for Neurotechnology, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
56
|
The Functional Role of Thalamocortical Coupling in the Human Motor Network. J Neurosci 2019; 39:8124-8134. [PMID: 31471470 DOI: 10.1523/jneurosci.1153-19.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/02/2019] [Accepted: 08/22/2019] [Indexed: 01/14/2023] Open
Abstract
The amplitude of high broadband activity in human cortical field potentials indicates local processing and has repeatedly been shown to reflect motor control in the primary motor cortex. In a group of male and female subjects affected by essential tremor and undergoing deep brain stimulation surgery, ventral intermediate nucleus low-frequency oscillations (<30 Hz) entrain the corticomotor high broadband activity (>40 Hz) during rest, relinquishing that role during movement execution. This finding suggests that there is significant cross-rhythm communication between thalamocortical regions, and motor behavior corresponds to changes in thalamocortical phase-amplitude coupling profiles. Herein, we demonstrate that thalamocortical coupling is a crucial mechanism for gating motor behavior.SIGNIFICANCE STATEMENT We demonstrate, for the first time, how thalamocortical coupling is mediating movement execution in humans. We show how the low-frequency oscillation from the ventral intermediate nucleus, known as the motor nucleus of the thalamus, entrains the excitability of the primary motor cortex, as reflected by the phase-amplitude coupling between the two regions. We show that thalamocortical phase-amplitude coupling is a manifestation of a gating mechanism for movement execution mediated by the thalamus. These findings highlight the importance of incorporating cross-frequency relationship in models of motor behavior; and given the spatial specificity of this mechanism, this work could be used to improve functional targeting during surgical implantations in subcortical regions.
Collapse
|
57
|
Velarde OM, Urdapilleta E, Mato G, Dellavale D. Bifurcation structure determines different phase-amplitude coupling patterns in the activity of biologically plausible neural networks. Neuroimage 2019; 202:116031. [PMID: 31330244 DOI: 10.1016/j.neuroimage.2019.116031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022] Open
Abstract
Phase-amplitude cross frequency coupling (PAC) is a rather ubiquitous phenomenon that has been observed in a variety of physical domains; however, the mechanisms underlying the emergence of PAC and its functional significance in the context of neural processes are open issues under debate. In this work we analytically demonstrate that PAC phenomenon naturally emerges in mean-field models of biologically plausible networks, as a signature of specific bifurcation structures. The proposed analysis, based on bifurcation theory, allows the identification of the mechanisms underlying oscillatory dynamics that are essentially different in the context of PAC. Specifically, we found that two PAC classes can coexist in the complex dynamics of the analyzed networks: 1) harmonic PAC which is an epiphenomenon of the nonsinusoidal waveform shape characterized by the linear superposition of harmonically related spectral components, and 2) nonharmonic PAC associated with "true" coupled oscillatory dynamics with independent frequencies elicited by a secondary Hopf bifurcation and mechanisms involving periodic excitation/inhibition (PEI) of a network population. Importantly, these two PAC types have been experimentally observed in a variety of neural architectures confounding traditional parametric and nonparametric PAC metrics, like those based on linear filtering or the waveform shape analysis, due to the fact that these methods operate on a single one-dimensional projection of an intrinsically multidimensional system dynamics. We exploit the proposed tools to study the functional significance of the PAC phenomenon in the context of Parkinson's disease (PD). Our results show that pathological slow oscillations (e.g. β band) and nonharmonic PAC patterns emerge from dissimilar underlying mechanisms (bifurcations) and are associated to the competition of different BG-thalamocortical loops. Thus, this study provides theoretical arguments that demonstrate that nonharmonic PAC is not an epiphenomenon related to the pathological β band oscillations, thus supporting the experimental evidence about the relevance of PAC as a potential biomarker of PD.
Collapse
Affiliation(s)
- Osvaldo Matías Velarde
- Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCUYO), Av. E. Bustillo 9500, R8402AGP, San Carlos de Bariloche, Río Negro, Argentina
| | - Eugenio Urdapilleta
- Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCUYO), Av. E. Bustillo 9500, R8402AGP, San Carlos de Bariloche, Río Negro, Argentina
| | - Germán Mato
- Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCUYO), Av. E. Bustillo 9500, R8402AGP, San Carlos de Bariloche, Río Negro, Argentina.
| | - Damián Dellavale
- Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCUYO), Av. E. Bustillo 9500, R8402AGP, San Carlos de Bariloche, Río Negro, Argentina.
| |
Collapse
|
58
|
Sukiban J, Voges N, Dembek TA, Pauli R, Visser-Vandewalle V, Denker M, Weber I, Timmermann L, Grün S. Evaluation of Spike Sorting Algorithms: Application to Human Subthalamic Nucleus Recordings and Simulations. Neuroscience 2019; 414:168-185. [PMID: 31299347 DOI: 10.1016/j.neuroscience.2019.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 11/24/2022]
Abstract
An important prerequisite for the analysis of spike synchrony in extracellular recordings is the extraction of single-unit activity from the multi-unit signal. To identify single units, potential spikes are separated with respect to their potential neuronal origins ('spike sorting'). However, different sorting algorithms yield inconsistent unit assignments, which seriously influences subsequent spike train analyses. We aim to identify the best sorting algorithm for subthalamic nucleus recordings of patients with Parkinson's disease (experimental data ED). Therefore, we apply various prevalent algorithms offered by the 'Plexon Offline Sorter' and evaluate the sorting results. Since this evaluation leaves us unsure about the best algorithm, we apply all methods again to artificial data (AD) with known ground truth. AD consists of pairs of single units with different shape similarity embedded in the background noise of the ED. The sorting evaluation depicts a significant influence of the respective methods on the single unit assignments. We find a high variability in the sortings obtained by different algorithms that increases with single units shape similarity. We also find significant differences in the resulting firing characteristics. We conclude that Valley-Seeking algorithms produce the most accurate result if the exclusion of artifacts as unsorted events is important. If the latter is less important ('clean' data) the K-Means algorithm is a better option. Our results strongly argue for the need of standardized validation procedures based on ground truth data. The recipe suggested here is simple enough to become a standard procedure.
Collapse
Affiliation(s)
- Jeyathevy Sukiban
- Department of Neurology, University Hospital Cologne, Germany; Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I (INM-10), Jülich Research Centre, Germany
| | - Nicole Voges
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I (INM-10), Jülich Research Centre, Germany.
| | - Till A Dembek
- Department of Neurology, University Hospital Cologne, Germany
| | - Robin Pauli
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I (INM-10), Jülich Research Centre, Germany; Theoretical Systems Neurobiology, RWTH Aachen University, Germany
| | | | - Michael Denker
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I (INM-10), Jülich Research Centre, Germany
| | - Immo Weber
- Department of Neurology, University Hospital Giessen & Marburg, Marburg, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital Cologne, Germany; Department of Neurology, University Hospital Giessen & Marburg, Marburg, Germany
| | - Sonja Grün
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I (INM-10), Jülich Research Centre, Germany; Theoretical Systems Neurobiology, RWTH Aachen University, Germany
| |
Collapse
|
59
|
Dopamine substitution alters effective connectivity of cortical prefrontal, premotor, and motor regions during complex bimanual finger movements in Parkinson's disease. Neuroimage 2019; 190:118-132. [DOI: 10.1016/j.neuroimage.2018.04.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/23/2018] [Accepted: 04/12/2018] [Indexed: 01/31/2023] Open
|
60
|
Del Felice A, Castiglia L, Formaggio E, Cattelan M, Scarpa B, Manganotti P, Tenconi E, Masiero S. Personalized transcranial alternating current stimulation (tACS) and physical therapy to treat motor and cognitive symptoms in Parkinson's disease: A randomized cross-over trial. Neuroimage Clin 2019; 22:101768. [PMID: 30921609 PMCID: PMC6439208 DOI: 10.1016/j.nicl.2019.101768] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 01/22/2019] [Accepted: 03/10/2019] [Indexed: 02/06/2023]
Abstract
Abnormal cortical oscillations are markers of Parkinson's Disease (PD). Transcranial alternating current stimulation (tACS) can modulate brain oscillations and possibly impact on behaviour. Mapping of cortical activity (prevalent oscillatory frequency and topographic scalp distribution) may provide a personalized neurotherapeutic target and guide non-invasive brain stimulation. This is a cross-over, double blinded, randomized trial. Electroencephalogram (EEG) from participants with PD referred to Specialist Clinic, University Hospital, were recorded. TACS frequency and electrode position were individually defined based on statistical comparison of EEG power spectra maps with normative data from our laboratory. Stimulation frequency was set according to the EEG band displaying higher power spectra (with beta excess on EEG map, tACS was set at 4 Hz; with theta excess, tACS was set at 30 Hz). Participants were randomized to tACS or random noise stimulation (RNS), 5 days/week for 2-weeks followed by ad hoc physical therapy. EEG, motor (Unified Parkinson's Disease Rating Scale-motor: UPDRS III), neuropsychological (frontal, executive and memory tests) performance and mood were measured before (T0), after (T1) and 4-weeks after treatment (T2). A linear model with random effects and Wilcoxon test were used to detect differences. Main results include a reduction of beta rhythm in theta-tACS vs. RNS group at T1 over right sensorimotor area (p = .014) and left parietal area (p = .010) and at T2 over right sensorimotor area (p = .004) and left frontal area (p = .039). Bradykinesia items improved at T1 (p = .002) and T2 (p = .047) compared to T0 in the tACS group. In the tACS group the Montréal Cognitive Assessment (MoCA) improved at T2 compared with T1 (p = .049). Individualized tACS in PD improves motor and cognitive performance. These changes are associated with a reduction of excessive fast EEG oscillations.
