51
|
Chikando AC, Kettlewell S, Williams GS, Smith G, Lederer WJ. Ca2+ dynamics in the mitochondria - state of the art. J Mol Cell Cardiol 2011; 51:627-31. [PMID: 21864537 PMCID: PMC3814218 DOI: 10.1016/j.yjmcc.2011.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/05/2011] [Accepted: 08/06/2011] [Indexed: 01/24/2023]
Abstract
The importance of [Ca2+] in the mitochondrial matrix, [Ca2+]mito, had been proposed by early work of Carafoli and others [1 ], [2 ] and [3 ]. The key suggestion in the 1970s [4 ] was that regulatory [Ca2+]mito played a role in controlling the rate of activation of tricarboxylic acid cycle dehydrogenases, important in the regulation of ATP production by the electron transport chain (ETC) during oxidative phosphorylation. This view is now established [5 ] and [6 ] and the key questions currently debated are to what extent do the mitochondria acquire and release Ca2+, and what impact do mitochondria have on the dynamic Ca2+ signal in the cardiac ventricular myocyte [7 ]. Although investigations of Ca2+ dynamics in mitochondria have been problematic, disparate and inconclusive, they have also been both provocative and exciting. A recent special issue of this journal presented contrasting perspectives on the speed, extent and mechanisms of changes in [Ca2+]mito, and how these changes may influence cellular spatio-temporal [Ca2+]i dynamics [8 ]. An audio discussion is also available online [9 ]. The uncertain nature of the signaling pathways is noted in Table 1 (see below) which shows mitochondrial proteins and processes that are of current focus and which remain contentious. Each of the “items” listed is largely unsettled, or is a “work in progress”. There may be advocates for opposing positions noted or recent discoveries that must still be tested at multiple levels by diverse laboratories. Currently, the first item, the mitochondrial sodium/calcium exchanger (NCLX) [10 ], appears the most solid with respect to the molecular identification and physiological function, whereas, the recently described candidates of the mitochondrial Ca2+ uniporter (MCU) [11 ] and [12 ] still need to be verified and broadly examined by the scientific community.
Collapse
|
52
|
Abstract
Nanotechnology deals with the construction of new materials, devices, and different technological systems with a wide range of potential applications at the atomic and molecular level. Nanomaterials have attracted great attention for numerous applications in chemical, biological, and industrial world because of their fascinating physicochemical properties. Nanomaterials and nanodevices are being produced intentionally, unintentionally, and manufactured or engineered by different methods and released into the environment without any safety test. Nantoxicity has become the subject of concern in nanoscience and nanotechnology because of the increasing toxic effects of nanomaterials on the living organisms. Nanomaterials can move freely as compared to the large-sized particles; therefore, they can be more toxic than bulky materials. This review article delineates the toxic effects of different types of nanomaterials on the living organisms through different sources, like water, air, contact with skin, and the methods of determinations of these toxic effects.
Collapse
|
53
|
Kim M, Song E. Effects of ATP and ADP on iron uptake in rat heart mitochondria. Anim Cells Syst (Seoul) 2010. [DOI: 10.1080/19768354.2010.525836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
54
|
Abstract
Engineered metallic nanomaterial particles (MENAP) represent a significant breakthrough in developing new products for use by consumers and industry. Skin application (e.g., via creams and sprays containing nanoparticles) may provide a key route of potential intake of MENAP and can lead to retrograde transport from nerve endings in the skin to the somatosensory neurons in dorsal root ganglia (DRG). This paper uses a novel theoretical model (stochastic threshold microdose [STM] model) to characterize survival of DRG neurons exposed in cell culture replicates to copper nanoparticles, based on published data. Cell death via autophagy is assumed here to occur as a result of the uptake (called hits) of the nanoparticles by mitochondria. Theoretical results are presented for the existence of a hypersensitive fraction (about 20%) of neurons that are killed in significant numbers when on average > 1 hit to the at-risk mitochondria occurs. Further, most hypersensitive neurons appear to be killed by a cumulative exposure of about 2,000 micromolar-hours and the remaining resistant cells may have dysfunctional mitochondria. Based on these theoretical findings, it is predicted that repeated exposure (e.g., over years) of the skin of humans to MENAP could lead to significant nervous system damage and related morbidity.
