51
|
Redding KE, Sarrou I, Rappaport F, Santabarbara S, Lin S, Reifschneider KT. Modulation of the fluorescence yield in heliobacterial cells by induction of charge recombination in the photosynthetic reaction center. PHOTOSYNTHESIS RESEARCH 2014; 120:221-235. [PMID: 24318506 DOI: 10.1007/s11120-013-9957-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/25/2013] [Indexed: 06/02/2023]
Abstract
Heliobacteria contain a very simple photosynthetic apparatus, consisting of a homodimeric type I reaction center (RC) without a peripheral antenna system and using the unique pigment bacteriochlorophyll (BChl) g. They are thought to use a light-driven cyclic electron transport pathway to pump protons, and thereby phosphorylate ADP, although some of the details of this cycle are yet to be worked out. We previously reported that the fluorescence emission from the heliobacterial RC in vivo was increased by exposure to actinic light, although this variable fluorescence phenomenon exhibited very different characteristics to that in oxygenic phototrophs (Collins et al. 2010). Here, we describe the underlying mechanism behind the variable fluorescence in heliobacterial cells. We find that the ability to stably photobleach P800, the primary donor of the RC, using brief flashes is inversely correlated to the variable fluorescence. Using pump-probe spectroscopy in the nanosecond timescale, we found that illumination of cells with bright light for a few seconds put them in a state in which a significant fraction of the RCs underwent charge recombination from P800 (+)A0 (-) with a time constant of ~20 ns. The fraction of RCs in the rapidly back-reacting state correlated very well with the variable fluorescence, indicating that nearly all of the increase in fluorescence could be explained by charge recombination of P800 (+)A0 (-), some of which regenerated the singlet excited state. This hypothesis was tested directly by time-resolved fluorescence studies in the ps and ns timescales. The major decay component in whole cells had a 20-ps decay time, representing trapping by the RC. Treatment of cells with dithionite resulted in the appearance of a ~18-ns decay component, which accounted for ~0.6 % of the decay, but was almost undetectable in the untreated cells. We conclude that strong illumination of heliobacterial cells can result in saturation of the electron acceptor pool, leading to reduction of the acceptor side of the RC and the creation of a back-reacting RC state that gives rise to delayed fluorescence.
Collapse
Affiliation(s)
- Kevin E Redding
- Department of Chemistry and Biochemistry, Arizona State University, 1711 S. Rural Rd., Tempe, AZ, 85287-1604, USA,
| | | | | | | | | | | |
Collapse
|
52
|
Schlodder E, Lendzian F, Meyer J, Çetin M, Brecht M, Renger T, Karapetyan N. Long-wavelength limit of photochemical energy conversion in Photosystem I. J Am Chem Soc 2014; 136:3904-18. [PMID: 24517238 PMCID: PMC3959156 DOI: 10.1021/ja412375j] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Indexed: 11/30/2022]
Abstract
In Photosystem I (PS I) long-wavelength chlorophylls (LWC) of the core antenna are known to extend the spectral region up to 750 nm for absorbance of light that drives photochemistry. Here we present clear evidence that even far-red light with wavelengths beyond 800 nm, clearly outside the LWC absorption bands, can still induce photochemical charge separation in PS I throughout the full temperature range from 295 to 5 K. At room temperature, the photoaccumulation of P700(+•) was followed by the absorbance increase at 826 nm. At low temperatures (T < 100 K), the formation of P700(+•)FA/B(-•) was monitored by the characteristic EPR signals of P700(+•) and FA/B(-•) and by the characteristic light-minus-dark absorbance difference spectrum in the QY region. P700 oxidation was observed upon selective excitation at 754, 785, and 808 nm, using monomeric and trimeric PS I core complexes of Thermosynechococcus elongatus and Arthrospira platensis, which differ in the amount of LWC. The results show that the LWC cannot be responsible for the long-wavelength excitation-induced charge separation at low temperatures, where thermal uphill energy transfer is frozen out. Direct energy conversion of the excitation energy from the LWC to the primary radical pair, e.g., via a superexchange mechanism, is excluded, because no dependence on the content of LWC was observed. Therefore, it is concluded that electron transfer through PS I is induced by direct excitation of a proposed charge transfer (CT) state in the reaction center. A direct signature of this CT state is seen in absorbance spectra of concentrated PS I samples, which reveal a weak and featureless absorbance band extending beyond 800 nm, in addition to the well-known bands of LWC (C708, C719 and C740) in the range between 700 and 750 nm. The present findings suggest that nature can exploit CT states for extending the long wavelength limit in PSI even beyond that of LWC. Similar mechanisms may work in other photosynthetic systems and in chemical systems capable of photoinduced electron transfer processes in general.
Collapse
Affiliation(s)
- Eberhard Schlodder
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Friedhelm Lendzian
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Jenny Meyer
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Marianne Çetin
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Marc Brecht
- Institut für
Physikalische und Theoretische Physik, Eberhard-Karls-Universität
Tübingen, Auf
der Morgenstelle 14, 71976 Tübingen, Germany
| | - Thomas Renger
- Institut
für Theoretische Physik, Johannes
Kepler Universität, Abteilung Theoretische
Biophysik, Altenberger
Str. 69, Linz, Austria
| | - Navasard
V. Karapetyan
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| |
Collapse
|
53
|
Antal TK, Kovalenko IB, Rubin AB, Tyystjärvi E. Photosynthesis-related quantities for education and modeling. PHOTOSYNTHESIS RESEARCH 2013; 117:1-30. [PMID: 24162971 DOI: 10.1007/s11120-013-9945-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 10/07/2013] [Indexed: 05/24/2023]
Abstract
A quantitative understanding of the photosynthetic machinery depends largely on quantities, such as concentrations, sizes, absorption wavelengths, redox potentials, and rate constants. The present contribution is a collection of numbers and quantities related mainly to photosynthesis in higher plants. All numbers are taken directly from a literature or database source and the corresponding reference is provided. The numerical values, presented in this paper, provide ranges of values, obtained in specific experiments for specific organisms. However, the presented numbers can be useful for understanding the principles of structure and function of photosynthetic machinery and for guidance of future research.
Collapse
Affiliation(s)
- Taras K Antal
- Biological Faculty, Moscow State University, Vorobyevi Gory, 119992, Moscow, Russia
| | | | | | | |
Collapse
|
54
|
Tikhonov AN. pH-dependent regulation of electron transport and ATP synthesis in chloroplasts. PHOTOSYNTHESIS RESEARCH 2013; 116:511-34. [PMID: 23695653 DOI: 10.1007/s11120-013-9845-y] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 04/25/2013] [Indexed: 05/02/2023]
Abstract
This review is focused on pH-dependent mechanisms of regulation of photosynthetic electron transport and ATP synthesis in chloroplasts. The light-induced acidification of the thylakoid lumen is known to decelerate the plastoquinol oxidation by the cytochrome b 6 f complex, thus impeding the electron flow between photosystem II and photosystem I. Acidification of the lumen also triggers the dissipation of excess energy in the light-harvesting antenna of photosystem II, thereby protecting the photosynthetic apparatus against a solar stress. After brief description of structural and functional organization of the chloroplast electron transport chain, our attention is focused on the nature of the rate-limiting step of electron transfer between photosystem II and photosystem I. In the context of pH-dependent mechanism of photosynthetic control in chloroplasts, the mechanisms of plastoquinol oxidation by the cytochrome b 6 f complex have been considered. The light-induced alkalization of stroma is another factor of pH-dependent regulation of electron transport in chloroplasts. Alkalization of stroma induces activation of the Bassham-Benson-Calvin cycle reactions, thereby promoting efflux of electrons from photosystem I to NADP(+). The mechanisms of the light-induced activation of ATP synthase are briefly considered.
