51
|
Valeeva G, Janackova S, Nasretdinov A, Rychkova V, Makarov R, Holmes GL, Khazipov R, Lenck-Santini PP. Emergence of Coordinated Activity in the Developing Entorhinal-Hippocampal Network. Cereb Cortex 2020; 29:906-920. [PMID: 30535003 PMCID: PMC6319314 DOI: 10.1093/cercor/bhy309] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/15/2018] [Indexed: 11/18/2022] Open
Abstract
Correlated activity in the entorhinal–hippocampal neuronal networks, supported by oscillatory and intermittent population activity patterns is critical for learning and memory. However, when and how correlated activity emerges in these networks during development remains largely unknown. Here, we found that during the first postnatal week in non-anaesthetized head-restrained rats, activity in the superficial layers of the medial entorhinal cortex (MEC) and hippocampus was highly correlated, with intermittent population bursts in the MEC followed by early sharp waves (eSPWs) in the hippocampus. Neurons in the superficial MEC layers fired before neurons in the dentate gyrus, CA3 and CA1. eSPW current-source density profiles indicated that perforant/temporoammonic entorhinal inputs and intrinsic hippocampal connections are co-activated during entorhinal–hippocampal activity bursts. Finally, a majority of the entorhinal–hippocampal bursts were triggered by spontaneous myoclonic body movements, characteristic of the neonatal period. Thus, during the neonatal period, activity in the entorhinal cortex (EC) and hippocampus is highly synchronous, with the EC leading hippocampal activation. We propose that such correlated activity is embedded into a large-scale bottom-up circuit that processes somatosensory feedback resulting from neonatal movements, and that it is likely to instruct the development of connections between neocortex and hippocampus.
Collapse
Affiliation(s)
- Guzel Valeeva
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Sona Janackova
- INMED, Aix-Marseille University, INSERM, Marseille, France
| | - Azat Nasretdinov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | | | - Roman Makarov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Gregory L Holmes
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Roustem Khazipov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,INMED, Aix-Marseille University, INSERM, Marseille, France
| | - Pierre-Pascal Lenck-Santini
- INMED, Aix-Marseille University, INSERM, Marseille, France.,Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|
52
|
Kynurenine Pathway as a New Target of Cognitive Impairment Induced by Lead Toxicity During the Lactation. Sci Rep 2020; 10:3184. [PMID: 32081969 PMCID: PMC7035386 DOI: 10.1038/s41598-020-60159-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/07/2020] [Indexed: 12/31/2022] Open
Abstract
The immature brain is especially vulnerable to lead (Pb2+) toxicity, which is considered an environmental neurotoxin. Pb2+ exposure during development compromises the cognitive and behavioral attributes which persist even later in adulthood, but the mechanisms involved in this effect are still unknown. On the other hand, the kynurenine pathway metabolites are modulators of different receptors and neurotransmitters related to cognition; specifically, high kynurenic acid levels has been involved with cognitive impairment, including deficits in spatial working memory and attention process. The aim of this study was to evaluate the relationship between the neurocognitive impairment induced by Pb2+ toxicity and the kynurenine pathway. The dams were divided in control group and Pb2+ group, which were given tap water or 500 ppm of lead acetate in drinking water ad libitum, respectively, from 0 to 23 postnatal day (PND). The poison was withdrawn, and tap water was given until 60 PND of the progeny. The locomotor activity in open field, redox environment, cellular function, kynurenic acid (KYNA) and 3-hydroxykynurenine (3-HK) levels as well as kynurenine aminotransferase (KAT) and kynurenine monooxygenase (KMO) activities were evaluated at both 23 and 60 PND. Additionally, learning and memory through buried food location test and expression of KAT and KMO, and cellular damage were evaluated at 60 PND. Pb2+ group showed redox environment alterations, cellular dysfunction and KYNA and 3-HK levels increased. No changes were observed in KAT activity. KMO activity increased at 23 PND and decreased at 60 PND. No changes in KAT and KMO expression in control and Pb2+ group were observed, however the number of positive cells expressing KMO and KAT increased in relation to control, which correlated with the loss of neuronal population. Cognitive impairment was observed in Pb2+ group which was correlated with KYNA levels. These results suggest that the increase in KYNA levels could be a mechanism by which Pb2+ induces cognitive impairment in adult mice, hence the modulation of kynurenine pathway represents a potential target to improve behavioural alterations produced by this environmental toxin.
Collapse
|
53
|
Xu X, Hanganu-Opatz IL, Bieler M. Cross-Talk of Low-Level Sensory and High-Level Cognitive Processing: Development, Mechanisms, and Relevance for Cross-Modal Abilities of the Brain. Front Neurorobot 2020; 14:7. [PMID: 32116637 PMCID: PMC7034303 DOI: 10.3389/fnbot.2020.00007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/27/2020] [Indexed: 12/18/2022] Open
Abstract
The emergence of cross-modal learning capabilities requires the interaction of neural areas accounting for sensory and cognitive processing. Convergence of multiple sensory inputs is observed in low-level sensory cortices including primary somatosensory (S1), visual (V1), and auditory cortex (A1), as well as in high-level areas such as prefrontal cortex (PFC). Evidence shows that local neural activity and functional connectivity between sensory cortices participate in cross-modal processing. However, little is known about the functional interplay between neural areas underlying sensory and cognitive processing required for cross-modal learning capabilities across life. Here we review our current knowledge on the interdependence of low- and high-level cortices for the emergence of cross-modal processing in rodents. First, we summarize the mechanisms underlying the integration of multiple senses and how cross-modal processing in primary sensory cortices might be modified by top-down modulation of the PFC. Second, we examine the critical factors and developmental mechanisms that account for the interaction between neuronal networks involved in sensory and cognitive processing. Finally, we discuss the applicability and relevance of cross-modal processing for brain-inspired intelligent robotics. An in-depth understanding of the factors and mechanisms controlling cross-modal processing might inspire the refinement of robotic systems by better mimicking neural computations.
Collapse
Affiliation(s)
- Xiaxia Xu
- Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Bieler
- Laboratory for Neural Computation, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
54
|
Spontaneous Ultraslow Na + Fluctuations in the Neonatal Mouse Brain. Cells 2019; 9:cells9010102. [PMID: 31906100 PMCID: PMC7016939 DOI: 10.3390/cells9010102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
In the neonate forebrain, network formation is driven by the spontaneous synchronized activity of pyramidal cells and interneurons, consisting of bursts of electrical activity and intracellular Ca2+ oscillations. By employing ratiometric Na+ imaging in tissue slices obtained from animals at postnatal day 2-4 (P2-4), we found that 20% of pyramidal neurons and 44% of astrocytes in neonatal mouse hippocampus also exhibit transient fluctuations in intracellular Na+. These occurred at very low frequencies (~2/h), were exceptionally long (~8 min), and strongly declined after the first postnatal week. Similar Na+ fluctuations were also observed in the neonate neocortex. In the hippocampus, Na+ elevations in both cell types were diminished when blocking action potential generation with tetrodotoxin. Neuronal Na+ fluctuations were significantly reduced by bicuculline, suggesting the involvement of GABAA-receptors in their generation. Astrocytic signals, by contrast, were neither blocked by inhibition of receptors and/or transporters for different transmitters including GABA and glutamate, nor of various Na+-dependent transporters or Na+-permeable channels. In summary, our results demonstrate for the first time that neonatal astrocytes and neurons display spontaneous ultraslow Na+ fluctuations. While neuronal Na+ signals apparently largely rely on suprathreshold GABAergic excitation, astrocytic Na+ signals, albeit being dependent on neuronal action potentials, appear to have a separate trigger and mechanism, the source of which remains unclear at present.
Collapse
|
55
|
Slow-Wave Activity in the S1HL Cortex Is Contributed by Different Layer-Specific Field Potential Sources during Development. J Neurosci 2019; 39:8900-8915. [PMID: 31548234 PMCID: PMC6832678 DOI: 10.1523/jneurosci.1212-19.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/06/2019] [Accepted: 08/27/2019] [Indexed: 01/12/2023] Open
Abstract
Spontaneous correlated activity in cortical columns is critical for postnatal circuit refinement. We used spatial discrimination techniques to explore the late maturation of synaptic pathways through the laminar distribution of the field potential (FP) generators underlying spontaneous and evoked activities of the S1HL cortex in juvenile (P14-P16) and adult anesthetized rats. Juveniles exhibit an intermittent FP pattern resembling Up/Down states in adults, but with much reduced power and different laminar distribution. Whereas FPs in active periods are dominated by a layer VI generator in juveniles, in adults a developing multipart generator takes over, displaying current sinks in middle layers (III-V). The blockade of excitatory transmission in upper and middle layers of adults recovered the juvenile-like FP profiles. In addition to the layer VI generator, a gamma-specific generator in supragranular layers was the same in both age groups. While searching for dynamical coupling among generators in juveniles we found significant cross-correlation in ∼one-half of the tested pairs, whereas excessive coherence hindered their efficient separation in adults. Also, potentials evoked by tactile and electrical stimuli showed different short-latency dipoles between the two age groups, and the juveniles lacked the characteristic long latency UP state currents in middle layers. In addition, the mean firing rate of neurons was lower in juveniles. Thus, cortical FPs originate from different intra-columnar segments as they become active postnatally. We suggest that although some cortical segments are active early postnatally, a functional sensory-motor control relies on a delayed maturation and network integration of synaptic connections in middle layers.SIGNIFICANCE STATEMENT Early postnatal activity in the rodent cortex is mostly endogenous, whereas it becomes driven by peripheral input at later stages. The precise schedule for the maturation of synaptic pathways is largely unknown. We explored this in the somatosensory hindlimb cortex at an age when animals begin to use their limbs by uncovering the laminar distribution of the field potential generators underlying the dominant delta waves in juveniles and adults. Our results suggest that field potentials are mostly generated by a pathway in deep layers, whereas other pathways mature later in middle layers and take over in adults. We suggest that a functional sensory-motor control relies on a delayed maturation and network integration of synaptic connections in middle layers.
Collapse
|
56
|
Teppola H, Aćimović J, Linne ML. Unique Features of Network Bursts Emerge From the Complex Interplay of Excitatory and Inhibitory Receptors in Rat Neocortical Networks. Front Cell Neurosci 2019; 13:377. [PMID: 31555093 PMCID: PMC6742722 DOI: 10.3389/fncel.2019.00377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 08/02/2019] [Indexed: 12/20/2022] Open
Abstract
Spontaneous network activity plays a fundamental role in the formation of functional networks during early development. The landmark of this activity is the recurrent emergence of intensive time-limited network bursts (NBs) rapidly spreading across the entire dissociated culture in vitro. The main excitatory mediators of NBs are glutamatergic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and N-Methyl-D-aspartic-acid receptors (NMDARs) that express fast and slow ion channel kinetics, respectively. The fast inhibition of the activity is mediated through gamma-aminobutyric acid type A receptors (GABAARs). Although the AMPAR, NMDAR and GABAAR kinetics have been biophysically characterized in detail at the monosynaptic level in a variety of brain areas, the unique features of NBs emerging from the kinetics and the complex interplay of these receptors are not well understood. The goal of this study is to analyze the contribution of fast GABAARs on AMPAR- and NMDAR- mediated spontaneous NB activity in dissociated neonatal rat cortical cultures at 3 weeks in vitro. The networks were probed by both acute and gradual application of each excitatory receptor antagonist and combinations of acute excitatory and inhibitory receptor antagonists. At the same time, the extracellular network-wide activity was recorded with microelectrode arrays (MEAs). We analyzed the characteristic NB measures extracted from NB rate profiles and the distributions of interspike intervals, interburst intervals, and electrode recruitment time as well as the similarity of spatio-temporal patterns of network activity under different receptor antagonists. We show that NBs were rapidly initiated and recruited as well as diversely propagated by AMPARs and temporally and spatially maintained by NMDARs. GABAARs reduced the spiking frequency in AMPAR-mediated networks and dampened the termination of NBs in NMDAR-mediated networks as well as slowed down the recruitment of activity in all networks. Finally, we show characteristic super bursts composed of slow NBs with highly repetitive spatio-temporal patterns in gradually AMPAR blocked networks. To the best of our knowledge, this study is the first to unravel in detail how the three main mediators of synaptic transmission uniquely shape the NB characteristics, such as the initiation, maintenance, recruitment and termination of NBs in cortical cell cultures in vitro.