Collapse
Affiliation(s)
- Alessandra Del Felice
- Department of Neuroscience, Section of Rehabilitation, University of Padova, via Giustiniani 3, 35128 Padova, Italy.
| | - Leonora Castiglia
- Department of Neuroscience, Section of Rehabilitation, University of Padova, via Giustiniani 3, 35128 Padova, Italy.
| | - Emanuela Formaggio
- Department of Neuroscience, Section of Rehabilitation, University of Padova, via Giustiniani 3, 35128 Padova, Italy.
| | - Manuela Cattelan
- Department of Statistical Sciences, University of Padova, via C. Battisti 241, 35121 Padova, Italy.
| | - Bruno Scarpa
- Department of Statistical Sciences, University of Padova, via C. Battisti 241, 35121 Padova, Italy.
| | - Paolo Manganotti
- Neurology Section, Cattinara University Hospital, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy.
| | - Elena Tenconi
- Department of Neuroscience, Psychiatric Clinic, University of Padova, Via Giustiniani 3, 35128 Padova, Italy.
| | - Stefano Masiero
- Department of Neuroscience, Section of Rehabilitation, University of Padova, via Giustiniani 3, 35128 Padova, Italy.
| |
Collapse
|
61
|
Romeo A, Dubuc DM, Gonzalez CL, Patel ND, Cutter G, Delk H, Guthrie BL, Walker HC. Cortical Activation Elicited by Subthalamic Deep Brain Stimulation Predicts Postoperative Motor Side Effects. Neuromodulation 2019; 22:456-464. [PMID: 30844131 DOI: 10.1111/ner.12901] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 08/25/2018] [Accepted: 09/27/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Although deep brain stimulation (DBS) is an effective treatment for movement disorders, improvement varies substantially in individuals, across clinical trials, and over time. Noninvasive biomarkers that predict the individual response to DBS could be used to optimize outcomes and drive technological innovation in neuromodulation. We sought to evaluate whether noninvasive event related potentials elicited by subthalamic DBS during surgical targeting predict the tolerability of a given stimulation site in patients with advanced Parkinson's disease. METHODS Using electroencephalography, we measured event related potentials elicited by 20 Hz DBS over a range of stimulus intensities across the spatial extent of the implanted electrode array in 11 patients. We correlated event related potential timing and morphology with the stimulus amplitude thresholds for motor side effects during postoperative programming at ≥130 Hz. RESULTS During surgical targeting, DBS at 20 Hz elicits large amplitude, high frequency activity (evoked HFA) with mean onset latency of 9.0 ± 0.3 msec and a mean frequency of 175.8 ± 7.8 Hz. The lowest DBS amplitude that elicits the HFA predicts thresholds for motor side effects during postoperative stimulation at ≥130 Hz (p < 0.001, ANOVA). CONCLUSION Event related potentials elicited by DBS can predict clinically relevant corticospinal activation by stimulation after surgery. Noninvasive scalp physiology requires no patient interaction and could serve as a biomarker to guide targeting, postoperative programming, and emerging technologies such as directional and closed-loop stimulation.
Collapse
Affiliation(s)
- Andrew Romeo
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Darcy M Dubuc
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Naishal D Patel
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gary Cutter
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Haley Delk
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Barton L Guthrie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Harrison C Walker
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
62
|
Meidahl AC, Moll CKE, van Wijk BCM, Gulberti A, Tinkhauser G, Westphal M, Engel AK, Hamel W, Brown P, Sharott A. Synchronised spiking activity underlies phase amplitude coupling in the subthalamic nucleus of Parkinson's disease patients. Neurobiol Dis 2019; 127:101-113. [PMID: 30753889 PMCID: PMC6545172 DOI: 10.1016/j.nbd.2019.02.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/21/2019] [Accepted: 02/07/2019] [Indexed: 12/31/2022] Open
Abstract
Both phase-amplitude coupling (PAC) and beta-bursts in the subthalamic nucleus have been significantly linked to symptom severity in Parkinson's disease (PD) in humans and emerged independently as competing biomarkers for closed-loop deep brain stimulation (DBS). However, the underlying nature of subthalamic PAC is poorly understood and its relationship with transient beta burst-events has not been investigated. To address this, we studied macro- and micro electrode recordings of local field potentials (LFPs) and single unit activity from 15 hemispheres in 10 PD patients undergoing DBS surgery. PAC between beta phase and high frequency oscillation (HFO) amplitude was compared to single unit firing rates, spike triggered averages, power spectral densities, inter spike intervals and phase-spike locking, and was studied in periods of beta-bursting. We found a significant synchronisation of spiking to HFOs and correlation of mean firing rates with HFO-amplitude when the latter was coupled to beta phase (i.e. in the presence of PAC). In the presence of PAC, single unit power spectra displayed peaks in the beta and HFO frequency range and the HFO frequency was correlated with that in the LFP. Furthermore, inter spike interval frequencies peaked in the same frequencies for which PAC was observed. Finally, PAC significantly increased with beta burst-duration. Our findings offer new insight in the pathology of Parkinson's disease by providing evidence that subthalamic PAC reflects the locking of spiking activity to network beta oscillations and that this coupling progressively increases with beta-burst duration. These findings suggest that beta-bursts capture periods of increased subthalamic input/output synchronisation in the beta frequency range and have important implications for therapeutic closed-loop DBS.
Collapse
Affiliation(s)
- Anders Christian Meidahl
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford OX1 3TH, United Kingdom; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Christian K E Moll
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Bernadette C M van Wijk
- Integrative Model-based Cognitive Neuroscience Research Unit, Department of Psychology, University of Amsterdam, 1001 NK, Amsterdam, the Netherlands; Department of Neurology, Charité-University Medicine, 10117 Berlin, Germany; Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Alessandro Gulberti
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Gerd Tinkhauser
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford OX1 3TH, United Kingdom; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Wolfgang Hamel
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Peter Brown
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford OX1 3TH, United Kingdom; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Andrew Sharott
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford OX1 3TH, United Kingdom.
| |
Collapse
|
63
|
Malekmohammadi M, Shahriari Y, AuYong N, O’Keeffe A, Bordelon Y, Hu X, Pouratian N. Pallidal stimulation in Parkinson disease differentially modulates local and network β activity. J Neural Eng 2018; 15:056016. [PMID: 29972146 PMCID: PMC6125208 DOI: 10.1088/1741-2552/aad0fb] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
β hypersynchrony within the basal ganglia-thalamocortical (BGTC) network has been suggested as a hallmark of Parkinson disease (PD) pathophysiology. Subthalamic nucleus (STN)-DBS has been shown to alter cortical-subcortical synchronization. It is unclear whether this is a generalizable phenomenon of therapeutic stimulation across targets. OBJECTIVES We aimed to evaluate whether DBS of the globus pallidus internus (GPi) results in cortical-subcortical desynchronization, despite the lack of monosynaptic connections between GPi and sensorimotor cortex. APPROACH We recorded local field potentials from the GPi and electrocorticographic signals from the ipsilateral sensorimotor cortex, off medications in nine PD patients, undergoing DBS implantation. We analyzed both local oscillatory power and functional connectivity (coherence and debiased weighted phase lag index (dWPLI)) with and without stimulation while subjects were resting with eyes open. MAIN RESULTS DBS significantly suppressed low β power within the GPi (-26.98% ± 15.14%), p < 0.05) without modulation of sensorimotor cortical β power (low or high). In contrast, stimulation suppressed pallidocortical high β coherence (-38.89% ± 6.19%, p = 0.02) and dWPLI (-61.40% ± 8.75%, p = 0.02). Changes in cortical-subcortical functional connectivity were spatially specific to the motor cortex. SIGNIFICANCE We highlight the role of DBS in desynchronizing network activity, particularly in the high β band. The current study of GPi-DBS suggests these network-level effects are not necessarily dependent and potentially may be independent of the hyperdirect pathway. Importantly, these results draw a sharp distinction between the potential significance of low β oscillations locally within the basal ganglia and high β oscillations across the BGTC motor circuit.
Collapse
Affiliation(s)
| | - Yalda Shahriari
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, RI, USA
- Department of Physiological Nursing, University of California, San Francisco, CA, USA
| | - Nicholas AuYong
- Department of Neurosurgery, University of California, Los Angeles, CA, USA
| | - Andrew O’Keeffe
- Department of Neurosurgery, University of California, Los Angeles, CA, USA
| | - Yvette Bordelon
- Department of Neurology, University of California, Los Angeles, CA, USA
| | - Xiao Hu
- Department of Physiological Nursing, University of California, San Francisco, CA, USA
| | - Nader Pouratian
- Department of Neurosurgery, University of California, Los Angeles, CA, USA
| |
Collapse
|
64
|
Muthuraman M, Koirala N, Ciolac D, Pintea B, Glaser M, Groppa S, Tamás G, Groppa S. Deep Brain Stimulation and L-DOPA Therapy: Concepts of Action and Clinical Applications in Parkinson's Disease. Front Neurol 2018; 9:711. [PMID: 30210436 PMCID: PMC6119713 DOI: 10.3389/fneur.2018.00711] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022] Open
Abstract
L-DOPA is still the most effective pharmacological therapy for the treatment of motor symptoms in Parkinson's disease (PD) almost four decades after it was first used. Deep brain stimulation (DBS) is a safe and highly effective treatment option in patients with PD. Even though a clear understanding of the mechanisms of both treatment methods is yet to be obtained, the combination of both treatments is the most effective standard evidenced-based therapy to date. Recent studies have demonstrated that DBS is a therapy option even in the early course of the disease, when first complications arise despite a rigorous adjustment of the pharmacological treatment. The unique feature of this therapeutic approach is the ability to preferentially modulate specific brain networks through the choice of stimulation site. The clinical effects have been unequivocally confirmed in recent studies; however, the impact of DBS and the supplementary effect of L-DOPA on the neuronal network are not yet fully understood. In this review, we present emerging data on the presumable mechanisms of DBS in patients with PD and discuss the pathophysiological similarities and differences in the effects of DBS in comparison to dopaminergic medication. Targeted, selective modulation of brain networks by DBS and pharmacodynamic effects of L-DOPA therapy on the central nervous system are presented. Moreover, we outline the perioperative algorithms for PD patients before and directly after the implantation of DBS electrodes and strategies for the reduction of side effects and optimization of motor and non-motor symptoms.
Collapse
Affiliation(s)
- Muthuraman Muthuraman
- Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Nabin Koirala
- Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Dumitru Ciolac
- Department of Neurology, Institute of Emergency Medicine, Chisinau, Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemiţanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Bogdan Pintea
- Department of Neurosurgery, University Hospital of Bonn, Bonn, Germany
| | - Martin Glaser
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Stanislav Groppa
- Department of Neurology, Institute of Emergency Medicine, Chisinau, Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemiţanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Gertrúd Tamás
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Sergiu Groppa
- Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
65
|
Maling N, Lempka SF, Blumenfeld Z, Bronte-Stewart H, McIntyre CC. Biophysical basis of subthalamic local field potentials recorded from deep brain stimulation electrodes. J Neurophysiol 2018; 120:1932-1944. [PMID: 30020838 DOI: 10.1152/jn.00067.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Clinical deep brain stimulation (DBS) technology is evolving to enable chronic recording of local field potentials (LFPs) that represent electrophysiological biomarkers of the underlying disease state. However, little is known about the biophysical basis of LFPs, or how the patient's unique brain anatomy and electrode placement impact the recordings. Therefore, we developed a patient-specific computational framework to analyze LFP recordings within a clinical DBS context. We selected a subject with Parkinson's disease implanted with a Medtronic Activa PC+S DBS system and reconstructed their subthalamic nucleus (STN) and DBS electrode location using medical imaging data. The patient-specific STN volume was populated with 235,280 multicompartment STN neuron models, providing a neuron density consistent with histological measurements. Each neuron received time-varying synaptic inputs and generated transmembrane currents that gave rise to the LFP signal recorded at DBS electrode contacts residing in a finite element volume conductor model. We then used the model to study the role of synchronous beta-band inputs to the STN neurons on the recorded power spectrum. Three bipolar pairs of simultaneous clinical LFP recordings were used in combination with an optimization algorithm to customize the neural activity parameters in the model to the patient. The optimized model predicted a 2.4-mm radius of beta-synchronous neurons located in the dorsolateral STN. These theoretical results enable biophysical dissection of the LFP signal at the cellular level with direct comparison to the clinical recordings, and the model system provides a scientific platform to help guide the design of DBS technology focused on the use of subthalamic beta activity in closed-loop algorithms. NEW & NOTEWORTHY The analysis of deep brain stimulation of local field potential (LFP) data is rapidly expanding from scientific curiosity to the basis for clinical biomarkers capable of improving the therapeutic efficacy of stimulation. With this growing clinical importance comes a growing need to understand the underlying electrophysiological fundamentals of the signals and the factors contributing to their modulation. Our model reconstructs the clinical LFP from first principles and highlights the importance of patient-specific factors in dictating the signals recorded.
