51
|
Epileptic seizures in the emergency room: clinical and electroencephalographic findings associated with brain perfusion patterns on computed tomography. J Neurol 2022; 269:3761-3769. [PMID: 35152335 PMCID: PMC8852852 DOI: 10.1007/s00415-022-11005-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 12/02/2022]
Abstract
Background Diagnosis of epileptic seizures, particularly regarding status epilepticus (SE), may be challenging in an emergency room setting. The aim of the study was to study the diagnostic yield of perfusion computed tomography (pCT) in patients with single epileptic seizures and SE. Methods We retrospectively reviewed the records of patients who followed an acute ischemic stroke pathway during a 9-month period and who were finally diagnosed with a single epileptic seizure or SE. Perfusion maps were visually analyzed for the presence of hyperperfusion and hypoperfusion. Clinical data, EEG patterns, and neuroimaging findings were compared. Results We included 47 patients: 20 (42.5%) with SE and 27 (57.5%) with single epileptic seizure. Of 18 patients who showed hyperperfusion on pCT, 12 were ultimately diagnosed with SE and eight had EEG findings compatible with an SE pattern. Focal hyperperfusion on pCT had a sensitivity of 60% (95% CI 36.4–80.2) and a specificity of 77.8% (95% CI 57.2–90.6) for predicting a final diagnosis of SE. The presence of cerebral cortical and thalamic hyperperfusion had a high specificity for predicting SE presence. Of note, 96% of patients without hyperperfusion on pCT did not show an SE pattern on early EEG. Conclusions In acute settings, detection by visual analysis of focal cerebral cortical hyperperfusion on pCT in patients with epileptic seizures, especially if accompanied by the highly specific feature of thalamic hyperperfusion, is suggestive of a diagnosis of SE and requires clinical and EEG confirmation. The absence of focal hyperperfusion makes a diagnosis of SE unlikely.
Collapse
|
52
|
Vuu I, Patterson EE, Wu CY, Zolkowska D, Leppik IE, Rogawski MA, Worrell GA, Kremen V, Cloyd JC, Coles LD. Intravenous and Intramuscular Allopregnanolone for Early Treatment of Status Epilepticus: Pharmacokinetics, Pharmacodynamics, and Safety in Dogs. J Pharmacol Exp Ther 2022; 380:104-113. [PMID: 34862270 PMCID: PMC11048262 DOI: 10.1124/jpet.121.000736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/30/2021] [Indexed: 11/22/2022] Open
Abstract
Allopregnanolone (ALLO) is a neurosteroid that modulates synaptic and extrasynaptic GABAA receptors. We hypothesize that ALLO may be useful as first-line treatment of status epilepticus (SE). Our objectives were to (1) characterize ALLO pharmacokinetics-pharmacodynamics PK-PD after intravenous (IV) and intramuscular (IM) administration and (2) compare IV and IM ALLO safety and tolerability. Three healthy dogs and two with a history of epilepsy were used. Single ALLO IV doses ranging from 1-6 mg/kg were infused over 5 minutes or injected IM. Blood samples, vital signs, and sedation assessment were collected up to 8 hours postdose. Intracranial EEG (iEEG) was continuously recorded in one dog. IV ALLO exhibited dose-proportional increases in exposure, which were associated with an increase in absolute power spectral density in all iEEG frequency bands. This relationship was best described by an indirect link PK-PD model where concentration-response was described by a sigmoidal maximum response (Emax) equation. Adverse events included site injection pain with higher IM volumes and ataxia and sedation associated with higher doses. IM administration exhibited incomplete absorption and volume-dependent bioavailability. Robust iEEG changes after IM administration were not observed. Based on PK-PD simulations, a 2 mg/kg dose infused over 5 minutes is predicted to achieve plasma concentrations above the EC50, but below those associated with heavy sedation. This study demonstrates that ALLO is safe and well tolerated when administered at 1-4 mg/kg IV and up to 2 mg/kg IM. The rapid onset of effect after IV infusion suggests that ALLO may be useful in the early treatment of SE. SIGNIFICANCE STATEMENT: The characterization of the pharmacokinetics and pharmacodynamics of allopregnanolone is essential in order to design clinical studies evaluating its effectiveness as an early treatment for status epilepticus in dogs and people. This study has proposed a target dose/therapeutic range for a clinical trial in canine status epilepticus.
Collapse
Affiliation(s)
- Irene Vuu
- Clinical Pharmacology Modeling and Simulation, Amgen Inc., Thousand Oaks, California (I.V.); Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, Minnesota (E.E.P.); Department of Neurology, University of California Davis School of Medicine, Sacramento, California (C.-Y.W., D.Z., M.A.R.); Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota (I.E.L., J.C.C., L.D.C.); and Department of Neurology, Mayo Clinic, Rochester, Minnesota (G.A.W., V.K.)
| | - Edward E Patterson
- Clinical Pharmacology Modeling and Simulation, Amgen Inc., Thousand Oaks, California (I.V.); Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, Minnesota (E.E.P.); Department of Neurology, University of California Davis School of Medicine, Sacramento, California (C.-Y.W., D.Z., M.A.R.); Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota (I.E.L., J.C.C., L.D.C.); and Department of Neurology, Mayo Clinic, Rochester, Minnesota (G.A.W., V.K.)
| | - Chun-Yi Wu
- Clinical Pharmacology Modeling and Simulation, Amgen Inc., Thousand Oaks, California (I.V.); Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, Minnesota (E.E.P.); Department of Neurology, University of California Davis School of Medicine, Sacramento, California (C.-Y.W., D.Z., M.A.R.); Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota (I.E.L., J.C.C., L.D.C.); and Department of Neurology, Mayo Clinic, Rochester, Minnesota (G.A.W., V.K.)
| | - Dorota Zolkowska
- Clinical Pharmacology Modeling and Simulation, Amgen Inc., Thousand Oaks, California (I.V.); Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, Minnesota (E.E.P.); Department of Neurology, University of California Davis School of Medicine, Sacramento, California (C.-Y.W., D.Z., M.A.R.); Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota (I.E.L., J.C.C., L.D.C.); and Department of Neurology, Mayo Clinic, Rochester, Minnesota (G.A.W., V.K.)
| | - Ilo E Leppik
- Clinical Pharmacology Modeling and Simulation, Amgen Inc., Thousand Oaks, California (I.V.); Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, Minnesota (E.E.P.); Department of Neurology, University of California Davis School of Medicine, Sacramento, California (C.-Y.W., D.Z., M.A.R.); Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota (I.E.L., J.C.C., L.D.C.); and Department of Neurology, Mayo Clinic, Rochester, Minnesota (G.A.W., V.K.)
| | - Michael A Rogawski
- Clinical Pharmacology Modeling and Simulation, Amgen Inc., Thousand Oaks, California (I.V.); Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, Minnesota (E.E.P.); Department of Neurology, University of California Davis School of Medicine, Sacramento, California (C.-Y.W., D.Z., M.A.R.); Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota (I.E.L., J.C.C., L.D.C.); and Department of Neurology, Mayo Clinic, Rochester, Minnesota (G.A.W., V.K.)
| | - Gregory A Worrell
- Clinical Pharmacology Modeling and Simulation, Amgen Inc., Thousand Oaks, California (I.V.); Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, Minnesota (E.E.P.); Department of Neurology, University of California Davis School of Medicine, Sacramento, California (C.-Y.W., D.Z., M.A.R.); Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota (I.E.L., J.C.C., L.D.C.); and Department of Neurology, Mayo Clinic, Rochester, Minnesota (G.A.W., V.K.)
| | - Vaclav Kremen
- Clinical Pharmacology Modeling and Simulation, Amgen Inc., Thousand Oaks, California (I.V.); Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, Minnesota (E.E.P.); Department of Neurology, University of California Davis School of Medicine, Sacramento, California (C.-Y.W., D.Z., M.A.R.); Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota (I.E.L., J.C.C., L.D.C.); and Department of Neurology, Mayo Clinic, Rochester, Minnesota (G.A.W., V.K.)
| | - James C Cloyd
- Clinical Pharmacology Modeling and Simulation, Amgen Inc., Thousand Oaks, California (I.V.); Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, Minnesota (E.E.P.); Department of Neurology, University of California Davis School of Medicine, Sacramento, California (C.-Y.W., D.Z., M.A.R.); Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota (I.E.L., J.C.C., L.D.C.); and Department of Neurology, Mayo Clinic, Rochester, Minnesota (G.A.W., V.K.)
| | - Lisa D Coles
- Clinical Pharmacology Modeling and Simulation, Amgen Inc., Thousand Oaks, California (I.V.); Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, Minnesota (E.E.P.); Department of Neurology, University of California Davis School of Medicine, Sacramento, California (C.-Y.W., D.Z., M.A.R.); Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota (I.E.L., J.C.C., L.D.C.); and Department of Neurology, Mayo Clinic, Rochester, Minnesota (G.A.W., V.K.)
| |
Collapse
|
53
|
Pfeiffer CK, Smith K, Bernard S, Dalziel SR, Hearps S, Geis T, Kabesch M, Babl FE. Prehospital benzodiazepine use and need for respiratory support in paediatric seizures. Emerg Med J 2022; 39:608-615. [PMID: 35078857 DOI: 10.1136/emermed-2021-211735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/08/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Paramedics are frequently called to attend seizures in children. High-quality evidence on second-line treatment of benzodiazepine (BZD)-refractory convulsions with parenteral long-acting antiepileptic drugs in children has become available from the ED. In order to address the potential need for an alternative agent, we set out to determine the association of BZD use prehospital and the need for respiratory support. METHODS We conducted a retrospective observational study of state-wide ambulance service data (Ambulance Victoria in Victoria, Australia, population: 6.5 million). Children aged 0-17 years assessed for seizures by paramedics were analysed for demographics, process factors, treatment and airway management. We calculated adjusted ORs (AOR) of the requirement for respiratory support in relation to the number of BZD doses administered. RESULTS Paramedics attended 5112 children with suspected seizures over 1 year (1 July 2018 to 30 June 2019). Overall, need for respiratory support was low (n=166; 3.2%). Before ambulance arrival, 509 (10.0%) had already received a BZD and 420 (8.2%) were treated with midazolam by paramedics. Of the 846 (16.5%) patients treated with BZD, 597 (70.6%) received 1 BZD dose, 156 (18.4%) 2 doses and 93 (11.0%) >2 doses of BZD. Patients who were administered 1, 2 and >2 doses of BZD received respiratory support in 8.9%, 32.1% (AOR 4.6 vs 1 dose, 95% CI 2.9 to 7.4) and 49.5% (AOR 10.3 vs 1 dose, 95% CI 6.0 to 17.9), respectively. CONCLUSIONS Increasing administration of BZD doses was associated with higher use of respiratory support. Alternative prehospital antiepileptic drugs to minimise respiratory depression should be investigated in future research.
Collapse
Affiliation(s)
- Christina K Pfeiffer
- Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Wissenschafts- und Entwicklungscampus Regensburg, University Children's Hospital Regensburg (KUNO-Clinics) at St Hedwig Hospital of the order of St John, Regensburg, Germany
| | - Karen Smith
- Research and Evaluation, Ambulance Victoria, Melbourne, Victoria, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Clayton, Victoria, Australia
| | - Stephen Bernard
- Department of Epidemiology and Preventive Medicine, Monash University, Clayton, Victoria, Australia
- Ambulance Victoria, Doncaster, Victoria, Australia
| | - Stuart R Dalziel
- Paediatric Research in Emergency Departments International Collaborative (PREDICT), Melbourne, Victoria, Australia
- Departments of Surgery and Paediatrics, The University of Auckland, Auckland, New Zealand
| | - Stephen Hearps
- Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Tobias Geis
- Wissenschafts- und Entwicklungscampus Regensburg, University Children's Hospital Regensburg (KUNO-Clinics) at St Hedwig Hospital of the order of St John, Regensburg, Germany
| | - Michael Kabesch
- Wissenschafts- und Entwicklungscampus Regensburg, University Children's Hospital Regensburg (KUNO-Clinics) at St Hedwig Hospital of the order of St John, Regensburg, Germany
| | - Franz E Babl
- Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Paediatric Research in Emergency Departments International Collaborative (PREDICT), Melbourne, Victoria, Australia
- Emergency Department, Royal Children's Hospital, Parkville, Victoria, Australia
- Departments of Paediatrics and Critical Care, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
54
|
Migdady I, Rosenthal ES, Cock HR. Management of status epilepticus: a narrative review. Anaesthesia 2022; 77 Suppl 1:78-91. [PMID: 35001380 DOI: 10.1111/anae.15606] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 11/26/2022]
Abstract
Status epilepticus causes prolonged or repetitive seizures that, if left untreated, can lead to neuronal injury, severe disability, coma and death in paediatric and adult populations. While convulsive status epilepticus can be diagnosed using clinical features alone, non-convulsive status epilepticus requires confirmation by electroencephalogram. Early seizure control remains key in preventing the complications of status epilepticus. This is especially true for convulsive status epilepticus, which has stronger evidence supporting the benefit of treatment on outcomes. When status epilepticus becomes refractory, often due to gamma-aminobutyric acid and N-methyl-D-aspartate receptor modulation, anaesthetic drugs are needed to suppress seizure activity, of which there is limited evidence regarding the selection, dose or duration of their use. Seizure monitoring with electroencephalogram is often needed when patients do not return to baseline or during anaesthetic wean; however, it is resource-intensive, costly, only available in highly specialised centres and has not been shown to improve functional outcomes. Thus, the treatment goals and aggressiveness of therapy remain under debate, especially for non-convulsive status epilepticus, where prolonged therapeutic coma can lead to severe complications. This review presents an evidence-based, clinically-oriented and comprehensive review of status epilepticus and its definitions, aetiologies, treatments, outcomes and prognosis at different stages of the patient's journey.