Collapse
Affiliation(s)
- Heidi Teppola
- Computational Neuroscience Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jugoslava Aćimović
- Computational Neuroscience Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Marja-Leena Linne
- Computational Neuroscience Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
57
|
Dooley JC, Sokoloff G, Blumberg MS. Behavioral states modulate sensory processing in early development. CURRENT SLEEP MEDICINE REPORTS 2019; 5:112-117. [PMID: 31662954 DOI: 10.1007/s40675-019-00144-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Purpose of Review Sleep-wake states modulate cortical activity in adults. In infants, however, such modulation is less clear; indeed, early cortical activity comprises bursts of neural activity driven predominantly by peripheral sensory input. Consequently, in many studies of sensory development in rodents, sensory processing has been carefully investigated, but the modulatory role of behavioral state has typically been ignored. Recent Findings In the developing visual and somatosensory systems, it is now known that sleep and wake states modulate sensory processing. Further, in both systems, the nature of this modulation shifts rapidly during the second postnatal week, with subcortical nuclei changing how they gate sensory inputs. Summary The interactions among sleep and wake movements, sensory processing, and development are dynamic and complex. Now that established methods exist to record neural activity in unanesthetized infant animals, we can provide a more comprehensive understanding of how infant sleep-wake states interact with sensory-driven responses to promote developmental plasticity.
Collapse
Affiliation(s)
- James C Dooley
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA.,DeLTA Center, University of Iowa, Iowa City, IA 52242 USA
| | - Greta Sokoloff
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA.,DeLTA Center, University of Iowa, Iowa City, IA 52242 USA.,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242 USA
| | - Mark S Blumberg
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA.,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52245, USA.,Department of Biology, University of Iowa, Iowa City, IA, 52242 USA.,DeLTA Center, University of Iowa, Iowa City, IA 52242 USA.,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242 USA
| |
Collapse
|
58
|
Boon J, Clarke E, Kessaris N, Goffinet A, Molnár Z, Hoerder‐Suabedissen A. Long-range projections from sparse populations of GABAergic neurons in murine subplate. J Comp Neurol 2019; 527:1610-1620. [PMID: 30520039 PMCID: PMC6492162 DOI: 10.1002/cne.24592] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/01/2018] [Accepted: 11/17/2018] [Indexed: 02/05/2023]
Abstract
The murine subplate contains some of the earliest generated populations of neurons in the cerebral cortex, which play an important role in the maturation of cortical inhibition. Here we present multiple lines of evidence, that the subplate itself is only very sparsely populated with GABAergic neurons at postnatal day (P)8. We used three different transgenic mouse lines, each of which labels a subset of GABAergic, ganglionic eminence derived neurons. Dlx5/6-eGFP labels the most neurons in cortex (on average 11% of NEUN+ cells across all layers at P8) whereas CGE-derived Lhx6-Cre::Dlx1-Venusfl cells are the sparsest (2% of NEUN+ cells across all layers at P8). There is significant variability in the layer distribution of labeled interneurons, with Dlx5/6-eGFP and Lhx6-Cre::R26R-YFP being expressed most abundantly in Layer 5, whereas CGE-derived Lhx6-Cre::Dlx1-Venusfl cells are least abundant in that layer. All three lines label at most 3% of NEUN+ neurons in the subplate, in contrast to L5, in which up to 30% of neurons are GFP+ in Dlx5/6-eGFP. We assessed all three GABAergic populations for expression of the subplate neuron marker connective tissue growth factor (CTGF). CTGF labels up to two-thirds of NEUN+ cells in the subplate, but was never found to colocalize with labeled GABAergic neurons in any of the three transgenic strains. Despite the GABAergic neuronal population in the subplate being sparse, long-distance axonal connection tracing with carbocyanine dyes revealed that some Gad65-GFP+ subplate cells form long-range axonal projections to the internal capsule or callosum.
Collapse
Affiliation(s)
- Jacqueline Boon
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUnited Kingdom
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Emma Clarke
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUnited Kingdom
- Royal Free London NHS Foundation TrustLondonUnited Kingdom
| | - Nicoletta Kessaris
- Wolfson Institute for Biomedical Research and Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - André Goffinet
- Institute of NeuroscienceUniversité Catholique de LouvainLouvain‐la‐NeuveBelgium
| | - Zoltán Molnár
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUnited Kingdom
| | | |
Collapse
|
59
|
van der Bourg A, Yang JW, Stüttgen MC, Reyes-Puerta V, Helmchen F, Luhmann HJ. Temporal refinement of sensory-evoked activity across layers in developing mouse barrel cortex. Eur J Neurosci 2019; 50:2955-2969. [PMID: 30941846 DOI: 10.1111/ejn.14413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/05/2019] [Accepted: 03/17/2019] [Indexed: 12/22/2022]
Abstract
Rhythmic whisking behavior in rodents fully develops during a critical period about 2 weeks after birth, in parallel with the maturation of other sensory modalities and the onset of exploratory locomotion. How whisker-related sensory processing develops during this period in the primary somatosensory cortex (S1) remains poorly understood. Here, we characterized neuronal activity evoked by single- or dual-whisker stimulation patterns in developing S1, before, during and after the occurrence of active whisking. Employing multi-electrode recordings in all layers of barrel cortex in urethane-anesthetized mice, we find layer-specific changes in multi-unit activity for principal and neighboring barrel columns. While whisker stimulation evoked similar early responses (0-50 ms post-stimulus) across development, the late response (50-150 ms post-stimulus) decreased in all layers with age. Furthermore, peak onset times and the duration of the late response decreased in all layers across age groups. Responses to paired-pulse stimulation showed increases in spiking precision and in paired-pulse ratios in all cortical layers during development. Sequential activation of two neighboring whiskers with varying stimulus intervals evoked distinct response profiles in the activated barrel columns, depending on the direction and temporal separation of the stimuli. In conclusion, our findings indicate that the temporal sharpening of sensory-evoked activity coincides with the onset of active whisking.
Collapse
Affiliation(s)
- Alexander van der Bourg
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, Zurich, Switzerland
| | - Jenq-Wei Yang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Maik C Stüttgen
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Vicente Reyes-Puerta
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Fritjof Helmchen
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, Zurich, Switzerland
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
60
|
Kanold PO, Deng R, Meng X. The Integrative Function of Silent Synapses on Subplate Neurons in Cortical Development and Dysfunction. Front Neuroanat 2019; 13:41. [PMID: 31040772 PMCID: PMC6476909 DOI: 10.3389/fnana.2019.00041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
The thalamocortical circuit is of central importance in relaying information to the cortex. In development, subplate neurons (SPNs) form an integral part of the thalamocortical pathway. These early born cortical neurons are the first neurons to receive thalamic inputs and excite neurons in the cortical plate. This feed-forward circuit topology of SPNs supports the role of SPNs in shaping the formation and plasticity of thalamocortical connections. Recently it has been shown that SPNs also receive inputs from the developing cortical plate and project to the thalamus. The cortical inputs to SPNs in early ages are mediated by N-methyl-D-aspartate (NMDA)-receptor only containing synapses while at later ages α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-receptors are present. Thus, SPNs perform a changing integrative function over development. NMDA-receptor only synapses are crucially influenced by the resting potential and thus insults to the developing brain that causes depolarizations, e.g., hypoxia, can influence the integrative function of SPNs. Since such insults in humans cause symptoms of neurodevelopmental disorders, NMDA-receptor only synapses on SPNs might provide a crucial link between early injuries and later circuit dysfunction. We thus here review subplate associated circuits, their changing functions, and discuss possible roles in development and disease.
Collapse
Affiliation(s)
- Patrick O. Kanold
- Department of Biology, University of Maryland, College Park, MD, United States
| | | | | |
Collapse
|
61
|
Mizuno H, Ikezoe K, Nakazawa S, Sato T, Kitamura K, Iwasato T. Patchwork-Type Spontaneous Activity in Neonatal Barrel Cortex Layer 4 Transmitted via Thalamocortical Projections. Cell Rep 2019; 22:123-135. [PMID: 29298415 DOI: 10.1016/j.celrep.2017.12.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 10/22/2017] [Accepted: 12/01/2017] [Indexed: 12/12/2022] Open
Abstract
Establishment of precise neuronal connectivity in the neocortex relies on activity-dependent circuit reorganization during postnatal development; however, the nature of cortical activity during this period remains largely unknown. Using two-photon calcium imaging of the barrel cortex in vivo during the first postnatal week, we reveal that layer 4 (L4) neurons within the same barrel fire synchronously in the absence of peripheral stimulation, creating a "patchwork" pattern of spontaneous activity corresponding to the barrel map. By generating transgenic mice expressing GCaMP6s in thalamocortical axons, we show that thalamocortical axons also demonstrate the spontaneous patchwork activity pattern. Patchwork activity is diminished by peripheral anesthesia but is mostly independent of self-generated whisker movements. The patchwork activity pattern largely disappeared during postnatal week 2, as even L4 neurons within the same barrel tended to fire asynchronously. This spontaneous L4 activity pattern has features suitable for thalamocortical (TC) circuit refinement in the neonatal barrel cortex.
Collapse
Affiliation(s)
- Hidenobu Mizuno
- Division of Neurogenetics, National Institute of Genetics, Mishima 411-8540, Japan; Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima 411-8540, Japan.
| | - Koji Ikezoe
- Department of Neurophysiology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Shingo Nakazawa
- Division of Neurogenetics, National Institute of Genetics, Mishima 411-8540, Japan; Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima 411-8540, Japan
| | - Takuya Sato
- Division of Neurogenetics, National Institute of Genetics, Mishima 411-8540, Japan
| | - Kazuo Kitamura
- Department of Neurophysiology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Takuji Iwasato
- Division of Neurogenetics, National Institute of Genetics, Mishima 411-8540, Japan; Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima 411-8540, Japan.
| |
Collapse
|
62
|
Murata Y, Colonnese MT. Thalamic inhibitory circuits and network activity development. Brain Res 2019; 1706:13-23. [PMID: 30366019 PMCID: PMC6363901 DOI: 10.1016/j.brainres.2018.10.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/30/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023]
Abstract
Inhibitory circuits in thalamus and cortex shape the major activity patterns observed by electroencephalogram (EEG) in the adult brain. Their delayed maturation and circuit integration, relative to excitatory neurons, suggest inhibitory neuronal development could be responsible for the onset of mature thalamocortical activity. Indeed, the immature brain lacks many inhibition-dependent activity patterns, such as slow-waves, delta oscillations and sleep-spindles, and instead expresses other unique oscillatory activities in multiple species including humans. Thalamus contributes significantly to the generation of these early oscillations. Compared to the abundance of studies on the development of inhibition in cortex, however, the maturation of thalamic inhibition is poorly understood. Here we review developmental changes in the neuronal and circuit properties of the thalamic relay and its interconnected inhibitory thalamic reticular nucleus (TRN) both in vitro and in vivo, and discuss their potential contribution to early network activity and its maturation. While much is unknown, we argue that weak inhibitory function in the developing thalamus allows for amplification of thalamocortical activity that supports the generation of early oscillations. The available evidence suggests that the developmental acquisition of critical thalamic oscillations such as slow-waves and sleep-spindles is driven by maturation of the TRN. Further studies to elucidate thalamic GABAergic circuit formation in relation to thalamocortical network function would help us better understand normal as well as pathological brain development.