Collapse
Affiliation(s)
- Nicholas Maling
- Department of Biomedical Engineering, Case Western Reserve University , Cleveland, Ohio
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan
| | - Zack Blumenfeld
- Department of Neurology, Stanford University , Stanford, California
| | | | - Cameron C McIntyre
- Department of Biomedical Engineering, Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
66
|
Zhao D, Sun Q, Cheng S, He M, Chen X, Hou X. Extraction of Parkinson’s Disease-Related Features from Local Field Potentials for Adaptive Deep Brain Stimulation. NEUROPHYSIOLOGY+ 2018. [DOI: 10.1007/s11062-018-9717-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
67
|
Hu B, Shi Q, Guo Y, Diao X, Guo H, Zhang J, Yu L, Dai H, Chen L. The oscillatory boundary conditions of different frequency bands in Parkinson's disease. J Theor Biol 2018; 451:67-79. [PMID: 29727632 DOI: 10.1016/j.jtbi.2018.04.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/10/2018] [Accepted: 04/30/2018] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease that is common in the elderly population. The most important pathological change in PD is the degeneration and death of dopaminergic neurons in the substantia nigra of the midbrain, which results in a decrease in the dopamine (DA) content of the striatum. The exact cause of this pathological change is still unknown. Numerous studies have shown that the evolution of PD is associated with abnormal oscillatory activities in the basal ganglia, with different oscillation frequency ranges, such as the typical beta band (13-30 Hz), the alpha band (8-12 Hz), the theta band (4-7 Hz) and the delta band (1-3 Hz). Although some studies have implied that abnormal interactions between the subthalamic nucleus (STN) and globus pallidus (GP) neurons may be a key factor required to induce these oscillations, the relative mechanism is still unclear. The effects of other nerve nuclei in the basal ganglia, such as the striatum, on these oscillations are still unknown. The thalamus and cortex both have close input and output relationships with the basal ganglia, and many previous studies have indicated that they may also exert effects on Parkinson's disease oscillation, but the mechanisms involved are unclear. In this paper, we built a corticothalamic-basal ganglia (CTBG) mean firing-rate model to explore the onset mechanisms of these different oscillation phenomena. We found that, in addition to the STN-GP network, Parkinson's disease oscillations may also be induced by changing the coupling strength and delays in other pathways. Different frequency bands appear in the oscillating region, and various boundary conditions are depicted in parameter diagrams. The onset mechanism is well explained both by the model and by the numerical simulation results. Therefore, this model provides a unifying framework for studying the mechanism of Parkinson's disease oscillations, and we hope that the results obtained in this work can inspire future experimental studies.
Collapse
Affiliation(s)
- Bing Hu
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Qianqian Shi
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Guo
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiyezi Diao
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Heng Guo
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinsong Zhang
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liang Yu
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hao Dai
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
68
|
Abstract
PURPOSE OF REVIEW An increase in oscillatory activity in the γ-frequency band (approximately 50-100 Hz) has long been noted during human movement. However, its functional role has been difficult to elucidate. The advent of novel techniques, particularly transcranial alternating current stimulation (tACS), has dramatically increased our ability to study γ oscillations. Here, we review our current understanding of the role of γ oscillations in the human motor cortex, with reference to γ activity outside the motor system, and evidence from animal models. RECENT FINDINGS Evidence for the neurophysiological basis of human γ oscillations is beginning to emerge. Multimodal studies, essential given the necessarily indirect measurements acquired in humans, are beginning to provide convergent evidence for the role of γ oscillations in movement, and their relationship to plasticity. SUMMARY Human motor cortical γ oscillations appear to play a key role in movement, and relate to learning. However, there are still major questions to be answered about their physiological basis and precise role in human plasticity. It is to be hoped that future research will take advantage of recent technical advances and the physiological basis and functional significance of this intriguing and important brain rhythm will be fully elucidated.
Collapse
Affiliation(s)
- Magdalena Nowak
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU UK
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, OX3 7JX UK
| | - Catharina Zich
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU UK
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, OX3 7JX UK
| | - Charlotte J. Stagg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU UK
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, OX3 7JX UK
| |
Collapse
|
69
|
Zhang S, Connolly AT, Madden LR, Vitek JL, Johnson MD. High-resolution local field potentials measured with deep brain stimulation arrays. J Neural Eng 2018; 15:046019. [PMID: 29651998 DOI: 10.1088/1741-2552/aabdf5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Local field potential (LFP) recordings along a deep brain stimulation (DBS) lead can provide useful feedback for titrating DBS therapy. However, conventional DBS leads with four cylindrical macroelectrodes likely undersample the spatial distribution of sinks and sources in a given brain region. In this study, we investigated the spectral power and spatial feature sizes of LFP activity in non-human primate subthalamic nucleus and globus pallidus using chronically implanted 32-channel directional DBS arrays. APPROACH Subthalamic nucleus and globus pallidus LFP signals were recorded from directional DBS arrays in the resting state and during a reach-and-retrieval task in two non-human primates in naïve and parkinsonian conditions. LFP recordings were compared amongst bipolar pairs of electrodes using individual and grouped electrode configurations, with the latter mimicking the cylindrical macroelectrode configurations used in current clinical LFP recordings. MAIN RESULTS Recordings from these DBS arrays showed that (1) beta oscillations have spatial 'fingerprints' in the subthalamic nucleus and globus pallidus, and (2) that these oscillations were muted when grouping electrode contacts together to create cylindrical macroelectrodes similar in relative dimension to those used clinically. Further, these maps depended on parkinsonian condition and whether the subject was resting or performing a motor task. SIGNIFICANCE Development of future closed-loop DBS therapies that rely on LFP feedback will benefit from implanting DBS arrays with electrode sizes and spacings that are more consistent with the dimensions of oscillatory sinks and sources within the brain.
Collapse
Affiliation(s)
- Simeng Zhang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | | | | | | | | |
Collapse
|
70
|
Electroacupuncture Alleviates Motor Symptoms and Up-Regulates Vesicular Glutamatergic Transporter 1 Expression in the Subthalamic Nucleus in a Unilateral 6-Hydroxydopamine-Lesioned Hemi-Parkinsonian Rat Model. Neurosci Bull 2018; 34:476-484. [PMID: 29508251 DOI: 10.1007/s12264-018-0213-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/01/2017] [Indexed: 12/31/2022] Open
Abstract
Previous studies have shown that electroacupuncture (EA) promotes recovery of motor function in Parkinson's disease (PD). However the mechanisms are not completely understood. Clinically, the subthalamic nucleus (STN) is a critical target for deep brain stimulation treatment of PD, and vesicular glutamate transporter 1 (VGluT1) plays an important role in the modulation of glutamate in the STN derived from the cortex. In this study, a 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD was treated with 100 Hz EA for 4 weeks. Immunohistochemical analysis of tyrosine hydroxylase (TH) showed that EA treatment had no effect on TH expression in the ipsilateral striatum or substantia nigra pars compacta, though it alleviated several of the parkinsonian motor symptoms. Compared with the hemi-parkinsonian rats without EA treatment, the 100 Hz EA treatment significantly decreased apomorphine-induced rotation and increased the latency in the Rotarod test. Notably, the EA treatment reversed the 6-OHDA-induced down-regulation of VGluT1 in the STN. The results demonstrated that EA alleviated motor symptoms and up-regulated VGluT1 in the ipsilateral STN of hemi-parkinsonian rats, suggesting that up-regulation of VGluT1 in the STN may be related to the effects of EA on parkinsonian motor symptoms via restoration of function in the cortico-STN pathway.
Collapse
|
71
|
Intra-operative characterisation of subthalamic oscillations in Parkinson's disease. Clin Neurophysiol 2018; 129:1001-1010. [PMID: 29567582 DOI: 10.1016/j.clinph.2018.01.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/21/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This study aims to use the activities recorded directly from the deep brain stimulation (DBS) electrode to address the focality and distinct nature of the local field potential (LFP) activities of different frequency. METHODS Pre-operative and intra-operative magnetic resonance imaging (MRI) were acquired from patients with Parkinson's disease (PD) who underwent DBS in the subthalamic nucleus and intra-operative LFP recording at rest and during cued movements. Images were reconstructed and 3-D visualized using Lead-DBS® toolbox to determine the coordinates of contact. The resting spectral power and movement-related power modulation of LFP oscillations were estimated. RESULTS Both subthalamic LFP activity recorded at rest and its modulation by movement had focal maxima in the alpha, beta and gamma bands. The spatial distribution of alpha band activity and its modulation was significantly different to that in the beta band. Moreover, there were significant differences in the scale and timing of movement related modulation across the frequency bands. CONCLUSION Subthalamic LFP activities within specific frequency bands can be distinguished by spatial topography and pattern of movement related modulation. SIGNIFICANCE Assessment of the frequency, focality and pattern of movement related modulation of subthalamic LFPs reveals a heterogeneity of neural population activity in this region. This could potentially be leveraged to finesse intra-operative targeting and post-operative contact selection.