Collapse
Affiliation(s)
- Alexander N Tikhonov
- Department of Biophysics, Faculty of Physics, M. V. Lomonosov, Moscow State University, Moscow, Russia,
| |
Collapse
|
55
|
Simulations show that a small part of variable chlorophyll a fluorescence originates in photosystem I and contributes to overall fluorescence rise. J Theor Biol 2013; 335:249-64. [DOI: 10.1016/j.jtbi.2013.06.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 12/15/2022]
|
56
|
Croce R, van Amerongen H. Light-harvesting in photosystem I. PHOTOSYNTHESIS RESEARCH 2013; 116:153-66. [PMID: 23645376 PMCID: PMC3825136 DOI: 10.1007/s11120-013-9838-x] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/23/2013] [Indexed: 05/18/2023]
Abstract
This review focuses on the light-harvesting properties of photosystem I (PSI) and its LHCI outer antenna. LHCI consists of different chlorophyll a/b binding proteins called Lhca's, surrounding the core of PSI. In total, the PSI-LHCI complex of higher plants contains 173 chlorophyll molecules, most of which are there to harvest sunlight energy and to transfer the created excitation energy to the reaction center (RC) where it is used for charge separation. The efficiency of the complex is based on the capacity to deliver this energy to the RC as fast as possible, to minimize energy losses. The performance of PSI in this respect is remarkable: on average it takes around 50 ps for the excitation to reach the RC in plants, without being quenched in the meantime. This means that the internal quantum efficiency is close to 100% which makes PSI the most efficient energy converter in nature. In this review, we describe the light-harvesting properties of the complex in relation to protein and pigment organization/composition, and we discuss the important parameters that assure its very high quantum efficiency. Excitation energy transfer and trapping in the core and/or Lhcas, as well as in the supercomplexes PSI-LHCI and PSI-LHCI-LHCII are described in detail with the aim of giving an overview of the functional behavior of these complexes.
Collapse
Affiliation(s)
- Roberta Croce
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands,
| | | |
Collapse
|
57
|
Kargul J, Janna Olmos JD, Krupnik T. Structure and function of photosystem I and its application in biomimetic solar-to-fuel systems. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1639-1653. [PMID: 22784471 DOI: 10.1016/j.jplph.2012.05.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 05/09/2012] [Accepted: 05/11/2012] [Indexed: 06/01/2023]
Abstract
Photosystem I (PSI) is one of the most efficient biological macromolecular complexes that converts solar energy into condensed energy of chemical bonds. Despite high structural complexity, PSI operates with a quantum yield close to 1.0 and to date, no man-made synthetic system approached this remarkable efficiency. This review highlights recent developments in dissecting molecular structure and function of the prokaryotic and eukaryotic PSI. It also overviews progress in the application of this complex as a natural photocathode for production of hydrogen within the biomimetic solar-to-fuel nanodevices.
Collapse
Affiliation(s)
- Joanna Kargul
- Department of Plant Molecular Physiology, University of Warsaw, ul. Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | |
Collapse
|
58
|
Semenov AY, Shelaev IV, Gostev FE, Mamedov MD, Shuvalov VA, Sarkisov OM, Nadtochenko VA. Primary steps of electron and energy transfer in photosystem I: Effect of excitation pulse wavelength. BIOCHEMISTRY (MOSCOW) 2012; 77:1011-20. [DOI: 10.1134/s0006297912090088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
59
|
Thamarath SS, Alia A, Daviso E, Mance D, Golbeck JH, Matysik J. Whole Cell Nuclear Magnetic Resonance Characterization of Two Photochemically Active States of the Photosynthetic Reaction Center in Heliobacteria. Biochemistry 2012; 51:5763-73. [DOI: 10.1021/bi300468y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - A. Alia
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden,
The Netherlands
| | - Eugenio Daviso
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden,
The Netherlands
| | - Deni Mance
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden,
The Netherlands
| | - John H. Golbeck
- Department
of Biochemistry and
Molecular Biology and Department of Chemistry, Pennsylvania State University, 328 South Frear Laboratory, University
Park, Pennsylvania 16802, United States
| | - Jörg Matysik
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden,
The Netherlands
| |
Collapse
|
60
|
Berthold T, Donner von Gromoff E, Santabarbara S, Stehle P, Link G, Poluektov OG, Heathcote P, Beck CF, Thurnauer MC, Kothe G. Exploring the Electron Transfer Pathways in Photosystem I by High-Time-Resolution Electron Paramagnetic Resonance: Observation of the B-Side Radical Pair P700+A1B– in Whole Cells of the Deuterated Green Alga Chlamydomonas reinhardtii at Cryogenic Temperatures. J Am Chem Soc 2012; 134:5563-76. [DOI: 10.1021/ja208806g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thomas Berthold
- Department
of Physical Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg,
Germany
| | | | - Stefano Santabarbara
- School of Biological
and Chemical
Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Patricia Stehle
- Department
of Physical Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg,
Germany
| | - Gerhard Link
- Department
of Physical Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg,
Germany
| | - Oleg G. Poluektov
- Chemical Sciences and Engineering
Division, Argonne National Laboratory,
9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Peter Heathcote
- School of Biological
and Chemical
Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Christoph F. Beck
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg,
Germany
| | - Marion C. Thurnauer
- Chemical Sciences and Engineering
Division, Argonne National Laboratory,
9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Gerd Kothe
- Department
of Physical Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg,
Germany
| |
Collapse
|
61
|
Chauvet A, Dashdorj N, Golbeck JH, Johnson TW, Savikhin S. Spectral resolution of the primary electron acceptor A0 in Photosystem I. J Phys Chem B 2012; 116:3380-6. [PMID: 22332796 DOI: 10.1021/jp211246a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reduced state of the primary electron acceptor of Photosystem I, A(0), was resolved spectroscopically in its lowest energy Q(y) region for the first time without the addition of chemical reducing agents and without extensive data manipulation. To carry this out, we used the menB mutant of Synechocystis sp. PCC 6803 in which phylloquinone is replaced by plastoquinone-9 in the A(1) sites of Photosystem I. The presence of plastoquinone-9 slows electron transfer from A(0) to A(1), leading to a long-lived A(0)(-) state. This allows its spectral signature to be readily detected in a time-resolved optical pump-probe experiment. The maximum bleaching (A(0)(-) - A(0)) was found to occur at 684 nm with a corresponding extinction coefficient of 43 mM(-1) cm(-1). The data show evidence for an electrochromic shift of an accessory chlorophyll pigment, suggesting that the latter Q(y) absorption band is centered around 682 nm.
Collapse
Affiliation(s)
- Adrien Chauvet
- Department of Physics, Purdue University, 525 Northwestern Ave, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
62
|
Wientjes E, Croce R. PMS: photosystem I electron donor or fluorescence quencher. PHOTOSYNTHESIS RESEARCH 2012; 111:185-91. [PMID: 21879310 PMCID: PMC3296009 DOI: 10.1007/s11120-011-9671-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/07/2011] [Indexed: 05/18/2023]
Abstract
Light energy harvested by the pigments in Photosystem I (PSI) is used for charge separation in the reaction center (RC), after which the positive charge resides on a special chlorophyll dimer called P700. In studies on the PSI trapping kinetics, P700(+) is usually chemically reduced to re-open the RCs. So far, the information available about the reduction rate and possible chlorophyll fluorescence quenching effects of these reducing agents is limited. This information is indispensible to estimate the fraction of open RCs under known experimental conditions. Moreover, it would be important to understand if these reagents have a chlorophyll fluorescence quenching effects to avoid the introduction of exogenous singlet excitation quenching in the measurements. In this study, we investigated the effect of the commonly used reducing agent phenazine methosulfate (PMS) on the RC and fluorescence emission of higher plant PSI-LHCI. We measured the P700(+) reduction rate for different PMS concentrations, and show that we can give a reliable estimation on the fraction of closed RCs based on these rates. The data show that PMS is quenching chlorophyll fluorescence emission. Finally, we determined that the fluorescence quantum yield of PSI with closed RCs is 4% higher than if the RCs are open.