Collapse
Affiliation(s)
- Yasunobu Murata
- Department of Pharmacology and Physiology, and Institute for Neuroscience, George Washington University, 2300 Eye Street NW, Washington, DC 20037, USA.
| | - Matthew T Colonnese
- Department of Pharmacology and Physiology, and Institute for Neuroscience, George Washington University, 2300 Eye Street NW, Washington, DC 20037, USA.
| |
Collapse
|
63
|
Valeeva G, Nasretdinov A, Rychkova V, Khazipov R. Bilateral Synchronization of Hippocampal Early Sharp Waves in Neonatal Rats. Front Cell Neurosci 2019; 13:29. [PMID: 30792630 PMCID: PMC6374346 DOI: 10.3389/fncel.2019.00029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/22/2019] [Indexed: 11/17/2022] Open
Abstract
In the neonatal rodent hippocampus, the first and predominant pattern of correlated neuronal network activity is early sharp waves (eSPWs). Whether and how eSPWs are organized bilaterally remains unknown. Here, using simultaneous silicone probe recordings from the left and right hippocampus in neonatal rats in vivo we found that eSPWs are highly synchronized bilaterally with nearly zero time lag between the two sides. The amplitudes of eSPWs in the left and right hippocampi were also highly correlated. eSPWs also supported bilateral synchronization of multiple unit activity (MUA). We suggest that bilateral correlated activity supported by synchronized eSPWs participates in the formation of bilateral connections in the hippocampal system.
Collapse
Affiliation(s)
- Guzel Valeeva
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Azat Nasretdinov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | | | - Roustem Khazipov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,Aix-Marseille University, INMED, Institut National de la Santé et de la Recherche Médicale (INSERM), Marseille, France
| |
Collapse
|
64
|
Kim JH, Lee HJ, Choi W, Lee KJ. Encoding information into autonomously bursting neural network with pairs of time-delayed pulses. Sci Rep 2019; 9:1394. [PMID: 30718675 PMCID: PMC6362090 DOI: 10.1038/s41598-018-37915-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/16/2018] [Indexed: 12/16/2022] Open
Abstract
Biological neural networks with many plastic synaptic connections can store external input information in the map of synaptic weights as a form of unsupervised learning. However, the same neural network often produces dramatic reverberating events in which many neurons fire almost simultaneously – a phenomenon coined as ‘population burst.’ The autonomous bursting activity is a consequence of the delicate balance between recurrent excitation and self-inhibition; as such, any periodic sequences of burst-generating stimuli delivered even at a low frequency (~1 Hz) can easily suppress the entire network connectivity. Here we demonstrate that ‘Δt paired-pulse stimulation’, can be a novel way for encoding spatially-distributed high-frequency (~10 Hz) information into such a system without causing a complete suppression. The encoded memory can be probed simply by delivering multiple probing pulses and then estimating the precision of the arrival times of the subsequent evoked recurrent bursts.
Collapse
Affiliation(s)
- June Hoan Kim
- Department of Physics, Korea University, Seoul, 02841, Korea
| | - Ho Jun Lee
- Department of Physics, Korea University, Seoul, 02841, Korea
| | - Wonshik Choi
- Department of Physics, Korea University, Seoul, 02841, Korea.,Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea
| | - Kyoung J Lee
- Department of Physics, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
65
|
Gretenkord S, Kostka JK, Hartung H, Watznauer K, Fleck D, Minier-Toribio A, Spehr M, Hanganu-Opatz IL. Coordinated electrical activity in the olfactory bulb gates the oscillatory entrainment of entorhinal networks in neonatal mice. PLoS Biol 2019; 17:e2006994. [PMID: 30703080 PMCID: PMC6354964 DOI: 10.1371/journal.pbio.2006994] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/11/2019] [Indexed: 01/29/2023] Open
Abstract
Although the developmental principles of sensory and cognitive processing have been extensively investigated, their synergy has been largely neglected. During early life, most sensory systems are still largely immature. As a notable exception, the olfactory system is functional at birth, controlling mother–offspring interactions and neonatal survival. Here, we elucidate the structural and functional principles underlying the communication between olfactory bulb (OB) and lateral entorhinal cortex (LEC)—the gatekeeper of limbic circuitry—during neonatal development. Combining optogenetics, pharmacology, and electrophysiology in vivo with axonal tracing, we show that mitral cell–dependent discontinuous theta bursts in OB drive network oscillations and time the firing in LEC of anesthetized mice via axonal projections confined to upper cortical layers. Acute pharmacological silencing of OB activity diminishes entorhinal oscillations, whereas odor exposure boosts OB–entorhinal coupling at fast frequencies. Chronic impairment of olfactory sensory neurons disrupts OB–entorhinal activity. Thus, OB activity shapes the maturation of entorhinal circuits. Cognitive performance is maximized only through permanent interactions with the environment, yet the contribution of sensory stimuli to cognitive processing has been largely neglected. This is especially true when considering the maturation of limbic circuits accounting for memory and executive abilities. Rodents are blind and deaf, do not whisker, and have limited motor abilities during the first days of life, and therefore, the contribution of sensory inputs to limbic ontogeny has been deemed negligible. As a notable exception, olfactory inputs are processed already early in life and might shape the limbic development. To test this hypothesis, we investigate the principles of communication between the olfactory bulb (OB), the first processing station of olfactory inputs, and lateral entorhinal cortex (LEC)—the gatekeeper of limbic circuits centered on hippocampus and prefrontal cortex—of mice during the first and second postnatal weeks. We show that spontaneously generated patterns of electrical activity in the OB activate the entorhinal circuits via mono- and polysynaptic axonal projections. The activity within the circuitry connecting the OB to the LEC is boosted by odors and disrupted by chronic lesion of the olfactory periphery. Thus, spontaneous and stimulus-induced activity in the OB controls the maturation of neuronal networks in the LEC.
Collapse
Affiliation(s)
- Sabine Gretenkord
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail: (ILH-O); (SG)
| | - Johanna K. Kostka
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henrike Hartung
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katja Watznauer
- Department of Chemosensation, Institute of Biology II, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - David Fleck
- Department of Chemosensation, Institute of Biology II, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Angélica Minier-Toribio
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marc Spehr
- Department of Chemosensation, Institute of Biology II, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Ileana L. Hanganu-Opatz
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail: (ILH-O); (SG)
| |
Collapse
|
66
|
Wamsley B, Jaglin XH, Favuzzi E, Quattrocolo G, Nigro MJ, Yusuf N, Khodadadi-Jamayran A, Rudy B, Fishell G. Rbfox1 Mediates Cell-type-Specific Splicing in Cortical Interneurons. Neuron 2018; 100:846-859.e7. [PMID: 30318414 PMCID: PMC6541232 DOI: 10.1016/j.neuron.2018.09.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/03/2018] [Accepted: 09/14/2018] [Indexed: 12/21/2022]
Abstract
Cortical interneurons display a remarkable diversity in their morphology, physiological properties, and connectivity. Elucidating the molecular determinants underlying this heterogeneity is essential for understanding interneuron development and function. We discovered that alternative splicing differentially regulates the integration of somatostatin- and parvalbumin-expressing interneurons into nascent cortical circuits through the cell-type-specific tailoring of mRNAs. Specifically, we identified a role for the activity-dependent splicing regulator Rbfox1 in the development of cortical interneuron-subtype-specific efferent connectivity. Our work demonstrates that Rbfox1 mediates largely non-overlapping alternative splicing programs within two distinct but related classes of interneurons.
Collapse
Affiliation(s)
- Brie Wamsley
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Xavier Hubert Jaglin
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Emilia Favuzzi
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Stanley Center at the Broad, 75 Ames Street, Cambridge, MA 02142, USA
| | - Giulia Quattrocolo
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Maximiliano José Nigro
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Nusrath Yusuf
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Stanley Center at the Broad, 75 Ames Street, Cambridge, MA 02142, USA
| | - Alireza Khodadadi-Jamayran
- Genome Technology Center, Applied Bioinformatics Laboratories, NYU Langone Medical Center, 550 First Avenue, MSB 304, New York, NY 10016, USA
| | - Bernardo Rudy
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Gord Fishell
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Stanley Center at the Broad, 75 Ames Street, Cambridge, MA 02142, USA.
| |
Collapse
|
67
|
Luhmann HJ, Kirischuk S, Kilb W. The Superior Function of the Subplate in Early Neocortical Development. Front Neuroanat 2018; 12:97. [PMID: 30487739 PMCID: PMC6246655 DOI: 10.3389/fnana.2018.00097] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/29/2018] [Indexed: 12/25/2022] Open
Abstract
During early development the structure and function of the cerebral cortex is critically organized by subplate neurons (SPNs), a mostly transient population of glutamatergic and GABAergic neurons located below the cortical plate. At the molecular and morphological level SPNs represent a rather diverse population of cells expressing a variety of genetic markers and revealing different axonal-dendritic morphologies. Electrophysiologically SPNs are characterized by their rather mature intrinsic membrane properties and firing patterns. They are connected via electrical and chemical synapses to local and remote neurons, e.g., thalamic relay neurons forming the first thalamocortical input to the cerebral cortex. Therefore SPNs are robustly activated at pre- and perinatal stages by the sensory periphery. Although SPNs play pivotal roles in early neocortical activity, development and plasticity, they mostly disappear by programmed cell death during further maturation. On the one hand, SPNs may be selectively vulnerable to hypoxia-ischemia contributing to brain damage, on the other hand there is some evidence that enhanced survival rates or alterations in SPN distribution may contribute to the etiology of neurological or psychiatric disorders. This review aims to give a comprehensive and up-to-date overview on the many functions of SPNs during early physiological and pathophysiological development of the cerebral cortex.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sergei Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
68
|
Maslyukov A, Li K, Su X, Kovalchuk Y, Garaschuk O. Spontaneous calcium transients in the immature adult-born neurons of the olfactory bulb. Cell Calcium 2018; 74:43-52. [DOI: 10.1016/j.ceca.2018.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/05/2018] [Accepted: 06/05/2018] [Indexed: 02/06/2023]
|
69
|
Maternal Regulation of Pups' Cortical Activity: Role of Serotonergic Signaling. eNeuro 2018; 5:eN-NWR-0093-18. [PMID: 30073196 PMCID: PMC6071199 DOI: 10.1523/eneuro.0093-18.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/21/2018] [Accepted: 06/12/2018] [Indexed: 12/15/2022] Open
Abstract
A developing brain shows intense reorganization and heightened neuronal plasticity allowing for environmental modulation of its development. During early life, maternal care is a key factor of this environment and defects in this care can derail adaptive brain development and may result in susceptibility to neuropsychiatric disorders. Nevertheless, the mechanisms by which those maternal interactions immediately impact the offspring's brain activity to initiate the pathway to pathology are not well understood. We do know that multiple neurotransmitter systems are involved, including the serotonergic system, a key neuromodulator involved in brain development and emotional regulation. We tested the importance of the serotonergic system and pups' immediate neural response to maternal presence using wireless electrophysiological recordings, a novel approach allowing us to record neural activity during pups' interactions with their mother. We found that maternal contact modulates the P10-P12 rat pups' anterior cingulate cortex (ACC) activity by notably increasing local-field potential (LFP) power in low-frequency bands. We demonstrated, by blocking serotonergic receptors, that this increase is mediated through 5-HT2 receptors (5-HT2Rs). Finally, we showed in isolated pups that enhancing serotonergic transmission, using a selective-serotonin-reuptake-inhibitor, is sufficient to enhance LFP power in low-frequency bands in a pattern similar to that observed when the mother is in the nest. Our results highlight a significant contribution of the serotonergic system in mediating changes of cortical activity in pups related to maternal presence.
