51
|
Cao J, Cheng X, Zhou Z, Sun H, Zhou F, Zhao J, Liu Y, Cui G. Changes in the Foxj1 expression of Schwann cells after sciatic nerve crush. J Mol Histol 2013; 44:391-9. [DOI: 10.1007/s10735-013-9500-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/12/2013] [Indexed: 02/03/2023]
|
52
|
Cheng X, Gan L, Zhao J, Chen M, Liu Y, Wang Y. Changes in Ataxin-10 Expression after Sciatic Nerve Crush in Adult Rats. Neurochem Res 2013; 38:1013-21. [DOI: 10.1007/s11064-013-1011-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/19/2013] [Accepted: 02/23/2013] [Indexed: 01/22/2023]
|
53
|
Cao J, Yang J, Wang Y, Xu J, Zhou Z, Cheng C, Liu X, Cheng X, Long L, Gu X. Temporal-spatial expressions of Spy1 in rat sciatic nerve after crush. Cell Mol Neurobiol 2013; 33:213-21. [PMID: 23129232 DOI: 10.1007/s10571-012-9887-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/24/2012] [Indexed: 01/29/2023]
Abstract
As a novel cell cycle protein, Spy1 enhances cell proliferation, promotes the G1/S transition as well as inhibits apoptosis in response to UV irradiation. Spy1 levels are tightly regulated during mammary development, and overexpression of Spy1 accelerates tumorigenesis in vivo. But little is known about the role of Spy1 in the pathological process of damage and regeneration of the peripheral nervous system. Here we established a rat sciatic nerve crush (SNC) model to examine the spatiotemporal expression of Spy1. Spy1 expression was elevated gradually after sciatic nerve crush and peaked at day 3. The alteration was due to the increased expression of Spy1 in axons and Schwann cells after SNC. Spy1 expression correlated closely with Schwann cells proliferation in sciatic nerve post injury. Furthermore, Spy1 largely localized in axons in the crushed segment, but rarely co-localized with GAP43. These findings suggested that Spy1 participated in the pathological process response to sciatic nerve injury and may be associated with Schwann cells proliferation and axons regeneration.
Collapse
Affiliation(s)
- Jianhua Cao
- Department of Orthopaedics, Affiliated Mental Health Center of Nantong University, Nantong, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Dynamic Changes of Jab1 and p27kip1 Expression in Injured Rat Sciatic Nerve. J Mol Neurosci 2013; 51:148-58. [DOI: 10.1007/s12031-013-9969-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/21/2013] [Indexed: 02/07/2023]
|
55
|
Future Perspectives in Nerve Repair and Regeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 109:165-92. [DOI: 10.1016/b978-0-12-420045-6.00008-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
56
|
Abstract
Significant insights into the function of genes associated with Alzheimer disease and related dementias have occurred through studying genetically modified animals. Although none of the existing models fully reproduces the complete spectrum of this insidious human disease, critical aspects of Alzheimer pathology and disease processes can be experimentally recapitulated. Genetically modified animal models have helped advance our understanding of the underlying mechanisms of disease and have proven to be invaluable in the preclinical evaluation of potential therapeutic interventions. Continuing refinement and evolution to yield the next generation of animal models will facilitate successes in producing greater translational concordance between preclinical studies and human clinical trials and eventually lead to the introduction of novel therapies into clinical practice.
Collapse
Affiliation(s)
- Frank M LaFerla
- Institute for Memory Impairments and Neurological Disorders, Department of Neurobiology and Behavior, University of California, Irvine, 92697-4545, USA.
| | | |
Collapse
|
57
|
Abstract
To date, nearly 35.6 million people world wide live with dementia, and the situation is going to get worse by 2050 with 115.4 million cases.(1) In the western world, the prevalence for dementia in people over the age of 60 is greater than 5% and two thirds are due to Alzheimer disease,(2) (-) (5) the most common form of dementias. Alzheimer disease (AD), first described as "presenile dementia" by the German psychiatrist and neuropathologist Alois Alzheimer in 1906,(6) is a devastating disease characterized by progressive cognitive deterioration, as well as impairments in behavior, language, and visuospatial skills.(7) Furthermore, Alzheimer discovered the presence of intraneuronal tangles and extracellular amyloid plaques in the diseased-damaged brain, the hallmarks of Alzheimer disease.