Collapse
|
55
|
Fröhlich E, Samberger C, Kueznik T, Absenger M, Roblegg E, Zimmer A, Pieber TR. Cytotoxicity of nanoparticles independent from oxidative stress. J Toxicol Sci 2009; 34:363-75. [PMID: 19652459 DOI: 10.2131/jts.34.363] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The use of nano-sized materials offers exciting new options in technical and medical applications. On the other hand, adverse effects on cells have been reported and may limit their use. In addition to physico-chemical parameters such as contamination with toxic elements, fibrous structure and high surface charge, the generation of radical species was identified as key mechanism for cytotoxic action of nanoparticles. The cytotoxic potential of nanoparticles in the absence of radical generation is less well investigated. This study aims to investigate the size-dependent effect of carboxyl polystyrene particles on cells to identify potential adverse effects of these particles. Particles were characterized in different solutions to assess the influence of the medium on size and surface charge. Viability, membrane integrity, apoptosis, proliferation and generation of oxidative stress were investigated. In addition the intracellular localization of the particles was recorded. 20 nm polystyrene particles induced cellular damage by induction of apoptosis and necrosis. These particles generated radicals to the same degree as larger polystyrene particles. Particles were taken up into endosomes and lysosomes in a size-dependent manner. Protein containing solutions led to increases in particle size, decreased cytotoxicity and reduced cellular uptake. It can be concluded that even in the absence of high surface reactivity and not linked to the generation of radicals nano-sized particles may cause cell damage. The mechanism of this damage includes apoptosis, necrosis and inhibition of proliferation.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, A-8010 Graz, Austria.
| | | | | | | | | | | | | |
Collapse
|
56
|
Abstract
Oxysterols are biologically active molecules that result from the oxidation of cholesterol. Several oxysterols are found in macrophages and macrophage-derived 'foam cells' in atherosclerotic tissue. Lipophilic oxysterols penetrate cell membranes and, therefore, their concentrations can reach harmful levels in endothelial and smooth muscle cells located in close proximity to the atherosclerotic plaques or inflammatory zones. New findings suggest that the effects of oxysterols on cardiomyocytes can lead to cell hypertrophy and death. This may make oxysterols one of the major factors precipitating morbidity in atherosclerosis-induced cardiac diseases and inflammation-induced heart complications. The pathological actions of oxysterols on muscle cells were shown to depend on dysfunctional Ca(2+) signaling; however, the mechanisms of the effects remain to be elucidated. Understanding the effects of oxysterols could lead to therapies that modulate malfunction of cardiomyocytes. This review discusses the experimental findings and the relevance of oxysterols to heart failure, and suggests strategies for important future investigations.
Collapse
Affiliation(s)
- Valeriy Lukyanenko
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD 21201, USA.