Collapse
|
70
|
Dall'Orso S, Steinweg J, Allievi AG, Edwards AD, Burdet E, Arichi T. Somatotopic Mapping of the Developing Sensorimotor Cortex in the Preterm Human Brain. Cereb Cortex 2018; 28:2507-2515. [PMID: 29901788 PMCID: PMC5998947 DOI: 10.1093/cercor/bhy050] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/13/2018] [Indexed: 01/26/2023] Open
Abstract
In the mature mammalian brain, the primary somatosensory and motor cortices are known to be spatially organized such that neural activity relating to specific body parts can be somatopically mapped onto an anatomical "homunculus". This organization creates an internal body representation which is fundamental for precise motor control, spatial awareness and social interaction. Although it is unknown when this organization develops in humans, animal studies suggest that it may emerge even before the time of normal birth. We therefore characterized the somatotopic organization of the primary sensorimotor cortices using functional MRI and a set of custom-made robotic tools in 35 healthy preterm infants aged from 31 + 6 to 36 + 3 weeks postmenstrual age. Functional responses induced by somatosensory stimulation of the wrists, ankles, and mouth had a distinct spatial organization as seen in the characteristic mature homunculus map. In comparison to the ankle, activation related to wrist stimulation was significantly larger and more commonly involved additional areas including the supplementary motor area and ipsilateral sensorimotor cortex. These results are in keeping with early intrinsic determination of a somatotopic map within the primary sensorimotor cortices. This may explain why acquired brain injury in this region during the preterm period cannot be compensated for by cortical reorganization and therefore can lead to long-lasting motor and sensory impairment.
Collapse
Affiliation(s)
- S Dall'Orso
- Department of Bioengineering, Imperial College London, London, UK
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - J Steinweg
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - A G Allievi
- Department of Bioengineering, Imperial College London, London, UK
| | - A D Edwards
- Department of Bioengineering, Imperial College London, London, UK
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - E Burdet
- Department of Bioengineering, Imperial College London, London, UK
| | - T Arichi
- Department of Bioengineering, Imperial College London, London, UK
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
- Paediatric Neurosciences, Evelina London Children's Hospital, St Thomas' Hospital, London, UK
| |
Collapse
|
71
|
van der Bourg A, Yang JW, Reyes-Puerta V, Laurenczy B, Wieckhorst M, Stüttgen MC, Luhmann HJ, Helmchen F. Layer-Specific Refinement of Sensory Coding in Developing Mouse Barrel Cortex. Cereb Cortex 2018; 27:4835-4850. [PMID: 27620976 DOI: 10.1093/cercor/bhw280] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/17/2016] [Indexed: 12/20/2022] Open
Abstract
Rodent rhythmic whisking behavior matures during a critical period around 2 weeks after birth. The functional adaptations of neocortical circuitry during this developmental period remain poorly understood. Here, we characterized stimulus-evoked neuronal activity across all layers of mouse barrel cortex before, during, and after the onset of whisking behavior. Employing multi-electrode recordings and 2-photon calcium imaging in anesthetized mice, we tested responses to rostro-caudal whisker deflections, axial "tapping" stimuli, and their combination from postnatal day 10 (P10) to P28. Within this period, whisker-evoked activity of neurons displayed a general decrease in layer 2/3 (L2/3) and L4, but increased in L5 and L6. Distinct alterations in neuronal response adaptation during the 2-s period of stimulation at ~5 Hz accompanied these changes. Moreover, single-unit analysis revealed that response selectivity in favor of either lateral deflection or axial tapping emerges in deeper layers within the critical period around P14. For superficial layers we confirmed this finding using calcium imaging of L2/3 neurons, which also exhibited emergence of response selectivity as well as progressive sparsification and decorrelation of evoked responses around P14. Our results demonstrate layer-specific development of sensory responsiveness and response selectivity in mouse somatosensory cortex coinciding with the onset of exploratory behavior.
Collapse
Affiliation(s)
- Alexander van der Bourg
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, CH-8057 Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, CH-8057 Zurich, Switzerland
| | - Jenq-Wei Yang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, D-55128 Mainz, Germany
| | - Vicente Reyes-Puerta
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, D-55128 Mainz, Germany
| | - Balazs Laurenczy
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, CH-8057 Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, CH-8057 Zurich, Switzerland
| | - Martin Wieckhorst
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, CH-8057 Zurich, Switzerland
| | - Maik C Stüttgen
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University, D-55128 Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, D-55128 Mainz, Germany
| | - Fritjof Helmchen
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, CH-8057 Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
72
|
Iwasato T, Erzurumlu RS. Development of tactile sensory circuits in the CNS. Curr Opin Neurobiol 2018; 53:66-75. [PMID: 29908482 DOI: 10.1016/j.conb.2018.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/30/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022]
Abstract
Molecular identification of neuronal types and genetic and imaging approaches to characterize their properties reveal morphological, physiological and dynamic aspects of sensory circuit development. Here we focus on the mouse tactile sensory circuitry, with particular emphasis on the main trigeminal pathway that connects the whiskers, the major tactile organ in rodents, to the neocortex. At each level of this pathway, neurogenesis, axonal elongation, pathfinding, target recognition and circuit reorganization including dendritic refinement of cortical layer 4 neurons occur contemporaneously and a multitude of molecular signals are used in differing combinations. We highlight recent advances in development of tactile circuitry and note gaps in our understanding.
Collapse
Affiliation(s)
- Takuji Iwasato
- National Institute of Genetics, Mishima, Japan; Department of Genetics, SOKENDAI, Mishima, Japan
| | - Reha S Erzurumlu
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
73
|
Yang JW, Kilb W, Kirischuk S, Unichenko P, Stüttgen MC, Luhmann HJ. Development of the whisker-to-barrel cortex system. Curr Opin Neurobiol 2018; 53:29-34. [PMID: 29738998 DOI: 10.1016/j.conb.2018.04.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 01/30/2023]
Abstract
This review provides an overview on the development of the rodent whisker-to-barrel cortex system from late embryonic stage to the end of the first postnatal month. During this period the system shows a remarkable transition from a mostly genetic-molecular driven generation of crude connectivity, providing the template for activity-dependent structural and functional maturation and plasticity, to the manifestation of a complex behavioral repertoire including social interactions. Spontaneous and sensory-evoked activity is present in neonatal barrel cortex and control the generation of the cortical architecture. Half a century after its first description by Woolsey and van der Loos the whisker-to-barrel cortex system with its unique and clear topographic organization still offers the exceptional opportunity to study sensory processing and complex behavior.
Collapse
Affiliation(s)
- Jenq-Wei Yang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | - Sergei Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | - Petr Unichenko
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | - Maik C Stüttgen
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany.
| |
Collapse
|
74
|
Del Rio-Bermudez C, Blumberg MS. Active Sleep Promotes Functional Connectivity in Developing Sensorimotor Networks. Bioessays 2018; 40:e1700234. [PMID: 29508913 PMCID: PMC6247910 DOI: 10.1002/bies.201700234] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/01/2018] [Indexed: 12/15/2022]
Abstract
A ubiquitous feature of active (REM) sleep in mammals and birds is its relative abundance in early development. In rat pups across the first two postnatal weeks, active sleep promotes the expression of synchronized oscillatory activity within and between cortical and subcortical sensorimotor structures. Sensory feedback from self-generated myoclonic twitches - which are produced exclusively during active sleep - also triggers neural oscillations in those structures. We have proposed that one of the functions of active sleep in early infancy is to provide a context for synchronizing developing structures. Specifically, neural oscillations contribute to a variety of neurodevelopmental processes, including synapse formation, neuronal differentiation and migration, apoptosis, and the refinement of topographic maps. In addition, synchronized oscillations promote functional connectivity between distant brain areas. Consequently, any condition or manipulation that restricts active sleep can, in turn, deprive the infant animal of substantial sensory experience, resulting in atypical developmental trajectories.
Collapse
Affiliation(s)
- Carlos Del Rio-Bermudez
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, 52242, Iowa, USA
- Delta Center, University of Iowa, Iowa City, 52242, Iowa, USA
| | - Mark S Blumberg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, 52242, Iowa, USA
- Delta Center, University of Iowa, Iowa City, 52242, Iowa, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, 52245, Iowa, USA
- Department of Biology, University of Iowa, Iowa City, 52242, Iowa, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, 52242, Iowa, USA
| |
Collapse
|
75
|
Khazipov R, Milh M. Early patterns of activity in the developing cortex: Focus on the sensorimotor system. Semin Cell Dev Biol 2018; 76:120-129. [DOI: 10.1016/j.semcdb.2017.09.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 02/08/2023]
|
76
|
Blanquie O, Liebmann L, Hübner CA, Luhmann HJ, Sinning A. NKCC1-Mediated GABAergic Signaling Promotes Postnatal Cell Death in Neocortical Cajal-Retzius Cells. Cereb Cortex 2018; 27:1644-1659. [PMID: 26819276 DOI: 10.1093/cercor/bhw004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During early development, a substantial proportion of central neurons undergoes programmed cell death. This activity-dependent process is essential for the proper structural and functional development of the brain. To uncover cell type-specific differences in the regulation of neuronal survival versus apoptosis, we studied activity-regulated cell death in Cajal-Retzius neurons (CRNs) and the overall neuronal population in the developing mouse cerebral cortex. CRNs in the upper neocortical layer represent an early-born neuronal population, which is important for cortical development and largely disappears by apoptosis during neonatal stages. In contrast to the overall neuronal population, activity blockade with tetrodotoxin improved survival of CRNs in culture. Activation of GABAA receptors also blocked spontaneous activity and caused overall cell death including apoptosis of CRNs. Blockade of the Na-K-Cl transporter NKCC1 in vitro or its genetic deletion in vivo rescued CRNs from apoptosis. This effect was mediated by blockade of the p75NTR receptor signaling pathway. In summary, we discovered a novel developmental death pathway mediated by NKCC1, via GABAA receptor-mediated membrane depolarization and p75NTR signaling in CRNs. This pathway controls apoptosis of CRNs and may be critically involved in neurodevelopmental disorders such as autism and schizophrenia.