Collapse
|
72
|
Impaired glutamatergic projection from the motor cortex to the subthalamic nucleus in 6-hydroxydopamine-lesioned hemi-parkinsonian rats. Exp Neurol 2018; 300:135-148. [DOI: 10.1016/j.expneurol.2017.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/21/2017] [Accepted: 11/07/2017] [Indexed: 11/18/2022]
|
73
|
Spatio-temporal dynamics of cortical drive to human subthalamic nucleus neurons in Parkinson's disease. Neurobiol Dis 2018; 112:49-62. [PMID: 29307661 PMCID: PMC5821899 DOI: 10.1016/j.nbd.2018.01.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/30/2017] [Accepted: 01/03/2018] [Indexed: 11/24/2022] Open
Abstract
Pathological synchronisation of beta frequency (12–35 Hz) oscillations between the subthalamic nucleus (STN) and cerebral cortex is thought to contribute to motor impairment in Parkinson's disease (PD). For this cortico-subthalamic oscillatory drive to be mechanistically important, it must influence the firing of STN neurons and, consequently, their downstream targets. Here, we examined the dynamics of synchronisation between STN LFPs and units with multiple cortical areas, measured using frontal ECoG, midline EEG and lateral EEG, during rest and movement. STN neurons lagged cortical signals recorded over midline (over premotor cortices) and frontal (over prefrontal cortices) with stable time delays, consistent with strong corticosubthalamic drive, and many neurons maintained these dynamics during movement. In contrast, most STN neurons desynchronised from lateral EEG signals (over primary motor cortices) during movement and those that did not had altered phase relations to the cortical signals. The strength of synchronisation between STN units and midline EEG in the high beta range (25–35 Hz) correlated positively with the severity of akinetic-rigid motor symptoms across patients. Together, these results suggest that sustained synchronisation of STN neurons to premotor-cortical beta oscillations play an important role in disrupting the normal coding of movement in PD. Multi-channel EEG with coincident STN single unit and local field potential recordings Variable time delays between beta oscillations in different cortical areas and STN neurons. Frontal/premotor cortical areas have most stable oscillatory synchronisation with STN neurons. Correlation between cortico-subthalamic beta-frequency synchronisation and clinical scores in PD.
Collapse
|
74
|
The role of cortical oscillations in a spiking neural network model of the basal ganglia. PLoS One 2017; 12:e0189109. [PMID: 29236724 PMCID: PMC5728518 DOI: 10.1371/journal.pone.0189109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/20/2017] [Indexed: 12/02/2022] Open
Abstract
Although brain oscillations involving the basal ganglia (BG) have been the target of extensive research, the main focus lies disproportionally on oscillations generated within the BG circuit rather than other sources, such as cortical areas. We remedy this here by investigating the influence of various cortical frequency bands on the intrinsic effective connectivity of the BG, as well as the role of the latter in regulating cortical behaviour. To do this, we construct a detailed neural model of the complete BG circuit based on fine-tuned spiking neurons, with both electrical and chemical synapses as well as short-term plasticity between structures. As a measure of effective connectivity, we estimate information transfer between nuclei by means of transfer entropy. Our model successfully reproduces firing and oscillatory behaviour found in both the healthy and Parkinsonian BG. We found that, indeed, effective connectivity changes dramatically for different cortical frequency bands and phase offsets, which are able to modulate (or even block) information flow in the three major BG pathways. In particular, alpha (8–12Hz) and beta (13–30Hz) oscillations activate the direct BG pathway, and favour the modulation of the indirect and hyper-direct pathways via the subthalamic nucleus—globus pallidus loop. In contrast, gamma (30–90Hz) frequencies block the information flow from the cortex completely through activation of the indirect pathway. Finally, below alpha, all pathways decay gradually and the system gives rise to spontaneous activity generated in the globus pallidus. Our results indicate the existence of a multimodal gating mechanism at the level of the BG that can be entirely controlled by cortical oscillations, and provide evidence for the hypothesis of cortically-entrained but locally-generated subthalamic beta activity. These two findings suggest new insights into the pathophysiology of specific BG disorders.
Collapse
|
75
|
Mamaligas AA, Ford CP. Revealing a Role for NMDA Receptors in Regulating STN Inputs following the Loss of Dopamine. Neuron 2017; 95:1227-1229. [PMID: 28910611 DOI: 10.1016/j.neuron.2017.08.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this issue of Neuron, Chu et al. (2017) show that dopamine depletion using a 6-OHDA model causes a decrease in hyperdirect inputs from the motor cortex directly to the STN and that rescuing this loss alleviates Parkinsonian symptoms.
Collapse
Affiliation(s)
- Aphroditi A Mamaligas
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH, 44106-4970, USA
| | - Christopher P Ford
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH, 44106-4970, USA; Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH, 44106-4970, USA; Department of Pharmacology, University of Colorado School of Medicine, 12800 East 19th Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
76
|
Chu HY, McIver EL, Kovaleski RF, Atherton JF, Bevan MD. Loss of Hyperdirect Pathway Cortico-Subthalamic Inputs Following Degeneration of Midbrain Dopamine Neurons. Neuron 2017; 95:1306-1318.e5. [PMID: 28910619 DOI: 10.1016/j.neuron.2017.08.038] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 07/07/2017] [Accepted: 08/24/2017] [Indexed: 01/24/2023]
Abstract
The motor symptoms of Parkinson's disease (PD) are linked to abnormally correlated and coherent activity in the cortex and subthalamic nucleus (STN). However, in parkinsonian mice we found that cortico-STN transmission strength had diminished by 50%-75% through loss of axo-dendritic and axo-spinous synapses, was incapable of long-term potentiation, and less effectively patterned STN activity. Optogenetic, chemogenetic, genetic, and pharmacological interrogation suggested that downregulation of cortico-STN transmission in PD mice was triggered by increased striato-pallidal transmission, leading to disinhibition of the STN and increased activation of STN NMDA receptors. Knockdown of STN NMDA receptors, which also suppresses proliferation of GABAergic pallido-STN inputs in PD mice, reduced loss of cortico-STN transmission and patterning and improved motor function. Together, the data suggest that loss of dopamine triggers a maladaptive shift in the balance of synaptic excitation and inhibition in the STN, which contributes to parkinsonian activity and motor dysfunction.
Collapse
Affiliation(s)
- Hong-Yuan Chu
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Eileen L McIver
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Ryan F Kovaleski
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Jeremy F Atherton
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Mark D Bevan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL 60611, USA.
| |
Collapse
|
77
|
Differential effects of levodopa and apomorphine on neuronal population oscillations in the cortico-basal ganglia loop circuit in vivo in experimental parkinsonism. Exp Neurol 2017; 298:122-133. [PMID: 28893517 DOI: 10.1016/j.expneurol.2017.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/03/2017] [Accepted: 09/07/2017] [Indexed: 11/21/2022]
Abstract
The current pharmacotherapy of Parkinson's disease (PD) is primarily based on two classes of drugs: dopamine precursors, namely levodopa, and dopamine receptor agonists, such as apomorphine. Although both types of agents exert their beneficial clinical effects on motor and non-motor symptoms in PD via dopamine receptors, clinical efficiency and side effects differ substantially between levodopa and apomorphine. Levodopa can provide a greater symptomatic relief than dopamine receptor agonists. However, because long-term levodopa use is associated with early debilitating motor fluctuations, dopamine receptor agonists are often recommended in younger patients. The pharmacodynamic basis of these profound differences is incompletely understood. It has been hypothesized that levodopa and dopamine receptor agonists may have diverging effects on beta and gamma oscillations that have been shown to be of importance for the pathophysiology of PD. Here, we used electrophysiological recordings in anesthetized dopamine-intact and dopamine-depleted rats to systemically compare the impact of levodopa or apomorphine on neuronal population oscillations in three nodes of the cortico-basal ganglia loop circuit. Our results showed that levodopa had a higher potency than apomorphine to suppress the abnormal beta oscillations often associated with bradykinesia while simultaneously enhancing the gamma oscillations often associated with increased movement. Our data suggests that the higher clinical efficacy of levodopa as well as some of its side effects, as e.g. dyskinesias may be based on its characteristic ability to modulate beta-/gamma-oscillation dynamics in the cortico-basal ganglia loop circuit.
Collapse
|
78
|
Hamani C, Florence G, Heinsen H, Plantinga BR, Temel Y, Uludag K, Alho E, Teixeira MJ, Amaro E, Fonoff ET. Subthalamic Nucleus Deep Brain Stimulation: Basic Concepts and Novel Perspectives. eNeuro 2017; 4:ENEURO.0140-17.2017. [PMID: 28966978 PMCID: PMC5617209 DOI: 10.1523/eneuro.0140-17.2017] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/07/2017] [Accepted: 08/06/2017] [Indexed: 12/21/2022] Open
Abstract
Over the last decades, extensive basic and clinical knowledge has been acquired on the use of subthalamic nucleus (STN) deep brain stimulation (DBS) for Parkinson's disease (PD). It is now clear that mechanisms involved in the effects of this therapy are far more complex than previously anticipated. At frequencies commonly used in clinical practice, neural elements may be excited or inhibited and novel dynamic states of equilibrium are reached. Electrode contacts used for chronic DBS in PD are placed near the dorsal border of the nucleus, a highly cellular region. DBS may thus exert its effects by modulating these cells, hyperdirect projections from motor cortical areas, afferent and efferent fibers to the motor STN. Advancements in neuroimaging techniques may allow us to identify these structures optimizing surgical targeting. In this review, we provide an update on mechanisms and the neural elements modulated by STN DBS.
Collapse
Affiliation(s)
- Clement Hamani
- Division of Neurosurgery Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
- Division of Neuroimaging, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| | - Gerson Florence
- Division of Neurosurgery, Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| | - Helmut Heinsen
- Department of Radiology, University of São Paulo Medical School, São Paulo, Brazil
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Clinic of Würzburg, Würzburg, Germany
| | - Birgit R. Plantinga
- Department of Biomedical Image Analysis, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kamil Uludag
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Eduardo Alho
- Division of Neurosurgery, Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| | - Manoel J. Teixeira
- Division of Neurosurgery, Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| | - Edson Amaro
- Department of Radiology, University of São Paulo Medical School, São Paulo, Brazil
| | - Erich T. Fonoff
- Division of Neurosurgery, Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
- Instituto de Ensino e Pesquisa Hospital Sírio-Libanês, São Paulo, Brazil
| |
Collapse
|
79
|
Lipski WJ, Wozny TA, Alhourani A, Kondylis ED, Turner RS, Crammond DJ, Richardson RM. Dynamics of human subthalamic neuron phase-locking to motor and sensory cortical oscillations during movement. J Neurophysiol 2017; 118:1472-1487. [PMID: 28592690 PMCID: PMC5596141 DOI: 10.1152/jn.00964.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/01/2017] [Accepted: 06/01/2017] [Indexed: 01/19/2023] Open
Abstract
Coupled oscillatory activity recorded between sensorimotor regions of the basal ganglia-thalamocortical loop is thought to reflect information transfer relevant to movement. A neuronal firing-rate model of basal ganglia-thalamocortical circuitry, however, has dominated thinking about basal ganglia function for the past three decades, without knowledge of the relationship between basal ganglia single neuron firing and cortical population activity during movement itself. We recorded activity from 34 subthalamic nucleus (STN) neurons, simultaneously with cortical local field potentials and motor output, in 11 subjects with Parkinson's disease (PD) undergoing awake deep brain stimulator lead placement. STN firing demonstrated phase synchronization to both low- and high-beta-frequency cortical oscillations, and to the amplitude envelope of gamma oscillations, in motor cortex. We found that during movement, the magnitude of this synchronization was dynamically modulated in a phase-frequency-specific manner. Importantly, we found that phase synchronization was not correlated with changes in neuronal firing rate. Furthermore, we found that these relationships were not exclusive to motor cortex, because STN firing also demonstrated phase synchronization to both premotor and sensory cortex. The data indicate that models of basal ganglia function ultimately will need to account for the activity of populations of STN neurons that are bound in distinct functional networks with both motor and sensory cortices and code for movement parameters independent of changes in firing rate.NEW & NOTEWORTHY Current models of basal ganglia-thalamocortical networks do not adequately explain simple motor functions, let alone dysfunction in movement disorders. Our findings provide data that inform models of human basal ganglia function by demonstrating how movement is encoded by networks of subthalamic nucleus (STN) neurons via dynamic phase synchronization with cortex. The data also demonstrate, for the first time in humans, a mechanism through which the premotor and sensory cortices are functionally connected to the STN.