Collapse
Affiliation(s)
- I Migdady
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - E S Rosenthal
- Department of Neurology, Divisions of Clinical Neurophysiology and Neurocritical Care Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - H R Cock
- Clinical Neurosciences Academic Group, Institute of Molecular and Clinical Sciences, St. George's University of London, London, UK
| |
Collapse
|
55
|
Garcia JD, Gookin SE, Crosby KC, Schwartz SL, Tiemeier E, Kennedy MJ, Dell'Acqua ML, Herson PS, Quillinan N, Smith KR. Stepwise disassembly of GABAergic synapses during pathogenic excitotoxicity. Cell Rep 2021; 37:110142. [PMID: 34936876 PMCID: PMC8824488 DOI: 10.1016/j.celrep.2021.110142] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/17/2021] [Accepted: 11/23/2021] [Indexed: 12/16/2022] Open
Abstract
GABAergic synaptic inhibition controls neuronal firing, excitability, and synaptic plasticity to regulate neuronal circuits. Following an acute excitotoxic insult, inhibitory synapses are eliminated, reducing synaptic inhibition, elevating circuit excitability, and contributing to the pathophysiology of brain injuries. However, mechanisms that drive inhibitory synapse disassembly and elimination are undefined. We find that inhibitory synapses are disassembled in a sequential manner following excitotoxicity: GABAARs undergo rapid nanoscale rearrangement and are dispersed from the synapse along with presynaptic active zone components, followed by the gradual removal of the gephyrin scaffold, prior to complete elimination of the presynaptic terminal. GABAAR nanoscale reorganization and synaptic declustering depends on calcineurin signaling, whereas disassembly of gephyrin relies on calpain activation, and blockade of both enzymes preserves inhibitory synapses after excitotoxic insult. Thus, inhibitory synapse disassembly occurs rapidly, with nanoscale precision, in a stepwise manner and most likely represents a critical step in the progression of hyperexcitability following excitotoxicity.
Collapse
Affiliation(s)
- Joshua D Garcia
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Sara E Gookin
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Kevin C Crosby
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Samantha L Schwartz
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Erika Tiemeier
- Department of Anesthesiology, Neuronal Injury Program, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Matthew J Kennedy
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Paco S Herson
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA; Department of Anesthesiology, Neuronal Injury Program, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Nidia Quillinan
- Department of Anesthesiology, Neuronal Injury Program, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Katharine R Smith
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
56
|
Zhou R, Wang Y, Cao X, Li Z, Yu J. Diazepam Monotherapy or Diazepam-Ketamine Dual Therapy at Different Time Points Terminates Seizures and Reduces Mortality in a Status Epilepticus Animal Model. Med Sci Monit 2021; 27:e934043. [PMID: 34866132 PMCID: PMC8662960 DOI: 10.12659/msm.934043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/08/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Being refractory to drugs remains an urgent treatment problem in status epilepticus (SE). The fact that γ-aminobutyric acid A receptors (GABAARs) become internalized and inactive, N-methyl-D-aspartate receptors (NMDARs) become externalized and active during SE may explain the refractoriness to benzodiazepine. However, the real-time dynamic efficacy of antiepileptic drugs remains unclear. Therefore, we propose a hypothesis that diazepam monotherapy or diazepam-ketamine dual therapy could terminate seizures and reduce mortality in the SE model at different time points during ongoing SE. MATERIAL AND METHODS An SE model was established in adult Sprague-Dawley rats with lithium and pilocarpine. The GABAAR agonist diazepam was injected at 5, 10, 20, or 30 min when SE continued. In addition, diazepam and the NMDAR antagonist ketamine were injected at 10 to 60 min at 6 different time points. We measured seizure-free rates, seizure duration, degree of behavioral seizure, and mortality. RESULTS Diazepam monotherapy at 5 min and 10 min from the beginning of SE was able to terminate seizures and improved survival rates. Diazepam-ketamine dual therapy at 10 min, 20 min, and 30 min from the beginning of SE terminated seizures and achieved high survival rates. CONCLUSIONS In this parallel randomized controlled trial with a rat model, we found that diazepam monotherapy was an effective antiepileptic strategy at the early stage of SE less than 10 min after SE onset. If SE lasts more than 10 min but less than 30 min, the diazepam-ketamine dual therapy strategy may be an appropriate choice.
Collapse
Affiliation(s)
- Ruijiao Zhou
- Department of Neurology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Yanlin Wang
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Xing Cao
- Department of Neurology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Zhimin Li
- Department of Neurology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Juming Yu
- Department of Neurology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, PR China
| |
Collapse
|
57
|
Wu K, Castellano D, Tian Q, Lu W. Distinct regulation of tonic GABAergic inhibition by NMDA receptor subtypes. Cell Rep 2021; 37:109960. [PMID: 34758303 PMCID: PMC8630577 DOI: 10.1016/j.celrep.2021.109960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/03/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Tonic inhibition mediated by extrasynaptic GABAARs regulates various brain functions. However, the mechanisms that regulate tonic inhibition remain largely unclear. Here, we report distinct actions of GluN2A- and GluN2B-NMDA receptors (NMDARs) on tonic inhibition in hippocampal neurons under basal and high activity conditions. Specifically, overexpression of GluN2B, but not GluN2A, reduces α5-GABAAR surface expression and tonic currents. Additionally, knockout of GluN2A and GluN2B decreases and increases tonic currents, respectively. Mechanistically, GluN2A-NMDARs inhibit and GluN2B-NMDARs promote α5-GABAAR internalization, resulting in increased and decreased surface α5-GABAAR expression, respectively. Furthermore, GluN2A-NMDARs, but not GluN2B-NMDARs, are required for homeostatic potentiation of tonic inhibition induced by prolonged increase of neuronal activity. Last, tonic inhibition decreases during acute seizures, whereas it increases 24 h later, involving GluN2-NMDAR-dependent signaling. Collectively, these data reveal an NMDAR subunit-specific regulation of tonic inhibition in physiological and pathological conditions and provide mechanistic insight into activity-dependent modulation of tonic inhibition.
Collapse
Affiliation(s)
- Kunwei Wu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Castellano
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qingjun Tian
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
58
|
Sperk G, Pirker S, Gasser E, Wieselthaler A, Bukovac A, Kuchukhidze G, Maier H, Drexel M, Baumgartner C, Ortler M, Czech T. Increased expression of GABA A receptor subunits associated with tonic inhibition in patients with temporal lobe epilepsy. Brain Commun 2021; 3:fcab239. [PMID: 34708207 PMCID: PMC8545616 DOI: 10.1093/braincomms/fcab239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/07/2021] [Accepted: 08/26/2021] [Indexed: 11/30/2022] Open
Abstract
Epilepsy animal models indicate pronounced changes in the expression and rearrangement of GABAA receptor subunits in the hippocampus and in para-hippocampal areas, including widespread downregulation of the subunits α5 and δ, and upregulation of α4, subunits that mediate tonic inhibition of GABA. In this case–control study, we investigated changes in the expression of subunits α4, α5 and δ in hippocampal specimens of drug resistant temporal lobe epilepsy patients who underwent epilepsy surgery. Using in situ hybridization, immunohistochemistry and α5-specific receptor autoradiography, we characterized expression of the receptor subunits in specimens from patients with and without Ammon’s horn sclerosis compared to post-mortem controls. Expression of the α5-subunit was abundant throughout all subfields of the hippocampus, including the dentate gyrus, sectors CA1 and CA3, the subiculum and pre- and parasubiculum. Significant but weaker expression was detected for subunits α4 and δ notably in the granule cell/molecular layer of control specimens, but was faint in the other parts of the hippocampus. Expression of all three subunits was similarly altered in sclerotic and non-sclerotic specimens. Respective mRNA levels were increased by about 50–80% in the granule cell layer compared with post-mortem controls. Subunit α5 mRNA levels and immunoreactivities were also increased in the sector CA3 and in the subiculum. Autoradiography for α5-containing receptors using [3H]L-655,708 as ligand showed significantly increased binding in the molecular layer of the dentate gyrus in non-sclerotic specimens. Increased expression of the α5 and δ subunits is in contrast to the previously observed downregulation of these subunits in different epilepsy models, whereas increased expression of α4 in temporal lobe epilepsy patients is consistent with that in the rodent models. Our findings indicate increased tonic inhibition likely representing an endogenous anticonvulsive mechanism in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Günther Sperk
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Susanne Pirker
- Neurological Department, Klinik Hietzing, 1130 Vienna, Austria
| | - Elisabeth Gasser
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anna Wieselthaler
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anneliese Bukovac
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Giorgi Kuchukhidze
- Department of Neurology, Christian Doppler Klinik, Affiliated Member of the European Reference Network EpiCARE and Centre for Cognitive Neuroscience, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria.,Neuroscience Institute, Christian Doppler Klinik, 5020 Salzburg, Austria
| | - Hans Maier
- INNPATH GmbH-Institute of Pathology, 6020 Innsbruck, Austria
| | - Meinrad Drexel
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria.,Institute of Molecular and Cellular Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | | | - Marin Ortler
- Department of Neurosurgery, Klinik Landstrasse, Vienna Healthcare Network, 1030Vienna, Austria.,Department of Neurosurgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Thomas Czech
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria
| |
Collapse
|
59
|
Lumley LA, Marrero-Rosado B, Rossetti F, Schultz CR, Stone MF, Niquet J, Wasterlain CG. Combination of antiseizure medications phenobarbital, ketamine, and midazolam reduces soman-induced epileptogenesis and brain pathology in rats. Epilepsia Open 2021; 6:757-769. [PMID: 34657398 PMCID: PMC8633481 DOI: 10.1002/epi4.12552] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 12/16/2022] Open
Abstract
Objective Cholinergic‐induced status epilepticus (SE) is associated with a loss of synaptic gamma‐aminobutyric acid A receptors (GABAAR) and an increase in N‐methyl‐D‐aspartate receptors (NMDAR) and amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptors (AMPAR) that may contribute to pharmacoresistance when treatment with benzodiazepine antiseizure medication is delayed. The barbiturate phenobarbital enhances inhibitory neurotransmission by binding to a specific site in the GABAAR to increase the open state of the channel, decrease neuronal excitability, and reduce glutamate‐induced currents through AMPA/kainate receptors. We hypothesized that phenobarbital as an adjunct to midazolam would augment the amelioration of soman‐induced SE and associated neuropathological changes and that further protection would be provided by the addition of an NMDAR antagonist. Methods We investigated the efficacy of combining antiseizure medications to include a benzodiazepine and a barbiturate allosteric GABAAR modulator (midazolam and phenobarbital, respectively) to correct loss of inhibition, and ketamine to reduce excitation caused by increased synaptic localization of NMDAR and AMPAR, which are NMDA‐dependent. Rats implanted with transmitters to record electroencephalographic (EEG) activity were exposed to soman and treated with atropine sulfate and HI‐6 one min after exposure and with antiseizure medication(s) 40 minutes after seizure onset. Results The triple therapy combination of phenobarbital, midazolam, and ketamine administered at 40 minutes after seizure onset effectively prevented soman‐induced epileptogenesis and reduced neurodegeneration. In addition, dual therapy with phenobarbital and midazolam or ketamine was more effective than monotherapy (midazolam or phenobarbital) in reducing cholinergic‐induced toxicity. Significance Benzodiazepine efficacy is drastically reduced with time after seizure onset and inversely related to seizure duration. To overcome pharmacoresistance in severe benzodiazepine‐refractory cholinergic‐induced SE, simultaneous drug combination to include drugs that target both the loss of inhibition (eg, midazolam, phenobarbital) and the increased excitatory response (eg, ketamine) is more effective than benzodiazepine or barbiturate monotherapy.