Collapse
Affiliation(s)
- Emilie Wientjes
- Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
| | | |
Collapse
|
63
|
Janssen GJ, Roy E, Matysik J, Alia A. N Photo-CIDNP MAS NMR To Reveal Functional Heterogeneity in Electron Donor of Different Plant Organisms. APPLIED MAGNETIC RESONANCE 2012; 42:57-67. [PMID: 22303078 PMCID: PMC3260425 DOI: 10.1007/s00723-011-0283-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/31/2011] [Indexed: 05/27/2023]
Abstract
In plants and cyanobacteria, two light-driven electron pumps, photosystems I and II (PSI, PSII), facilitate electron transfer from water to carbon dioxide with quantum efficiency close to unity. While similar in structure and function, the reaction centers of PSI and PSII operate at widely different potentials with PSI being the strongest reducing agent known in living nature. Photochemically induced dynamic nuclear polarization (photo-CIDNP) in magic-angle spinning (MAS) nuclear magnetic resonance (NMR) measurements provides direct excess to the heart of large photosynthetic complexes (A. Diller, Alia, E. Roy, P. Gast, H.J. van Gorkom, J. Zaanen, H.J.M. de Groot, C. Glaubitz, J. Matysik, Photosynth. Res. 84, 303-308, 2005; Alia, E. Roy, P. Gast, H.J. van Gorkom, H.J.M. de Groot, G. Jeschke, J. Matysik, J. Am. Chem. Soc. 126, 12819-12826, 2004). By combining the dramatic signal increase obtained from the solid-state photo-CIDNP effect with (15)N isotope labeling of PSI, we were able to map the electron spin density in the active cofactors of PSI and study primary charge separation at atomic level. We compare data obtained from two different PSI proteins, one from spinach (Spinacia oleracea) and other from the aquatic plant duckweed (Spirodella oligorrhiza). Results demonstrate a large flexibility of the PSI in terms of its electronic architecture while their electronic ground states are strictly conserved.
Collapse
Affiliation(s)
- Geertje J. Janssen
- Leiden Institute of Chemistry, Leiden University, P.O. box 9502, 2300 RA Leiden, The Netherlands
| | - Esha Roy
- Leiden Institute of Chemistry, Leiden University, P.O. box 9502, 2300 RA Leiden, The Netherlands
| | - Jörg Matysik
- Leiden Institute of Chemistry, Leiden University, P.O. box 9502, 2300 RA Leiden, The Netherlands
| | - A. Alia
- Leiden Institute of Chemistry, Leiden University, P.O. box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
64
|
Jagannathan B, Shen G, Golbeck JH. The Evolution of Type I Reaction Centers: The Response to Oxygenic Photosynthesis. FUNCTIONAL GENOMICS AND EVOLUTION OF PHOTOSYNTHETIC SYSTEMS 2012. [DOI: 10.1007/978-94-007-1533-2_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
65
|
The role of the individual Lhcas in photosystem I excitation energy trapping. Biophys J 2011; 101:745-54. [PMID: 21806943 DOI: 10.1016/j.bpj.2011.06.045] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/22/2011] [Accepted: 06/24/2011] [Indexed: 11/20/2022] Open
Abstract
In this work, we have investigated the role of the individual antenna complexes and of the low-energy forms in excitation energy transfer and trapping in Photosystem I of higher plants. To this aim, a series of Photosystem I (sub)complexes with different antenna size/composition/absorption have been studied by picosecond fluorescence spectroscopy. The data show that Lhca3 and Lhca4, which harbor the most red forms, have similar emission spectra (λ(max) = 715-720 nm) and transfer excitation energy to the core with a relative slow rate of ∼25/ns. Differently, the energy transfer from Lhca1 and Lhca2, the "blue" antenna complexes, occurs about four times faster. In contrast to what is often assumed, it is shown that energy transfer from the Lhca1/4 and the Lhca2/3 dimer to the core occurs on a faster timescale than energy equilibration within these dimers. Furthermore, it is shown that all four monomers contribute almost equally to the transfer to the core and that the red forms slow down the overall trapping rate by about two times. Combining all the data allows the construction of a comprehensive picture of the excitation-energy transfer routes and rates in Photosystem I.
Collapse
|
66
|
Xu W, Wang Y, Taylor E, Laujac A, Gao L, Savikhin S, Chitnis PR. Mutational analysis of photosystem I of Synechocystis sp. PCC 6803: the role of four conserved aromatic residues in the j-helix of PsaB. PLoS One 2011; 6:e24625. [PMID: 21931782 PMCID: PMC3171458 DOI: 10.1371/journal.pone.0024625] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/15/2011] [Indexed: 11/19/2022] Open
Abstract
Photosystem I is the light-driven plastocyanin-ferredoxin oxidoreductase in the photosynthetic electron transfer of cyanobacteria and plants. Two histidyl residues in the symmetric transmembrane helices A-j and B-j provide ligands for the P700 chlorophyll molecules of the reaction center of photosystem I. To determine the role of conserved aromatic residues adjacent to the histidyl molecule in the helix of B-j, we generated six site-directed mutants of the psaB gene in Synechocystis sp. PCC 6803. Three mutant strains with W645C, W643C/A644I and S641C/V642I substitutions could grow photoautotrophically and showed no obvious reduction in the photosystem I activity. Kinetics of P700 re-reduction by plastocyanin remained unaltered in these mutants. In contrast, the strains with H651C/L652M, F649C/G650I and F647C substitutions could not grow under photoautotrophic conditions because those mutants had low photosystem I activity, possibly due to low levels of proteins. A procedure to select spontaneous revertants from the mutants that are incapable to photoautotrophic growth resulted in three revertants that were used in this study. The molecular analysis of the spontaneous revertants suggested that an aromatic residue at F647 and a small residue at G650 may be necessary for maintaining the structural integrity of photosystem I. The (P700⁺-P700) steady-state absorption difference spectrum of the revertant F647Y has a ∼5 nm narrower peak than the recovered wild-type, suggesting that additional hydroxyl group of this revertant may participate in the interaction with the special pair while the photosystem I complexes of the F649C/G650T and H651Q mutants closely resemble the wild-type spectrum. The results presented here demonstrate that the highly conserved residues W645, W643 and F649 are not critical for maintaining the integrity and in mediating electron transport from plastocyanin to photosystem I. Our data suggest that an aromatic residue is required at position of 647 for structural integrity and/or function of photosystem I.
Collapse
Affiliation(s)
- Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
| | - Yingchun Wang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing, China
| | - Eric Taylor
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
| | - Amelie Laujac
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
| | - Liyan Gao
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing, China
| | - Sergei Savikhin
- Department of Physics, Purdue University, West Lafayette, Indiana, United States of America
| | - Parag R. Chitnis
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
67
|
Lin TJ, O’Malley PJ. Binding Site Influence on the Electronic Structure and Electron Paramagnetic Resonance Properties of the Phyllosemiquinone Free Radical of Photosystem I. J Phys Chem B 2011; 115:9311-9. [DOI: 10.1021/jp203484w] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tzu-Jen Lin
- School of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | | |
Collapse
|
68
|
Semenov AY, Kurashov VN, Mamedov MD. Transmembrane charge transfer in photosynthetic reaction centers: some similarities and distinctions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:326-32. [PMID: 21356596 DOI: 10.1016/j.jphotobiol.2011.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 02/02/2011] [Accepted: 02/03/2011] [Indexed: 12/17/2022]
Abstract
This mini review presents a general comparison of structural and functional peculiarities of three types of photosynthetic reaction centers (RCs)--photosystem (PS) II, RC from purple bacteria (bRC) and PS I. The nature and mechanisms of the primary electron transfer reactions, as well as specific features of the charge transfer reactions at the donor and acceptor sides of RCs are considered. Comparison of photosynthetic RCs shows general similarity between the core central parts of all three types, between the acceptor sides of bRC and PS II, and between the donor sides of bRC and PS I. In the latter case, the similarity covers thermodynamic, kinetic and dielectric properties, which determine the resemblance of mechanisms of electrogenic reduction of the photooxidized primary donors. Significant distinctions between the donor and acceptor sides of PS I and PS II are also discussed. The results recently obtained in our laboratory indicate in favor of the following sequence of the primary and secondary electron transfer reactions: in PS II (bRC): Р(680)(Р(870)) → Chl(D1)(В(А)) → Phe(bPhe) → Q(A); and in PS I: Р(700) → А(0А)/A(0B) → Q(A)/Q(B).