Collapse
Affiliation(s)
- Oriane Blanquie
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Lutz Liebmann
- Institute of Human Genetics, University Hospital Jena, Friedrich Schiller University Jena, D-07743 Jena, Germany
| | - Christian A Hübner
- Institute of Human Genetics, University Hospital Jena, Friedrich Schiller University Jena, D-07743 Jena, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Anne Sinning
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| |
Collapse
|
77
|
Mäkinen MEL, Ylä-Outinen L, Narkilahti S. GABA and Gap Junctions in the Development of Synchronized Activity in Human Pluripotent Stem Cell-Derived Neural Networks. Front Cell Neurosci 2018; 12:56. [PMID: 29559893 PMCID: PMC5845705 DOI: 10.3389/fncel.2018.00056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/16/2018] [Indexed: 01/03/2023] Open
Abstract
The electrical activity of the brain arises from single neurons communicating with each other. However, how single neurons interact during early development to give rise to neural network activity remains poorly understood. We studied the emergence of synchronous neural activity in human pluripotent stem cell (hPSC)-derived neural networks simultaneously on a single-neuron level and network level. The contribution of gamma-aminobutyric acid (GABA) and gap junctions to the development of synchronous activity in hPSC-derived neural networks was studied with GABA agonist and antagonist and by blocking gap junctional communication, respectively. We characterized the dynamics of the network-wide synchrony in hPSC-derived neural networks with high spatial resolution (calcium imaging) and temporal resolution microelectrode array (MEA). We found that the emergence of synchrony correlates with a decrease in very strong GABA excitation. However, the synchronous network was found to consist of a heterogeneous mixture of synchronously active cells with variable responses to GABA, GABA agonists and gap junction blockers. Furthermore, we show how single-cell distributions give rise to the network effect of GABA, GABA agonists and gap junction blockers. Finally, based on our observations, we suggest that the earliest form of synchronous neuronal activity depends on gap junctions and a decrease in GABA induced depolarization but not on GABAA mediated signaling.
Collapse
Affiliation(s)
- Meeri Eeva-Liisa Mäkinen
- NeuroGroup Laboratory, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Laura Ylä-Outinen
- NeuroGroup Laboratory, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Susanna Narkilahti
- NeuroGroup Laboratory, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| |
Collapse
|
78
|
Lebedeva J, Zakharov A, Ogievetsky E, Minlebaeva A, Kurbanov R, Gerasimova E, Sitdikova G, Khazipov R. Inhibition of Cortical Activity and Apoptosis Caused by Ethanol in Neonatal Rats In Vivo. Cereb Cortex 2018; 27:1068-1082. [PMID: 26646511 DOI: 10.1093/cercor/bhv293] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Alcohol consumption during pregnancy causes fetal alcohol spectrum disorder, which includes neuroapoptosis and neurobehavioral deficits. The neuroapoptotic effects of alcohol have been hypothesized to involve suppression of brain activity. However, in vitro studies suggest that ethanol acts as a potent stimulant of cortical activity. We explored the effects of alcohol (1-6 g/kg) on electrical activity in the rat somatosensory cortex in vivo at postnatal days P1-23 and compared them with its apoptotic actions. At P4-7, when the peak of alcohol-induced apoptosis was observed, alcohol strongly suppressed spontaneous gamma and spindle-bursts and almost completely silenced neurons in a dose-dependent manner. The dose-dependence of suppression of neuronal activity strongly correlated with the alcohol-induced neuroapoptosis. Alcohol also profoundly inhibited sensory-evoked bursts and suppressed motor activity, a physiological trigger of cortical activity bursts in newborns. The suppressive effects of ethanol on neuronal activity waned during the second and third postnatal weeks, when instead of silencing the cortex, alcohol evoked delta-wave electrographic activity. Thus, the effects of alcohol on brain activity are strongly age-dependent, and during the first postnatal week alcohol profoundly inhibits brain activity. Our findings suggest that the adverse effects of alcohol in the developing brain involve suppression of neuronal activity.
Collapse
Affiliation(s)
- Julia Lebedeva
- Laboratory of Neurobiology, Kazan Federal University, Kazan, 420000, Russia.,INMED, INSERM U-901, Marseille, 13273, France.,Aix-Marseille University, Marseille, 13273, France
| | - Andrei Zakharov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, 420000, Russia.,Department of Physiology, Kazan State Medical University, Kazan, 420012, Russia
| | - Elena Ogievetsky
- INMED, INSERM U-901, Marseille, 13273, France.,Aix-Marseille University, Marseille, 13273, France
| | - Alina Minlebaeva
- INMED, INSERM U-901, Marseille, 13273, France.,Aix-Marseille University, Marseille, 13273, France
| | - Rustem Kurbanov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, 420000, Russia
| | - Elena Gerasimova
- Laboratory of Neurobiology, Kazan Federal University, Kazan, 420000, Russia
| | - Guzel Sitdikova
- Laboratory of Neurobiology, Kazan Federal University, Kazan, 420000, Russia
| | - Roustem Khazipov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, 420000, Russia.,INMED, INSERM U-901, Marseille, 13273, France.,Aix-Marseille University, Marseille, 13273, France
| |
Collapse
|
79
|
Marx M, Qi G, Hanganu-Opatz IL, Kilb W, Luhmann HJ, Feldmeyer D. Neocortical Layer 6B as a Remnant of the Subplate - A Morphological Comparison. Cereb Cortex 2018; 27:1011-1026. [PMID: 26637449 DOI: 10.1093/cercor/bhv279] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The fate of the subplate (SP) is still a matter of debate. The SP and layer 6 (which is ontogenetically the oldest and innermost neocortical lamina) develop coincidentally. Yet, the function of sublamina 6B is largely unknown. It has been suggested that it consists partly of neurons from the transient SP, however, experimental evidence for this hypothesis is still missing. To obtain first insights into the neuronal complement of layer 6B in the somatosensory rat barrel cortex, we used biocytin stainings of SP neurons (aged 0-4 postnatal days, PND) and layer 6B neurons (PND 11-35) obtained during in vitro whole-cell patch-clamp recordings. Neurons were reconstructed for a quantitative characterization of their axonal and dendritic morphology. An unsupervised cluster analysis revealed that the SP and layer 6B consist of heterogeneous but comparable neuronal cell populations. Both contain 5 distinct spine-bearing cell types whose relative fractions change with increasing age. Pyramidal cells were more prominent in layer 6B, whereas non-pyramidal neurons were less frequent. Because of the high morphological similarity of SP and layer 6B neurons, we suggest that layer 6B consists of persistent non-pyramidal neurons from the SP and cortical L6B pyramidal neurons.
Collapse
Affiliation(s)
- Manuel Marx
- Institute of Neuroscience and Medicine, INM-2, Research Centre Jülich, D-52428 Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, D-52074 Aachen, Germany
| | - Guanxiao Qi
- Institute of Neuroscience and Medicine, INM-2, Research Centre Jülich, D-52428 Jülich, Germany
| | - Ileana L Hanganu-Opatz
- Developmental Neurophysiology, Institute of Neuroanatomy, Centre for Molecular Neurobiology Hamburg (ZMNH), D-20251 Hamburg, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Centre of the Johannes Gutenberg-University Mainz, D-55128 Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Centre of the Johannes Gutenberg-University Mainz, D-55128 Mainz, Germany
| | - Dirk Feldmeyer
- Institute of Neuroscience and Medicine, INM-2, Research Centre Jülich, D-52428 Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, D-52074 Aachen, Germany.,Jülich Aachen Research Alliance, Translational Brain Medicine (JARA Brain), D-52074 Aachen, Germany
| |
Collapse
|
80
|
de Camp NV, Hense F, Lecher B, Scheu H, Bergeler J. Models for Preterm Cortical Development Using Non Invasive Clinical EEG. Transl Neurosci 2018; 8:211-224. [PMID: 29445543 PMCID: PMC5811640 DOI: 10.1515/tnsci-2017-0029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/20/2017] [Indexed: 01/14/2023] Open
Abstract
The objective of this study was to evaluate the piglet and the mouse as model systems for preterm cortical development. According to the clinical context, we used non invasive EEG recordings. As a prerequisite, we developed miniaturized Ag/AgCl electrodes for full band EEG recordings in mice and verified that Urethane had no effect on EEG band power. Since mice are born with a “preterm” brain, we evaluated three age groups: P0/P1, P3/P4 and P13/P14. Our aim was to identify EEG patterns in the somatosensory cortex which are distinguishable between developmental stages and represent a physiologic brain development. In mice, we were able to find clear differences between age groups with a simple power analysis of EEG bands and also for phase locking and power spectral density. Interhemispheric coherence between corresponding regions can only be seen in two week old mice. The canolty maps for piglets as well as for mice show a clear PAC (phase amplitude coupling) pattern during development. From our data it can be concluded that analytic tools relying on network activity, as for example PAC (phase amplitude coupling) are best suited to extract basic EEG patterns of cortical development across species.
Collapse
Affiliation(s)
- Nora Vanessa de Camp
- Medical Center of the Johannes Gutenberg, University Mainz, Mainz, Germany.,Free University Berlin, Berlin, Germany.,Humboldt University Berlin, Berlin, Germany
| | - Florian Hense
- Medical Center of the Johannes Gutenberg, University Mainz, Mainz, Germany
| | | | - Helmut Scheu
- Lehr- und Versuchstieranstalt Hofgut Neumühle, Neumühle, Germany
| | - Jürgen Bergeler
- Medical Center of the Johannes Gutenberg, University Mainz, Mainz, Germany.,Free University Berlin, Berlin, Germany
| |
Collapse
|
81
|
Suchkov D, Sharipzyanova L, Minlebaev M. Horizontal Synchronization of Neuronal Activity in the Barrel Cortex of the Neonatal Rat by Spindle-Burst Oscillations. Front Cell Neurosci 2018; 12:5. [PMID: 29403359 PMCID: PMC5780442 DOI: 10.3389/fncel.2018.00005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/04/2018] [Indexed: 01/14/2023] Open
Abstract
During development, activity in the somatosensory cortex is characterized by intermittent oscillatory bursts at gamma (early gamma-oscillations, EGOs) and alpha–beta (spindle-bursts, SBs) frequencies. Here, we explored the topography of EGOs and SBs in the neighbor barrels of the whisker-related barrel cortex of neonatal rats (P4-7) during responses evoked by simultaneous activation of multiple whiskers as it occurs during natural conditions. We found that brief simultaneous deflection of all whiskers evoked complex neuronal responses comprised of EGOs and SBs. In contrast to EGOs, that specifically synchronized neuronal activity in each individual barrel, SBs efficiently synchronized activity between neighboring barrels. After plucking a single whisker, synchronous stimulation of spared whiskers evoked EGO-lacking responses in the whisker-deprived barrel, even though the remaining neuronal activity was synchronized by SBs in neighboring barrels. Thus, EGOs specifically support topographic synchronization of neuronal activity within barrels, whereas SBs support horizontal synchronization between neighboring barrels during stimulation of multiple whiskers. We suggest that these two co-existing activity patterns coordinate activity-dependent formation of topographic maps and support the emergence of integrative functions in the primary somatosensory cortex during the critical period of somatosensory maps development.