Collapse
Affiliation(s)
- Lucille A Lumley
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, Maryland, USA
| | - Brenda Marrero-Rosado
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, Maryland, USA
| | - Franco Rossetti
- Military Psychiatry and Neuroscience Department, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Caroline R Schultz
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, Maryland, USA
| | - Michael F Stone
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, Maryland, USA
| | - Jerome Niquet
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Claude G Wasterlain
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
60
|
Gascoigne DA, Drobyshevsky A, Aksenov DP. The Contribution of Dysfunctional Chloride Channels to Neurovascular Deficiency and Neurodegeneration. Front Pharmacol 2021; 12:754743. [PMID: 34671264 PMCID: PMC8520995 DOI: 10.3389/fphar.2021.754743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/21/2021] [Indexed: 01/11/2023] Open
Affiliation(s)
- David A. Gascoigne
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Alexander Drobyshevsky
- Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL, United States
| | - Daniil P. Aksenov
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, United States,Department of Anesthesiology, NorthShore University HealthSystem, Evanston, IL, United States,*Correspondence: Daniil P. Aksenov,
| |
Collapse
|
61
|
Epidemiology, management and outcome of status epilepticus in adults: single-center Italian survey. Neurol Sci 2021; 43:2003-2013. [PMID: 34490535 DOI: 10.1007/s10072-021-05572-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
The official variations of status epilepticus (SE) International League Against Epilepsy (ILAE, 2015) diagnostic criteria and the non-convulsive SE (NCSE) Salzburg Consensus Criteria (2013), impose the collection of updated population-based epidemiological Italian data. In this study, we aimed at evaluating (a) the frequency of SE in our hospital adopting the new ILAE 2015 SE diagnostic criteria and NCSE Salzburg Consensus Criteria, (b) the frequency of adherence to current treatment guidelines for SE and their relationship with patients' outcome, and (c) reliability of standardized prognostic scales (Status Epilepticus Severity Score-STESS-and modified STESS) for short-term outcome prediction in the setting of the newest diagnostic criteria for SE and NCSE. Detailed clinical and electrophysiological data collected in a 1-year retrospective hospital-based single-center survey on SE at Parma Hospital, Northern Italy are provided. Non-adherence to current treatment guidelines was recorded in around 50% cases, but no relation to outcome was appreciated. Mortality in our cohort increased from 30 to 50% when follow-up was extended to 30 days. STESS score was strongly correlated with short-term mortality risk (OR 18.9, 2.2-163.5, CI), and we confirm its role as easy-to-use tool for outcome evaluation also when the new ILAE diagnostic SE criteria are applied.
Collapse
|
62
|
Ziobro JM, Eschbach K, Shellhaas RA. Novel Therapeutics for Neonatal Seizures. Neurotherapeutics 2021; 18:1564-1581. [PMID: 34386906 PMCID: PMC8608938 DOI: 10.1007/s13311-021-01085-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 02/04/2023] Open
Abstract
Neonatal seizures are a common neurologic emergency for which therapies have not significantly changed in decades. Improvements in diagnosis and pathophysiologic understanding of the distinct features of acute symptomatic seizures and neonatal-onset epilepsies present exceptional opportunities for development of precision therapies with potential to improve outcomes. Herein, we discuss the pathophysiology of neonatal seizures and review the evidence for currently available treatment. We present emerging therapies in clinical and preclinical development for the treatment of acute symptomatic neonatal seizures. Lastly, we discuss the role of precision therapies for genetic neonatal-onset epilepsies and address barriers and goals for developing new therapies for clinical care.
Collapse
Affiliation(s)
- Julie M Ziobro
- Department of Pediatrics, Michigan Medicine, C.S. Mott Children's Hospital, University of Michigan, 1540 E. Hospital Dr, Ann Arbor, MI, USA.
| | - Krista Eschbach
- Department of Pediatrics, Section of Neurology, Denver Anschutz School of Medicine, Children's Hospital Colorado, University of Colorado, Aurora, CO, 80045, USA
| | - Renée A Shellhaas
- Department of Pediatrics, Michigan Medicine, C.S. Mott Children's Hospital, University of Michigan, 1540 E. Hospital Dr, Ann Arbor, MI, USA
| |
Collapse
|
63
|
Ameli PA, Ammar AA, Owusu KA, Maciel CB. Evaluation and Management of Seizures and Status Epilepticus. Neurol Clin 2021; 39:513-544. [PMID: 33896531 DOI: 10.1016/j.ncl.2021.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Seizures are frequently triggered by an inciting event and result from uninhibited excitation and/or decreased inhibition of a pool of neurons. If physiologic seizure abortive mechanisms fail, the ensuing unrestrained synchronization of neurons-status epilepticus-can be life-threatening and is associated with the potential for marked morbidity in survivors and high medical care costs. Prognosis is intimately related to etiology and its response to therapeutic measures. Timely implementation of pharmacologic therapy while concurrently performing a stepwise workup for etiology are paramount. Neurodiagnostic testing should guide titration of pharmacologic therapies, and help determine if there is a role for immune modulation.
Collapse
Affiliation(s)
- Pouya Alexander Ameli
- Department of Neurology, University of Florida McKnight Brain Institute, 1149 Newell Drive, Gainesville, FL 32610, USA; Department of Neurosurgery, University of Florida McKnight Brain Institute, 1149 Newell Drive, Gainesville, FL 32610, USA
| | - Abdalla A Ammar
- Department of Pharmacy, Yale New Haven Health, 55 Park Street, New Haven, CT 06511, USA
| | - Kent A Owusu
- Department of Pharmacy, Yale New Haven Health, 55 Park Street, New Haven, CT 06511, USA; Care Signature, Yale New Haven Health, 20 York Street, New Haven, CT, 06510, USA
| | - Carolina B Maciel
- Department of Neurology, University of Florida McKnight Brain Institute, 1149 Newell Drive, Gainesville, FL 32610, USA; Department of Neurosurgery, University of Florida McKnight Brain Institute, 1149 Newell Drive, Gainesville, FL 32610, USA; Department of Neurology, Yale University, 20 York Street, New Haven, CT, 06510, USA; Department of Neurology, University of Utah, 383 Colorow Drive, Salt Lake City, UT, 84132, USA.
| |
Collapse
|
64
|
Sairanen JJ, Kantanen AM, Hyppölä HT, Kälviäinen RK. Status epilepticus: Practice variation and adherence to treatment guideline in a large community hospital. J Neurol Sci 2021; 427:117542. [PMID: 34175776 DOI: 10.1016/j.jns.2021.117542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/28/2021] [Accepted: 06/12/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE To evaluate the treatment of status epilepticus (SE) and adherence to treatment guideline in a large Finnish community hospital. MATERIALS AND METHODS A consecutive series of 137 patients treated in the emergency department of Kuopio University Hospital. Enrollment took place between March 23 and December 31, 2015. Pediatric patients and postanoxic seizures were excluded. The Finnish Status Epilepticus Current Care Guideline was used as the evaluation benchmark. RESULTS Seventeen patients recovered spontaneously. First-line treatment was given to 108 patients with 35.2% efficacy. Second-line treatment was given to 81 patients with 87.7% efficacy. Six patients with refractory SE received successful third-line treatment and four were excluded from intensive care because of futility. The starting dose of a first-line drug was lower than the lowest therapeutic dose in 37.0% of the patients. The escalation from first- to second-line treatment took longer than 60 min in 55.1% of the 70 patients who received both treatments. The first loading dose of a second-line drug was markedly low (<80% of the recommended dose) in 26.2% of the 81 patients treated with second-line drugs. CONCLUSIONS Prompt and effective pharmacotherapy is the cornerstone of good SE treatment. Subtherapeutic doses of first-line benzodiazepines should be avoided. Benzodiazepine-resistant SE must be recognized early to facilitate rapid treatment escalation. The quality of second-line treatment suffers from excessive delays and inadequate weight-based dosing of antiseizure medications.
Collapse
Affiliation(s)
- Joni J Sairanen
- Epilepsy Center, Neuro Center, Kuopio University Hospital, Member of ERN EpiCARE, Kuopio, Finland.
| | - Anne-Mari Kantanen
- Epilepsy Center, Neuro Center, Kuopio University Hospital, Member of ERN EpiCARE, Kuopio, Finland
| | - Harri T Hyppölä
- Emergency Department, Kuopio University Hospital, Kuopio, Finland
| | - Reetta K Kälviäinen
- Epilepsy Center, Neuro Center, Kuopio University Hospital, Member of ERN EpiCARE, Kuopio, Finland; Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
65
|
Gore A, Neufeld-Cohen A, Egoz I, Baranes S, Gez R, Efrati R, David T, Dekel Jaoui H, Yampolsky M, Grauer E, Chapman S, Lazar S. Neuroprotection by delayed triple therapy following sarin nerve agent insult in the rat. Toxicol Appl Pharmacol 2021; 419:115519. [PMID: 33823148 DOI: 10.1016/j.taap.2021.115519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 02/08/2023]
Abstract
The development of refractory status epilepticus (SE) induced by sarin intoxication presents a therapeutic challenge. In our current research we evaluate the efficacy of a delayed combined triple treatment in ending the abnormal epileptiform seizure activity (ESA) and the ensuing of long-term neuronal insult. SE was induced in male Sprague-Dawley rats by exposure to 1.2LD50 sarin insufficiently treated by atropine and TMB4 (TA) 1 min later. Triple treatment of ketamine, midazolam and valproic acid was administered 30 min or 1 h post exposure and was compared to a delayed single treatment with midazolam alone. Toxicity and electrocorticogram activity were monitored during the first week and behavioral evaluation performed 3 weeks post exposure followed by brain biochemical and immunohistopathological analyses. The addition of both single and triple treatments reduced mortality and enhanced weight recovery compared to the TA-only treated group. The triple treatment also significantly minimized the duration of the ESA, reduced the sarin-induced increase in the neuroinflammatory marker PGE2, the brain damage marker TSPO, decreased the gliosis, astrocytosis and neuronal damage compared to the TA+ midazolam or only TA treated groups. Finally, the triple treatment eliminated the sarin exposed increased open field activity, as well as impairing recognition memory as seen in the other experimental groups. The delayed triple treatment may serve as an efficient therapy, which prevents brain insult propagation following sarin-induced refractory SE, even if treatment is postponed for up to 1 h.
Collapse
Affiliation(s)
- Ariel Gore
- Department of Pharmacology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness-Ziona 74100, Israel.
| | - Adi Neufeld-Cohen
- Department of Pharmacology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness-Ziona 74100, Israel
| | - Inbal Egoz
- Department of Pharmacology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness-Ziona 74100, Israel
| | - Shlomi Baranes
- Department of Pharmacology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness-Ziona 74100, Israel
| | - Rellie Gez
- Department of Pharmacology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness-Ziona 74100, Israel
| | - Rahav Efrati
- Department of Pharmacology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness-Ziona 74100, Israel
| | - Tse'ela David
- The Veterinary Center for Pre-clinical Research, Israel Institute for Biological, Chemical and Environmental Sciences, Ness- Ziona 74100, Israel
| | - Hani Dekel Jaoui
- The Veterinary Center for Pre-clinical Research, Israel Institute for Biological, Chemical and Environmental Sciences, Ness- Ziona 74100, Israel
| | - Michael Yampolsky
- The Veterinary Center for Pre-clinical Research, Israel Institute for Biological, Chemical and Environmental Sciences, Ness- Ziona 74100, Israel
| | - Ettie Grauer
- Department of Pharmacology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness-Ziona 74100, Israel
| | - Shira Chapman
- Department of Pharmacology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness-Ziona 74100, Israel
| | - Shlomi Lazar
- Department of Pharmacology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness-Ziona 74100, Israel.