| | | |
Collapse
|
57
|
Lukyanenko V, Chikando A, Lederer WJ. Mitochondria in cardiomyocyte Ca2+ signaling. Int J Biochem Cell Biol 2009; 41:1957-71. [PMID: 19703657 PMCID: PMC3522519 DOI: 10.1016/j.biocel.2009.03.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 03/20/2009] [Accepted: 03/26/2009] [Indexed: 10/20/2022]
Abstract
Ca(2+) signaling is of vital importance to cardiac cell function and plays an important role in heart failure. It is based on sarcolemmal, sarcoplasmic reticulum and mitochondrial Ca(2+) cycling. While the first two are well characterized, the latter remains unclear, controversial and technically challenging. In mammalian cardiac myocytes, Ca(2+) influx through L-type calcium channels in the sarcolemmal membrane triggers Ca(2+) release from the nearby junctional sarcoplasmic reticulum to produce Ca(2+) sparks. When this triggering is synchronized by the cardiac action potential, a global [Ca(2+)](i) transient arises from coordinated Ca(2+) release events. The ends of intermyofibrillar mitochondria are located within 20 nm of the junctional sarcoplasmic reticulum and thereby experience a high local [Ca(2+)] during the Ca(2+) release process. Both local and global Ca(2+) signals may thus influence calcium signaling in mitochondria and, reciprocally, mitochondria may contribute to the local control of calcium signaling. In addition to the intermyofibrillar mitochondria, morphologically distinct mitochondria are also located in the perinuclear and subsarcolemmal regions of the cardiomyocyte and thus experience a different local [Ca(2+)]. Here we review the literature in regard to several issues of broad interest: (1) the ultrastructural basis for mitochondrion - sarcoplasmic reticulum cross-signaling; (2) mechanisms of sarcoplasmic reticulum signaling; (3) mitochondrial calcium signaling; and (4) the possible interplay of calcium signaling between the sarcoplasmic reticulum and adjacent mitochondria. Finally, this review discusses experimental findings and mathematical models of cardiac calcium signaling between the sarcoplasmic reticulum and mitochondria, identifies weaknesses in these models, and suggests strategies and approaches for future investigations.
Collapse
Affiliation(s)
- Valeriy Lukyanenko
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
58
|
Hillaireau H, Couvreur P. Nanocarriers' entry into the cell: relevance to drug delivery. Cell Mol Life Sci 2009; 66:2873-96. [PMID: 19499185 PMCID: PMC11115599 DOI: 10.1007/s00018-009-0053-z] [Citation(s) in RCA: 1060] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 05/06/2009] [Accepted: 05/18/2009] [Indexed: 11/28/2022]
Abstract
Nanocarriers offer unique possibilities to overcome cellular barriers in order to improve the delivery of various drugs and drug candidates, including the promising therapeutic biomacromolecules (i.e., nucleic acids, proteins). There are various mechanisms of nanocarrier cell internalization that are dramatically influenced by nanoparticles' physicochemical properties. Depending on the cellular uptake and intracellular trafficking, different pharmacological applications may be considered. This review will discuss these opportunities, starting with the phagocytosis pathway, which, being increasingly well characterized and understood, has allowed several successes in the treatment of certain cancers and infectious diseases. On the other hand, the non-phagocytic pathways encompass various complicated mechanisms, such as clathrin-mediated endocytosis, caveolae-mediated endocytosis and macropinocytosis, which are more challenging to control for pharmaceutical drug delivery applications. Nevertheless, various strategies are being actively investigated in order to tailor nanocarriers able to deliver anticancer agents, nucleic acids, proteins and peptides for therapeutic applications by these non-phagocytic routes.
Collapse
Affiliation(s)
- Hervé Hillaireau
- School of Engineering and Applied Sciences, Harvard University, 40 Oxford Street, Cambridge, MA 02138 USA
| | - Patrick Couvreur
- Faculté de Pharmacie, UMR CNRS 8612, Université Paris-Sud 11, IFR 141, 5 rue J.B. Clément, 92296 Châtenay Malabry, France
| |
Collapse
|
59
|
Abstract
Nanocarriers offer unique possibilities to overcome cellular barriers in order to improve the delivery of various drugs and drug candidates, including the promising therapeutic biomacromolecules (i.e., nucleic acids, proteins). There are various mechanisms of nanocarrier cell internalization that are dramatically influenced by nanoparticles' physicochemical properties. Depending on the cellular uptake and intracellular trafficking, different pharmacological applications may be considered. This review will discuss these opportunities, starting with the phagocytosis pathway, which, being increasingly well characterized and understood, has allowed several successes in the treatment of certain cancers and infectious diseases. On the other hand, the non-phagocytic pathways encompass various complicated mechanisms, such as clathrin-mediated endocytosis, caveolae-mediated endocytosis and macropinocytosis, which are more challenging to control for pharmaceutical drug delivery applications. Nevertheless, various strategies are being actively investigated in order to tailor nanocarriers able to deliver anticancer agents, nucleic acids, proteins and peptides for therapeutic applications by these non-phagocytic routes.