Collapse
Affiliation(s)
- Alexey Yu Semenov
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, 119992 Moscow, Leninskie Gory, Russia.
| | | | | |
Collapse
|
69
|
Di Donato M, Stahl AD, van Stokkum IHM, van Grondelle R, Groot ML. Cofactors Involved in Light-Driven Charge Separation in Photosystem I Identified by Subpicosecond Infrared Spectroscopy. Biochemistry 2010; 50:480-90. [DOI: 10.1021/bi101565w] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mariangela Di Donato
- Faculty of Sciences, Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands
| | - Andreas D. Stahl
- Faculty of Sciences, Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands
| | - Ivo H. M. van Stokkum
- Faculty of Sciences, Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands
| | - Rienk van Grondelle
- Faculty of Sciences, Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands
| | - Marie-Louise Groot
- Faculty of Sciences, Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
70
|
Busch A, Hippler M. The structure and function of eukaryotic photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:864-77. [PMID: 20920463 DOI: 10.1016/j.bbabio.2010.09.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 09/20/2010] [Accepted: 09/28/2010] [Indexed: 12/27/2022]
Abstract
Eukaryotic photosystem I consists of two functional moieties: the photosystem I core, harboring the components for the light-driven charge separation and the subsequent electron transfer, and the peripheral light-harvesting complex (LHCI). While the photosystem I-core remained highly conserved throughout the evolution, with the exception of the oxidizing side of photosystem I, the LHCI complex shows a high degree of variability in size, subunits composition and bound pigments, which is due to the large variety of different habitats photosynthetic organisms dwell in. Besides summarizing the most current knowledge on the photosystem I-core structure, we will discuss the composition and structure of the LHCI complex from different eukaryotic organisms, both from the red and the green clade. Furthermore, mechanistic insights into electron transfer between the donor and acceptor side of photosystem I and its soluble electron transfer carrier proteins will be given. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.
Collapse
Affiliation(s)
- Andreas Busch
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| | | |
Collapse
|
71
|
Adolphs J, Müh F, Madjet MEA, am Busch MS, Renger T. Structure-based calculations of optical spectra of photosystem I suggest an asymmetric light-harvesting process. J Am Chem Soc 2010; 132:3331-43. [PMID: 20166713 DOI: 10.1021/ja9072222] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Optical line shape theory is combined with a quantum-chemical/electrostatic calculation of the site energies of the 96 chlorophyll a pigments and their excitonic couplings to simulate optical spectra of photosystem I core complexes from Thermosynechococcus elongatus. The absorbance, linear dichroism and circular dichroism spectra, calculated on the basis of the 2.5 A crystal structure, match the experimental data semiquantitatively allowing for a detailed analysis of the pigment-protein interaction. The majority of site energies are determined by multiple interactions with a large number (>20) of amino acid residues, a result which demonstrates the importance of long-range electrostatic interactions. The low-energy exciton states of the antenna are found to be located at a nearest distance of about 25 A from the special pair of the reaction center. The intermediate pigments form a high-energy bridge, the site energies of which are stabilized by a particularly large number (>100) of amino acid residues. The concentration of low energy exciton states in the antenna is larger on the side of the A-branch of the reaction center, implying an asymmetric delivery of excitation energy to the latter. This asymmetry in light-harvesting may provide the key for understanding the asymmetric use of the two branches in primary electron transfer reactions. Experiments are suggested to check for this possibility.
Collapse
Affiliation(s)
- Julian Adolphs
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstrasse 36a, D-14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
72
|
Jagannathan B, Dekat S, Golbeck JH, Lakshmi KV. The Assembly of a Multisubunit Photosynthetic Membrane Protein Complex: A Site-Specific Spin Labeling EPR Spectroscopic Study of the PsaC Subunit in Photosystem I. Biochemistry 2010; 49:2398-408. [DOI: 10.1021/bi901483f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Sarah Dekat
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - John H. Golbeck
- Department of Biochemistry and Molecular Biology
- Department of Chemistry
| | - K. V. Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180
| |
Collapse
|
73
|
Femtosecond primary charge separation in Synechocystis sp. PCC 6803 photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1410-20. [PMID: 20219440 DOI: 10.1016/j.bbabio.2010.02.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 01/25/2010] [Accepted: 02/23/2010] [Indexed: 11/21/2022]
Abstract
The ultrafast (<100 fs) conversion of delocalized exciton into charge-separated state between the primary donor P700 (bleaching at 705 nm) and the primary acceptor A0 (bleaching at 690 nm) in photosystem I (PS I) complexes from Synechocystis sp. PCC 6803 was observed. The data were obtained by application of pump-probe technique with 20-fs low-energy pump pulses centered at 720 nm. The earliest absorbance changes (close to zero delay) with a bleaching at 690 nm are similar to the product of the absorption spectrum of PS I complex and the laser pulse spectrum, which represents the efficiency spectrum of the light absorption by PS I upon femtosecond excitation centered at 720 nm. During the first approximately 60 fs the energy transfer from the chlorophyll (Chl) species bleaching at 690 nm to the Chl bleaching at 705 nm occurs, resulting in almost equal bleaching of the two forms with the formation of delocalized exciton between 690-nm and 705-nm Chls. Within the next approximately 40 fs the formation of a new broad band centered at approximately 660 nm (attributed to the appearance of Chl anion radical) is observed. This band decays with time constant simultaneously with an electron transfer to A1 (phylloquinone). The subtraction of kinetic difference absorption spectra of the closed (state P700+A0A1) PS I reaction center (RC) from that of the open (state P700A0A1) RC reveals the pure spectrum of the P700+A0- ion-radical pair. The experimental data were analyzed using a simple kinetic scheme: An*-->k1[(PA0)*A1--><100 fs P+A0-A1]-->k2P+A0A1-, and a global fitting procedure based on the singular value decomposition analysis. The calculated kinetics of transitions between intermediate states and their spectra were similar to the kinetics recorded at 694 and 705 nm and the experimental spectra obtained by subtraction of the spectra of closed RCs from the spectra of open RCs. As a result, we found that the main events in RCs of PS I under our experimental conditions include very fast (<100 fs) charge separation with the formation of the P700+A0-A1 state in approximately one half of the RCs, the approximately 5-ps energy transfer from antenna Chl* to P700A0A1 in the remaining RCs, and approximately 25-ps formation of the secondary radical pair P700+A0A1-.