Collapse
Affiliation(s)
- Dmitrii Suchkov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | | | - Marat Minlebaev
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,INMED-INSERM U901, Aix-Marseille Université, Marseille, France
| |
Collapse
|
82
|
Li Y, Yu C, Zhou ZC, Stitt I, Sellers KK, Gilmore JH, Frohlich F. Early Development of Network Oscillations in the Ferret Visual Cortex. Sci Rep 2017; 7:17766. [PMID: 29259184 PMCID: PMC5736753 DOI: 10.1038/s41598-017-17502-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/27/2017] [Indexed: 01/25/2023] Open
Abstract
Although oscillations during development have been characterized in a wide range of neural systems, little is known about the interaction between these network oscillations and neuronal spiking, and the interactions among different oscillation frequencies. Here we recorded the spontaneous and visual-elicited local field potential (LFP) and multi-unit activity (MUA) in the visual cortex of freely-moving juvenile ferrets before and after eye-opening. We found that both the spontaneous and visually-elicited LFP power was increased after eye-opening, especially in higher frequency bands (>30 Hz). Spike LFP phase coupling was decreased for lower frequency bands (theta and alpha) but slightly increased for higher frequencies (high-gamma band). A similar shift towards faster frequencies also occurred for phase-amplitude coupling; with maturation, the coupling of the theta/alpha/beta band amplitude to the delta phase was decreased and the high-gamma amplitude coupling to theta/alpha phase was increased. This shift towards higher frequencies was also reflected in the visual responses; the LFP oscillation became more entrained by visual stimulation with higher frequencies (>10 Hz). Taken together, these results suggest gamma oscillation as a signature of the maturation of cortical circuitry.
Collapse
Affiliation(s)
- Yuhui Li
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chunxiu Yu
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Zhe Charles Zhou
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Iain Stitt
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kristin K Sellers
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Flavio Frohlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
83
|
Kirischuk S, Sinning A, Blanquie O, Yang JW, Luhmann HJ, Kilb W. Modulation of Neocortical Development by Early Neuronal Activity: Physiology and Pathophysiology. Front Cell Neurosci 2017; 11:379. [PMID: 29238291 PMCID: PMC5712676 DOI: 10.3389/fncel.2017.00379] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/13/2017] [Indexed: 12/23/2022] Open
Abstract
Animal and human studies revealed that patterned neuronal activity is an inherent feature of developing nervous systems. This review summarizes our current knowledge about the mechanisms generating early electrical activity patterns and their impact on structural and functional development of the cerebral cortex. All neocortical areas display distinct spontaneous and sensory-driven neuronal activity patterns already at early phases of development. At embryonic stages, intermittent spontaneous activity is synchronized within small neuronal networks, becoming more complex with further development. This transition is accompanied by a gradual shift from electrical to chemical synaptic transmission, with a particular role of non-synaptic tonic currents before the onset of phasic synaptic activity. In this review article we first describe functional impacts of classical neurotransmitters (GABA, glutamate) and modulatory systems (e.g., acetylcholine, ACh) on early neuronal activities in the neocortex with special emphasis on electrical synapses, nonsynaptic and synaptic currents. Early neuronal activity influences probably all developmental processes and is crucial for the proper formation of neuronal circuits. In the second part of our review, we illustrate how specific activity patterns might interfere with distinct neurodevelopmental processes like proliferation, migration, axonal and dendritic sprouting, synapse formation and neurotransmitter specification. Finally, we present evidence that transient alterations in neuronal activity during restricted perinatal periods can lead to persistent changes in functional connectivity and therefore might underlie the manifestation of neurological and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Sergei Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Anne Sinning
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Oriane Blanquie
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jenq-Wei Yang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
84
|
FGF-FGFR Mediates the Activity-Dependent Dendritogenesis of Layer IV Neurons during Barrel Formation. J Neurosci 2017; 37:12094-12105. [PMID: 29097598 DOI: 10.1523/jneurosci.1174-17.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 09/07/2017] [Accepted: 09/27/2017] [Indexed: 01/01/2023] Open
Abstract
Fibroblast growth factors (FGFs) and FGF receptors (FGFRs) are known for their potent effects on cell proliferation/differentiation and cortical patterning in the developing brain. However, little is known regarding the roles of FGFs/FGFRs in cortical circuit formation. Here we show that Fgfr1/2/3 and Fgf7/9/10/22 mRNAs are expressed in the developing primary somatosensory (S1) barrel cortex. Barrel cortex layer IV spiny stellate cells (bSCs) are the primary recipients of ascending sensory information via thalamocortical axons (TCAs). Detail quantification revealed distinctive phases for bSC dendritogenesis: orienting dendrites toward TCAs, adding de novo dendritic segments, and elongating dendritic length, while maintaining dendritic patterns. Deleting Fgfr1/2/3 in bSCs had minimal impact on dendritic polarity but transiently increased the number of dendritic segments. However, 6 d later, FGFR1/2/3 loss of function reduced dendritic branch numbers. These data suggest that FGFs/FGFRs have a role in stabilizing dendritic patterning. Depolarization of cultured mouse cortical neurons upregulated the levels of several Fgf/Fgfr mRNAs within 2 h. In vivo, within 6 h of systemic kainic acid administration at postnatal day 6, mRNA levels of Fgf9, Fgf10, Fgfr2c, and Fgfr3b in S1 cortices were enhanced, and this was accompanied by exuberant dendritogenesis of bSCs by 24 h. Deleting Fgfr1/2/3 abolished kainic acid-induced bSC dendritic overgrowth. Finally, FGF9/10 gain of function also resulted in extensive dendritogenesis. Together, our data suggest that FGFs/FGFRs can be regulated by glutamate transmission to modulate/stabilize bSC dendritic complexity. Both male and female mice were used for our study.SIGNIFICANCE STATEMENT Glutamatergic transmission plays critical roles in cortical circuit formation. Its dysregulation has been proposed as a core factor in the etiology of many neurological diseases. We found that excessive glutamate transmission upregulated mRNA expression of Fgfrs and their ligands Fgfs Deleting Fgfr1/2/3 not only impaired bSC dendritogenesis but also abolished glutamate transmission-induced dendritic overgrowth. Overexpressing FGF9 or FGF10 in cortical glutamatergic neurons results in excessive dendritic outgrowth within 24 h, resembling the changes induced by excessive glutamate transmission. Our findings provide strong evidence for the physiological role of fibroblast growth factors (FGFs) and FGF receptors (FGFRs) in establishing and maintaining cortical circuits. Perturbing the expression levels of FGFs/FGFRs by excessive glutamatergic neurotransmission could lead to abnormal neuronal circuits, which may contribute to neurological and psychiatric disease.
Collapse
|
85
|
Kilb W, Fukuda A. Taurine as an Essential Neuromodulator during Perinatal Cortical Development. Front Cell Neurosci 2017; 11:328. [PMID: 29123472 PMCID: PMC5662885 DOI: 10.3389/fncel.2017.00328] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/04/2017] [Indexed: 01/10/2023] Open
Abstract
A variety of experimental studies demonstrated that neurotransmitters are an important factor for the development of the central nervous system, affecting neurodevelopmental events like neurogenesis, neuronal migration, programmed cell death, and differentiation. While the role of the classical neurotransmitters glutamate and gamma-aminobutyric acid (GABA) on neuronal development is well established, the aminosulfonic acid taurine has also been considered as possible neuromodulator during early neuronal development. The purpose of the present review article is to summarize the properties of taurine as neuromodulator in detail, focusing on the direct involvement of taurine on various neurodevelopmental events and the regulation of neuronal activity during early developmental epochs. The current knowledge is that taurine lacks a synaptic release mechanism but is released by volume-sensitive organic anion channels and/or a reversal of the taurine transporter. Extracellular taurine affects neurons and neuronal progenitor cells mainly via glycine, GABA(A), and GABA(B) receptors with considerable receptor and subtype-specific affinities. Taurine has been shown to directly influence neurogenesis in vitro as well as neuronal migration in vitro and in vivo. It provides a depolarizing signal for a variety of neuronal population in the immature central nervous system, thereby directly influencing neuronal activity. While in the neocortex, taurine probably enhance neuronal activity, in the immature hippocampus, a tonic taurinergic tone might be necessary to attenuate activity. In summary, taurine must be considered as an essential modulator of neurodevelopmental events, and possible adverse consequences on fetal and/or early postnatal development should be evaluated for pharmacological therapies affecting taurinergic functions.
Collapse
Affiliation(s)
- Werner Kilb
- Institute of Physiology, University Medical Center, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
86
|
Colonnese MT, Shen J, Murata Y. Uncorrelated Neural Firing in Mouse Visual Cortex during Spontaneous Retinal Waves. Front Cell Neurosci 2017; 11:289. [PMID: 28979189 PMCID: PMC5611364 DOI: 10.3389/fncel.2017.00289] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/04/2017] [Indexed: 11/25/2022] Open
Abstract
Synchronous firing among the elements of forming circuits is critical for stabilization of synapses. Understanding the nature of these local network interactions during development can inform models of circuit formation. Within cortex, spontaneous activity changes throughout development. Unlike the adult, early spontaneous activity occurs in discontinuous population bursts separated by long silent periods, suggesting a high degree of local synchrony. However, whether the micro-patterning of activity within early bursts is unique to this early age and specifically tuned for early development is poorly understood, particularly within the column. To study this we used single-shank multi-electrode array recordings of spontaneous activity in the visual cortex of non-anesthetized neonatal mice to quantify single-unit firing rates, and applied multiple measures of network interaction and synchrony throughout the period of map formation and immediately after eye-opening. We find that despite co-modulation of firing rates on a slow time scale (hundreds of ms), the number of coactive neurons, as well as pair-wise neural spike-rate correlations, are both lower before eye-opening. In fact, on post-natal days (P)6–9 correlated activity was lower than expected by chance, suggesting active decorrelation of activity during early bursts. Neurons in lateral geniculate nucleus developed in an opposite manner, becoming less correlated after eye-opening. Population coupling, a measure of integration in the local network, revealed a population of neurons with particularly strong local coupling present at P6–11, but also an adult-like diversity of coupling at all ages, suggesting that a neuron’s identity as locally or distally coupled is determined early. The occurrence probabilities of unique neuronal “words” were largely similar at all ages suggesting that retinal waves drive adult-like patterns of co-activation. These findings suggest that the bursts of spontaneous activity during early visual development do not drive hyper-synchronous activity within columns. Rather, retinal waves provide windows of potential activation during which neurons are active but poorly correlated, adult-like patterns of correlation are achieved soon after eye-opening.