Collapse
Affiliation(s)
- Hervé Hillaireau
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
60
|
D'Souza GGM, Weissig V. Subcellular targeting: a new frontier for drug-loaded pharmaceutical nanocarriers and the concept of the magic bullet. Expert Opin Drug Deliv 2009; 6:1135-48. [DOI: 10.1517/17425240903236101] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
61
|
Salnikov V, Lukyanenko YO, Lederer WJ, Lukyanenko V. Distribution of ryanodine receptors in rat ventricular myocytes. J Muscle Res Cell Motil 2009; 30:161-70. [PMID: 19707881 DOI: 10.1007/s10974-009-9186-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 08/04/2009] [Indexed: 11/25/2022]
Abstract
Ryanodine receptors (RyRs) are the major ion channels in the sarcoplasmic reticulum responsible for Ca2+ release in muscle cells. Localization of RyRs is therefore critical to our understanding of Ca2+ cycling and Ca2+-dependent processes within ventricular cells. Recently, RyRs were reportedly found in non-classical locations in the middle of the sarcomere, between perinuclear mitochondria and in the inner mitochondrial membrane of cardiac mitochondria. However, for multiple reasons these reports could not be considered conclusive. Therefore, we modified immunogold labeling to visualize the distribution of RyRs in ventricular myocytes. Using antibodies to the voltage-dependent anion channel (i.e. VDAC) or cytochrome c along with our labeling method, we showed that these mitochondrial proteins were appropriately localized to the mitochondrial outer and inner membrane respectively. Immunogold labeling of ultrathin sections of intact and permeabilized ventricular myocytes with antibodies to three types of RyRs confirmed the existence of RyRs between the Z-lines and around the perinuclear mitochondria. However, we did not find any evidence to support localization of RyRs to the mitochondrial inner membrane.
Collapse
Affiliation(s)
- V Salnikov
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, 725 W. Lombard St., Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
62
|
Unfried K, Albrecht C, Klotz LO, Von Mikecz A, Grether-Beck S, Schins RP. Cellular responses to nanoparticles: Target structures and mechanisms. Nanotoxicology 2009. [DOI: 10.1080/00222930701314932] [Citation(s) in RCA: 249] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
63
|
Sal'nikov VV, Mishagina EA, Kozlovskaya IB, Nikolsky EE, Islamov RR. Immunohistochemical confirmation of localization of the ribosomal protein L26 in the terminal buttons of rat motor axon. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2009; 427:313-315. [PMID: 19760869 DOI: 10.1134/s0012496609040024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Affiliation(s)
- V V Sal'nikov
- Kazan Institute Biochemistry and Biophysics, Kazan Scientific Center Russian Academy of Sciences, Kazan, Tatarstan, Russia
| | | | | | | | | |
Collapse
|
64
|
Heart E, Cline GW, Collis LP, Pongratz RL, Gray JP, Smith PJS. Role for malic enzyme, pyruvate carboxylation, and mitochondrial malate import in glucose-stimulated insulin secretion. Am J Physiol Endocrinol Metab 2009; 296:E1354-62. [PMID: 19293334 PMCID: PMC2692397 DOI: 10.1152/ajpendo.90836.2008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pyruvate cycling has been implicated in glucose-stimulated insulin secretion (GSIS) from pancreatic beta-cells. The operation of some pyruvate cycling pathways is proposed to necessitate malate export from the mitochondria and NADP(+)-dependent decarboxylation of malate to pyruvate by cytosolic malic enzyme (ME1). Evidence in favor of and against a role of ME1 in GSIS has been presented by others using small interfering RNA-mediated suppression of ME1. ME1 was also proposed to account for methyl succinate-stimulated insulin secretion (MSSIS), which has been hypothesized to occur via succinate entry into the mitochondria in exchange for malate and subsequent malate conversion to pyruvate. In contrast to rat, mouse beta-cells lack ME1 activity, which was suggested to explain their lack of MSSIS. However, this hypothesis was not tested. In this report, we demonstrate that although adenoviral-mediated overexpression of ME1 greatly augments GSIS in rat insulinoma INS-1 832/13 cells, it does not restore MSSIS, nor does it significantly affect GSIS in mouse islets. The increase in GSIS following ME1 overexpression in INS-1 832/13 cells did not alter the ATP-to-ADP ratio but was accompanied by increases in malate and citrate levels. Increased malate and citrate levels were also observed after INS-1 832/13 cells were treated with the malate-permeable analog dimethyl malate. These data suggest that although ME1 overexpression augments anaplerosis and GSIS in INS-1 832/13 cells, it is not likely involved in MSSIS and GSIS in pancreatic islets.