Collapse
Affiliation(s)
- Juliane Proft
- Hotchkiss Brain Institute; Department of Clinical Neuroscience; Calgary, AB Canada
| | | |
Collapse
|
58
|
Huang H, La DS, Cheng AC, Whittington DA, Patel VF, Chen K, Dineen TA, Epstein O, Graceffa R, Hickman D, Kiang YH, Louie S, Luo Y, Wahl RC, Wen PH, Wood S, Fremeau RT. Structure- and Property-Based Design of Aminooxazoline Xanthenes as Selective, Orally Efficacious, and CNS Penetrable BACE Inhibitors for the Treatment of Alzheimer’s Disease. J Med Chem 2012; 55:9156-69. [DOI: 10.1021/jm300598e] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hongbing Huang
- Department
of Medicinal Chemistry and ‡Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts
02142, United States
- Department
of Neuroscience, ∥Department of Pharmacokinetics and Drug Metabolism, ⊥Department of HTS and Molecular
Pharmacology, and #Department of Pharmaceutics, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United
States
| | - Daniel S. La
- Department
of Medicinal Chemistry and ‡Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts
02142, United States
- Department
of Neuroscience, ∥Department of Pharmacokinetics and Drug Metabolism, ⊥Department of HTS and Molecular
Pharmacology, and #Department of Pharmaceutics, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United
States
| | - Alan C. Cheng
- Department
of Medicinal Chemistry and ‡Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts
02142, United States
- Department
of Neuroscience, ∥Department of Pharmacokinetics and Drug Metabolism, ⊥Department of HTS and Molecular
Pharmacology, and #Department of Pharmaceutics, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United
States
| | - Douglas A. Whittington
- Department
of Medicinal Chemistry and ‡Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts
02142, United States
- Department
of Neuroscience, ∥Department of Pharmacokinetics and Drug Metabolism, ⊥Department of HTS and Molecular
Pharmacology, and #Department of Pharmaceutics, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United
States
| | - Vinod F. Patel
- Department
of Medicinal Chemistry and ‡Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts
02142, United States
- Department
of Neuroscience, ∥Department of Pharmacokinetics and Drug Metabolism, ⊥Department of HTS and Molecular
Pharmacology, and #Department of Pharmaceutics, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United
States
| | - Kui Chen
- Department
of Medicinal Chemistry and ‡Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts
02142, United States
- Department
of Neuroscience, ∥Department of Pharmacokinetics and Drug Metabolism, ⊥Department of HTS and Molecular
Pharmacology, and #Department of Pharmaceutics, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United
States
| | - Thomas A. Dineen
- Department
of Medicinal Chemistry and ‡Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts
02142, United States
- Department
of Neuroscience, ∥Department of Pharmacokinetics and Drug Metabolism, ⊥Department of HTS and Molecular
Pharmacology, and #Department of Pharmaceutics, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United
States
| | - Oleg Epstein
- Department
of Medicinal Chemistry and ‡Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts
02142, United States
- Department
of Neuroscience, ∥Department of Pharmacokinetics and Drug Metabolism, ⊥Department of HTS and Molecular
Pharmacology, and #Department of Pharmaceutics, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United
States
| | - Russell Graceffa
- Department
of Medicinal Chemistry and ‡Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts
02142, United States
- Department
of Neuroscience, ∥Department of Pharmacokinetics and Drug Metabolism, ⊥Department of HTS and Molecular
Pharmacology, and #Department of Pharmaceutics, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United
States
| | - Dean Hickman
- Department
of Medicinal Chemistry and ‡Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts
02142, United States
- Department
of Neuroscience, ∥Department of Pharmacokinetics and Drug Metabolism, ⊥Department of HTS and Molecular