| |
Collapse
|
66
|
Reddy DS, Zaayman M, Kuruba R, Wu X. Comparative profile of refractory status epilepticus models following exposure of cholinergic agents pilocarpine, DFP, and soman. Neuropharmacology 2021; 191:108571. [PMID: 33878303 DOI: 10.1016/j.neuropharm.2021.108571] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/24/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022]
Abstract
Status epilepticus (SE) is a medical emergency with continuous seizure activity that causes profound neuronal damage, morbidity, or death. SE incidents can arise spontaneously but mostly are elicited by seizurogenic triggers. Chemoconvulsants such as the muscarinic agonist pilocarpine and, organophosphates (OP) such as the pesticide diisopropylfluorophosphate (DFP) and, the nerve agent soman, can induce SE. Pilocarpine, DFP, and soman share a common feature of cholinergic crisis that transitions into a state of refractory SE, but their comparative profiles remain unclear. Here, we evaluated the comparative convulsant profile of pilocarpine, DFP, and soman to produce refractory SE and brain damage in rats. Behavioral and electrographic seizures were monitored for 24 h after exposure, and the extent of brain injury was determined by histological markers of neuronal injury and degeneration. Seizures were elicited rather slowly after pilocarpine as compared to DFP or soman, which caused rapid onset of spiking that swiftly developed into persistent SE. Time-course of SE activity after DFP was comparable to that after soman, a potent nerve agent. Diazepam controlled pilocarpine-induced SE, but it was ineffective in reducing OP-induced SE. All three agents produced modestly different degrees of neuronal injury and neurodegeneration in the brain. These results reveal distinct convulsant and neuronal injury patterns following exposure to cholinergic agonists, OP pesticides, and nerve agents. A battery of SE models, especially SE induced by cholinergic agents and other etiologies including epilepsy and brain tumors, is essential to identify novel anticonvulsant therapies for the management of refractory SE.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center College of Medicine, Bryan, TX, 77807, USA.
| | - Marcus Zaayman
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Ramkumar Kuruba
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Xin Wu
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center College of Medicine, Bryan, TX, 77807, USA
| |
Collapse
|
67
|
Almohaish S, Sandler M, Brophy GM. Time Is Brain: Acute Control of Repetitive Seizures and Status Epilepticus Using Alternative Routes of Administration of Benzodiazepines. J Clin Med 2021; 10:jcm10081754. [PMID: 33920722 PMCID: PMC8073514 DOI: 10.3390/jcm10081754] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Time plays a major role in seizure evaluation and treatment. Acute repetitive seizures and status epilepticus are medical emergencies that require immediate assessment and treatment for optimal therapeutic response. Benzodiazepines are considered the first-line agent for rapid seizure control. Thus, various routes of administration of benzodiazepines have been studied to facilitate a quick, effective, and easy therapy administration. Choosing the right agent may vary based on the drug and route properties, patient’s environment, caregiver’s skills, and drug accessibility. The pharmacokinetic and pharmacodynamic aspects of benzodiazepines are essential in the decision-making process. Ultimately, agents and routes that give the highest bioavailability, fastest absorption, and a modest duration are preferred. In the outpatient setting, intranasal and buccal routes appear to be equally effective and more rapidly administered than rectal diazepam. On the other hand, in the inpatient setting, if available, the IV route is ideal for benzodiazepine administration to avoid any potential absorption delay. In this article, we will provide an overview and comparison of the various routes of benzodiazepine administration for acute control of repetitive seizures and status epilepticus.
Collapse
Affiliation(s)
- Sulaiman Almohaish
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.A.); (M.S.)
- College of Clinical Pharmacy, King Faisal University, Al-Ahsa 3198, Saudi Arabia
| | - Melissa Sandler
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.A.); (M.S.)
- Department of Physical Medicine and Rehabilitation, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Gretchen M. Brophy
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.A.); (M.S.)
- Correspondence: ; Tel.: +1-(804)-828-1201
| |
Collapse
|
68
|
Lattanzi S, Riva A, Striano P. Ganaxolone treatment for epilepsy patients: from pharmacology to place in therapy. Expert Rev Neurother 2021; 21:1317-1332. [PMID: 33724128 DOI: 10.1080/14737175.2021.1904895] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Nonsulfated neurosteroids can provide phasic and tonic inhibition through activation of synaptic and extra-synaptic γ-aminobutyric acid (GABA)A receptors, exhibiting a greater potency for the latter. These actions occur by interacting with modulatory sites that are distinct from those bound by benzodiazepines and barbiturates. Ganaxolone (GNX) is a synthetic analog of the endogenous neurosteroid allopregnanolone and a member of a novel class of neuroactive steroids called epalons.Areas covered: The authors review the pharmacology of GNX, summarize the main clinical evidence about its antiseizure efficacy and tolerability, and suggest implications for clinical practice and future research.Expert opinion: The clinical development of GNX is mainly oriented to target unmet needs and focused on status epilepticus and rare genetic epilepsies that have few or no treatment options.The availability of oral and intravenous formulations allows reaching adult and pediatric patients in acute and chronic care settings. Further evidence will complement the understanding of the potentialities of GNX and possibly lead to indications for use in clinical practice.
Collapse
Affiliation(s)
- Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Antonella Riva
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, "G. Gaslini" Institute, University of Genoa, Genova, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, "G. Gaslini" Institute, University of Genoa, Genova, Italy
| |
Collapse
|
69
|
Lim SN, Wu T, Tseng WEJ, Chiang HI, Cheng MY, Lin WR, Lin CN. Efficacy and safety of perampanel in refractory and super-refractory status epilepticus: cohort study of 81 patients and literature review. J Neurol 2021; 268:3744-3757. [PMID: 33754209 DOI: 10.1007/s00415-021-10506-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND The effective dose of perampanel in status epilepticus (SE), refractory SE (RSE), and super-refractory SE (SRSE) in humans is unknown, and the potential of perampanel in treating SE has not been evaluated in a large cohort. METHODS Data of intensive care patients with RSE and SRSE treated with perampanel were retrospectively reviewed and analyzed. RESULTS Eighty-one patients received perampanel, including 39 females with median age 64 [17-91] years, perampanel responders (n = 27), and non-responders (n = 54). The initial perampanel dose was positively associated with treatment response in patients with RSE or SRSE (OR = 1.27, 95% CI 1.03-1.57, p = 0.025), while the maximum dose was negatively associated with treatment response (OR = 0.74, 95% CI 0.58-0.96, p = 0.022). Hypoxia caused seizures in six patients; five died in hospital and one had severe disability. A statistically non-significant tendency toward better response was found in patients with unique SE type and cause, particularly in nonconvulsive status epilepticus (NCSE) without coma (NCSE without coma vs. generalized tonic-clonic seizure: OR = 4.14, 95% CI 0.98-17.47, p = 0.053). In the high-dose (≥ 16 mg/day) groups, although distributions of modified Rankin Scale (mRS) scores were similar between perampanel responders and non-responders at discharge, a greater proportion of perampanel responders had less change in mRS scores from baseline than did perampanel non-responders (median mRS: 0 vs 4, p = 0.064). No cardiorespiratory adverse events or laboratory abnormalities were noted with perampanel treatment. CONCLUSIONS Perampanel is effective and has a satisfactory safety profile in the emergency treatment of established RSE and SRSE.
Collapse
Affiliation(s)
- Siew-Na Lim
- Section of Epilepsy, Department of Neurology, Chang Gung Memorial Hospital at Linkou Medical Center and Chang Gung University College of Medicine, 5 Fu-Shin Street, Kwei-Shan, Taoyuan, 333, Taiwan.
| | - Tony Wu
- Section of Epilepsy, Department of Neurology, Chang Gung Memorial Hospital at Linkou Medical Center and Chang Gung University College of Medicine, 5 Fu-Shin Street, Kwei-Shan, Taoyuan, 333, Taiwan
- Department of Neurology, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
| | - Wei-En Johnny Tseng
- Section of Epilepsy, Department of Neurology, Chang Gung Memorial Hospital at Linkou Medical Center and Chang Gung University College of Medicine, 5 Fu-Shin Street, Kwei-Shan, Taoyuan, 333, Taiwan
- Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Hsing-I Chiang
- Section of Epilepsy, Department of Neurology, Chang Gung Memorial Hospital at Linkou Medical Center and Chang Gung University College of Medicine, 5 Fu-Shin Street, Kwei-Shan, Taoyuan, 333, Taiwan
| | - Mei-Yun Cheng
- Section of Epilepsy, Department of Neurology, Chang Gung Memorial Hospital at Linkou Medical Center and Chang Gung University College of Medicine, 5 Fu-Shin Street, Kwei-Shan, Taoyuan, 333, Taiwan
| | - Wey-Ran Lin
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou Medical Center and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chia-Ni Lin
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
70
|
Association between GABRG2 rs211037 polymorphism and febrile seizures: a meta-analysis. ACTA EPILEPTOLOGICA 2021. [DOI: 10.1186/s42494-021-00038-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Emerging evidence has implied that the GABRG2 gene play a role in the mechanism of febrile seizure (FS), however, the relationship between GABRG2 rs211037 polymorphism and the risk of FS remains controversial. This meta-analysis was conducted to investigate the relationship of GABRG2 rs211037 polymorphism with the susceptibility to FS.
Methods
MEDLINE, Embase, Cochrane Library and CNKI databases were searched (until April 6, 2019) for eligible studies on the relationship between GABRG2 rs211037 polymorphism and FS. We calculated the odds ratios (ORs) by a fixed or random model with the STATA 15.0 software. Subgroup analyses for the ethnicity, the source of the control, and age and sex matching of controls were conducted.
Results
A total of 8 studies consisting of 775 FS patients and 5162 controls were included in this study. Based on the overall data, he GABRG2 rs211037 polymorphism was not significantly associated with the risk of FS (TT + CT vs CC: OR = 0.95, 95%CI 0.64–1.41, P = 0.80). Notably, the GABRG2 rs211037 variant was significantly associated with decreased risk of FS in Asian populations (TT vs CT + CC: OR = 0.63, 95%CI 0.45–0.88, P = 0.006), but increased risk in Caucasian populations (CT vs CC: OR = 1.56, 95%CI 1.14–2.15, P = 0.006). Significant associations were also detected when healthy controls out of the whole controls were employed for comparison (TT vs CT + CC: OR = 0.59, 95% CI 0.45–0.77, P < 0.001) and when data from studies with age- and sex-matched controls were used (TT + CT vs CC: OR = 0.60, 95% CI 0.43–0.86, P = 0.001).
Conclusion
The GABRG2 rs211037 polymorphism may decrease the risk of FS in Asian populations, while increasing the risk in Caucasian populations. Further well-designed studies with large sample sizes are essential to verify the conclusions in other ethnicities.
Collapse
|
71
|
Charalambous M, Volk HA, Van Ham L, Bhatti SFM. First-line management of canine status epilepticus at home and in hospital-opportunities and limitations of the various administration routes of benzodiazepines. BMC Vet Res 2021; 17:103. [PMID: 33663513 PMCID: PMC7934266 DOI: 10.1186/s12917-021-02805-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/16/2021] [Indexed: 12/22/2022] Open
Affiliation(s)
- Marios Charalambous
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| | - Holger A Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Luc Van Ham
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Sofie F M Bhatti
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| |
Collapse
|
72
|
Lumley L, Niquet J, Marrero-Rosado B, Schultz M, Rossetti F, de Araujo Furtado M, Wasterlain C. Treatment of acetylcholinesterase inhibitor-induced seizures with polytherapy targeting GABA and glutamate receptors. Neuropharmacology 2021; 185:108444. [PMID: 33359073 PMCID: PMC7944923 DOI: 10.1016/j.neuropharm.2020.108444] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/30/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022]
Abstract
The initiation and maintenance of cholinergic-induced status epilepticus (SE) are associated with decreased synaptic gamma-aminobutyric acid A receptors (GABAAR) and increased N-methyl-d-aspartate receptors (NMDAR) and amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR). We hypothesized that trafficking of synaptic GABAAR and glutamate receptors is maladaptive and contributes to the pharmacoresistance to antiseizure drugs; targeting these components should ameliorate the pathophysiological consequences of refractory SE (RSE). We review studies of rodent models of cholinergic-induced SE, in which we used a benzodiazepine allosteric GABAAR modulator to correct loss of inhibition, concurrent with the NMDA antagonist ketamine to reduce excitation caused by increased synaptic localization of NMDAR and AMPAR, which are NMDAR-dependent. Models included lithium/pilocarpine-induced SE in rats and soman-induced SE in rats and in Es1-/- mice, which similar to humans lack plasma carboxylesterase, and may better model soman toxicity. These model human soman toxicity and are refractory to benzodiazepines administered at 40 min after seizure onset, when enough synaptic GABAAR may not be available to restore inhibition. Ketamine-midazolam combination reduces seizure severity, epileptogenesis, performance deficits and neuropathology following cholinergic-induced SE. Supplementing that treatment with valproate, which targets a non-benzodiazepine site, effectively terminates RSE, providing further benefit against cholinergic-induced SE. The therapeutic index of drug combinations is also reviewed and we show the improved efficacy of simultaneous administration of midazolam, ketamine and valproate compared to sequential drug administration. These data suggest that future clinical trials should treat both the lack of sufficient inhibition and the excess excitation that characterize RSE, and include early combination drug therapies. This article is part of the special issue entitled 'Acetylcholinesterase Inhibitors: From Bench to Bedside to Battlefield'.