Collapse
Affiliation(s)
- Witold J Lipski
- Brain Modulation Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Thomas A Wozny
- Brain Modulation Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ahmad Alhourani
- Brain Modulation Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Efstathios D Kondylis
- Brain Modulation Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Robert S Turner
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania; and
- University of Pittsburgh Brain Institute, Pittsburgh, Pennsylvania
| | - Donald J Crammond
- Brain Modulation Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Robert Mark Richardson
- Brain Modulation Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania;
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania; and
- University of Pittsburgh Brain Institute, Pittsburgh, Pennsylvania
| |
Collapse
|
80
|
Lozano AM, Hutchison WD, Kalia SK. What Have We Learned About Movement Disorders from Functional Neurosurgery? Annu Rev Neurosci 2017; 40:453-477. [DOI: 10.1146/annurev-neuro-070815-013906] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andres M. Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario M5T 2S8, Canada;, ,
- Krembil Research Institute, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
| | - William D. Hutchison
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario M5T 2S8, Canada;, ,
- Krembil Research Institute, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
| | - Suneil K. Kalia
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario M5T 2S8, Canada;, ,
- Krembil Research Institute, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
| |
Collapse
|
81
|
Akram H, Sotiropoulos SN, Jbabdi S, Georgiev D, Mahlknecht P, Hyam J, Foltynie T, Limousin P, De Vita E, Jahanshahi M, Hariz M, Ashburner J, Behrens T, Zrinzo L. Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson's disease. Neuroimage 2017; 158:332-345. [PMID: 28711737 DOI: 10.1016/j.neuroimage.2017.07.012] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 07/05/2017] [Accepted: 07/09/2017] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES Firstly, to identify subthalamic region stimulation clusters that predict maximum improvement in rigidity, bradykinesia and tremor, or emergence of side-effects; and secondly, to map-out the cortical fingerprint, mediated by the hyperdirect pathways which predict maximum efficacy. METHODS High angular resolution diffusion imaging in twenty patients with advanced Parkinson's disease was acquired prior to bilateral subthalamic nucleus deep brain stimulation. All contacts were screened one-year from surgery for efficacy and side-effects at different amplitudes. Voxel-based statistical analysis of volumes of tissue activated models was used to identify significant treatment clusters. Probabilistic tractography was employed to identify cortical connectivity patterns associated with treatment efficacy. RESULTS All patients responded well to treatment (46% mean improvement off medication UPDRS-III [p < 0.0001]) without significant adverse events. Cluster corresponding to maximum improvement in tremor was in the posterior, superior and lateral portion of the nucleus. Clusters corresponding to improvement in bradykinesia and rigidity were nearer the superior border in a further medial and posterior location. The rigidity cluster extended beyond the superior border to the area of the zona incerta and Forel-H2 field. When the clusters where averaged, the coordinates of the area with maximum overall efficacy was X = -10(-9.5), Y = -13(-1) and Z = -7(-3) in MNI(AC-PC) space. Cortical connectivity to primary motor area was predictive of higher improvement in tremor; whilst that to supplementary motor area was predictive of improvement in bradykinesia and rigidity; and connectivity to prefrontal cortex was predictive of improvement in rigidity. INTERPRETATION These findings support the presence of overlapping stimulation sites within the subthalamic nucleus and its superior border, with different cortical connectivity patterns, associated with maximum improvement in tremor, rigidity and bradykinesia.
Collapse
Affiliation(s)
- Harith Akram
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK; Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK.
| | - Stamatios N Sotiropoulos
- Centre for Functional MRI of the Brain (FMRIB), John Radcliffe Hospital, Oxford, OX3 9DU, UK; Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, UK
| | - Saad Jbabdi
- Centre for Functional MRI of the Brain (FMRIB), John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Dejan Georgiev
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Philipp Mahlknecht
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Jonathan Hyam
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK; Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Thomas Foltynie
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Patricia Limousin
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Enrico De Vita
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, UK
| | - Marjan Jahanshahi
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Marwan Hariz
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK; Department of Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - John Ashburner
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Tim Behrens
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK; Centre for Functional MRI of the Brain (FMRIB), John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Ludvic Zrinzo
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK; Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
82
|
Akram H, Wu C, Hyam J, Foltynie T, Limousin P, De Vita E, Yousry T, Jahanshahi M, Hariz M, Behrens T, Ashburner J, Zrinzo L. l-Dopa responsiveness is associated with distinctive connectivity patterns in advanced Parkinson's disease. Mov Disord 2017; 32:874-883. [PMID: 28597560 DOI: 10.1002/mds.27017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 02/27/2017] [Accepted: 03/03/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Neuronal loss and dopamine depletion alter motor signal processing between cortical motor areas, basal ganglia, and the thalamus, resulting in the motor manifestations of Parkinson's disease. Dopamine replacement therapy can reverse these manifestations with varying degrees of improvement. METHODS To evaluate functional connectivity in patients with advanced Parkinson's disease and changes in functional connectivity in relation to the degree of response to l-dopa, 19 patients with advanced Parkinson's disease underwent resting-state functional magnetic resonance imaging in the on-medication state. Scans were obtained on a 3-Tesla scanner in 3 × 3 × 2.5 mm3 voxels. Seed-based bivariate regression analyses were carried out with atlas-defined basal ganglia regions as seeds, to explore relationships between functional connectivity and improvement in the motor section of the UPDRS-III following an l-dopa challenge. False discovery rate-corrected P was set at < 0.05 for a 2-tailed t test. RESULTS A greater improvement in UPDRS-III scores following l-dopa administration was characterized by higher resting-state functional connectivity between the prefrontal cortex and the striatum (P = 0.001) and lower resting-state functional connectivity between the pallidum (P = 0.001), subthalamic nucleus (P = 0.003), and the paracentral lobule (supplementary motor area, mesial primary motor, and primary sensory areas). CONCLUSIONS Our findings show characteristic basal ganglia resting-state functional connectivity patterns associated with different degrees of l-dopa responsiveness in patients with advanced Parkinson's disease. l-Dopa exerts a graduated influence on remapping connectivity in distinct motor control networks, potentially explaining some of the variance in treatment response. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Harith Akram
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK.,Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Chengyuan Wu
- Department of Neurosurgery, Jefferson University Hospitals, Philadelphia, Pennsylvania, USA
| | - Jonathan Hyam
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK.,Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Thomas Foltynie
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK
| | - Patricia Limousin
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK
| | - Enrico De Vita
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London, UK.,Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, UK
| | - Tarek Yousry
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London, UK.,Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, UK
| | - Marjan Jahanshahi
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK
| | - Marwan Hariz
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK.,Department of Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Timothy Behrens
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, UK.,Centre for Functional MRI of the Brain (FMRIB), John Radcliffe Hospital, Oxford, UK
| | - John Ashburner
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, UK
| | - Ludvic Zrinzo
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK.,Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| |
Collapse
|
83
|
Abstract
Brain-computer interface (BCI) technology can restore communication and control to people who are severely paralyzed. There has been speculation that this technology might also be useful for a variety of diverse therapeutic applications. This survey considers possible ways that BCI technology can be applied to motor rehabilitation following stroke, Parkinson's disease, and psychiatric disorders. We consider potential neural signals as well as the design and goals of BCI-based therapeutic applications. These diverse applications all share a reliance on neuroimaging and signal processing technologies. At the same time, each of these potential applications presents a series of unique challenges.
Collapse
Affiliation(s)
| | - Janis Daly
- Brain Rehabilitation Research Program, McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Chadwick Boulay
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | |
Collapse
|
84
|
Ahn S, Zauber SE, Worth RM, Rubchinsky LL. Synchronized Beta-Band Oscillations in a Model of the Globus Pallidus-Subthalamic Nucleus Network under External Input. Front Comput Neurosci 2016; 10:134. [PMID: 28066222 PMCID: PMC5167737 DOI: 10.3389/fncom.2016.00134] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/30/2016] [Indexed: 11/13/2022] Open
Abstract
Hypokinetic symptoms of Parkinson's disease are usually associated with excessively strong oscillations and synchrony in the beta frequency band. The origin of this synchronized oscillatory dynamics is being debated. Cortical circuits may be a critical source of excessive beta in Parkinson's disease. However, subthalamo-pallidal circuits were also suggested to be a substantial component in generation and/or maintenance of Parkinsonian beta activity. Here we study how the subthalamo-pallidal circuits interact with input signals in the beta frequency band, representing cortical input. We use conductance-based models of the subthalamo-pallidal network and two types of input signals: artificially-generated inputs and input signals obtained from recordings in Parkinsonian patients. The resulting model network dynamics is compared with the dynamics of the experimental recordings from patient's basal ganglia. Our results indicate that the subthalamo-pallidal model network exhibits multiple resonances in response to inputs in the beta band. For a relatively broad range of network parameters, there is always a certain input strength, which will induce patterns of synchrony similar to the experimentally observed ones. This ability of the subthalamo-pallidal network to exhibit realistic patterns of synchronous oscillatory activity under broad conditions may indicate that these basal ganglia circuits are directly involved in the expression of Parkinsonian synchronized beta oscillations. Thus, Parkinsonian synchronized beta oscillations may be promoted by the simultaneous action of both cortical (or some other) and subthalamo-pallidal network mechanisms. Hence, these mechanisms are not necessarily mutually exclusive.