Pharmacology, and #Department of Pharmaceutics, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United
States
| | - Y.-H. Kiang
- Department
of Medicinal Chemistry and ‡Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts
02142, United States
- Department
of Neuroscience, ∥Department of Pharmacokinetics and Drug Metabolism, ⊥Department of HTS and Molecular
Pharmacology, and #Department of Pharmaceutics, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United
States
| | - Steven Louie
- Department
of Medicinal Chemistry and ‡Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts
02142, United States
- Department
of Neuroscience, ∥Department of Pharmacokinetics and Drug Metabolism, ⊥Department of HTS and Molecular
Pharmacology, and #Department of Pharmaceutics, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United
States
| | - Yi Luo
- Department
of Medicinal Chemistry and ‡Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts
02142, United States
- Department
of Neuroscience, ∥Department of Pharmacokinetics and Drug Metabolism, ⊥Department of HTS and Molecular
Pharmacology, and #Department of Pharmaceutics, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United
States
| | - Robert C. Wahl
- Department
of Medicinal Chemistry and ‡Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts
02142, United States
- Department
of Neuroscience, ∥Department of Pharmacokinetics and Drug Metabolism, ⊥Department of HTS and Molecular
Pharmacology, and #Department of Pharmaceutics, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United
States
| | - Paul H. Wen
- Department
of Medicinal Chemistry and ‡Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts
02142, United States
- Department
of Neuroscience, ∥Department of Pharmacokinetics and Drug Metabolism, ⊥Department of HTS and Molecular
Pharmacology, and #Department of Pharmaceutics, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United
States
| | - Stephen Wood
- Department
of Medicinal Chemistry and ‡Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts
02142, United States
- Department
of Neuroscience, ∥Department of Pharmacokinetics and Drug Metabolism, ⊥Department of HTS and Molecular
Pharmacology, and #Department of Pharmaceutics, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United
States
| | - Robert T. Fremeau
- Department
of Medicinal Chemistry and ‡Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts
02142, United States
- Department
of Neuroscience, ∥Department of Pharmacokinetics and Drug Metabolism, ⊥Department of HTS and Molecular
Pharmacology, and #Department of Pharmaceutics, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United
States
| |
Collapse
|
59
|
Yang J, Cao J, Wang Y, Xu J, Zhou Z, Gu X, Liu X, Wen H, Wu H, Cheng C. Transcription initiation factor IIB involves in Schwann cell differentiation after rat sciatic nerve crush. J Mol Neurosci 2012; 49:491-8. [PMID: 22869340 DOI: 10.1007/s12031-012-9865-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 07/23/2012] [Indexed: 12/16/2022]
Abstract
Transcription Initiation Factor IIB (TFIIB), as a general transcription factor, plays an essential role in preinitiation complex assembly and transcription initiation by recruiting RNA polymerase II to the promoter. However, its distribution and function in peripheral system lesion and repair were still unknown. Here, we investigated the spatiotemporal expression of TFIIB in an acute sciatic nerve crush model in adult rats. Western blot analysis revealed that TFIIB was expressed in normal sciatic nerve. It gradually increased, reached a peak at the seventh day after crush, and then returned to the normal level at 4 weeks. We observed that TFIIB expressed mainly increased in Schwann cells and co-localized with Oct-6. In vitro, we induced Schwann cell differentiation with cyclic adenosine monophosphate (cAMP) and found that TFIIB expression was increased in the differentiated process. TFIIB-specific siRNA inhibited cAMP-induced Schwann cell morphological change and the expression of P0. Collectively, we hypothesized peripheral nerve crush-induced upregulation of TFIIB in the sciatic nerve was associated with Schwann cell differentiation.