Collapse
Affiliation(s)
- Lucille Lumley
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, MD, USA.
| | - Jerome Niquet
- Department of Neurology, David Geffen School of Medicine at UCLA, Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Brenda Marrero-Rosado
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, MD, USA
| | - Mark Schultz
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, MD, USA
| | - Franco Rossetti
- Military Psychiatry and Neuroscience Department, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Claude Wasterlain
- Department of Neurology, David Geffen School of Medicine at UCLA, Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
73
|
Llauradó A, Quintana M, Ballvé A, Campos D, Fonseca E, Abraira L, Toledo M, Santamarina E. Factors associated with resistance to benzodiazepines in status epilepticus. J Neurol Sci 2021; 423:117368. [PMID: 33652289 DOI: 10.1016/j.jns.2021.117368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate factors related to benzodiazepine (BZD) resistance in status epilepticus (SE) with a focus on their relationship with the etiology of the episode. METHODS All SE cases in patients aged >16 years treated with BZDs were prospectively collected in our center from February 2011 to April 2019. The registry included demographics, SE type and etiology, the timing and duration of BZD administration, and the outcome. In total, 371 episodes were analyzed. RESULTS Median age at SE onset was 61.3 years; the most frequent etiology was acute symptomatic (55.8%). SE with prominent motor symptoms occurred in 63.3%. Median time to BZD administration was 2 h. We studied the correlation between two-time variables: time from SE onset to BZD administration and time from BZD administration to resolution of SE (response); we observed that timely administration correlated with a faster response in patients with prominent motor symptoms (p = 0.017), SE due to a chronic structural cerebral lesion (p = 0.004), and patients with a history of seizures (p = 0.013). In these subgroups (prominent motor symptoms or chronic structural lesion) BZD administration within the first 4.5 h was highly associated with shorter post-BZD SE duration (p < 0.001). SIGNIFICANCE The relationship between prompt BZD administration and subsequent duration of SE was found to depend to some extent on the etiology of the episode: patients with chronic structural lesions and those with previous epilepsy responded faster to BZDs. Semiology may have also its impact, as the presence of prominent motor symptoms showed also a faster response.
Collapse
Affiliation(s)
- Arnau Llauradó
- Epilepsy Unit, Neurology Department, Vall de Hebron University Hospital, Barcelona, Spain
| | - Manuel Quintana
- Epilepsy Unit, Neurology Department, Vall de Hebron University Hospital, Barcelona, Spain
| | - Alejandro Ballvé
- Epilepsy Unit, Neurology Department, Vall de Hebron University Hospital, Barcelona, Spain
| | - Daniel Campos
- Epilepsy Unit, Neurology Department, Vall de Hebron University Hospital, Barcelona, Spain
| | - Elena Fonseca
- Epilepsy Unit, Neurology Department, Vall de Hebron University Hospital, Barcelona, Spain
| | - Laura Abraira
- Epilepsy Unit, Neurology Department, Vall de Hebron University Hospital, Barcelona, Spain
| | - Manuel Toledo
- Epilepsy Unit, Neurology Department, Vall de Hebron University Hospital, Barcelona, Spain
| | - Estevo Santamarina
- Epilepsy Unit, Neurology Department, Vall de Hebron University Hospital, Barcelona, Spain.
| |
Collapse
|
74
|
Marrero-Rosado BM, Stone MF, de Araujo Furtado M, Schultz CR, Cadieux CL, Lumley LA. Novel Genetically Modified Mouse Model to Assess Soman-Induced Toxicity and Medical Countermeasure Efficacy: Human Acetylcholinesterase Knock-in Serum Carboxylesterase Knockout Mice. Int J Mol Sci 2021; 22:1893. [PMID: 33672922 PMCID: PMC7918218 DOI: 10.3390/ijms22041893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
The identification of improved medical countermeasures against exposure to chemical warfare nerve agents (CWNAs), a class of organophosphorus compounds, is dependent on the choice of animal model used in preclinical studies. CWNAs bind to acetylcholinesterase and prevent the catalysis of acetylcholine, causing a plethora of peripheral and central physiologic manifestations, including seizure. Rodents are widely used to elucidate the effects of CWNA-induced seizure, albeit with a caveat: they express carboxylesterase activity in plasma. Carboxylesterase, an enzyme involved in the detoxification of some organophosphorus compounds, plays a scavenging role and decreases CWNA availability, thus exerting a protective effect. Furthermore, species-specific amino acid differences in acetylcholinesterase confound studies that use oximes or other compounds to restore its function after inhibition by CWNA. The creation of a human acetylcholinesterase knock-in/serum carboxylesterase knockout (C57BL/6-Ces1ctm1.1LocAChEtm1.1Loc/J; a.k.a KIKO) mouse may facilitate better modeling of CWNA toxicity in a small rodent species. The current studies characterize the effects of exposure to soman, a highly toxic CWNA, and evaluate the efficacy of anti-seizure drugs in this newly developed KIKO mouse model. Data demonstrate that a combination of midazolam and ketamine reduces seizure duration and severity, eliminates the development of spontaneous recurrent seizures, and protects certain brain regions from neuronal damage in a genetically modified model with human relevance to organophosphorus compound toxicity. This new animal model and the results of this study and future studies using it will enhance medical countermeasures development for both defense and homeland security purposes.
Collapse
Affiliation(s)
- Brenda M. Marrero-Rosado
- Medical Toxicology Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA; (B.M.M.-R.); (M.F.S.); (C.R.S.); (C.L.C.)
| | - Michael F. Stone
- Medical Toxicology Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA; (B.M.M.-R.); (M.F.S.); (C.R.S.); (C.L.C.)
| | - Marcio de Araujo Furtado
- Anatomy, Physiology and Genetics Department, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA;
- BioSEaD, LLC, Rockville, MD 20850, USA
| | - Caroline R. Schultz
- Medical Toxicology Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA; (B.M.M.-R.); (M.F.S.); (C.R.S.); (C.L.C.)
| | - C. Linn Cadieux
- Medical Toxicology Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA; (B.M.M.-R.); (M.F.S.); (C.R.S.); (C.L.C.)
| | - Lucille A. Lumley
- Medical Toxicology Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA; (B.M.M.-R.); (M.F.S.); (C.R.S.); (C.L.C.)
| |
Collapse
|
75
|
Sathe AG, Underwood E, Coles LD, Elm JJ, Silbergleit R, Chamberlain JM, Kapur J, Cock HR, Fountain NB, Shinnar S, Lowenstein DH, Rosenthal ES, Conwit RA, Bleck TP, Cloyd JC. Patterns of benzodiazepine underdosing in the Established Status Epilepticus Treatment Trial. Epilepsia 2021; 62:795-806. [PMID: 33567109 DOI: 10.1111/epi.16825] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE This study was undertaken to describe patterns of benzodiazepine use as first-line treatment of status epilepticus (SE) and test the association of benzodiazepine doses with response to second-line agents in patients enrolled in the Established Status Epilepticus Treatment Trial (ESETT). METHODS Patients refractory to an adequate dose of benzodiazepines for the treatment of SE were enrolled in ESETT. Choice of benzodiazepine, doses given prior to administration of second-line agent, route of administration, setting, and patient weight were characterized. These were compared with guideline-recommended dosing. Logistic regression was used to determine the association of the first dose of benzodiazepine and the cumulative benzodiazepine dose with the response to second-line agent. RESULTS Four hundred sixty patients were administered 1170 doses of benzodiazepines (669 lorazepam, 398 midazolam, 103 diazepam). Lorazepam was most frequently administered intravenously in the emergency department, midazolam intramuscularly or intravenously by the emergency medical services personnel, and diazepam rectally prior to ambulance arrival. The first dose of the first benzodiazepine (N = 460) was lower than guideline recommendations in 76% of midazolam administrations and 81% of lorazepam administrations. Among all administrations, >85% of midazolam and >76% of lorazepam administrations were lower than recommended. Higher first or cumulative benzodiazepine doses were not associated with better outcomes or clinical seizure cessation in response to second-line medications in these benzodiazepine-refractory seizures. SIGNIFICANCE Benzodiazepines as first-line treatment of SE, particularly midazolam and lorazepam, are frequently underdosed throughout the United States. This broad and generalizable cohort confirms prior single site reports that underdosing is both pervasive and difficult to remediate. (ESETT ClinicalTrials.gov identifier: NCT01960075.).
Collapse
Affiliation(s)
- Abhishek G Sathe
- Department of Experimental and Clinical Pharmacology, College of Pharmacy and Center for Orphan Drug Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ellen Underwood
- Department of Public Health Science, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lisa D Coles
- Department of Experimental and Clinical Pharmacology, College of Pharmacy and Center for Orphan Drug Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jordan J Elm
- Department of Public Health Science, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Robert Silbergleit
- Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - James M Chamberlain
- Division of Emergency Medicine, Children's National Hospital and Department of Pediatrics and Emergency Medicine, School of Medicine and Health Sciences, George Washington University, Washington, District of Columbia, USA
| | - Jaideep Kapur
- Department of Neurology and Department of Neuroscience, Brain Institute, University of Virginia, Charlottesville, Virginia, USA
| | - Hannah R Cock
- Clinical Neurosciences Academic Group, Institute of Molecular and Clinical Sciences, St. George's University of London, London, UK
| | - Nathan B Fountain
- Department of Neurology, Comprehensive Epilepsy Program, University of Virginia, Charlottesville, Virginia, USA
| | - Shlomo Shinnar
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Daniel H Lowenstein
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Eric S Rosenthal
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Robin A Conwit
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas P Bleck
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - James C Cloyd
- Department of Experimental and Clinical Pharmacology, College of Pharmacy and Center for Orphan Drug Research, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
76
|
Kim D, Kim JM, Cho YW, Yang KI, Kim DW, Lee ST, No YJ, Seo JG, Byun JI, Kang KW, Kim KT. Antiepileptic Drug Therapy for Status Epilepticus. J Clin Neurol 2021; 17:11-19. [PMID: 33480193 PMCID: PMC7840311 DOI: 10.3988/jcn.2021.17.1.11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/31/2022] Open
Abstract
Status epilepticus (SE) is one of the most serious neurologic emergencies. SE is a condition that encompasses a broad range of semiologic subtypes and heterogeneous etiologies. The treatment of SE primarily involves the management of the underlying etiology and the use of antiepileptic drug therapy to rapidly terminate seizure activities. The Drug Committee of the Korean Epilepsy Society performed a review of existing guidelines and literature with the aim of providing practical recommendations for antiepileptic drug therapy. This article is one of a series of review articles by the Drug Committee and it summarizes staged antiepileptic drug therapy for SE. While evidence of good quality supports the use of benzodiazepines as the first-line treatment of SE, such evidence informing the administration of second- or third-line treatments is lacking; hence, the recommendations presented herein concerning the treatment of established and refractory SE are based on case series and expert opinions. The choice of antiepileptic drugs in each stage should consider the characteristics and circumstances of each patient, as well as their estimated benefit and risk to them. In tandem with the antiepileptic drug therapy, careful searching for and treatment of the underlying etiology are required.