Collapse
Affiliation(s)
- Sungwoo Ahn
- Department of Mathematics, East Carolina University Greenville, NC, USA
| | - S Elizabeth Zauber
- Department of Neurology, Indiana University School of Medicine Indianapolis, IN, USA
| | - Robert M Worth
- Department of Mathematical Sciences, Indiana University-Purdue University IndianapolisIndianapolis, IN, USA; Department of Neurosurgery, Indiana University School of MedicineIndianapolis, IN, USA
| | - Leonid L Rubchinsky
- Department of Mathematical Sciences, Indiana University-Purdue University IndianapolisIndianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of MedicineIndianapolis, IN, USA
| |
Collapse
|
85
|
Comparison of oscillatory activity in subthalamic nucleus in Parkinson's disease and dystonia. Neurobiol Dis 2016; 98:100-107. [PMID: 27940307 DOI: 10.1016/j.nbd.2016.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/06/2016] [Accepted: 12/05/2016] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has been successfully used to treat both Parkinson's disease (PD) and dystonia. Local field potentials (LFPs) recorded from the STN of PD patients demonstrate prominent beta frequency band activity. It is unclear whether such activity occurs in the STN in dystonia, and, if not, whether dystonia has another distinctive neural population activity in the STN. METHODS Twelve patients with PD, and eight patients with dystonia underwent DBS electrode implantation targeting the STN. Seven dystonia patients were off medication and one was on aripiprazole and clonazepam. LFPs were recorded from the DBS electrodes in PD in the on/off medication states and in dystonia. Power spectra and temporal dynamics measured by the with Lempel-Ziv complexity of the LFPs were compared among these states. RESULTS Normalised power spectra and Lempel-Ziv complexity of subthalamic LFPs differed between dystonia off and PD on/off, and between PD off and on over the low frequency, beta and high gamma bands. Patients with dystonia and off medication had lower beta power but higher low frequency and high gamma power than PD. Spectral power in the low beta frequency (11-20Hz) range was attenuated in medicated PD. CONCLUSION The results suggest that dystonia and PD are characterized by different patterns of oscillatory activities even within the same nucleus, and exaggerated beta activity may relate to hypo-dopaminergic status.
Collapse
|
86
|
Beck MH, Haumesser JK, Kühn J, Altschüler J, Kühn AA, van Riesen C. Short- and long-term dopamine depletion causes enhanced beta oscillations in the cortico-basal ganglia loop of parkinsonian rats. Exp Neurol 2016; 286:124-136. [PMID: 27743915 DOI: 10.1016/j.expneurol.2016.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/03/2016] [Accepted: 10/10/2016] [Indexed: 10/20/2022]
Abstract
Abnormally enhanced beta oscillations have been found in deep brain recordings from human Parkinson's disease (PD) patients and in animal models of PD. Recent correlative evidence suggests that beta oscillations are related to disease-specific symptoms such as akinesia and rigidity. However, this hypothesis has also been repeatedly questioned by studies showing no changes in beta power in animal models using an acute pharmacologic dopamine blockade. To further investigate the temporal dynamics of exaggerated beta synchrony in PD, we investigated the reserpine model, which is characterized by an acute and stable disruption of dopamine transmission, and compared it to the chronic progressive 6-hydroxydopamine (6-OHDA) model. Using simultaneous electrophysiological recordings in urethane anesthetized rats from the primary motor cortex, the subthalamic nucleus and the reticulate part of the substantia, we found evidence for enhanced beta oscillations in the basal ganglia of both animal models during the activated network state. In contrast to 6-OHDA, reserpine treated animals showed no involvement of primary motor cortex. Notably, beta coherence levels between primary motor cortex and basal ganglia nuclei were elevated in both models. Although both models exhibited elevated beta power and coherence levels, they differed substantially in respect to their mean peak frequency: while the 6-OHDA peak was located in the low beta range (17Hz), the reserpine peak was centered at higher beta frequencies (27Hz). Our results further support the hypothesis of an important pathophysiological relation between enhanced beta activity and akinesia in parkinsonism.
Collapse
Affiliation(s)
- Maximilian H Beck
- Charité University Medicine Berlin, Department of Neurology, Movement Disorder and Neuromodulation Unit, Berlin, Germany
| | - Jens K Haumesser
- Charité University Medicine Berlin, Department of Neurology, Movement Disorder and Neuromodulation Unit, Berlin, Germany
| | - Johanna Kühn
- Charité University Medicine Berlin, Department of Neurology, Movement Disorder and Neuromodulation Unit, Berlin, Germany
| | - Jennifer Altschüler
- Charité University Medicine Berlin, Department of Neurology, Movement Disorder and Neuromodulation Unit, Berlin, Germany
| | - Andrea A Kühn
- Charité University Medicine Berlin, Department of Neurology, Movement Disorder and Neuromodulation Unit, Berlin, Germany
| | - Christoph van Riesen
- Charité University Medicine Berlin, Department of Neurology, Movement Disorder and Neuromodulation Unit, Berlin, Germany.
| |
Collapse
|
87
|
T-type calcium channel blocker Z944 restores cortical synchrony and thalamocortical connectivity in a rat model of neuropathic pain. Pain 2016; 157:255-263. [PMID: 26683108 DOI: 10.1097/j.pain.0000000000000362] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Oscillations are fundamental to communication between neuronal ensembles. We previously reported that pain in awake rats enhances synchrony in primary somatosensory cortex (S1) and attenuates coherence between S1 and ventral posterolateral (VPL) thalamus. Here, we asked whether similar changes occur in anesthetized rats and whether pain modulates phase-amplitude coupling between VPL and S1. We also hypothesized that the suppression of burst firing in VPL using Z944, a novel T-type calcium channel blocker, restores S1 synchrony and thalamocortical connectivity. Local field potentials were recorded from S1 and VPL in anesthetized rats 7 days after sciatic chronic constriction injury (CCI). In rats with CCI, low-frequency (4-12 Hz) synchrony in S1 was enhanced, whereas VPL-S1 coherence and theta-gamma phase-amplitude coupling were attenuated. Moreover, Granger causality showed decreased informational flow from VPL to S1. Systemic or intrathalamic delivery of Z944 to rats with CCI normalized these changes. Systemic Z944 also reversed thermal hyperalgesia and conditioned place preference. These data suggest that pain-induced cortical synchrony and thalamocortical disconnectivity are directly related to burst firing in VPL.
Collapse
|
88
|
Knieling S, Sridharan KS, Belardinelli P, Naros G, Weiss D, Mormann F, Gharabaghi A. An Unsupervised Online Spike-Sorting Framework. Int J Neural Syst 2016; 26:1550042. [DOI: 10.1142/s0129065715500422] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Extracellular neuronal microelectrode recordings can include action potentials from multiple neurons. To separate spikes from different neurons, they can be sorted according to their shape, a procedure referred to as spike-sorting. Several algorithms have been reported to solve this task. However, when clustering outcomes are unsatisfactory, most of them are difficult to adjust to achieve the desired results. We present an online spike-sorting framework that uses feature normalization and weighting to maximize the distinctiveness between different spike shapes. Furthermore, multiple criteria are applied to either facilitate or prevent cluster fusion, thereby enabling experimenters to fine-tune the sorting process. We compare our method to established unsupervised offline (Wave_Clus (WC)) and online (OSort (OS)) algorithms by examining their performance in sorting various test datasets using two different scoring systems (AMI and the Adamos metric). Furthermore, we evaluate sorting capabilities on intra-operative recordings using established quality metrics. Compared to WC and OS, our algorithm achieved comparable or higher scores on average and produced more convincing sorting results for intra-operative datasets. Thus, the presented framework is suitable for both online and offline analysis and could substantially improve the quality of microelectrode-based data evaluation for research and clinical application.
Collapse
Affiliation(s)
- Simeon Knieling
- Division of Functional and Restorative Neurosurgery & Division of Translational Neurosurgery, Department of Neurosurgery, and Neuroprosthetics Research Group, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen, Otfried-Mueller-Str.45, 72076 Tuebingen, Germany
- Cognitive and Clinical Neurophysiology, Department of Epileptology, University of Bonn, Bonn, Germany
| | - Kousik S. Sridharan
- Division of Functional and Restorative Neurosurgery & Division of Translational Neurosurgery, Department of Neurosurgery, and Neuroprosthetics Research Group, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen, Otfried-Mueller-Str.45, 72076 Tuebingen, Germany
| | - Paolo Belardinelli
- Division of Functional and Restorative Neurosurgery & Division of Translational Neurosurgery, Department of Neurosurgery, and Neuroprosthetics Research Group, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen, Otfried-Mueller-Str.45, 72076 Tuebingen, Germany
| | - Georgios Naros
- Division of Functional and Restorative Neurosurgery & Division of Translational Neurosurgery, Department of Neurosurgery, and Neuroprosthetics Research Group, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen, Otfried-Mueller-Str.45, 72076 Tuebingen, Germany
| | - Daniel Weiss
- Department for Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, and German Centre of Neurodegenerative Diseases (DZNE), Eberhard Karls University Tuebingen, Germany
| | - Florian Mormann
- Cognitive and Clinical Neurophysiology, Department of Epileptology, University of Bonn, Bonn, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery & Division of Translational Neurosurgery, Department of Neurosurgery, and Neuroprosthetics Research Group, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen, Otfried-Mueller-Str.45, 72076 Tuebingen, Germany
| |
Collapse
|
89
|
Shine JM. Electrophysiological insights into freezing in Parkinson's disease. Clin Neurophysiol 2016; 127:2334-6. [PMID: 27178847 DOI: 10.1016/j.clinph.2016.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 11/18/2022]
Affiliation(s)
- James M Shine
- Department of Psychology, Stanford University, Stanford, CA, USA; Neuroscience Research Australia, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
90
|
Rossi PJ, Gunduz A, Judy J, Wilson L, Machado A, Giordano JJ, Elias WJ, Rossi MA, Butson CL, Fox MD, McIntyre CC, Pouratian N, Swann NC, de Hemptinne C, Gross RE, Chizeck HJ, Tagliati M, Lozano AM, Goodman W, Langevin JP, Alterman RL, Akbar U, Gerhardt GA, Grill WM, Hallett M, Herrington T, Herron J, van Horne C, Kopell BH, Lang AE, Lungu C, Martinez-Ramirez D, Mogilner AY, Molina R, Opri E, Otto KJ, Oweiss KG, Pathak Y, Shukla A, Shute J, Sheth SA, Shih LC, Steinke GK, Tröster AI, Vanegas N, Zaghloul KA, Cendejas-Zaragoza L, Verhagen L, Foote KD, Okun MS. Proceedings of the Third Annual Deep Brain Stimulation Think Tank: A Review of Emerging Issues and Technologies. Front Neurosci 2016; 10:119. [PMID: 27092042 PMCID: PMC4821860 DOI: 10.3389/fnins.2016.00119] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/11/2016] [Indexed: 11/25/2022] Open
Abstract
The proceedings of the 3rd Annual Deep Brain Stimulation Think Tank summarize the most contemporary clinical, electrophysiological, imaging, and computational work on DBS for the treatment of neurological and neuropsychiatric disease. Significant innovations of the past year are emphasized. The Think Tank's contributors represent a unique multidisciplinary ensemble of expert neurologists, neurosurgeons, neuropsychologists, psychiatrists, scientists, engineers, and members of industry. Presentations and discussions covered a broad range of topics, including policy and advocacy considerations for the future of DBS, connectomic approaches to DBS targeting, developments in electrophysiology and related strides toward responsive DBS systems, and recent developments in sensor and device technologies.