Collapse
Affiliation(s)
- Jiao Yang
- Department of Immunology, Medical College, Nantong University, 19 Qi-Xiu Road, Nantong, Jiangsu Province, 226001, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Secretome protein enrichment identifies physiological BACE1 protease substrates in neurons. EMBO J 2012; 31:3157-68. [PMID: 22728825 DOI: 10.1038/emboj.2012.173] [Citation(s) in RCA: 255] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 06/05/2012] [Indexed: 12/23/2022] Open
Abstract
Cell surface proteolysis is essential for communication between cells and results in the shedding of membrane-protein ectodomains. However, physiological substrates of the contributing proteases are largely unknown. We developed the secretome protein enrichment with click sugars (SPECS) method, which allows proteome-wide identification of shedding substrates and secreted proteins from primary cells, even in the presence of serum proteins. SPECS combines metabolic glycan labelling and click chemistry-mediated biotinylation and distinguishes between cellular and serum proteins. SPECS identified 34, mostly novel substrates of the Alzheimer protease BACE1 in primary neurons, making BACE1 a major sheddase in the nervous system. Selected BACE1 substrates-seizure-protein 6, L1, CHL1 and contactin-2-were validated in brains of BACE1 inhibitor-treated and BACE1 knock-out mice. For some substrates, BACE1 was the major sheddase, whereas for other substrates additional proteases contributed to total substrate shedding. The new substrates point to a central function of BACE1 in neurite outgrowth and synapse formation. SPECS is also suitable for quantitative secretome analyses of primary cells and may be used for the discovery of biomarkers secreted from tumour or stem cells.
Collapse
|
61
|
Somandin C, Gerber D, Pereira JA, Horn M, Suter U. LITAF (SIMPLE) regulates Wallerian degeneration after injury but is not essential for peripheral nerve development and maintenance: implications for Charcot-Marie-Tooth disease. Glia 2012; 60:1518-28. [PMID: 22729949 DOI: 10.1002/glia.22371] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/23/2012] [Indexed: 01/05/2023]
Abstract
Missense mutations affecting the LITAF gene (also known as SIMPLE) lead to the dominantly inherited peripheral neuropathy Charcot-Marie-Tooth disease type 1C (CMT1C). In this study, we sought to determine the requirement of Litaf function in peripheral nerves, the only known affected tissue in CMT1C. We reasoned that this knowledge is a prerequisite for a thorough understanding of the underlying disease mechanism with regard to potential contributions by Litaf loss of function. In addition, we anticipated to obtain valuable information about the basic function of the Litaf protein in peripheral nerves. To address these issues, we generated mice without Litaf expression using gene disruption in embryonic stem cells and analyzed Litaf-deficient peripheral nerves during development, in maintenance, and after injury. Our results show that Litaf function is not absolutely required for peripheral nerve development and maintenance. In injured nerves, however, we found that lack of Litaf led to increased numbers of macrophages during Wallerian degeneration, accelerated myelin destruction, and the emergence of more axonal sprouts. Consistent with these data, the migration of Litaf-deficient macrophages was increased upon chemokine stimulation. We conclude that loss of Litaf function is unlikely to be a major contributor to CMT1C, but modulating effects of macrophages need to be considered in the etiology of the disease.
Collapse
Affiliation(s)
- Christian Somandin
- Department of Biology, Institute of Molecular Health Sciences, Cell Biology, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
62
|
Zhou L, Barão S, Laga M, Bockstael K, Borgers M, Gijsen H, Annaert W, Moechars D, Mercken M, Gevaert K, Gevaer K, De Strooper B. The neural cell adhesion molecules L1 and CHL1 are cleaved by BACE1 protease in vivo. J Biol Chem 2012; 287:25927-40. [PMID: 22692213 DOI: 10.1074/jbc.m112.377465] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The β-site amyloid precursor protein-cleaving enzyme BACE1 is a prime drug target for Alzheimer disease. However, the function and the physiological substrates of BACE1 remain largely unknown. In this work, we took a quantitative proteomic approach to analyze the secretome of primary neurons after acute BACE1 inhibition, and we identified several novel substrate candidates for BACE1. Many of these molecules are involved in neuronal network formation in the developing nervous system. We selected the adhesion molecules L1 and CHL1, which are crucial for axonal guidance and maintenance of neural circuits, for further validation as BACE1 substrates. Using both genetic BACE1 knock-out and acute pharmacological BACE1 inhibition in mice and cell cultures, we show that L1 and CHL1 are cleaved by BACE1 under physiological conditions. The BACE1 cleavage sites at the membrane-proximal regions of L1 (between Tyr(1086) and Glu(1087)) and CHL1 (between Gln(1061) and Asp(1062)) were determined by mass spectrometry. This work provides molecular insights into the function and the pathways in which BACE1 is involved, and it will help to predict or interpret possible side effects of BACE1 inhibitor drugs in current clinical trials.