Collapse
Affiliation(s)
- Daeyoung Kim
- Department of Neurology, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, Korea
| | - Jae Moon Kim
- Department of Neurology, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, Korea.
| | - Yong Won Cho
- Department of Neurology, Keimyung University School of Medicine, Daegu, Korea.
| | - Kwang Ik Yang
- Department of Neurology, Soonchunhyang University College of Medicine, Cheonan Hospital, Cheonan, Korea
| | - Dong Wook Kim
- Department of Neurology, Konkuk University School of Medicine, Seoul, Korea
| | - Soon Tae Lee
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
| | - Young Joo No
- Department of Neurology, Samsung Noble County, Yongin, Korea
| | - Jong Geun Seo
- Department of Neurology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jung Ick Byun
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Kyung Wook Kang
- Department of Neurology, Chonnam National University Hospital, Chonnam National University School of Medicine, Gwangju, Korea
| | - Keun Tae Kim
- Department of Neurology, Keimyung University School of Medicine, Daegu, Korea
| | | |
Collapse
|
77
|
Juvale IIA, Che Has AT. Possible interplay between the theories of pharmacoresistant epilepsy. Eur J Neurosci 2020; 53:1998-2026. [PMID: 33306252 DOI: 10.1111/ejn.15079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/22/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Epilepsy is one of the oldest known neurological disorders and is characterized by recurrent seizure activity. It has a high incidence rate, affecting a broad demographic in both developed and developing countries. Comorbid conditions are frequent in patients with epilepsy and have detrimental effects on their quality of life. Current management options for epilepsy include the use of anti-epileptic drugs, surgery, or a ketogenic diet. However, more than 30% of patients diagnosed with epilepsy exhibit drug resistance to anti-epileptic drugs. Further, surgery and ketogenic diets do little to alleviate the symptoms of patients with pharmacoresistant epilepsy. Thus, there is an urgent need to understand the underlying mechanisms of pharmacoresistant epilepsy to design newer and more effective anti-epileptic drugs. Several theories of pharmacoresistant epilepsy have been suggested over the years, the most common being the gene variant hypothesis, network hypothesis, multidrug transporter hypothesis, and target hypothesis. In our review, we discuss the main theories of pharmacoresistant epilepsy and highlight a possible interconnection between their mechanisms that could lead to the development of novel therapies for pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
78
|
Müller J, Timmermann A, Henning L, Müller H, Steinhäuser C, Bedner P. Astrocytic GABA Accumulation in Experimental Temporal Lobe Epilepsy. Front Neurol 2020; 11:614923. [PMID: 33391173 PMCID: PMC7775561 DOI: 10.3389/fneur.2020.614923] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/30/2020] [Indexed: 01/17/2023] Open
Abstract
An imbalance of excitation and inhibition has been associated with the pathophysiology of epilepsy. Loss of GABAergic interneurons and/or synaptic inhibition has been shown in various epilepsy models and in human epilepsy. Despite this loss, several studies reported preserved or increased tonic GABAA receptor-mediated currents in epilepsy, raising the question of the source of the inhibitory transmitter. We used the unilateral intracortical kainate mouse model of temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS) to answer this question. In our model we observed profound loss of interneurons in the sclerotic hippocampal CA1 region and dentate gyrus already 5 days after epilepsy induction. Consistent with the literature, the absence of interneurons caused no reduction of tonic inhibition of CA1 pyramidal neurons. In dentate granule cells the inhibitory currents were even increased in epileptic tissue. Intriguingly, immunostaining of brain sections from epileptic mice with antibodies against GABA revealed strong and progressive accumulation of the neurotransmitter in reactive astrocytes. Pharmacological inhibition of the astrocytic GABA transporter GAT3 did not affect tonic inhibition in the sclerotic hippocampus, suggesting that this transporter is not responsible for astrocytic GABA accumulation or release. Immunostaining further indicated that both decarboxylation of glutamate and putrescine degradation accounted for the increased GABA levels in reactive astrocytes. Together, our data provide evidence that the preserved tonic inhibitory currents in the epileptic brain are mediated by GABA overproduction and release from astrocytes. A deeper understanding of the underlying mechanisms may lead to new strategies for antiepileptic drug therapy.
Collapse
Affiliation(s)
- Julia Müller
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Aline Timmermann
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Lukas Henning
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Hendrik Müller
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
79
|
Gaspard N. Super K for Super-R(efractory) Status Epilepticus: Bringing Down Seizures While Keeping Up Blood Pressure With Ketamine. Epilepsy Curr 2020; 21:36-39. [PMID: 34025272 PMCID: PMC7863299 DOI: 10.1177/1535759720975740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ketamine to treat super-refractory status epilepticus Alkhachroum A, Der-Nigoghossian CA, Mathews E, Massad N, Letchinger R, Doyle K, Chiu W-T, Kromm J, Rubinos C, Velazquez A, Roh D, Agarwal S, Park S, Connolly S, Claassen J. Neurology. 2020;95(16):e2286-e2294. doi: 10.1212/WNL.0000000000010611. Objective: To test ketamine infusion efficacy in the treatment of superrefractory status epilepticus (SRSE), we studied patients with SRSE who were treated with ketamine retrospectively. We also studied the effect of high doses of ketamine on brain physiology as reflected by invasive multimodality monitoring (MMM). Methods: We studied a consecutive series of 68 patients with SRSE who were admitted between 2009 and 2018, treated with ketamine, and monitored with scalp EEG. Eleven of these patients underwent MMM at the time of ketamine administration. We compared patients who had seizure cessation after ketamine initiation to those who did not. Results: Mean age was 53 ± 18 years and 46% of patients were female. Seizure burden decreased by at least 50% within 24 hours of starting ketamine in 55 (81%) patients, with complete cessation in 43 (63%). Average dose of ketamine infusion was 2.2 ± 1.8 mg/kg/h, with median duration of 2 (1-4) days. Average dose of midazolam was 1.0 ± 0.8 mg/kg/h at the time of ketamine initiation and was started at a median of 0.4 (0.1-1.0) days before ketamine. Using a generalized linear mixed effect model, ketamine was associated with stable mean arterial pressure (odds ratio = 1.39, 95% CI: 1.38-1.40) and with decreased vasopressor requirements over time. We found no effect on intracranial pressure, cerebral blood flow, or cerebral perfusion pressure. Conclusion: Ketamine treatment was associated with a decrease in seizure burden in patients with SRSE. Our data support the notion that high-dose ketamine infusions are associated with decreased vasopressor requirements without increased intracranial pressure. Classification of Evidence: This study provides Class IV evidence that ketamine decreases seizures in patients with SRSE.
Collapse
|
80
|
Amorim E, McGraw CM, Westover MB. A Theoretical Paradigm for Evaluating Risk-Benefit of Status Epilepticus Treatment. J Clin Neurophysiol 2020; 37:385-392. [PMID: 32890059 DOI: 10.1097/wnp.0000000000000753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aggressive treatment of status epilepticus with anesthetic drugs can provide rapid seizure control, but it might lead to serious medical complications and worse outcomes. Using a decision analysis approach, this concise review provides a framework for individualized decision making about aggressive and nonaggressive treatment in status epilepticus. The authors propose and review the most relevant parameters guiding the risk-benefit analysis of treatment aggressiveness in status epilepticus and present real-world-based case examples to illustrate how these tools could be used at the bedside and serve to guide future research in refractory status epilepticus treatment.
Collapse
Affiliation(s)
- Edilberto Amorim
- Department of Neurology, University of California, San Francisco, San Francisco, California, U.S.A.,Neurology Service, Zuckerberg San Francisco General Hospital, San Francisco, California, U.S.A.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, U.S.A.; and.,Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, U.S.A
| | - Chris M McGraw
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, U.S.A.; and
| | - M Brandon Westover
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, U.S.A.; and
| |
Collapse
|
81
|
Aroniadou-Anderjaska V, Apland JP, Figueiredo TH, De Araujo Furtado M, Braga MF. Acetylcholinesterase inhibitors (nerve agents) as weapons of mass destruction: History, mechanisms of action, and medical countermeasures. Neuropharmacology 2020; 181:108298. [DOI: 10.1016/j.neuropharm.2020.108298] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
|
82
|
Bialer M, Johannessen SI, Koepp MJ, Levy RH, Perucca E, Perucca P, Tomson T, White HS. Progress report on new antiepileptic drugs: A summary of the Fifteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XV). II. Drugs in more advanced clinical development. Epilepsia 2020; 61:2365-2385. [PMID: 33165915 DOI: 10.1111/epi.16726] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
The Fifteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XV) was held as a fully virtual conference from July 27 to July 30, 2020 for the sessions on drugs, and on August 3, 2020 for the sessions on devices. A total of 534 delegates from 63 countries attended lectures and interactive discussions, representing a broad range of disciplines from basic science, clinical research, and clinical care. This progress report provides summaries of recent findings on investigational compounds for which preclinical data as well as data from patient studies were presented. The report includes the following five compounds: anakinra, cenobamate, CVL-865, fenfluramine, and ganaxolone, all with novel modes of action compared to more established antiepileptic drugs. Some of these compounds demonstrated promising results in placebo-controlled phase 3 trials, and two have recently received approval from the US Food and Drug Administration (FDA). These include cenobamate, which was approved by the FDA on November 21, 2019 for the treatment of partial onset (focal) seizures in adults, and fenfluramine oral solution, which was approved by the FDA on June 25, 2020 for the treatment of seizures associated with Dravet syndrome in patients 2 years and older.
Collapse
Affiliation(s)
- Meir Bialer
- Faculty of Medicine, School of Pharmacy and David R. Bloom Center for Pharmacy, Institute for Drug Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Svein I Johannessen
- National Center for Epilepsy, Sandvika, Norway.,Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
| | - René H Levy
- Department of Pharmaceutics and Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Emilio Perucca
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy.,IRCCS Mondino Foundation, Pavia, Italy
| | - Piero Perucca
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine and Neurology, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Torbjörn Tomson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, USA
| |
Collapse
|
83
|
Barcia Aguilar C, Sánchez Fernández I, Loddenkemper T. Status Epilepticus-Work-Up and Management in Children. Semin Neurol 2020; 40:661-674. [PMID: 33155182 DOI: 10.1055/s-0040-1719076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Status epilepticus (SE) is one of the most common neurological emergencies in children and has a mortality of 2 to 4%. Admissions for SE are very resource-consuming, especially in refractory and super-refractory SE. An increasing understanding of the pathophysiology of SE leaves room for improving SE treatment protocols, including medication choice and timing. Selecting the most efficacious medications and giving them in a timely manner may improve outcomes. Benzodiazepines are commonly used as first line and they can be used in the prehospital setting, where most SE episodes begin. The diagnostic work-up should start simultaneously to initial treatment, or as soon as possible, to detect potentially treatable causes of SE. Although most etiologies are recognized after the first evaluation, the detection of more unusual causes may become challenging in selected cases. SE is a life-threatening medical emergency in which prompt and efficacious treatment may improve outcomes. We provide a summary of existing evidence to guide clinical decisions regarding the work-up and treatment of SE in pediatric patients.
Collapse
Affiliation(s)
- Cristina Barcia Aguilar
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Child Neurology, Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Iván Sánchez Fernández
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Child Neurology, Hospital Sant Joan de Déu, University of Barcelona, Spain
| | - Tobias Loddenkemper
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
84
|
Löscher W, Potschka H, Sisodiya SM, Vezzani A. Drug Resistance in Epilepsy: Clinical Impact, Potential Mechanisms, and New Innovative Treatment Options. Pharmacol Rev 2020; 72:606-638. [PMID: 32540959 PMCID: PMC7300324 DOI: 10.1124/pr.120.019539] [Citation(s) in RCA: 416] [Impact Index Per Article: 83.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epilepsy is a chronic neurologic disorder that affects over 70 million people worldwide. Despite the availability of over 20 antiseizure drugs (ASDs) for symptomatic treatment of epileptic seizures, about one-third of patients with epilepsy have seizures refractory to pharmacotherapy. Patients with such drug-resistant epilepsy (DRE) have increased risks of premature death, injuries, psychosocial dysfunction, and a reduced quality of life, so development of more effective therapies is an urgent clinical need. However, the various types of epilepsy and seizures and the complex temporal patterns of refractoriness complicate the issue. Furthermore, the underlying mechanisms of DRE are not fully understood, though recent work has begun to shape our understanding more clearly. Experimental models of DRE offer opportunities to discover, characterize, and challenge putative mechanisms of drug resistance. Furthermore, such preclinical models are important in developing therapies that may overcome drug resistance. Here, we will review the current understanding of the molecular, genetic, and structural mechanisms of ASD resistance and discuss how to overcome this problem. Encouragingly, better elucidation of the pathophysiological mechanisms underpinning epilepsies and drug resistance by concerted preclinical and clinical efforts have recently enabled a revised approach to the development of more promising therapies, including numerous potential etiology-specific drugs (“precision medicine”) for severe pediatric (monogenetic) epilepsies and novel multitargeted ASDs for acquired partial epilepsies, suggesting that the long hoped-for breakthrough in therapy for as-yet ASD-resistant patients is a feasible goal.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Heidrun Potschka
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Sanjay M Sisodiya
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Annamaria Vezzani
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| |
Collapse
|
85
|
Ccny knockout mice display an enhanced susceptibility to kainic acid-induced epilepsy. Pharmacol Res 2020; 160:105100. [DOI: 10.1016/j.phrs.2020.105100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 01/30/2023]
|
86
|
Zheng Y, Zhang K, Dong L, Tian C. Study on the mechanism of high-frequency stimulation inhibiting low-Mg 2+-induced epileptiform discharges in juvenile rat hippocampal slices. Brain Res Bull 2020; 165:1-13. [PMID: 32961285 DOI: 10.1016/j.brainresbull.2020.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 11/29/2022]
Abstract
Study on the mechanism of high-frequency stimulation inhibiting low-Mg2+-induced epileptiform discharges in juvenile rat hippocampal slices High-frequency stimulation (HFS) has been demonstrated to be an effective treatment for inhibiting epilepsy in some clinical and laboratory studies. However, the mechanisms underlying the therapeutic effects of HFS are not yet fully understood. In our present study, epileptiform discharges (EDs) in acutely isolated hippocampal slices of male Sprague-Dawley (SD) juvenile rats induced by low-Mg2+ artificial cerebrospinal fluid (ACSF), and electrical stimulation (square wave, 900 pulses, 50 % duty-cycle, 130 Hz) was performed on the CA3 using concentric bipolar electrodes. EDs of neurons in hippocampal were recorded by multi-electrode arrays (MEA). After stable EDs events had been recorded for at least 20 min, HFS was added, followed by 10 μmol/L gamma-aminobutyric acid type A (GABAA) receptors blocker bicuculline (BIC). The results show that the HFS can increase the discharges frequency of inter-ictal discharges (IIDs) and decrease the duration of ictal discharges (IDs). However, the HFS had no effect on the slices with 10 μmol/L BIC. These results indicated that the GABAA receptors are activated when HFS inhibited EDs, thereby achieving the inhibition of low-Mg2+-induced EDs in slices.