Collapse
Affiliation(s)
- Matthew T Colonnese
- Department of Pharmacology and Physiology, Institute for Neuroscience, The George Washington UniversityWashington, DC, United States
| | - Jing Shen
- Department of Pharmacology and Physiology, Institute for Neuroscience, The George Washington UniversityWashington, DC, United States
| | - Yasunobu Murata
- Department of Pharmacology and Physiology, Institute for Neuroscience, The George Washington UniversityWashington, DC, United States
| |
Collapse
|
87
|
Arichi T, Whitehead K, Barone G, Pressler R, Padormo F, Edwards AD, Fabrizi L. Localization of spontaneous bursting neuronal activity in the preterm human brain with simultaneous EEG-fMRI. eLife 2017; 6. [PMID: 28893378 PMCID: PMC5595428 DOI: 10.7554/elife.27814] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 08/03/2017] [Indexed: 12/21/2022] Open
Abstract
Electroencephalographic recordings from the developing human brain are characterized by spontaneous neuronal bursts, the most common of which is the delta brush. Although similar events in animal models are known to occur in areas of immature cortex and drive their development, their origin in humans has not yet been identified. Here, we use simultaneous EEG-fMRI to localise the source of delta brush events in 10 preterm infants aged 32–36 postmenstrual weeks. The most frequent patterns were left and right posterior-temporal delta brushes which were associated in the left hemisphere with ipsilateral BOLD activation in the insula only; and in the right hemisphere in both the insular and temporal cortices. This direct measure of neural and hemodynamic activity shows that the insula, one of the most densely connected hubs in the developing cortex, is a major source of the transient bursting events that are critical for brain maturation.
Collapse
Affiliation(s)
- Tomoki Arichi
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Kimberley Whitehead
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Giovanni Barone
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,Department of Pediatrics, Catholic University of Sacred Heart, Rome, Italy
| | - Ronit Pressler
- Clinical Neurosciences, UCL-Institute of Child Health, London, United Kingdom
| | - Francesco Padormo
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - A David Edwards
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
88
|
Fazeli W, Zappettini S, Marguet SL, Grendel J, Esclapez M, Bernard C, Isbrandt D. Early-life exposure to caffeine affects the construction and activity of cortical networks in mice. Exp Neurol 2017; 295:88-103. [DOI: 10.1016/j.expneurol.2017.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/21/2017] [Accepted: 05/29/2017] [Indexed: 10/19/2022]
|
89
|
Blanquie O, Yang JW, Kilb W, Sharopov S, Sinning A, Luhmann HJ. Electrical activity controls area-specific expression of neuronal apoptosis in the mouse developing cerebral cortex. eLife 2017; 6:27696. [PMID: 28826501 PMCID: PMC5582867 DOI: 10.7554/elife.27696] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/18/2017] [Indexed: 12/22/2022] Open
Abstract
Programmed cell death widely but heterogeneously affects the developing brain, causing the loss of up to 50% of neurons in rodents. However, whether this heterogeneity originates from neuronal identity and/or network-dependent processes is unknown. Here, we report that the primary motor cortex (M1) and primary somatosensory cortex (S1), two adjacent but functionally distinct areas, display striking differences in density of apoptotic neurons during the early postnatal period. These differences in rate of apoptosis negatively correlate with region-dependent levels of activity. Disrupting this activity either pharmacologically or by electrical stimulation alters the spatial pattern of apoptosis and sensory deprivation leads to exacerbated amounts of apoptotic neurons in the corresponding functional area of the neocortex. Thus, our data demonstrate that spontaneous and periphery-driven activity patterns are important for the structural and functional maturation of the neocortex by refining the final number of cortical neurons in a region-dependent manner.
Collapse
Affiliation(s)
- Oriane Blanquie
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jenq-Wei Yang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Salim Sharopov
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Anne Sinning
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
90
|
Development of Activity in the Mouse Visual Cortex. J Neurosci 2017; 36:12259-12275. [PMID: 27903733 DOI: 10.1523/jneurosci.1903-16.2016] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/24/2016] [Accepted: 10/14/2016] [Indexed: 11/21/2022] Open
Abstract
A comprehensive developmental timeline of activity in the mouse cortex in vivo is lacking. Understanding the activity changes that accompany synapse and circuit formation is important to understand the mechanisms by which activity molds circuits and would help to identify critical checkpoints for normal development. To identify key principles of cortical activity maturation, we systematically tracked spontaneous and sensory-evoked activity with extracellular recordings of primary visual cortex (V1) in nonanesthetized mice. During the first postnatal week (postnatal days P4-P7), V1 was not visually responsive and exhibited long (>10 s) periods of network silence. Activation consisted exclusively of "slow-activity transients," 2-10 s periods of 6-10 Hz "spindle-burst' oscillations; the response to spontaneous retinal waves. By tracking daily changes in this activity, two key components of spontaneous activity maturation were revealed: (1) spindle-burst frequency acceleration (eventually becoming the 20-50 Hz broadband activity caused by the asynchronous state) and (2) "filling-in" of silent periods with low-frequency (2-4 Hz) activity (beginning on P10 and complete by P13). These two changes are sufficient to create the adult-like pattern of continuous activity, alternation between fast-asynchronous and slow-synchronous activity, by eye opening. Visual responses emerged on P8 as evoked spindle-bursts and neuronal firing with a signal-to-noise ratio higher than adult. Both were eliminated by eye opening, leaving only the mature, short-latency response. These results identify the developmental origins of mature cortical activity and implicate the period before eye opening as a critical checkpoint. By providing a systematic description of electrical activity development, we establish the murine visual cortex as a model for the electroencephalographic development of fetal humans. SIGNIFICANCE STATEMENT Cortical activity is an important indicator of long-term health and survival in preterm infants and molds circuit formation, but gaps remain in our understanding of the origin and normal progression of this activity in the developing cortex. We aimed to rectify this by monitoring daily changes in cortical activity in the nonanesthetized mouse, an important preclinical model of disease and development. At ages approximately equivalent to normal human term birth, mouse cortex exhibits primarily network silence, with spontaneous "spindle bursts" as the only form of activity. In contrast, mature cortex is noisy, alternating between asynchronous/discontinuous and synchronous/continuous states. This work identifies the key processes that produce this maturation and provides a normative reference for murine-based studies of cortical circuit development.
Collapse
|
91
|
The Nature of the Sensory Input to the Neonatal Rat Barrel Cortex. J Neurosci 2017; 36:9922-32. [PMID: 27656029 DOI: 10.1523/jneurosci.1781-16.2016] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/07/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Sensory input plays critical roles in the development of the somatosensory cortex during the neonatal period. This early sensory input may involve: (1) stimulation arising from passive interactions with the mother and littermates and (2) sensory feedback arising from spontaneous infant movements. The relative contributions of these mechanisms under natural conditions remain largely unknown, however. Here, we show that, in the whisker-related barrel cortex of neonatal rats, spontaneous whisker movements and passive stimulation by the littermates cooperate, with comparable efficiency, in driving cortical activity. Both tactile signals arising from the littermate's movements under conditions simulating the littermates' position in the litter, and spontaneous whisker movements efficiently triggered bursts of activity in barrel cortex. Yet, whisker movements with touch were more efficient than free movements. Comparison of the various experimental conditions mimicking the natural environment showed that tactile signals arising from the whisker movements with touch and stimulation by the littermates, support: (1) a twofold higher level of cortical activity than in the isolated animal, and (2) a threefold higher level of activity than in the deafferented animal after the infraorbital nerve cut. Together, these results indicate that endogenous (self-generated movements) and exogenous (stimulation by the littermates) mechanisms cooperate in driving cortical activity in newborn rats and point to the importance of the environment in shaping cortical activity during the neonatal period. SIGNIFICANCE STATEMENT Sensory input plays critical roles in the development of the somatosensory cortex during the neonatal period. However, the origins of sensory input to the neonatal somatosensory cortex in the natural environment remain largely unknown. Here, we show that in the whisker-related barrel cortex of neonatal rats, spontaneous whisker movements and passive stimulation by the littermates cooperate, with comparable efficiency, in driving cortical activity during the critical developmental period.
Collapse
|
92
|
Kaminska A, Delattre V, Laschet J, Dubois J, Labidurie M, Duval A, Manresa A, Magny JF, Hovhannisyan S, Mokhtari M, Ouss L, Boissel A, Hertz-Pannier L, Sintsov M, Minlebaev M, Khazipov R, Chiron C. Cortical Auditory-Evoked Responses in Preterm Neonates: Revisited by Spectral and Temporal Analyses. Cereb Cortex 2017; 28:3429-3444. [DOI: 10.1093/cercor/bhx206] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- A Kaminska
- INSERM U1129, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- CEA, 91191 Gif sur Yvette, France
- Department of Clinical Neurophysiology, AP-HP, Necker-Enfants Malades Hospital, Paris, France
| | - V Delattre
- INSERM U1129, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- CEA, 91191 Gif sur Yvette, France
- Neurospin, UNIACT, CEA, Gif sur Yvette, France
| | - J Laschet
- INSERM U1129, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- CEA, 91191 Gif sur Yvette, France
| | - J Dubois
- INSERM U992, CEA/DRF/I2BM/Neurospin/UNICOG, Gif-sur-Yvette, France
- Paris Saclay University, Paris-Sud University, Gif-sur-Yvette, France
| | - M Labidurie
- INSERM U1129, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- CEA, 91191 Gif sur Yvette, France
| | - A Duval
- INSERM U1129, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- CEA, 91191 Gif sur Yvette, France
- Neurospin, UNIACT, CEA, Gif sur Yvette, France
| | - A Manresa
- Laboratory of Psychology and Neurosciences (LPN) (EA 47000), Rouen University, Rouen, France
| | - J -F Magny
- Neonatal Intensive Care Unit, AP-HP, Necker-Enfants Malades Hospital, Paris, France
| | - S Hovhannisyan
- Neonatal Intensive Care Unit, AP-HP, Necker-Enfants Malades Hospital, Paris, France
| | - M Mokhtari
- Neonatal Intensive Care Unit, AP-HP, Bicetre Hospital, Kremlin-Bicetre, France
| | - L Ouss
- Department of Pediatric Neurology, AP-HP, Necker-Enfants Malades Hospital, Paris, France
| | - A Boissel
- Laboratory of Psychology and Neurosciences (LPN) (EA 47000), Rouen University, Rouen, France
| | - L Hertz-Pannier
- INSERM U1129, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- CEA, 91191 Gif sur Yvette, France
- Neurospin, UNIACT, CEA, Gif sur Yvette, France
| | - M Sintsov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - M Minlebaev
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
- INSERM U901/ INMED, Aix-Marseille University, Marseille, France
| | - R Khazipov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
- INSERM U901/ INMED, Aix-Marseille University, Marseille, France
| | - C Chiron
- INSERM U1129, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- CEA, 91191 Gif sur Yvette, France
| |
Collapse
|
93
|
Jarre G, Altwegg-Boussac T, Williams MS, Studer F, Chipaux M, David O, Charpier S, Depaulis A, Mahon S, Guillemain I. Building Up Absence Seizures in the Somatosensory Cortex: From Network to Cellular Epileptogenic Processes. Cereb Cortex 2017; 27:4607-4623. [DOI: 10.1093/cercor/bhx174] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 06/22/2017] [Indexed: 01/14/2023] Open
Affiliation(s)
- Guillaume Jarre
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
| | - Tristan Altwegg-Boussac
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Mark S. Williams
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Florian Studer
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
| | - Mathilde Chipaux
- Pediatric Neurosurgery Department, Fondation Ophtalmologique A. de Rothschild, 75019 Paris, France
| | - Olivier David
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
- CHU de Grenoble, F-38000 Grenoble, France
| | - Stéphane Charpier
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
- UPMC Univ Paris 06, F-75005, Paris, France
| | - Antoine Depaulis
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
- CHU de Grenoble, F-38000 Grenoble, France
| | - Séverine Mahon
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Isabelle Guillemain
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
| |
Collapse
|
94
|
Luhmann HJ. Review of imaging network activities in developing rodent cerebral cortex in vivo. NEUROPHOTONICS 2017; 4:031202. [PMID: 27921066 PMCID: PMC5120148 DOI: 10.1117/1.nph.4.3.031202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/19/2016] [Indexed: 06/06/2023]
Abstract
The combination of voltage-sensitive dye imaging (VSDI) with multielectrode array (MEA) recordings in the rodent cerebral cortex in vivo allows the simultaneous analysis of large-scale network interactions and electrophysiological single-unit recordings. Using this approach, distinct patterns of spontaneous and sensory-evoked activity can be recorded in the primary somatosensory (S1) and motor cortex (M1) of newborn rats. Already at the day of birth, gamma oscillations and spindle bursts in the barrel cortex synchronize the activity of a local columnar ensemble, thereby generating an early topographic representation of the sensory periphery. During the first postnatal week, both cortical activity patterns undergo developmental changes in their spatiotemporal properties and spread into neighboring cortical columns. Simultaneous VSDI and MEA recordings in S1 and M1 demonstrate that the immature motor cortex receives information from the somatosensory system and that M1 may trigger movements of the periphery, which subsequently evoke gamma oscillations and spindle bursts in S1. These early activity patterns not only play an important role in the development of the cortical columnar architecture, they also control the ratio of surviving versus dying neurons in an activity-dependent manner, making these processes most vulnerable to pathophysiological disturbances during early developmental stages.