Collapse
Affiliation(s)
- Lujia Zhou
- VIB Center for the Biology of Disease, KULeuven, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Rueeger H, Lueoend R, Rogel O, Rondeau JM, Möbitz H, Machauer R, Jacobson L, Staufenbiel M, Desrayaud S, Neumann U. Discovery of Cyclic Sulfone Hydroxyethylamines as Potent and Selective β-Site APP-Cleaving Enzyme 1 (BACE1) Inhibitors: Structure-Based Design and in Vivo Reduction of Amyloid β-Peptides. J Med Chem 2012; 55:3364-86. [DOI: 10.1021/jm300069y] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Heinrich Rueeger
- Department
of Global Discovery Chemistry, ‡Structural Biology Platform, §Department of Neuroscience, and ∥Metabolism and
Pharmacokinetics, Institutes for BioMedical Research, Novartis Pharma AG, CH-4057 Basel, Switzerland
| | - Rainer Lueoend
- Department
of Global Discovery Chemistry, ‡Structural Biology Platform, §Department of Neuroscience, and ∥Metabolism and
Pharmacokinetics, Institutes for BioMedical Research, Novartis Pharma AG, CH-4057 Basel, Switzerland
| | - Olivier Rogel
- Department
of Global Discovery Chemistry, ‡Structural Biology Platform, §Department of Neuroscience, and ∥Metabolism and
Pharmacokinetics, Institutes for BioMedical Research, Novartis Pharma AG, CH-4057 Basel, Switzerland
| | - Jean-Michel Rondeau
- Department
of Global Discovery Chemistry, ‡Structural Biology Platform, §Department of Neuroscience, and ∥Metabolism and
Pharmacokinetics, Institutes for BioMedical Research, Novartis Pharma AG, CH-4057 Basel, Switzerland
| | - Henrik Möbitz
- Department
of Global Discovery Chemistry, ‡Structural Biology Platform, §Department of Neuroscience, and ∥Metabolism and
Pharmacokinetics, Institutes for BioMedical Research, Novartis Pharma AG, CH-4057 Basel, Switzerland
| | - Rainer Machauer
- Department
of Global Discovery Chemistry, ‡Structural Biology Platform, §Department of Neuroscience, and ∥Metabolism and
Pharmacokinetics, Institutes for BioMedical Research, Novartis Pharma AG, CH-4057 Basel, Switzerland
| | - Laura Jacobson
- Department
of Global Discovery Chemistry, ‡Structural Biology Platform, §Department of Neuroscience, and ∥Metabolism and
Pharmacokinetics, Institutes for BioMedical Research, Novartis Pharma AG, CH-4057 Basel, Switzerland
| | - Matthias Staufenbiel
- Department
of Global Discovery Chemistry, ‡Structural Biology Platform, §Department of Neuroscience, and ∥Metabolism and
Pharmacokinetics, Institutes for BioMedical Research, Novartis Pharma AG, CH-4057 Basel, Switzerland
| | - Sandrine Desrayaud
- Department
of Global Discovery Chemistry, ‡Structural Biology Platform, §Department of Neuroscience, and ∥Metabolism and
Pharmacokinetics, Institutes for BioMedical Research, Novartis Pharma AG, CH-4057 Basel, Switzerland
| | - Ulf Neumann
- Department
of Global Discovery Chemistry, ‡Structural Biology Platform, §Department of Neuroscience, and ∥Metabolism and
Pharmacokinetics, Institutes for BioMedical Research, Novartis Pharma AG, CH-4057 Basel, Switzerland
| |
Collapse
|
64
|