Collapse
Affiliation(s)
- Yu Zheng
- School of Life Sciences, Tiangong University, Tianjin, 300387, China.
| | - Kanghui Zhang
- School of Life Sciences, Tiangong University, Tianjin, 300387, China
| | - Lei Dong
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Chunxiao Tian
- School of Life Sciences, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
87
|
Abstract
For various reasons, status epilepticus in children is different than in adults. Pediatric specificities include status epilepticus epidemiology, underlying etiologies, pathophysiological mechanisms, and treatment options. Relevant data from the literature are presented for each of them, and questions remaining open for future studies on status epilepticus in childhood are listed.
Collapse
|
88
|
When and How to Treat Status Epilepticus: The Tortoise or the Hare? J Clin Neurophysiol 2020; 37:393-398. [DOI: 10.1097/wnp.0000000000000656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
89
|
The adenosine A1 receptor agonist WAG 994 suppresses acute kainic acid-induced status epilepticus in vivo. Neuropharmacology 2020; 176:108213. [PMID: 32615188 DOI: 10.1016/j.neuropharm.2020.108213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/22/2022]
Abstract
Status epilepticus (SE) is a neurological emergency characterized by continuous seizure activity lasting longer than 5 min, often with no recovery between seizures (Trinka et al., 2015). SE is refractory to benzodiazepine and second-line treatments in about 30% cases. Novel treatment approaches are urgently needed as refractory SE is associated with mortality rates of up to 70%. Robust adenosinergic anticonvulsant effects have been known for decades, but translation into seizure treatments was hampered by cardiovascular side effects. However, the selective adenosine A1 receptor agonist SDZ WAG 994 (WAG) displays diminished cardiovascular side effects compared to classic A1R agonists and was safely administered systemically in human clinical trials. Here, we investigate the anticonvulsant efficacy of WAG in vitro and in vivo. WAG robustly inhibited high-K+-induced continuous epileptiform activity in rat hippocampal slices (IC50 = 52.5 nM). Importantly, WAG acutely suppressed SE in vivo induced by kainic acid (20 mg/kg i.p.) in mice. After SE was established, mice received three i.p. injections of WAG or diazepam (DIA, 5 mg/kg). Interestingly, DIA did not attenuate SE while the majority of WAG-treated mice (1 mg/kg) were seizure-free after three injections. Anticonvulsant effects were retained when a lower dose of WAG (0.3 mg/kg) was used. Importantly, all WAG-treated mice survived kainic acid induced SE. In summary, we report for the first time that an A1R agonist with an acceptable human side-effect profile can acutely suppress established SE in vivo. Our results suggest that WAG stops or vastly attenuates SE while DIA fails to mitigate SE in this model.
Collapse
|
90
|
Burman RJ, Selfe JS, Lee JH, van den Berg M, Calin A, Codadu NK, Wright R, Newey SE, Parrish RR, Katz AA, Wilmshurst JM, Akerman CJ, Trevelyan AJ, Raimondo JV. Excitatory GABAergic signalling is associated with benzodiazepine resistance in status epilepticus. Brain 2020; 142:3482-3501. [PMID: 31553050 DOI: 10.1093/brain/awz283] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 06/10/2019] [Accepted: 07/11/2019] [Indexed: 01/17/2023] Open
Abstract
Status epilepticus is defined as a state of unrelenting seizure activity. Generalized convulsive status epilepticus is associated with a rapidly rising mortality rate, and thus constitutes a medical emergency. Benzodiazepines, which act as positive modulators of chloride (Cl-) permeable GABAA receptors, are indicated as first-line treatment, but this is ineffective in many cases. We found that 48% of children presenting with status epilepticus were unresponsive to benzodiazepine treatment, and critically, that the duration of status epilepticus at the time of treatment is an important predictor of non-responsiveness. We therefore investigated the cellular mechanisms that underlie acquired benzodiazepine resistance, using rodent organotypic and acute brain slices. Removing Mg2+ ions leads to an evolving pattern of epileptiform activity, and eventually to a persistent state of repetitive discharges that strongly resembles clinical EEG recordings of status epilepticus. We found that diazepam loses its antiseizure efficacy and conversely exacerbates epileptiform activity during this stage of status epilepticus-like activity. Interestingly, a low concentration of the barbiturate phenobarbital had a similar exacerbating effect on status epilepticus-like activity, while a high concentration of phenobarbital was effective at reducing or preventing epileptiform discharges. We then show that the persistent status epilepticus-like activity is associated with a reduction in GABAA receptor conductance and Cl- extrusion capability. We explored the effect on intraneuronal Cl- using both gramicidin, perforated-patch clamp recordings and Cl- imaging. This showed that during status epilepticus-like activity, reduced Cl- extrusion capacity was further exacerbated by activity-dependent Cl- loading, resulting in a persistently high intraneuronal Cl-. Consistent with these results, we found that optogenetic stimulation of GABAergic interneurons in the status epilepticus-like state, actually enhanced epileptiform activity in a GABAAR dependent manner. Together our findings describe a novel potential mechanism underlying benzodiazepine-resistant status epilepticus, with relevance to how this life-threatening condition should be managed in the clinic.
Collapse
Affiliation(s)
- Richard J Burman
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, Cape Town, South Africa.,Department of Pharmacology, University of Oxford, Oxford, UK
| | - Joshua S Selfe
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - John Hamin Lee
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Maurits van den Berg
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Alexandru Calin
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Neela K Codadu
- Institute of Neuroscience, Medical School, Framlington Place, Newcastle upon Tyne, NE24HH, UK
| | - Rebecca Wright
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Sarah E Newey
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - R Ryley Parrish
- Institute of Neuroscience, Medical School, Framlington Place, Newcastle upon Tyne, NE24HH, UK
| | - Arieh A Katz
- Division of Medical Biochemistry, Department of Integrated Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jo M Wilmshurst
- Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Colin J Akerman
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Andrew J Trevelyan
- Institute of Neuroscience, Medical School, Framlington Place, Newcastle upon Tyne, NE24HH, UK
| | - Joseph V Raimondo
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
91
|
Li R, Wu B, He M, Zhang P, Zhang Q, Deng J, Yuan J, Chen Y. HAP1 Modulates Epileptic Seizures by Regulating GABA AR Function in Patients with Temporal Lobe Epilepsy and in the PTZ-Induced Epileptic Model. Neurochem Res 2020; 45:1997-2008. [PMID: 32419121 DOI: 10.1007/s11064-020-03052-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/13/2020] [Accepted: 05/06/2020] [Indexed: 01/03/2023]
Abstract
The number of γ-aminobutyric acid type A receptors (GABAARs) expressed on the surface membrane and at synaptic sites is implicated in the enhanced excitation of neuronal circuits and abnormal network oscillations in epilepsy. Huntingtin-associated protein 1 (HAP1), a key mediator of pathological alterations in protein trafficking, directly interacts with GABAARs and facilitates their recycling back to synapses after internalization from the surface; thus, HAP1 regulates the strength of inhibitory synaptic transmission. Here, we show that HAP1 modulates epileptic seizures by regulating GABAAR function in patients with temporal lobe epilepsy (TLE) and in the pentylenetetrazol (PTZ)-induced epileptic model. We demonstrate that GABAARβ2/3 and HAP1 expression are decreased and that the HAP1-GABAARβ2/3 complex is disrupted in the epileptic rat brain. We found that HAP1 upregulation exerts antiepileptic activity in the PTZ-induced seizure and that these changes are associated with increased surface GABAARβ2/3 expression and the amplitude of miniature inhibitory postsynaptic currents (mIPSCs). This study provides evidence that hippocampal HAP1 is linked to GABAARs in evoking seizures and suggests that this mechanism is involved in epileptic seizures in the brain, representing a potential therapeutic target for epilepsy.
Collapse
Affiliation(s)
- Rong Li
- Department of Neurology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Bing Wu
- Department of Neurology, Chongqing Key Laboratory of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Miaoqing He
- Center for Brain Disorders Research, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| | - Peng Zhang
- Department of Neurology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qinbin Zhang
- Department of Neurology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jing Deng
- Department of Neurology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jinxian Yuan
- Department of Neurology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yangmei Chen
- Department of Neurology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
92
|
Gioeni D, Di Cesare F, D'Urso ES, Rabbogliatti V, Ravasio G. Ketamine-dexmedetomidine combination and controlled mild hypothermia for the treatment of long-lasting and super-refractory status epilepticus in 3 dogs suffering from idiopathic epilepsy. J Vet Emerg Crit Care (San Antonio) 2020; 30:455-460. [PMID: 32372564 DOI: 10.1111/vec.12956] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 10/04/2018] [Accepted: 10/31/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To describe the use of a ketamine-dexmedetomidine combination and mild hypothermia for the treatment of status epilepticus in 3 dogs that did not respond to GABAergic medication. CASE SERIES SUMMARY Three dogs, each with a diagnosis of idiopathic epilepsy, were presented to the emergency department in a state of status epilepticus. The dogs were treated unsuccessfully with benzodiazepine as a first-line therapy that was followed by IV propofol anesthesia maintained for at least 12 hours. When general anesthesia was discontinued, seizures reoccurred. All 3 dogs then received a bolus of ketamine (1 mg/kg, IV) over a period of 5 minutes that was followed by a bolus of dexmedetomidine (3 μg/kg, IV) over the same time period and then followed by a continuous infusion for 12 hours of ketamine at a constant rate of 1 mg/kg/h and dexmedetomidine at a variable rate of 3-7 μg/kg/h. Body temperature was maintained between 36.7 and 37.7°C at a state of mild hypothermia throughout treatment. The dogs recovered uneventfully over 48 hours after treatment was discontinued with no evidence of seizures. No notable alterations in physiological parameters were observed during the drug infusions. All dogs were discharged following examinations that showed normal neurological function. NEW OR UNIQUE INFORMATION PROVIDED This case series highlights the potential benefits of a ketamine-dexmedetomidine infusion combined with mild hypothermia for the treatment of status epilepticus refractory to GABAergic therapy in dogs suffering from idiopathic epilepsy. After the dogs were weaned from the ketamine-dexmedetomidine infusion, all dogs experienced complete recovery. Thus, this case series introduces a novel approach to treat this intense condition.
Collapse
Affiliation(s)
- Daniela Gioeni
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Federica Di Cesare
- Department of Health, Animal Science and Food safety, Università degli Studi di Milano, Milan, Italy
| | - Elisa Silvia D'Urso
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Vanessa Rabbogliatti
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Giuliano Ravasio
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
93
|
Der-Nigoghossian C, Rubinos C, Alkhachroum A, Claassen J. Status epilepticus - time is brain and treatment considerations. Curr Opin Crit Care 2020; 25:638-646. [PMID: 31524720 DOI: 10.1097/mcc.0000000000000661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Status epilepticus is a neurological emergency associated with high morbidity and mortality. There is a lack of robust data to guide the management of this neurological emergency beyond the initial treatment. This review examines recent literature on treatment considerations including the choice of continuous anesthetics or adjunctive anticonvulsant, the cause of the status epilepticus, and use of nonpharmacologic therapies. RECENT FINDINGS Status epilepticus remains undertreated and mortality persists to be unchanged over the past 30 years. New anticonvulsant choices, such as levetiracetam and lacosamide have been explored as alternative emergent therapies. Anecdotal reports on the use of other generation anticonvulsants and nonpharmacologic therapies for the treatment of refractory and super-refractory status epilepticus have been described.Finally, recent evidence has examined etiology-guided management of status epilepticus in certain patient populations, such as immune-mediated, paraneoplastic or infectious encephalitis and anoxic brain injury. SUMMARY Randomized clinical trials are needed to determine the role for newer generation anticonvulsants and nonpharmacologic modalities for the treatment of epilepticus remains and evaluate the long-term outcomes associated with continuous anesthetics.