Collapse
Affiliation(s)
- P Justin Rossi
- Department of Neuroscience, Center for Movement Disorders and Neurorestoration, University of Florida Gainesville, FL, USA
| | - Aysegul Gunduz
- Department of Neuroscience, Center for Movement Disorders and Neurorestoration, University of Florida Gainesville, FL, USA
| | - Jack Judy
- Department of Neuroscience, Center for Movement Disorders and Neurorestoration, University of Florida Gainesville, FL, USA
| | - Linda Wilson
- Formerly affiliated with the International Technology Roadmap for Semiconductors (ITRS) Washington, USA
| | - Andre Machado
- Neurological Institute Cleveland Clinic Cleveland, OH, USA
| | - James J Giordano
- Neuroethics Studies Program, Department of Neurology, Georgetown University Medical Center Washington, DC, USA
| | - W Jeff Elias
- Neurological Surgery and Neurology, Stereotactic and Functional Neurosurgery, Department of Neurosurgery, University of Virginia Health Science Center Charlottesville, VA, USA
| | - Marvin A Rossi
- Department of Neurology, Rush University Medical Center Chicago, IL, USA
| | - Christopher L Butson
- Scientific Computing and Imaging Institute, University of Utah Salt Lake City, UT, USA
| | - Michael D Fox
- Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA
| | - Cameron C McIntyre
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University Cleveland, OH, USA
| | - Nader Pouratian
- Department of Neurosurgery, University of California, Los Angeles Los Angeles, CA, USA
| | - Nicole C Swann
- University of California, San Francisco San Francisco, CA, USA
| | | | | | - Howard J Chizeck
- Department of Electrical Engineering, University of Washington Seattle, WA, USA
| | - Michele Tagliati
- Movement Disorders Program, Department of Neurology, Cedars-Sinai Medical Center Los Angeles, CA, USA
| | - Andres M Lozano
- Department of Neurosurgery, University of Toronto Toronto, ON, Canada
| | - Wayne Goodman
- The Icahn School of Medicine at Mount Sinai New York, NY, USA
| | | | - Ron L Alterman
- Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA
| | - Umer Akbar
- Department of Neurology, Alpert Medical School, Brown University Providence, RI, USA
| | | | - Warren M Grill
- Department of Biomedical Engineering, Duke University Durham, NC, USA
| | - Mark Hallett
- National Institute of Neurological Disorders and Stroke, National Institutes of Health Bethesda, MD, USA
| | - Todd Herrington
- Massachusetts General Hospital, Harvard Medical School Boston, MA, USA
| | - Jeffrey Herron
- Department of Electrical Engineering, University of Washington Seattle, WA, USA
| | | | - Brian H Kopell
- The Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Anthony E Lang
- Department of Neurosurgery, University of Toronto Toronto, ON, Canada
| | - Codrin Lungu
- National Institute of Neurological Disorders and Stroke, National Institutes of Health Bethesda, MD, USA
| | - Daniel Martinez-Ramirez
- Department of Neuroscience, Center for Movement Disorders and Neurorestoration, University of Florida Gainesville, FL, USA
| | - Alon Y Mogilner
- Department of Neurosurgery-Center for Neuromodulation, NYU Langone Medical Center New York, NY, USA
| | - Rene Molina
- Department of Neuroscience, Center for Movement Disorders and Neurorestoration, University of Florida Gainesville, FL, USA
| | - Enrico Opri
- Department of Neuroscience, Center for Movement Disorders and Neurorestoration, University of Florida Gainesville, FL, USA
| | - Kevin J Otto
- Department of Neuroscience, Center for Movement Disorders and Neurorestoration, University of Florida Gainesville, FL, USA
| | - Karim G Oweiss
- Department of Neuroscience, Center for Movement Disorders and Neurorestoration, University of Florida Gainesville, FL, USA
| | - Yagna Pathak
- Neurological Institute, Columbia University Medical Center New York, NY, USA
| | - Aparna Shukla
- Department of Neuroscience, Center for Movement Disorders and Neurorestoration, University of Florida Gainesville, FL, USA
| | - Jonathan Shute
- Department of Neuroscience, Center for Movement Disorders and Neurorestoration, University of Florida Gainesville, FL, USA
| | - Sameer A Sheth
- Neurological Institute, Columbia University Medical Center New York, NY, USA
| | - Ludy C Shih
- Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA
| | | | - Alexander I Tröster
- Department of Clinical Neuropsychology, Barrow Neurological Institute Phoenix, AZ, USA
| | - Nora Vanegas
- Neurological Institute, Columbia University Medical Center New York, NY, USA
| | - Kareem A Zaghloul
- National Institute of Neurological Disorders and Stroke, National Institutes of Health Bethesda, MD, USA
| | | | - Leonard Verhagen
- Department of Neurology, Rush University Medical Center Chicago, IL, USA
| | - Kelly D Foote
- Department of Neuroscience, Center for Movement Disorders and Neurorestoration, University of Florida Gainesville, FL, USA
| | - Michael S Okun
- Department of Neuroscience, Center for Movement Disorders and Neurorestoration, University of Florida Gainesville, FL, USA
| |
Collapse
|
91
|
Miocinovic S, de Hemptinne C, Qasim S, Ostrem JL, Starr PA. Patterns of Cortical Synchronization in Isolated Dystonia Compared With Parkinson Disease. JAMA Neurol 2016; 72:1244-51. [PMID: 26409266 DOI: 10.1001/jamaneurol.2015.2561] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
IMPORTANCE Isolated dystonia and Parkinson disease (PD) are disorders of the basal gangliothalamocortical network. They have largely distinct clinical profiles, but both disorders respond to deep brain stimulation (DBS) in the same subcortical targets using similar stimulation paradigms, suggesting pathophysiologic overlap. We hypothesized that, similar to PD, isolated dystonia is associated with elevated cortical neuronal synchronization. OBJECTIVE To investigate the electrophysiologic characteristics of the sensorimotor cortex arm-related area using a temporary subdural electrode strip in patients with isolated dystonia and PD undergoing DBS implantation in the awake state. DESIGN, SETTING, AND PARTICIPANTS An observational study recruited patients scheduled for DBS at the University of California, San Francisco and the San Francisco Veterans Affairs Medical Center. Data were collected from May 1, 2008, through April 1, 2015. Findings are reported for 22 patients with isolated cervical or segmental dystonia (8 with [DYST-ARM] and 14 without [DYST] arm symptoms) and 14 patients with akinetic rigid PD. Data were analyzed from November 1, 2014, through May 1, 2015. MAIN OUTCOMES AND MEASURES Cortical local field potentials, power spectral density, and phase-amplitude coupling (PAC). RESULTS Among our 3 groups that together included 36 patients, cortical PAC was present in primary motor and premotor arm-related areas for all groups, but the DYST group was less likely to exhibit increased PAC (P = .008). Similar to what has been shown for patients with PD, subthalamic DBS reversibly decreased PAC in a subset of patients with dystonia who were studied before and during intraoperative test stimulation (n = 4). At rest, broadband gamma (50-200 Hz) power in the primary motor cortex was greater in the DYST-ARM and PD groups compared with the DYST group, whereas alpha (8-13 Hz) and beta (13-30 Hz) power was comparable in all 3 groups. During movement, the DYST-ARM group had impaired beta and low gamma desynchronization in the primary motor cortex. CONCLUSIONS AND RELEVANCE Isolated dystonia and PD have physiologic overlap with respect to high levels of motor cortex synchronization and reduction of cortical synchronization by subthalamic DBS, providing an explanation for their similar therapeutic response to basal ganglia stimulation.
Collapse
Affiliation(s)
- Svjetlana Miocinovic
- Movement Disorder and Neuromodulation Center, Department of Neurology, University of California, San Francisco
| | | | - Salman Qasim
- Department of Neurological Surgery, University of California, San Francisco
| | - Jill L Ostrem
- Movement Disorder and Neuromodulation Center, Department of Neurology, University of California, San Francisco
| | - Philip A Starr
- Department of Neurological Surgery, University of California, San Francisco
| |
Collapse
|
92
|
Tewari A, Jog R, Jog MS. The Striatum and Subthalamic Nucleus as Independent and Collaborative Structures in Motor Control. Front Syst Neurosci 2016; 10:17. [PMID: 26973474 PMCID: PMC4771745 DOI: 10.3389/fnsys.2016.00017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 02/16/2016] [Indexed: 11/30/2022] Open
Abstract
The striatum and the subthalamic nucleus (STN) are two separate input structures into the basal ganglia (BG). Accordingly, research to date has primarily focused on the distinct roles of these structures in motor control and cognition, often through investigation of Parkinson’s disease (PD). Both structures are divided into sensorimotor, associative, and limbic subdivisions based on cortical connectivity. The more recent discovery of the STN as an input structure into the BG drives comparison of these two structures and their respective roles in cognition and motor control. This review compares the role of the striatum and STN in motor response inhibition and execution, competing motor programs, feedback based learning, and response planning. Through comparison, it is found that the striatum and STN have highly independent roles in motor control but also collaborate in order to execute desired actions. There is also the possibility that inhibition or activation of one of these structures indirectly contributes to the function of other connected anatomical structures. Both structures contribute to selective motor response inhibition, which forms the basis of many tasks, but the STN additionally contributes to global inhibition through the hyperdirect pathway. Research is warranted on the functional connectivity of the network for inhibition involving the rIFG, preSMA, striatum, and STN.