Collapse
|
74
|
Independent initiation of primary electron transfer in the two branches of the photosystem I reaction center. Proc Natl Acad Sci U S A 2010; 107:4123-8. [PMID: 20142514 DOI: 10.1073/pnas.0905407107] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photosystem I (PSI) is a large pigment-protein complex that unites a reaction center (RC) at the core with approximately 100 core antenna chlorophylls surrounding it. The RC is composed of two cofactor branches related by a pseudo-C2 symmetry axis. The ultimate electron donor, P(700) (a pair of chlorophylls), and the tertiary acceptor, F(X) (a Fe(4)S(4) cluster), are both located on this axis, while each of the two branches is made up of a pair of chlorophylls (ec2 and ec3) and a phylloquinone (PhQ). Based on the observed biphasic reduction of F(X), it has been suggested that both branches in PSI are competent for electron transfer (ET), but the nature and rate of the initial electron transfer steps have not been established. We report an ultrafast transient absorption study of Chlamydomonas reinhardtii mutants in which specific amino acids donating H-bonds to the 13(1)-keto oxygen of either ec3(A) (PsaA-Tyr696) or ec3(B) (PsaB-Tyr676) are converted to Phe, thus breaking the H-bond to a specific ec3 cofactor. We find that the rate of primary charge separation (CS) is lowered in both mutants, providing direct evidence that the primary ET event can be initiated independently in each branch. Furthermore, the data provide further support for the previously published model in which the initial CS event occurs within an ec2/ec3 pair, generating a primary ec2(+)ec3(-) radical pair, followed by rapid reduction by P(700) in the second ET step. A unique kinetic modeling approach allows estimation of the individual ET rates within the two cofactor branches.
Collapse
|
75
|
Holzwarth AR, Miloslavina Y, Nilkens M, Jahns P. Identification of two quenching sites active in the regulation of photosynthetic light-harvesting studied by time-resolved fluorescence. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.10.085] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
76
|
Madjet MEA, Müh F, Renger T. Deciphering the influence of short-range electronic couplings on optical properties of molecular dimers: application to "special pairs" in photosynthesis. J Phys Chem B 2009; 113:12603-14. [PMID: 19697949 DOI: 10.1021/jp906009j] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The excited states of chromophore dimers are, in general, delocalized, and the transition energies and transition dipoles are different from those of the monomers. The intermolecular interaction that is responsible for these effects has two contributions: Forster-type Coulomb coupling and a short-range coupling, which depends on the intermolecular overlap of electronic wave functions. The latter contains the Dexter-type exchange coupling and the coupling of excited states to intermolecular charge-transfer (CT) states. Recently, we developed a method (TrEsp) for an accurate and numerically efficient calculation of the Forster-type Coulomb part (Madjet et al. J. Phys. Chem. B 2006, 110, 17268). Here, we combine the latter with quantum chemical calculations to evaluate the short-range contribution, extending a method developed earlier by Scholes et al. (J. Phys. Chem. B 1999, 103, 2543). An effective two-state model is used, which relates the transition energies and transition dipole moments obtained by quantum chemical calculations of the monomers to those calculated for the dimer. From this relation, the short-range excitonic coupling and effective shifts of the local transition energies due to the coupling to intermolecular CT states can be inferred including a consistency check to evaluate quantum chemical methods that differ in the treatment of electron correlation. The method is applied to the special pairs of the reaction centers of purple bacteria (bRC) and photosystem I (PSI). We find that the short-range coupling represents the dominant contribution to the total excitonic coupling in both special pairs (80% in PSI and 70% in the bRC) and exhibits a monoexponential dependence on the distance between the pi-planes of the pigments with an attenuation factor of 2.8 A(-1). We obtain significant red-shifts of the local transition energies, which show a biexponential distance dependence with one attenuation factor being 2.8 A(-1) and another factor being in the range 0.3-0.7 A(-1) for PSI and 0.8-0.9 A(-1) for bRC. Both effects of the short-range coupling determine the excitation energy sink in the reaction centers at the special pairs.
Collapse
Affiliation(s)
- Mohamed El-Amine Madjet
- Freie Universitat Berlin, Institut fur Chemie und Biochemie, Fabeckstrasse 36a, D-14195 Berlin, Germany
| | | | | |
Collapse
|
77
|
Theisen M, Linke M, Kerbs M, Fidder H, Madjet MEA, Zacarias A, Heyne K. Femtosecond polarization resolved spectroscopy: A tool for determination of the three-dimensional orientation of electronic transition dipole moments and identification of configurational isomers. J Chem Phys 2009; 131:124511. [DOI: 10.1063/1.3236804] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
78
|
Effect of the P700 pre-oxidation and point mutations near A(0) on the reversibility of the primary charge separation in Photosystem I from Chlamydomonas reinhardtii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1797:106-12. [PMID: 19761751 DOI: 10.1016/j.bbabio.2009.09.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 07/31/2009] [Accepted: 09/09/2009] [Indexed: 11/22/2022]
Abstract
Time-resolved fluorescence studies with a 3-ps temporal resolution were performed in order to: (1) test the recent model of the reversible primary charge separation in Photosystem I (Müller et al., 2003; Holwzwarth et al., 2005, 2006), and (2) to reconcile this model with a mechanism of excitation energy quenching by closed Photosystem I (with P700 pre-oxidized to P700+). For these purposes, we performed experiments using Photosystem I core samples isolated from Chlamydomonas reinhardtii wild type, and two mutants in which the methionine axial ligand to primary electron acceptor, A(0), has been change to either histidine or serine. The temporal evolution of fluorescence spectra was recorded for each preparation under conditions where the "primary electron donor," P700, was either neutral or chemically pre-oxidized to P700+. For all the preparations under study, and under neutral and oxidizing conditions, we observed multiexponential fluorescence decay with the major phases of approximately 7 ps and approximately 25 ps. The relative amplitudes and, to a minor extent the lifetimes, of these two phases were modulated by the redox state of P700 and by the mutations near A(0): both pre-oxidation of P700 and mutations caused slight deceleration of the excited state decay. These results are consistent with a model in which P700 is not the primary electron donor, but rather a secondary electron donor, with the primary charge separation event occurring between the accessory chlorophyll, A, and A(0). We assign the faster phase to the equilibration process between the excited state of the antenna/reaction center ensemble and the primary radical pair, and the slower phase to the secondary electron transfer reaction. The pre-oxidation of P700 shifts the equilibrium between the excited state and the primary radical pair towards the excited state. This shift is proposed to be induced by the presence of the positive charge on P700+. The same charge is proposed to be responsible for the fast A+A(0)(-)-->AA(0) charge recombination to the ground state and, in consequence, excitation quenching in closed reaction centers. Mutations of the A(0) axial ligand shift the equilibrium in the same direction as pre-oxidation of P700 due to the up-shift of the free energy level of the state A+A(0)(-).
Collapse
|
79
|
Chen J, Bender SL, Keough JM, Barry BA. Tryptophan as a probe of photosystem I electron transfer reactions: a UV resonance Raman study. J Phys Chem B 2009; 113:11367-70. [PMID: 19639977 PMCID: PMC2846372 DOI: 10.1021/jp906491r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Photosystem I (PSI) is one of the two membrane-associated reaction centers involved in oxygenic photosynthesis. In photosynthesis, solar energy is converted to chemical energy in the form of a transmembrane charge separation. PSI oxidizes cytochrome c(6) or plastocyanin and reduces ferredoxin. In cyanobacterial PSI, there are 10 tryptophan residues with indole side chains located less than 10 A from the electron transfer cofactors. In this study, we apply pump-probe difference UV resonance Raman (UVRR) spectroscopy to acquire the spectrum of aromatic amino acids in cyanobacterial PSI. This UVRR technique allows the use of the tryptophan vibrational spectrum as a reporter for structural changes, which are linked to PSI electron transfer reactions. Our results show that photo-oxidation of the chlorophyll a/a' heterodimer, P(700), causes shifts in the vibrational frequencies of two or more tryptophan residues. Similar perturbations of tryptophan are observed when P(700) is chemically oxidized. The observed spectral frequencies suggest that the perturbed tryptophan side chains are only weakly or not hydrogen bonded and are located in an environment in which there is steric repulsion. The direction of the spectral shifts is consistent with an oxidation-induced increase in dielectric constant or a change in hydrogen bonding. To explain our results, the perturbation of tryptophan residues must be linked to a PSI conformational change, which is, in turn, driven by P(700) oxidation.