Collapse
Affiliation(s)
| | - Clio Rubinos
- Division of Neurocritical Care, Department of Neurology, Columbia University, New York, New York, USA
| | - Ayham Alkhachroum
- Division of Neurocritical Care, Department of Neurology, Columbia University, New York, New York, USA
| | - Jan Claassen
- Division of Neurocritical Care, Department of Neurology, Columbia University, New York, New York, USA
| |
Collapse
|
94
|
Zhao J, Zheng Y, Liu K, Chen J, Lai N, Fei F, Shi J, Xu C, Wang S, Nishibori M, Wang Y, Chen Z. HMGB1 Is a Therapeutic Target and Biomarker in Diazepam-Refractory Status Epilepticus with Wide Time Window. Neurotherapeutics 2020; 17:710-721. [PMID: 31802434 PMCID: PMC7283397 DOI: 10.1007/s13311-019-00815-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Status epilepticus (SE), a life-threatening neurologic emergency, is often poorly controlled by the current pharmacological therapeutics, which are limited to a narrow time window. Here, we investigated the proinflammatory cytokine high mobility group box-1 (HMGB1) as a candidate therapeutic target for diazepam (DZP)-refractory SE. We found that HMGB1 was upregulated and translocated rapidly during refractory SE period. Exogenous HMGB1 was sufficient to directly induce DZP-refractory SE in nonrefractory SE. Neutralization of HMGB1 with an anti-HMGB1 monoclonal antibody decreased the incidence of SE and alleviated the severity of seizure activity in DZP-refractory SE, which was mediated by a Toll-like receptor 4 (TLR4)-dependent pathway. Importantly, anti-HMGB1 mAb reversed DZP-refractory SE with a wide time window, extending the therapeutic window from 30 to 180 min. Furthermore, we found the upregulation of plasma HMGB1 level is closely correlated with the therapeutic response of anti-HMGB1 mAb in DZP-refractory SE. All these results indicated that HMGB1 is a potential therapeutic target and a useful predictive biomarker in DZP-refractory SE.
Collapse
Affiliation(s)
- Junli Zhao
- Institute of Pharmacology & Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yang Zheng
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Keyue Liu
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Junzi Chen
- Hangzhou No. 4 High School, Hangzhou, China
| | - Nanxi Lai
- Institute of Pharmacology & Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Fan Fei
- Institute of Pharmacology & Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiaying Shi
- Institute of Pharmacology & Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Cenglin Xu
- Institute of Pharmacology & Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shuang Wang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yi Wang
- Institute of Pharmacology & Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
95
|
De Araujo Furtado M, Aroniadou-Anderjaska V, Figueiredo TH, Apland JP, Braga MFM. Electroencephalographic analysis in soman-exposed 21-day-old rats and the effects of midazolam or LY293558 with caramiphen. Ann N Y Acad Sci 2020; 1479:122-133. [PMID: 32237259 DOI: 10.1111/nyas.14331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/19/2022]
Abstract
Acute nerve agent exposure induces status epilepticus (SE), which can cause brain damage or death. Research aiming at developing effective therapies for controlling nerve agent-induced SE is commonly performed in adult rats. The characteristics of nerve agent-induced SE in young rats are less clear; relevant knowledge is necessary for developing effective pediatric therapies. Here, we have used electroencephalographic (EEG) recordings and analysis to study seizures in postnatal day 21 rats exposed to 1.2 × LD50 of soman, and compared the antiseizure efficacy of midazolam (MDZ)-currently considered by the Food and Drug Administration to replace diazepam for treating SE in victims of nerve agent exposure-with that of LY293558, an AMPA/GluK1 receptor antagonist, administered in combination with caramiphen, an antimuscarinic with N-methyl-d-aspartate receptor antagonistic properties. Prolonged SE developed in 80% of the rats and was reflected in behavioral seizures/convulsions. Both MDZ and LY293558 + caramiphen stopped the SE induced by soman, but there was a significant recurrence of seizures within 24 h postexposure only in the MDZ-treated group, as revealed in the raw EEG data and their representation in the frequency domain using a fast Fourier transform and in spectral analysis over 24 hours. In contrast to the high efficacy of LY293558 + caramiphen, MDZ is not an effective treatment for SE induced by soman in young animals.
Collapse
Affiliation(s)
- Marcio De Araujo Furtado
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Vassiliki Aroniadou-Anderjaska
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Taiza H Figueiredo
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - James P Apland
- Neurotoxicology Branch, the United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland
| | - Maria F M Braga
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
96
|
Morrow AL, Boero G, Porcu P. A Rationale for Allopregnanolone Treatment of Alcohol Use Disorders: Basic and Clinical Studies. Alcohol Clin Exp Res 2020; 44:320-339. [PMID: 31782169 PMCID: PMC7018555 DOI: 10.1111/acer.14253] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022]
Abstract
For many years, research from around the world has suggested that the neuroactive steroid (3α,5α)-3-hydroxypregnan-20-one (allopregnanolone or 3α,5α-THP) may have therapeutic potential for treatment of various symptoms of alcohol use disorders (AUDs). In this critical review, we systematically address all the evidence that supports such a suggestion, delineate the etiologies of AUDs that are addressed by treatment with allopregnanolone or its precursor pregnenolone, and the rationale for treatment of various components of the disease based on basic science and clinical evidence. This review presents a theoretical framework for understanding how endogenous steroids that regulate the effects of stress, alcohol, and the innate immune system could play a key role in both the prevention and the treatment of AUDs. We further discuss cautions and limitations of allopregnanolone or pregnenolone therapy with suggestions regarding the management of risk and the potential for helping millions who suffer from AUDs.
Collapse
Affiliation(s)
- A. Leslie Morrow
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599
| | - Giorgia Boero
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599
| | - Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| |
Collapse
|
97
|
Burman RJ, Raimondo JV, Jefferys JG, Sen A, Akerman CJ. The transition to status epilepticus: how the brain meets the demands of perpetual seizure activity. Seizure 2020; 75:137-144. [DOI: 10.1016/j.seizure.2019.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/23/2019] [Indexed: 02/08/2023] Open
|
98
|
Barker BS, Spampanato J, McCarren HS, Smolik M, Jackson CE, Hornung EN, Yeung DT, Dudek FE, McDonough JH. Screening for Efficacious Anticonvulsants and Neuroprotectants in Delayed Treatment Models of Organophosphate-induced Status Epilepticus. Neuroscience 2020; 425:280-300. [PMID: 31783100 PMCID: PMC6935402 DOI: 10.1016/j.neuroscience.2019.11.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/30/2019] [Accepted: 11/12/2019] [Indexed: 01/04/2023]
Abstract
Organophosphorus (OP) compounds are deadly chemicals that exert their intoxicating effects through the irreversible inhibition of acetylcholinesterase (AChE). In addition to an excess of peripheral ailments, OP intoxication induces status epilepticus (SE) which if left untreated may lead to permanent brain damage or death. Benzodiazepines are typically the primary therapies for OP-induced SE, but these drugs lose efficacy as treatment time is delayed. The CounterACT Neurotherapeutic Screening (CNS) Program was therefore established by the National Institutes of Health (NIH) to discover novel treatments that may be administered adjunctively with the currently approved medical countermeasures for OP-induced SE in a delayed treatment scenario. The CNS program utilizes in vivo EEG recordings and Fluoro-JadeB (FJB) histopathology in two established rat models of OP-induced SE, soman (GD) and diisopropylfluorophosphate (DFP), to evaluate the anticonvulsant and neuroprotectant efficacy of novel adjunct therapies when administered at 20 or 60 min after the induction of OP-induced SE. Here we report the results of multiple compounds that have previously shown anticonvulsant or neuroprotectant efficacy in other models of epilepsy or trauma. Drugs tested were ganaxolone, diazoxide, bumetanide, propylparaben, citicoline, MDL-28170, and chloroquine. EEG analysis revealed that ganaxolone demonstrated the most robust anticonvulsant activity, whereas all other drugs failed to attenuate ictal activity in both models of OP-induced SE. FJB staining demonstrated that none of the tested drugs had widespread neuroprotective abilities. Overall these data suggest that neurosteroids may represent the most promising anticonvulsant option for OP-induced SE out of the seven unique mechanisms tested here. Additionally, these results suggest that drugs that provide significant neuroprotection from OP-induced SE without some degree of anticonvulsant activity are elusive, which further highlights the necessity to continue screening novel adjunct treatments through the CNS program.
Collapse
Affiliation(s)
- Bryan S Barker
- Medical Toxicology Research Division, Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA.
| | - Jay Spampanato
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Hilary S McCarren
- Medical Toxicology Research Division, Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| | - Melissa Smolik
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Cecelia E Jackson
- Medical Toxicology Research Division, Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| | - Eden N Hornung
- Medical Toxicology Research Division, Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| | - David T Yeung
- Chemical Countermeasures Research Program, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - F Edward Dudek
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - John H McDonough
- Medical Toxicology Research Division, Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| |
Collapse
|
99
|
Abstract
Convulsive status epilepticus (CSE) is one of the most common pediatric neurological emergencies. Ongoing seizure activity is a dynamic process and may be associated with progressive impairment of gamma-aminobutyric acid (GABA)-mediated inhibition due to rapid internalization of GABAA receptors. Further hyperexcitability may be caused by AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and NMDA (N-methyl-D-aspartic acid) receptors moving from subsynaptic sites to the synaptic membrane. Receptor trafficking during prolonged seizures may contribute to difficulties treating seizures of longer duration and may provide some of the pathophysiological underpinnings of established and refractory SE (RSE). Simultaneously, a practice change toward more rapid initiation of first-line benzodiazepine (BZD) treatment and faster escalation to second-line non-BZD treatment for established SE is in progress. Early administration of the recommended BZD dose is suggested. For second-line treatment, non-BZD anti-seizure medications (ASMs) include valproate, fosphenytoin, or levetiracetam, among others, and at this point there is no clear evidence that any one of these options is better than the others. If seizures continue after second-line ASMs, RSE is manifested. RSE treatment consists of bolus doses and titration of continuous infusions under continuous electro-encephalography (EEG) guidance until electrographic seizure cessation or burst-suppression. Ultimately, etiological workup and related treatment of CSE, including broad spectrum immunotherapies as clinically indicated, is crucial. A potential therapeutic approach for future studies may entail consideration of interventions that may accelerate diagnosis and treatment of SE, as well as rational and early polytherapy based on synergism between ASMs by utilizing medications targeting different mechanisms of epileptogenesis and epileptogenicity.
Collapse
|
100
|
Pandit S, Neupane C, Woo J, Sharma R, Nam MH, Lee GS, Yi MH, Shin N, Kim DW, Cho H, Jeon BH, Kim HW, Lee CJ, Park JB. Bestrophin1-mediated tonic GABA release from reactive astrocytes prevents the development of seizure-prone network in kainate-injected hippocampi. Glia 2019; 68:1065-1080. [PMID: 31833596 DOI: 10.1002/glia.23762] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/22/2022]
Abstract
Tonic extrasynaptic GABAA receptor (GABAA R) activation is under the tight control of tonic GABA release from astrocytes to maintain the brain's excitation/inhibition (E/I) balance; any slight E/I balance disturbance can cause serious pathological conditions including epileptic seizures. However, the pathophysiological role of tonic GABA release from astrocytes has not been tested in epileptic seizures. Here, we report that pharmacological or genetic intervention of the GABA-permeable Bestrophin-1 (Best1) channel prevented the generation of tonic GABA inhibition, disinhibiting CA1 pyramidal neuronal firing and augmenting seizure susceptibility in kainic acid (KA)-induced epileptic mice. Astrocyte-specific Best1 over-expression in KA-injected Best1 knockout mice fully restored the generation of tonic GABA inhibition and effectively suppressed seizure susceptibility. We demonstrate for the first time that tonic GABA from reactive astrocytes strongly contributes to the compensatory shift of E/I balance in epileptic hippocampi, serving as a good therapeutic target against altered E/I balance in epileptic seizures.
Collapse
Affiliation(s)
- Sudip Pandit
- Department of Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea
| | - Chiranjivi Neupane
- Department of Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea
| | - Junsung Woo
- Center for Glia-Neuron Interaction and Neuroscience, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Ramesh Sharma
- Department of Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea
| | - Min-Ho Nam
- Center for Glia-Neuron Interaction and Neuroscience, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Gyu-Seung Lee
- Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea
| | - Min-Hee Yi
- Department of Anatomy, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea
| | - Nara Shin
- Department of Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea.,Department of Anatomy, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea
| | - Dong Woon Kim
- Department of Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea.,Department of Anatomy, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea
| | - Hyunsill Cho
- Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea
| | - Byeong Hwa Jeon
- Department of Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea
| | - Hyun-Woo Kim
- Department of Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea
| | - C Justin Lee
- Center for Glia-Neuron Interaction and Neuroscience, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Jin Bong Park
- Department of Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|