Collapse
Affiliation(s)
- Heiko J. Luhmann
- University Medical Center of the Johannes Gutenberg University Mainz, Institute of Physiology, Duesbergweg 6, 55128 Mainz, Germany
| |
Collapse
|
95
|
Homeostatic interplay between electrical activity and neuronal apoptosis in the developing neocortex. Neuroscience 2017; 358:190-200. [PMID: 28663094 DOI: 10.1016/j.neuroscience.2017.06.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/07/2017] [Accepted: 06/19/2017] [Indexed: 12/15/2022]
Abstract
An intriguing feature of nervous system development in most animal species is that the initial number of generated neurons is higher than the number of neurons incorporated into mature circuits. A substantial portion of neurons is indeed eliminated via apoptosis during a short time window - in rodents the first two postnatal weeks. While it is well established that neurotrophic factors play a central role in controlling neuronal survival and apoptosis in the peripheral nervous system (PNS), the situation is less clear in the central nervous system (CNS). In postnatal rodent neocortex, the peak of apoptosis coincides with the occurrence of spontaneous, synchronous activity patterns. In this article, we review recent results that demonstrate the important role of electrical activity for neuronal survival in the neocortex, describe the role of Ca2+ and neurotrophic factors in translating electrical activity into pro-survival signals, and finally discuss the clinical impact of the tight relation between electrical activity and neuronal survival versus apoptosis.
Collapse
|
96
|
Lotfullina N, Khazipov R. Ethanol and the Developing Brain: Inhibition of Neuronal Activity and Neuroapoptosis. Neuroscientist 2017; 24:130-141. [PMID: 28580823 DOI: 10.1177/1073858417712667] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ethanol induces massive neuroapoptosis in the developing brain. One of the main hypotheses that has been put forward to explain the deleterious actions of ethanol in the immature brain involves an inhibition of neuronal activity. Here, we review recent evidence for this hypothesis obtained in the somatosensory cortex and hippocampus of neonatal rodents. In both structures, ethanol strongly inhibits brain activity. At the doses inducing massive neuroapoptosis, ethanol completely suppresses the early activity patterns of spindle-bursts and gamma oscillations in the neocortex and the early sharp-waves in the hippocampus. The inhibitory effects of ethanol decrease with age and in adult animals, ethanol only mildly depresses neuronal firing and induces delta-wave activity. Suppression of cortical activity in neonatal animals likely involves inhibition of the myoclonic twitches, an important physiological trigger for the early activity bursts, and inhibition of the thalamocortical and intracortical circuits through a potentiation of GABAergic transmission and an inhibition of N-methyl-d-aspartate (NMDA) receptors, that is in keeping with the neuroapoptotic effects of other agents acting on GABA and NMDA receptors. These findings provide support for the hypothesis that the ethanol-induced inhibition of cortical activity is an important pathophysiological mechanism underlying massive neuroapoptosis induced by ethanol in the developing brain.
Collapse
Affiliation(s)
- Nailya Lotfullina
- 1 INMED-INSERM, Aix-Marseille University, Marseille, France.,2 Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Roustem Khazipov
- 1 INMED-INSERM, Aix-Marseille University, Marseille, France.,2 Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
97
|
Luhmann HJ, Khazipov R. Neuronal activity patterns in the developing barrel cortex. Neuroscience 2017; 368:256-267. [PMID: 28528963 DOI: 10.1016/j.neuroscience.2017.05.025] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 11/26/2022]
Abstract
The developing barrel cortex reveals a rich repertoire of neuronal activity patterns, which have been also found in other sensory neocortical areas and in other species including the somatosensory cortex of preterm human infants. The earliest stage is characterized by asynchronous, sparse single-cell firing at low frequencies. During the second stage neurons show correlated firing, which is initially mediated by electrical synapses and subsequently transforms into network bursts depending on chemical synapses. Activity patterns during this second stage are synchronous plateau assemblies, delta waves, spindle bursts and early gamma oscillations (EGOs). In newborn rodents spindle bursts and EGOs occur spontaneously or can be elicited by sensory stimulation and synchronize the activity in a barrel-related columnar network with topographic organization at the day of birth. Interfering with this early activity causes a disturbance in the development of the cortical architecture, indicating that spindle bursts and EGOs influence the formation of cortical columns. Early neuronal activity also controls the rate of programed cell death in the developing barrel cortex, suggesting that spindle bursts and EGOs are physiological activity patterns particularly suited to suppress apoptosis. It remains to be studied in more detail how these different neocortical activity patterns control early developmental processes such as formation of synapses, microcircuits, topographic maps and large-scale networks.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany.
| | - Rustem Khazipov
- INMED - INSERM, Aix-Marseille University, Marseille 13273, France; Laboratory of Neurobiology, Kazan Federal University, Kazan 420008, Russia
| |
Collapse
|
98
|
Abstract
The proper construction of neural circuits requires the generation of diverse cell types, their distribution to defined regions, and their specific and appropriate wiring. A major objective in neurobiology has been to understand the molecular determinants that link neural birth to terminal specification and functional connectivity, a task that is especially daunting in the case of cortical interneurons. Considerable evidence supports the idea that an interplay of intrinsic and environmental signalling is crucial to the sequential steps of interneuron specification, including migration, selection of a settling position, morphogenesis and synaptogenesis. However, when and how these influences merge to support the appropriate terminal differentiation of different classes of interneurons remains uncertain. In this Review, we discuss a wealth of recent findings that have advanced our understanding of the developmental mechanisms that contribute to the diversification of interneurons and suggest areas of particular promise for further investigation.
Collapse
|
99
|
Kirmse K, Hübner CA, Isbrandt D, Witte OW, Holthoff K. GABAergic Transmission during Brain Development: Multiple Effects at Multiple Stages. Neuroscientist 2017; 24:36-53. [PMID: 28378628 DOI: 10.1177/1073858417701382] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In recent years, considerable progress has been achieved in deciphering the cellular and network functions of GABAergic transmission in the intact developing brain. First, in vivo studies in non-mammalian and mammalian species confirmed the long-held assumption that GABA acts as a mainly depolarizing neurotransmitter at early developmental stages. At the same time, GABAergic transmission was shown to spatiotemporally constrain spontaneous cortical activity, whereas firm evidence for GABAergic excitation in vivo is currently missing. Second, there is a growing body of evidence indicating that depolarizing GABA may contribute to the activity-dependent refinement of neural circuits. Third, alterations in GABA actions have been causally linked to developmental brain disorders and identified as potential targets of timed prophylactic interventions. In this article, we review these major recent findings and argue that both depolarizing and inhibitory GABA actions may be crucial for physiological brain maturation.
Collapse
Affiliation(s)
- Knut Kirmse
- 1 Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | | | - Dirk Isbrandt
- 3 Institute for Molecular and Behavioral Neuroscience, University of Cologne, Cologne, Germany.,4 German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Otto W Witte
- 1 Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Knut Holthoff
- 1 Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
100
|
Routier L, Mahmoudzadeh M, Panzani M, Azizollahi H, Goudjil S, Kongolo G, Wallois F. Plasticity of neonatal neuronal networks in very premature infants: Source localization of temporal theta activity, the first endogenous neural biomarker, in temporoparietal areas. Hum Brain Mapp 2017; 38:2345-2358. [PMID: 28112458 DOI: 10.1002/hbm.23521] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 01/06/2017] [Accepted: 01/08/2017] [Indexed: 01/01/2023] Open
Abstract
Temporal theta slow-wave activity (TTA-SW) in premature infants is a specific signature of the early development of temporal networks, as it is observed at the turning point between non-sensory driven spontaneous local processing and cortical network functioning. The role in development and the precise location of TTA-SW remain unknown. Previous studies have demonstrated that preterms from 28 weeks of gestational age (wGA) are able to discriminate phonemes and voice, supporting the idea of a prior genetic structural or activity-dependent fingerprint that would prepare the auditory network to compute auditory information at the onset of thalamocortical connectivity. They recorded TTA-SW in 26-32 wGA preterms. The rate of TTA-SW in response to click stimuli was evaluated using low-density EEG in 30 preterms. The sources of TTA-SW were localized by high-density EEG using different tissues conductivities, head models and mathematical models. They observed that TTA-SW is not sensory driven. Regardless of age, conductivities, head models and mathematical models, sources of TTA-SW were located adjacent to auditory and temporal junction areas. These sources become situated closer to the surface during development. TTA-SW corresponds to spontaneous transient endogenous activities independent of sensory information at this period which might participate in the implementation of auditory, language, memory, attention and or social cognition convergent and does not simply represent a general interaction between the subplate and the cortical plate. Hum Brain Mapp 38:2345-2358, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- L Routier
- Inserm U 1105, University of Picardie Instead of Picardy, Amiens University Hospital, Amiens, France.,Pediatric Nervous System Investigation Unit, Amiens University Hospital, Amiens, France
| | - M Mahmoudzadeh
- Inserm U 1105, University of Picardie Instead of Picardy, Amiens University Hospital, Amiens, France
| | - M Panzani
- Inserm U 1105, University of Picardie Instead of Picardy, Amiens University Hospital, Amiens, France
| | - H Azizollahi
- Inserm U 1105, University of Picardie Instead of Picardy, Amiens University Hospital, Amiens, France
| | - S Goudjil
- Inserm U 1105, University of Picardie Instead of Picardy, Amiens University Hospital, Amiens, France.,NICU Amiens University Hospital, Amiens, France
| | - G Kongolo
- Inserm U 1105, University of Picardie Instead of Picardy, Amiens University Hospital, Amiens, France.,NICU Amiens University Hospital, Amiens, France
| | - F Wallois
- Inserm U 1105, University of Picardie Instead of Picardy, Amiens University Hospital, Amiens, France.,Pediatric Nervous System Investigation Unit, Amiens University Hospital, Amiens, France
| |
Collapse
|