Collapse
Affiliation(s)
- Jun Chen
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | | | - James M. Keough
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Bridgette A. Barry
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| |
Collapse
|
80
|
Berera R, van Grondelle R, Kennis JTM. Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems. PHOTOSYNTHESIS RESEARCH 2009; 101:105-18. [PMID: 19578970 PMCID: PMC2744833 DOI: 10.1007/s11120-009-9454-y] [Citation(s) in RCA: 375] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 06/05/2009] [Indexed: 05/19/2023]
Abstract
The photophysical and photochemical reactions, after light absorption by a photosynthetic pigment-protein complex, are among the fastest events in biology, taking place on timescales ranging from tens of femtoseconds to a few nanoseconds. The advent of ultrafast laser systems that produce pulses with femtosecond duration opened up a new area of research and enabled investigation of these photophysical and photochemical reactions in real time. Here, we provide a basic description of the ultrafast transient absorption technique, the laser and wavelength-conversion equipment, the transient absorption setup, and the collection of transient absorption data. Recent applications of ultrafast transient absorption spectroscopy on systems with increasing degree of complexity, from biomimetic light-harvesting systems to natural light-harvesting antennas, are presented. In particular, we will discuss, in this educational review, how a molecular understanding of the light-harvesting and photoprotective functions of carotenoids in photosynthesis is accomplished through the application of ultrafast transient absorption spectroscopy.
Collapse
Affiliation(s)
- Rudi Berera
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
- Institute of Biology and Technology of Saclay, CEA (Commissariat a l’Energie Atomique), URA 2096 CNRS (Centre National de la Recherche Scientifique), 91191 Gif/Yvette, France
| | - Rienk van Grondelle
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - John T. M. Kennis
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
81
|
Niklas J, Epel B, Antonkine ML, Sinnecker S, Pandelia ME, Lubitz W. Electronic Structure of the Quinone Radical Anion A1•− of Photosystem I Investigated by Advanced Pulse EPR and ENDOR Techniques. J Phys Chem B 2009; 113:10367-79. [DOI: 10.1021/jp901890z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jens Niklas
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim/Ruhr, Germany, and Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Boris Epel
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim/Ruhr, Germany, and Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Mikhail L. Antonkine
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim/Ruhr, Germany, and Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Sebastian Sinnecker
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim/Ruhr, Germany, and Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Maria-Eirini Pandelia
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim/Ruhr, Germany, and Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Wolfgang Lubitz
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim/Ruhr, Germany, and Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
82
|
Amunts A, Nelson N. Plant Photosystem I Design in the Light of Evolution. Structure 2009; 17:637-50. [DOI: 10.1016/j.str.2009.03.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 03/23/2009] [Accepted: 03/25/2009] [Indexed: 11/26/2022]
|
83
|
Abramavicius D, Mukamel S. Exciton delocalization and transport in photosystem I of cyanobacteria Synechococcus elongates: simulation study of coherent two-dimensional optical signals. J Phys Chem B 2009; 113:6097-108. [PMID: 19351124 PMCID: PMC2905166 DOI: 10.1021/jp811339p] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Electronic excitations and the optical properties of the photosynthetic complex PSI are analyzed using an effective exciton model developed by Vaitekonis et al. [Photosynth. Res. 2005, 86, 185]. States of the reaction center, the linker states, the highly delocalized antenna states and the red states are identified and assigned in absorption and circular dichroism spectra by taking into account the spectral distribution of density of exciton states, exciton delocalization length, and participation ratio in the reaction center. Signatures of exciton cooperative dynamics in nonchiral and chirality-induced two-dimensional (2D) photon-echo signals are identified. Nonchiral signals show resonances associated with the red, the reaction center, and the bulk antenna states as well as transport between them. Spectrally overlapping contributions of the linker and the delocalized antenna states are clearly resolved in the chirality-induced signals. Strong correlations are observed between the delocalized antenna states, the linker states, and the RC states. The active space of the complex covering the RC, the linker, and the delocalized antenna states is common to PSI complexes in bacteria and plants.
Collapse
Affiliation(s)
- Darius Abramavicius
- Chemistry Department, University of California Irvine, California 92697-2025, USA.
| | | |
Collapse
|
84
|
Slavov C, El-Mohsnawy E, Rögner M, Holzwarth AR. Trapping kinetics in isolated cyanobacterial PS I complexes. Chem Phys 2009. [DOI: 10.1016/j.chemphys.2008.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
85
|
Björn LO, Papageorgiou GC, Blankenship RE. A viewpoint: why chlorophyll a? PHOTOSYNTHESIS RESEARCH 2009; 99:85-98. [PMID: 19125349 DOI: 10.1007/s11120-008-9395-x] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 12/09/2008] [Indexed: 05/21/2023]
Abstract
Chlorophyll a (Chl a) serves a dual role in oxygenic photosynthesis: in light harvesting as well as in converting energy of absorbed photons to chemical energy. No other Chl is as omnipresent in oxygenic photosynthesis as is Chl a, and this is particularly true if we include Chl a(2), (=[8-vinyl]-Chl a), which occurs in Prochlorococcus, as a type of Chl a. One exception to this near universal pattern is Chl d, which is found in some cyanobacteria that live in filtered light that is enriched in wavelengths >700 nm. They trap the long wavelength electronic excitation, and convert it into chemical energy. In this Viewpoint, we have traced the possible reasons for the near ubiquity of Chl a for its use in the primary photochemistry of Photosystem II (PS II) that leads to water oxidation and of Photosystem I (PS I) that leads to ferredoxin reduction. Chl a appears to be unique and irreplaceable, particularly if global scale oxygenic photosynthesis is considered. Its uniqueness is determined by its physicochemical properties, but there is more. Other contributing factors include specially tailored protein environments, and functional compatibility with neighboring electron transporting cofactors. Thus, the same molecule, Chl a in vivo, is capable of generating a radical cation at +1 V or higher (in PS II), a radical anion at -1 V or lower (in PS I), or of being completely redox silent (in antenna holochromes).
Collapse
Affiliation(s)
- Lars Olof Björn
- Department of Cell and Organism Biology, Lund University, Lund, Sweden.
| | | | | |
Collapse
|
86
|
Giera W, Gibasiewicz K, Ramesh VM, Lin S, Webber A. Electron transfer from A−0 to A1 in Photosystem I from Chlamydomonas reinhardtii occurs in both the A and B branch with 25–30-ps lifetime. Phys Chem Chem Phys 2009; 11:5186-91. [DOI: 10.1039/b822938d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
87
|
Lazár D, Schansker G. Models of Chlorophyll a Fluorescence Transients. PHOTOSYNTHESIS IN SILICO 2009. [DOI: 10.1007/978-1-4020-9237-4_5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
88
|
Bailleul B, Johnson X, Finazzi G, Barber J, Rappaport F, Telfer A. The Thermodynamics and Kinetics of Electron Transfer between Cytochrome b6f and Photosystem I in the Chlorophyll d-dominated Cyanobacterium, Acaryochloris marina. J Biol Chem 2008; 283:25218-25226. [DOI: 10.1074/jbc.m803047200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
89
|
Abstract
Protein dynamics are likely to play important, regulatory roles in many aspects of photosynthetic electron transfer, but a detailed description of these coupled protein conformational changes has been unavailable. In oxygenic photosynthesis, photosystem I catalyzes the light-driven oxidation of plastocyanin or cytochrome c and the reduction of ferredoxin. A chlorophyll (chl) a/a' heterodimer, P(700), is the secondary electron donor, and the two P(700) chl, are designated P(A) and P(B). We used specific chl isotopic labeling and reaction-induced Fourier-transform infrared spectroscopy to assign chl keto vibrational bands to P(A) and P(B). In the cyanobacterium, Synechocystis sp. PCC 6803, the chl keto carbon was labeled from (13)C-labeled glutamate, and the chl keto oxygen was labeled from (18)O(2). These isotope-based assignments provide new information concerning the structure of P(A)(+), which is found to give rise to two chl keto vibrational bands, with frequencies at 1653 and 1687 cm(-1). In contrast, P(A) gives rise to one chl keto band at 1638 cm(-1). The observation of two P(A)(+) keto frequencies is consistent with a protein relaxation-induced distribution in P(A)(+) hydrogen bonding. These results suggest a light-induced conformational change in photosystem I, which may regulate the oxidation of soluble electron donors and other electron-transfer reactions. This study provides unique information concerning the role of protein dynamics in oxygenic photosynthesis.