Collapse
Affiliation(s)
- Alia Tewari
- London Health Sciences Centre London, ON, Canada
| | - Rachna Jog
- London Health Sciences Centre London, ON, Canada
| | - Mandar S Jog
- London Health Sciences Centre London, ON, Canada
| |
Collapse
|
93
|
Panov F, Levin E, de Hemptinne C, Swann NC, Qasim S, Miocinovic S, Ostrem JL, Starr PA. Intraoperative electrocorticography for physiological research in movement disorders: principles and experience in 200 cases. J Neurosurg 2016; 126:122-131. [PMID: 26918474 DOI: 10.3171/2015.11.jns151341] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Contemporary theories of the pathophysiology of movement disorders emphasize abnormal oscillatory activity in basal ganglia-thalamocortical loops, but these have been studied in humans mainly using depth recordings. Recording from the surface of the cortex using electrocorticography (ECoG) provides a much higher amplitude signal than depth recordings, is less susceptible to deep brain stimulation (DBS) artifacts, and yields a surrogate measure of population spiking via "broadband gamma" (50-200 Hz) activity. Therefore, a technical approach to movement disorders surgery was developed that employs intraoperative ECoG as a research tool. METHODS One hundred eighty-eight patients undergoing DBS for the treatment of movement disorders were studied under an institutional review board-approved protocol. Through the standard bur hole exposure that is clinically indicated for DBS lead insertion, a strip electrode (6 or 28 contacts) was inserted to cover the primary motor or prefrontal cortical areas. Localization was confirmed by the reversal of the somatosensory evoked potential and intraoperative CT or 2D fluoroscopy. The ECoG potentials were recorded at rest and during a variety of tasks and analyzed offline in the frequency domain, focusing on activity between 3 and 200 Hz. Strips were removed prior to closure. Postoperative MRI was inspected for edema, signal change, or hematoma that could be related to the placement of the ECoG strip. RESULTS One hundred ninety-eight (99%) strips were successfully placed. Two ECoG placements were aborted due to resistance during the attempted passage of the electrode. Perioperative surgical complications occurred in 8 patients, including 5 hardware infections, 1 delayed chronic subdural hematoma requiring evacuation, 1 intraparenchymal hematoma, and 1 venous infarction distant from the site of the recording. None of these appeared to be directly related to the use of ECoG. CONCLUSIONS Intraoperative ECoG has long been used in neurosurgery for functional mapping and localization of seizure foci. As applied during DBS surgery, it has become an important research tool for understanding the brain networks in movement disorders and the mechanisms of therapeutic stimulation. In experienced hands, the technique appears to add minimal risk to surgery.
Collapse
Affiliation(s)
- Fedor Panov
- Department of Neurological Surgery, Mount Sinai School of Medicine, New York, New York
| | - Emily Levin
- Department of Neurological Surgery, University of Michigan, Ann Arbor, Michigan; and
| | | | | | | | | | - Jill L Ostrem
- Neurology, University of California, San Francisco, California
| | | |
Collapse
|
94
|
Subthalamic local field potentials in Parkinson's disease and isolated dystonia: An evaluation of potential biomarkers. Neurobiol Dis 2016; 89:213-22. [PMID: 26884091 DOI: 10.1016/j.nbd.2016.02.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/07/2016] [Accepted: 02/10/2016] [Indexed: 12/18/2022] Open
Abstract
Local field potentials (LFP) recorded from the subthalamic nucleus in patients with Parkinson's disease (PD) demonstrate prominent oscillations in the beta (13-30 Hz) frequency range, and reduction of beta band spectral power by levodopa and deep brain stimulation (DBS) is correlated with motor symptom improvement. Several features of beta activity have been theorized to be specific biomarkers of the parkinsonian state, though these have rarely been studied in non-parkinsonian conditions. To compare resting state LFP features in PD and isolated dystonia and evaluate disease-specific biomarkers, we recorded subthalamic LFPs from 28 akinetic-rigid PD and 12 isolated dystonia patients during awake DBS implantation. Spectral power and phase-amplitude coupling characteristics were analyzed. In 26/28 PD and 11/12 isolated dystonia patients, the LFP power spectrum had a peak in the beta frequency range, with similar amplitudes between groups. Resting state power did not differ between groups in the theta (5-8 Hz), alpha (8-12 Hz), beta (13-30 Hz), broadband gamma (50-200 Hz), or high frequency oscillation (HFO, 250-350 Hz) bands. Analysis of phase-amplitude coupling between low frequency phase and HFO amplitude revealed significant interactions in 19/28 PD and 6/12 dystonia recordings without significant differences in maximal coupling or preferred phase. Two features of subthalamic LFPs that have been proposed as specific parkinsonian biomarkers, beta power and coupling of beta phase to HFO amplitude, were also present in isolated dystonia, including focal dystonias. This casts doubt on the utility of these metrics as disease-specific diagnostic biomarkers.
Collapse
|
95
|
Subthalamic nucleus phase-amplitude coupling correlates with motor impairment in Parkinson's disease. Clin Neurophysiol 2016; 127:2010-9. [PMID: 26971483 PMCID: PMC4803022 DOI: 10.1016/j.clinph.2016.01.015] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 12/18/2015] [Accepted: 01/16/2016] [Indexed: 01/05/2023]
Abstract
We obtained invasive subthalamic nucleus recordings in 33 Parkinson’s disease patients. Phase–amplitude coupling between beta band and high-frequency oscillations correlates with severity of motor impairments. Parkinsonian pathophysiology is more closely linked with low-beta band frequencies.
Objective High-amplitude beta band oscillations within the subthalamic nucleus are frequently associated with Parkinson’s disease but it is unclear how they might lead to motor impairments. Here we investigate a likely pathological coupling between the phase of beta band oscillations and the amplitude of high-frequency oscillations around 300 Hz. Methods We analysed an extensive data set comprising resting-state recordings obtained from deep brain stimulation electrodes in 33 patients before and/or after taking dopaminergic medication. We correlated mean values of spectral power and phase–amplitude coupling with severity of hemibody bradykinesia/rigidity. In addition, we used simultaneously recorded magnetoencephalography to look at functional interactions between the subthalamic nucleus and ipsilateral motor cortex. Results Beta band power and phase–amplitude coupling within the subthalamic nucleus correlated positively with severity of motor impairment. This effect was more pronounced within the low-beta range, whilst coherence between subthalamic nucleus and motor cortex was dominant in the high-beta range. Conclusions We speculate that the beta band might impede pro-kinetic high-frequency activity patterns when phase–amplitude coupling is prominent. Furthermore, results provide evidence for a functional subdivision of the beta band into low and high frequencies. Significance Our findings contribute to the interpretation of oscillatory activity within the cortico-basal ganglia circuit.
Collapse
|
96
|
Coherence of neuronal firing of the entopeduncular nucleus with motor cortex oscillatory activity in the 6-OHDA rat model of Parkinson’s disease with levodopa-induced dyskinesias. Exp Brain Res 2016; 234:1105-18. [DOI: 10.1007/s00221-015-4532-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 12/13/2015] [Indexed: 10/22/2022]
|
97
|
Parkinson's Disease. Netw Neurosci 2016. [DOI: 10.1016/b978-0-12-801560-5.00023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
98
|
Different clinical course of pallidal deep brain stimulation for phasic- and tonic-type cervical dystonia. Acta Neurochir (Wien) 2016; 158:171-80; discussion 180. [PMID: 26611690 DOI: 10.1007/s00701-015-2646-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/16/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Dystonia has been treated well using deep brain stimulation at the globus pallidus internus (GPi DBS). Dystonia can be categorized as two basic types of movement, phasic-type and tonic-type. Cervical dystonia is the most common type of focal dystonia, and sequential differences in clinical outcomes between phasic-type and tonic-type cervical dystonia have not been reported. METHODS This study included a retrospective cohort of 30 patients with primary cervical dystonia who underwent GPi DBS. Age, disease duration, dystonia direction, movement types, employment status, relevant life events, and neuropsychological examinations were analyzed with respect to clinical outcomes following GPi DBS. RESULTS The only significant factor affecting clinical outcomes was movement type (phasic or tonic). Sequential changes in clinical outcomes showed significant differences between phasic- and tonic-type cervical dystonia. A delayed benefit was found in both phasic- and tonic-type dystonia. CONCLUSIONS The clinical outcome of phasic-type cervical dystonia is more favorable than that of tonic-type cervical dystonia following GPi DBS.
Collapse
|
99
|
Electrocorticography reveals beta desynchronization in the basal ganglia-cortical loop during rest tremor in Parkinson's disease. Neurobiol Dis 2015; 86:177-86. [PMID: 26639855 DOI: 10.1016/j.nbd.2015.11.023] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 11/24/2022] Open
Abstract
The pathophysiology of rest tremor in Parkinson's disease (PD) is not well understood, and its severity does not correlate with the severity of other cardinal signs of PD. We hypothesized that tremor-related oscillatory activity in the basal-ganglia-thalamocortical loop might serve as a compensatory mechanism for the excessive beta band synchronization associated with the parkinsonian state. We recorded electrocorticography (ECoG) from the sensorimotor cortex and local field potentials (LFP) from the subthalamic nucleus (STN) in patients undergoing lead implantation for deep brain stimulation (DBS). We analyzed differences in measures of network synchronization during epochs of spontaneous rest tremor, versus epochs without rest tremor, occurring in the same subjects. The presence of tremor was associated with reduced beta power in the cortex and STN. Cortico-cortical coherence and phase-amplitude coupling (PAC) decreased during rest tremor, as did basal ganglia-cortical coherence in the same frequency band. Cortical broadband gamma power was not increased by tremor onset, in contrast to the movement-related gamma increase typically observed at the onset of voluntary movement. These findings suggest that the cortical representation of rest tremor is distinct from that of voluntary movement, and support a model in which tremor acts to decrease beta band synchronization within the basal ganglia-cortical loop.
Collapse
|
100
|
Herrington TM, Cheng JJ, Eskandar EN. Mechanisms of deep brain stimulation. J Neurophysiol 2015; 115:19-38. [PMID: 26510756 DOI: 10.1152/jn.00281.2015] [Citation(s) in RCA: 290] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 10/22/2015] [Indexed: 12/31/2022] Open
Abstract
Deep brain stimulation (DBS) is widely used for the treatment of movement disorders including Parkinson's disease, essential tremor, and dystonia and, to a lesser extent, certain treatment-resistant neuropsychiatric disorders including obsessive-compulsive disorder. Rather than a single unifying mechanism, DBS likely acts via several, nonexclusive mechanisms including local and network-wide electrical and neurochemical effects of stimulation, modulation of oscillatory activity, synaptic plasticity, and, potentially, neuroprotection and neurogenesis. These different mechanisms vary in importance depending on the condition being treated and the target being stimulated. Here we review each of these in turn and illustrate how an understanding of these mechanisms is inspiring next-generation approaches to DBS.
Collapse
Affiliation(s)
- Todd M Herrington
- Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Jennifer J Cheng
- Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neurosurgery, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Emad N Eskandar
- Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|