Collapse
Affiliation(s)
- Emma Heart
- BioCurrents Research Center, Marine Biological Laboratory, 7 MBL St., Lillie 219, Woods Hole, MA 02543, USA.
| | | | | | | | | | | |
Collapse
|
65
|
Faunce TA, White J, Matthaei KI. Integrated research into the nanoparticle-protein corona: a new focus for safe, sustainable and equitable development of nanomedicines. Nanomedicine (Lond) 2009; 3:859-66. [PMID: 19025459 DOI: 10.2217/17435889.3.6.859] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Much contemporary nanotoxicology, nanotherapeutic and nanoregulatory research has been characterized by a focus on investigating how delivery of engineered nanoparticles (ENPs) to cells is dictated primarily by components of the ENP surface. An alternative model, some implications of which are discussed here, begins with fundamental physicochemical research into the interaction of a dynamic nanoparticle-protein corona (NPC) with biological systems. The proposed new model also requires, however, that any such fresh NPC physicochemical research approach should involve integration and targeted collaboration from the earliest stages with nanotoxicology, nanotherapeutics and nanoregulatory expertise. The justification for this integrated approach, we argue, relates not just to efficiency and promotion of innovation but to an acknowledgement that public-funded basic physicochemical research in particular should now be accepted to incorporate strong higher order public-goods elements from its inception, not merely after product development at the technology-transfer stage. Issues, such as university-research cooperation, commercialization and intellectual property protection, safety and cost-effectiveness regulatory assessment, as well as technology transfer should not be viewed as second tier considerations, even in a 'blue sky' NPC basic research agenda.
Collapse
Affiliation(s)
- Thomas Alured Faunce
- College of Medicine & Health Sciences, Australian National University, Canberra, Australia.
| | | | | |
Collapse
|
66
|
Spät A, Szanda G, Csordás G, Hajnóczky G. High- and low-calcium-dependent mechanisms of mitochondrial calcium signalling. Cell Calcium 2008; 44:51-63. [PMID: 18242694 DOI: 10.1016/j.ceca.2007.11.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Revised: 11/23/2007] [Accepted: 11/30/2007] [Indexed: 11/30/2022]
Abstract
The Ca(2+) coupling between endoplasmic reticulum (ER) and mitochondria is central to multiple cell survival and cell death mechanisms. Cytoplasmic [Ca(2+)] ([Ca(2+)](c)) spikes and oscillations produced by ER Ca(2+) release are effectively delivered to the mitochondria. Propagation of [Ca(2+)](c) signals to the mitochondria requires the passage of Ca(2+) across three membranes, namely the ER membrane, the outer mitochondrial membrane (OMM) and the inner mitochondrial membrane (IMM). Strategic positioning of the mitochondria by cytoskeletal transport and interorganellar tethers provides a means to promote the local transfer of Ca(2+) between the ER membrane and OMM. In this setting, even >100 microM [Ca(2+)] may be attained to activate the low affinity mitochondrial Ca(2+) uptake. However, a mitochondrial [Ca(2+)] rise has also been documented during submicromolar [Ca(2+)](c) elevations. Evidence has been emerging that Ca(2+) exerts allosteric control on the Ca(2+) transport sites at each membrane, providing mechanisms that may facilitate the Ca(2+) delivery to the mitochondria. Here we discuss the fundamental mechanisms of ER and mitochondrial Ca(2+) transport, particularly the control of their activity by Ca(2+) and evaluate both high- and low-[Ca(2+)]-activated mitochondrial calcium signals in the context of cell physiology.