Collapse
|
90
|
Vassiliev S, Bruce D. Toward understanding molecular mechanisms of light harvesting and charge separation in photosystem II. PHOTOSYNTHESIS RESEARCH 2008; 97:75-89. [PMID: 18443918 DOI: 10.1007/s11120-008-9303-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 03/31/2008] [Indexed: 05/26/2023]
Abstract
Conversion of light energy in photosynthesis is extremely fast and efficient, and understanding the nature of this complex photophysical process is challenging. This review describes current progress in understanding molecular mechanisms of light harvesting and charge separation in photosystem II (PSII). Breakthroughs in X-ray crystallography have allowed the development and testing of more detailed kinetic models than have previously been possible. However, due to the complexity of the light conversion processes, satisfactory descriptions remain elusive. Recent advances point out the importance of variations in the photochemical properties of PSII in situ in different thylakoid membrane regions as well as the advantages of combining sophisticated time-resolved spectroscopic experiments with atomic level computational modeling which includes the effects of molecular dynamics.
Collapse
Affiliation(s)
- Serguei Vassiliev
- Department of Biology, Brock University, St. Catharines, ON, Canada L2S 3A1.
| | | |
Collapse
|
91
|
Vassiliev S, Bruce D. Toward understanding molecular mechanisms of light harvesting and charge separation in photosystem II. PHOTOSYNTHESIS RESEARCH 2008. [PMID: 18443918 DOI: 10.007/s11120-008-9203-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Conversion of light energy in photosynthesis is extremely fast and efficient, and understanding the nature of this complex photophysical process is challenging. This review describes current progress in understanding molecular mechanisms of light harvesting and charge separation in photosystem II (PSII). Breakthroughs in X-ray crystallography have allowed the development and testing of more detailed kinetic models than have previously been possible. However, due to the complexity of the light conversion processes, satisfactory descriptions remain elusive. Recent advances point out the importance of variations in the photochemical properties of PSII in situ in different thylakoid membrane regions as well as the advantages of combining sophisticated time-resolved spectroscopic experiments with atomic level computational modeling which includes the effects of molecular dynamics.
Collapse
Affiliation(s)
- Serguei Vassiliev
- Department of Biology, Brock University, St. Catharines, ON, Canada L2S 3A1.
| | | |
Collapse
|
92
|
Ptushenko VV, Cherepanov DA, Krishtalik LI, Semenov AY. Semi-continuum electrostatic calculations of redox potentials in photosystem I. PHOTOSYNTHESIS RESEARCH 2008; 97:55-74. [PMID: 18483776 DOI: 10.1007/s11120-008-9309-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 04/24/2008] [Indexed: 05/19/2023]
Abstract
The midpoint redox potentials (E(m)) of all cofactors in photosystem I from Synechococcus elongatus as well as of the iron-sulfur (Fe(4)S(4)) clusters in two soluble ferredoxins from Azotobacter vinelandii and Clostridium acidiurici were calculated within the framework of a semi-continuum dielectric approach. The widely used treatment of proteins as uniform media with single dielectric permittivity is oversimplified, particularly, because permanent charges are considered both as a source for intraprotein electric field and as a part of dielectric polarizability. Our approach overcomes this inconsistency by using two dielectric constants: optical epsilon(o)=2.5 for permanent charges pre-existing in crystal structure, and static epsilon(s) for newly formed charges. We also take into account a substantial dielectric heterogeneity of photosystem I revealed by photoelectric measurements and a liquid junction potential correction for E(m) values of relevant redox cofactors measured in aprotic solvents. We show that calculations based on a single permittivity have the discrepancy with experimental data larger than 0.7 V, whereas E(m) values calculated within our approach fall in the range of experimental estimates. The electrostatic analysis combined with quantum chemistry calculations shows that (i) the energy decrease upon chlorophyll dimerization is essential for the downhill mode of primary charge separation between the special pair P(700) and the primary acceptor A(0); (ii) the primary donor is apparently P(700) but not a pair of accessory chlorophylls; (iii) the electron transfer from the A branch quinone Q(A) to the iron-sulfur cluster F(X) is most probably downhill, whereas that from the B branch quinone Q(B) to F(X) is essentially downhill.
Collapse
Affiliation(s)
- Vasily V Ptushenko
- A.N.Belozersky Institute of Physical-Chemical Biology, Moscow State University, Moscow, Russia
| | | | | | | |
Collapse
|
93
|
Shibata Y, Akai S, Kasahara T, Ikegami I, Itoh S. Temperature-dependent energy gap of the primary charge separation in photosystem I: study of delayed fluorescence at 77-268 K. J Phys Chem B 2008; 112:6695-702. [PMID: 18461984 DOI: 10.1021/jp710551e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The dynamics of fluorescence decay and charge recombination were studied in the ether-extracted photosystem I reaction center isolated from spinach with picosecond resolution over a wide time range up to 100 ns. At all temperatures from 268 to 77 K, a slow fluorescence decay component with a 30-40 ns lifetime was detected. This component was interpreted as a delayed fluorescence emitted from the singlet excited state of the primary donor P700*, which is repopulated through charge recombination that was increased by the lack of secondary acceptor phylloquinone in the sample. Analysis of the fluorescence kinetics allowed estimation of the standard free-energy difference -DeltaG between P700* and the primary radical pair (P700(+)A0(-)) state over a wide temperature range. The values of -DeltaG were estimated to be 160/36 meV at 268/77 K, indicating its high sensitivity to temperature. A temperature-dependent -DeltaG value was also estimated in the delayed fluorescence of the isolated photosystem I in which the secondary acceptor quinone was partially prereduced by preillumination in the presence of dithionite. The results revealed that the temperature-dependent -DeltaG is a universal phenomenon common with the purple bacterial reaction centers, photosystem II and photosystem I reaction centers.
Collapse
Affiliation(s)
- Yutaka Shibata
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.
| | | | | | | | | |
Collapse
|
94
|
Tomo T, Kato Y, Suzuki T, Akimoto S, Okubo T, Noguchi T, Hasegawa K, Tsuchiya T, Tanaka K, Fukuya M, Dohmae N, Watanabe T, Mimuro M. Characterization of highly purified photosystem I complexes from the chlorophyll d-dominated cyanobacterium Acaryochloris marina MBIC 11017. J Biol Chem 2008; 283:18198-209. [PMID: 18458090 DOI: 10.1074/jbc.m801805200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photochemically active photosystem (PS) I complexes were purified from the chlorophyll (Chl) d-dominated cyanobacterium Acaryochloris marina MBIC 11017, and several of their properties were characterized. PS I complexes consist of 11 subunits, including PsaK1 and PsaK2; a new small subunit was identified and named Psa27. The new subunit might replace the function of PsaI that is absent in A. marina. The amounts of pigments per one molecule of Chl d' were 97.0 +/- 11.0 Chl d, 1.9 +/- 0.5 Chl a, 25.2 +/- 2.4 alpha-carotene, and two phylloquinone molecules. The light-induced Fourier transform infrared difference spectroscopy and light-induced difference absorption spectra reconfirmed that the primary electron donor of PS I (P740) was the Chl d dimer. In addition to P740, the difference spectrum contained an additional band at 728 nm. The redox potentials of P740 were estimated to be 439 mV by spectroelectrochemistry; this value was comparable with the potential of P700 in other cyanobacteria and higher plants. This suggests that the overall energetics of the PS I reaction were adjusted to the electron acceptor side to utilize the lower light energy gained by P740. The distribution of charge in P740 was estimated by a density functional theory calculation, and a partial localization of charge was predicted to P1 Chl (special pair Chl on PsaA). Based on differences in the protein matrix and optical properties of P740, construction of the PS I core in A. marina was discussed.