Dislich B, Lichtenthaler SF. The Membrane-Bound Aspartyl Protease BACE1: Molecular and Functional Properties in Alzheimer's Disease and Beyond. Front Physiol 2012; 3:8. [PMID: 22363289 PMCID: PMC3281277 DOI: 10.3389/fphys.2012.00008] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 01/11/2012] [Indexed: 12/31/2022] Open
Abstract
The β-site APP cleaving enzyme 1 (BACE1) is a transmembrane aspartyl protease involved in Alzheimer’s disease (AD) pathogenesis and in myelination. BACE1 initiates the generation of the pathogenic amyloid β-peptide, which makes BACE1 a major drug target for AD. BACE1 also cleaves and activates neuregulin 1, thereby contributing to postnatal myelination, in particular in the peripheral nervous system. Additional proteins are also cleaved by BACE1, but less is known about the physiological consequences of their cleavage. Recently, new phenotypes were described in BACE1-deficient mice. Although it remains unclear through which BACE1 substrates they are mediated, the phenotypes suggest a versatile role of this protease for diverse physiological processes. This review summarizes the enzymatic and cellular properties of BACE1 as well as its regulation by lipids, by transcriptional, and by translational mechanisms. The main focus will be on the recent progress in understanding BACE1 function and its implication for potential mechanism-based side effects upon therapeutic inhibition.
Collapse
Affiliation(s)
- Bastian Dislich
- German Center for Neurodegenerative Diseases (DZNE) Munich, Germany
| | | |
Collapse
|
65
|
Mattsson N, Rajendran L, Zetterberg H, Gustavsson M, Andreasson U, Olsson M, Brinkmalm G, Lundkvist J, Jacobson LH, Perrot L, Neumann U, Borghys H, Mercken M, Dhuyvetter D, Jeppsson F, Blennow K, Portelius E. BACE1 inhibition induces a specific cerebrospinal fluid β-amyloid pattern that identifies drug effects in the central nervous system. PLoS One 2012; 7:e31084. [PMID: 22328928 PMCID: PMC3273469 DOI: 10.1371/journal.pone.0031084] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/01/2012] [Indexed: 12/17/2022] Open
Abstract
BACE1 is a key enzyme for amyloid-β (Aβ) production, and an attractive therapeutic target in Alzheimer's disease (AD). Here we report that BACE1 inhibitors have distinct effects on neuronal Aβ metabolism, inducing a unique pattern of secreted Aβ peptides, analyzed in cell media from amyloid precursor protein (APP) transfected cells and in cerebrospinal fluid (CSF) from dogs by immunoprecipitation-mass spectrometry, using several different BACE1 inhibitors. Besides the expected reductions in Aβ1-40 and Aβ1-42, treatment also changed the relative levels of several other Aβ isoforms. In particular Aβ1-34 decreased, while Aβ5-40 increased, and these changes were more sensitive to BACE1 inhibition than the changes in Aβ1-40 and Aβ1-42. The effects on Aβ5-40 indicate the presence of a BACE1 independent pathway of APP degradation. The described CSF Aβ pattern may be used as a pharmacodynamic fingerprint to detect biochemical effects of BACE1-therapies in clinical trials, which might accelerate development of novel therapies.