Collapse
Affiliation(s)
- Tatsuya Tomo
- Department of Technology and Ecology, Hall of Global Environmental Research, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Bender SL, Keough JM, Boesch SE, Wheeler RA, Barry BA. The Vibrational Spectrum of the Secondary Electron Acceptor, A1, in Photosystem I. J Phys Chem B 2008; 112:3844-52. [DOI: 10.1021/jp0775146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shana L. Bender
- Department of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, and Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019
| | - James M. Keough
- Department of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, and Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019
| | - Scott E. Boesch
- Department of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, and Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019
| | - Ralph A. Wheeler
- Department of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, and Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019
| | - Bridgette A. Barry
- Department of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, and Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019
| |
Collapse
|
96
|
Abstract
Time-resolved fluorescence measurements were performed on isolated core and intact Photosystem I (PS I) particles and stroma membranes from Arabidopsis thaliana to characterize the type of energy-trapping kinetics in higher plant PS I. Target analysis confirms the previously proposed "charge recombination" model. No bottleneck in the energy flow from the bulk antenna compartments to the reaction center has been found. For both particles a trap-limited kinetics is realized, with an apparent charge separation lifetime of approximately 6 ps. No red chlorophylls (Chls) are found in the PS I-core complex from A. thaliana. Rather, the observed red-shifted fluorescence (700-710 nm range) originates from the reaction center. In contrast, two red Chl compartments, located in the peripheral light-harvesting complexes, are resolved in the intact PS I particles (decay lifetimes 33 and 95 ps, respectively). These two red states have been attributed to the two red states found in Lhca 3 and Lhca 4, respectively. The influence of the red Chls on the slowing of the overall trapping kinetics in the intact PS I complex is estimated to be approximately four times larger than the effect of the bulk antenna enlargement.
Collapse
|
97
|
Chu CC, Bassani DM. Challenges and opportunities for photochemists on the verge of solar energy conversion. Photochem Photobiol Sci 2008; 7:521-30. [DOI: 10.1039/b800113h] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
98
|
Renger T, Holzwarth AR. Theory of Excitation Energy Transfer and Optical Spectra of Photosynthetic Systems. BIOPHYSICAL TECHNIQUES IN PHOTOSYNTHESIS 2008. [DOI: 10.1007/978-1-4020-8250-4_21] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
99
|
Theiss C, Trostmann I, Andree S, Schmitt FJ, Renger T, Eichler HJ, Paulsen H, Renger G. Pigment−Pigment and Pigment−Protein Interactions in Recombinant Water-Soluble Chlorophyll Proteins (WSCP) from Cauliflower. J Phys Chem B 2007; 111:13325-35. [DOI: 10.1021/jp0723968] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- C. Theiss
- Institute of Optics, Technical University Berlin, Berlin, Germany, Institute of General Botany, Johannes Gutenberg University, Mainz, Germany, Institute of Chemistry, Free University of Berlin, Berlin, Germany, and Max Volmer Laboratory for Biophysical Chemistry, Technical University Berlin, Berlin, Germany
| | - I. Trostmann
- Institute of Optics, Technical University Berlin, Berlin, Germany, Institute of General Botany, Johannes Gutenberg University, Mainz, Germany, Institute of Chemistry, Free University of Berlin, Berlin, Germany, and Max Volmer Laboratory for Biophysical Chemistry, Technical University Berlin, Berlin, Germany
| | - S. Andree
- Institute of Optics, Technical University Berlin, Berlin, Germany, Institute of General Botany, Johannes Gutenberg University, Mainz, Germany, Institute of Chemistry, Free University of Berlin, Berlin, Germany, and Max Volmer Laboratory for Biophysical Chemistry, Technical University Berlin, Berlin, Germany
| | - F. J. Schmitt
- Institute of Optics, Technical University Berlin, Berlin, Germany, Institute of General Botany, Johannes Gutenberg University, Mainz, Germany, Institute of Chemistry, Free University of Berlin, Berlin, Germany, and Max Volmer Laboratory for Biophysical Chemistry, Technical University Berlin, Berlin, Germany
| | - T. Renger
- Institute of Optics, Technical University Berlin, Berlin, Germany, Institute of General Botany, Johannes Gutenberg University, Mainz, Germany, Institute of Chemistry, Free University of Berlin, Berlin, Germany, and Max Volmer Laboratory for Biophysical Chemistry, Technical University Berlin, Berlin, Germany
| | - H. J. Eichler
- Institute of Optics, Technical University Berlin, Berlin, Germany, Institute of General Botany, Johannes Gutenberg University, Mainz, Germany, Institute of Chemistry, Free University of Berlin, Berlin, Germany, and Max Volmer Laboratory for Biophysical Chemistry, Technical University Berlin, Berlin, Germany
| | - H. Paulsen
- Institute of Optics, Technical University Berlin, Berlin, Germany, Institute of General Botany, Johannes Gutenberg University, Mainz, Germany, Institute of Chemistry, Free University of Berlin, Berlin, Germany, and Max Volmer Laboratory for Biophysical Chemistry, Technical University Berlin, Berlin, Germany
| | - G. Renger
- Institute of Optics, Technical University Berlin, Berlin, Germany, Institute of General Botany, Johannes Gutenberg University, Mainz, Germany, Institute of Chemistry, Free University of Berlin, Berlin, Germany, and Max Volmer Laboratory for Biophysical Chemistry, Technical University Berlin, Berlin, Germany
| |
Collapse
|
100
|
Nedbal L, Cervený J, Rascher U, Schmidt H. E-photosynthesis: a comprehensive modeling approach to understand chlorophyll fluorescence transients and other complex dynamic features of photosynthesis in fluctuating light. PHOTOSYNTHESIS RESEARCH 2007; 93:223-34. [PMID: 17492490 DOI: 10.1007/s11120-007-9178-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2006] [Accepted: 04/16/2007] [Indexed: 05/15/2023]
Abstract
Plants are exposed to a temporally and spatially heterogeneous environment, and photosynthesis is well adapted to these fluctuations. Understanding of the complex, non-linear dynamics of photosynthesis in fluctuating light requires novel-modeling approaches that involve not only the primary light and dark biochemical reactions, but also networks of regulatory interactions. This requirement exceeds the capacity of the existing molecular models that are typically reduced to describe a partial process, dynamics of a specific complex or its particular dynamic feature. We propose a concept of comprehensive model that would represent an internally consistent, integral framework combining information on the reduced models that led to its construction. This review explores approaches and tools that exist in engineering, mathematics, and in other domains of biology that can be used to develop a comprehensive model of photosynthesis. Equally important, we investigated techniques by which one can rigorously reduce such a comprehensive model to models of low dimensionality, which preserve dynamic features of interest and, thus, contribute to a better understanding of photosynthesis under natural and thus fluctuating conditions. The web-based platform www.e-photosynthesis.org is introduced as an arena where these concepts and tools are being introduced and tested.
Collapse
Affiliation(s)
- Ladislav Nedbal
- Institute of Systems Biology and Ecology ASCR, Zámek 136, 37333 Nove Hrady, Czech Republic.
| | | | | | | |
Collapse
|