Collapse
Affiliation(s)
- Niklas Mattsson
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Lawrence Rajendran
- Systems and Cell Biology of Neurodegeneration, Division of Psychiatry Research, University of Zurich, Zurich, Switzerland
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Mikael Gustavsson
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Ulf Andreasson
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Maria Olsson
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Gunnar Brinkmalm
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Johan Lundkvist
- Innovative Medicines, Central Nervous System and Pain iMed, Department of Neuroscience, AstraZeneca R&D, Södertälje, Sweden
| | - Laura H. Jacobson
- Neuroscience Discovery, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ludovic Perrot
- Neuroscience Discovery, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ulf Neumann
- Neuroscience Discovery, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Herman Borghys
- Neuroscience Therapeutic Area, Janssen Research and Development, Beerse, Belgium
| | - Marc Mercken
- Neuroscience Therapeutic Area, Janssen Research and Development, Beerse, Belgium
| | - Deborah Dhuyvetter
- Neuroscience Therapeutic Area, Janssen Research and Development, Beerse, Belgium
| | - Fredrik Jeppsson
- Innovative Medicines, Central Nervous System and Pain iMed, Department of Neuroscience, AstraZeneca R&D, Södertälje, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Erik Portelius
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| |
Collapse
|
66
|
BACE1 elevation is associated with aberrant limbic axonal sprouting in epileptic CD1 mice. Exp Neurol 2012; 235:228-37. [PMID: 22265658 DOI: 10.1016/j.expneurol.2012.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 12/25/2011] [Accepted: 01/04/2012] [Indexed: 12/20/2022]
Abstract
The brain is capable of remarkable synaptic reorganization following stress and injury, often using the same molecular machinery that governs neurodevelopment. This form of plasticity is crucial for restoring and maintaining network function. However, neurodegeneration and subsequent reorganization can also play a role in disease pathogenesis, as is seen in temporal lobe epilepsy and Alzheimer's disease. β-Secretase-1 (BACE1) is a protease known for cleaving β-amyloid precursor protein into β-amyloid (Aβ), a major constituent in amyloid plaques. Emerging evidence suggests that BACE1 is also involved with synaptic plasticity and nerve regeneration. Here we examined whether BACE1 immunoreactivity (IR) was altered in pilocarpine-induced epileptic CD1 mice in a manner consistent with the synaptic reorganization seen during epileptogenesis. BACE1-IR increased in the CA3 mossy fiber field and dentate inner molecular layer in pilocarpine-induced epileptic mice, relative to controls (saline-treated mice and mice 24-48 h after pilocarpine-status), and paralleled aberrant expression of neuropeptide Y. Regionally increased BACE1-IR also occurred in neuropil in hippocampal area CA1 and in subregions of the amygdala and temporal cortex in epileptic mice, colocalizing with increased IR for growth associated protein 43 (GAP43) and polysialylated-neural cell adhesion molecule (PSA-NCAM), but reduced IR for microtubule-associated protein 2 (MAP2). These findings suggest that BACE1 is involved in aberrant limbic axonal sprouting in a model of temporal lobe epilepsy, warranting further investigation into the role of BACE1 in physiological vs. pathological neuronal plasticity.
Collapse
|
67
|
Bai G, Pfaff SL. Protease regulation: the Yin and Yang of neural development and disease. Neuron 2011; 72:9-21. [PMID: 21982365 DOI: 10.1016/j.neuron.2011.09.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2011] [Indexed: 01/08/2023]
Abstract
The formation, maintenance, and plasticity of neural circuits rely upon a complex interplay between progressive and regressive events. Increasingly, new functions are being identified for axon guidance molecules in the dynamic processes that occur within the embryonic and adult nervous system. The magnitude, duration, and spatial activity of axon guidance molecule signaling are precisely regulated by a variety of molecular mechanisms. Here we focus on recent progress in understanding the role of protease-mediated cleavage of guidance factors required for directional axon growth, with a particular emphasis on the role of metalloprotease and γ-secretase. Since axon guidance molecules have also been linked to neural degeneration and regeneration in adults, studies of guidance receptor proteolysis are beginning to define new relationships between neurodevelopment and neurodegeneration. These findings raise the possibility that the signaling checkpoints controlled by proteases could be useful targets to enhance regeneration.
Collapse
Affiliation(s)
- Ge Bai
- Howard Hughes Medical Institute and Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
68
|
Velanac V, Unterbarnscheidt T, Hinrichs W, Gummert MN, Fischer TM, Rossner MJ, Trimarco A, Brivio V, Taveggia C, Willem M, Haass C, Möbius W, Nave KA, Schwab MH. Bace1 processing of NRG1 type III produces a myelin-inducing signal but is not essential for the stimulation of myelination. Glia 2011; 60:203-17. [PMID: 22052506 PMCID: PMC3267053 DOI: 10.1002/glia.21255] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 09/21/2011] [Indexed: 12/15/2022]
Abstract
Myelin sheath thickness is precisely adjusted to axon caliber, and in the peripheral nervous system, neuregulin 1 (NRG1) type III is a key regulator of this process. It has been proposed that the protease BACE1 activates NRG1 dependent myelination. Here, we characterize the predicted product of BACE1-mediated NRG1 type III processing in transgenic mice. Neuronal overexpression of a NRG1 type III-variant, designed to mimic prior cleavage in the juxtamembrane stalk region, induces hypermyelination in vivo and is sufficient to restore myelination of NRG1 type III-deficient neurons. This observation implies that the NRG1 cytoplasmic domain is dispensable and that processed NRG1 type III is sufficient for all steps of myelination. Surprisingly, transgenic neuronal overexpression of full-length NRG1 type III promotes hypermyelination also in BACE1 null mutant mice. Moreover, NRG1 processing is impaired but not abolished in BACE1 null mutants. Thus, BACE1 is not essential for the activation of NRG1 type III to promote myelination. Taken together, these findings suggest that multiple neuronal proteases collectively regulate NRG1 processing. © 2011 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Viktorija Velanac
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Goettingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Fricker FR, Bennett DL. The role of neuregulin-1 in the response to nerve injury. FUTURE NEUROLOGY 2011; 6:809-822. [PMID: 22121335 DOI: 10.2217/fnl.11.45] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Axons and Schwann cells exist in a highly interdependent relationship: damage to one cell type invariably leads to pathophysiological changes in the other. Greater understanding of communication between these cell types will not only give insight into peripheral nerve development, but also the reaction to and recovery from peripheral nerve injury. The type III isoform of neuregulin-1 (NRG1) has emerged as a key signaling factor that is expressed on axons and, through binding to erbB2/3 receptors on Schwann cells, regulates multiple phases of their development. In adulthood, NRG1 is dispensable for the maintenance of the myelin sheath; however, this factor is required for both axon regeneration and remyelination following nerve injury. The outcome of NRG1 signaling depends on interactions with other pathways within Schwann cells such as Notch, integrin and cAMP signaling. In certain circumstances, this signaling pathway may be maladaptive; for instance, direct binding of Mycobacterium leprae onto erbB2 receptors produces excessive activation and can actually promote demyelination. Attempts to modulate this pathway in order to promote nerve repair will therefore need to give consideration to the exact isoform used, as well as how it is processed and the context in which it is presented to the Schwann cell.
Collapse
|
70
|
Rotshenker S. Wallerian degeneration: the innate-immune response to traumatic nerve injury. J Neuroinflammation 2011; 8:109. [PMID: 21878125 PMCID: PMC3179447 DOI: 10.1186/1742-2094-8-109] [Citation(s) in RCA: 321] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 08/30/2011] [Indexed: 12/23/2022] Open
Abstract
Traumatic injury to peripheral nerves results in the loss of neural functions. Recovery by regeneration depends on the cellular and molecular events of Wallerian degeneration that injury induces distal to the lesion site, the domain through which severed axons regenerate back to their target tissues. Innate-immunity is central to Wallerian degeneration since innate-immune cells, functions and molecules that are produced by immune and non-immune cells are involved. The innate-immune response helps to turn the peripheral nerve tissue into an environment that supports regeneration by removing inhibitory myelin and by upregulating neurotrophic properties. The characteristics of an efficient innate-immune response are rapid onset and conclusion, and the orchestrated interplay between Schwann cells, fibroblasts, macrophages, endothelial cells, and molecules they produce. Wallerian degeneration serves as a prelude for successful repair when these requirements are met. In contrast, functional recovery is poor when injury fails to produce the efficient innate-immune response of Wallerian degeneration.
Collapse
Affiliation(s)
- Shlomo Rotshenker
- Dept. of Medical Neurobiology, IMRIC, Hebrew University, Faculty of Medicine, Jerusalem, Israel.
| |
Collapse
|
71
|
Höke A, Willison HJ. Remembering John W. 'Jack' Griffin M.D. Nat Rev Neurol 2011. [DOI: 10.1038/nrneurol.2011.94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|