Collapse
Affiliation(s)
- András Spät
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
| | | | | | | |
Collapse
|
67
|
Li C, Hu LN, Dong XJ, Sun CX, Mi Y. High-intensity electric pulses induce mitochondria-dependent apoptosis in ovarian cancer xenograft mice. Int J Gynecol Cancer 2008; 18:1258-61. [PMID: 18217966 DOI: 10.1111/j.1525-1438.2007.01182.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Human ovarian cancer models were established in nude mice by transplanting SKOV(3) cells, and then tumors were exposed to high-intensity electric pulses with a voltage 1000 V, frequency of 1000 Hz, and duration of 250 ns for 1 min. Mitochondria permeability transition pore (PTP) was inspected by cofocal microscope; cytochrome C (Cyt C) and apoptosis-induced factor (AIF) were determined by immunohistochemistry; and voltage-dependent anion channel (VDAC) was measured by immunofluorescence. High-intensity electric pulses exposure led to increases of PTP, Cyt C, and AIF and a decrease of VDAC. These findings revealed that high-intensity electric pulses activated mitochondria electroporation, apoptosis was realized via mitochondria pathway.
Collapse
Affiliation(s)
- C Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
68
|
Lukyanenko V. Delivery of nano-objects to functional sub-domains of healthy and failing cardiac myocytes. Nanomedicine (Lond) 2008; 2:831-46. [PMID: 18095849 DOI: 10.2217/17435889.2.6.831] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular disease, including heart failure, is one of the leading causes of mortality in the world. Delivery of nano-objects as carriers for markers, drugs or therapeutic genes to cellular organelles has the potential to sharply increase the efficiency of diagnostic and treatment protocols for heart failure. However, cardiac cells present special problems to the delivery of nano-objects, and the number of papers devoted to this important area is remarkably small. The present review discusses fundamental aspects, problems and perspectives in the delivery of nano-objects to functional sub-domains of failing cardiomyocytes. What size nano-objects can reach cellular sub-domains in failing hearts? What are the mechanisms for their permeation through the sarcolemma? How can we improve the delivery of nano-objects to the sub-domains? Answering these questions is fundamental to identifying cellular targets within the failing heart and the development of nanocarriers for heart-failure therapy at the cellular level.
Collapse
Affiliation(s)
- Valeriy Lukyanenko
- University of Maryland Biotechnology Institute, Medical Biotechnology Center, 725 W. Lombard St., Rm S216, Baltimore, MD 21201, USA.
| |
Collapse
|
69
|
Funtionalization of Pharmaceutical Nanocarriers for Mitochondria-Targeted Drug and DNA Delivery. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/978-0-387-76554-9_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
70
|
Lukyanenko V, Ziman A, Lukyanenko A, Salnikov V, Lederer WJ. Functional groups of ryanodine receptors in rat ventricular cells. J Physiol 2007; 583:251-69. [PMID: 17627991 PMCID: PMC2277248 DOI: 10.1113/jphysiol.2007.136549] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ryanodine receptors (RyR2s) are ion channels in the sarcoplasmic reticulum (SR) that are responsible for Ca2+ release in rat ventricular myocytes. Localization of RyR2s is therefore crucial for our understanding of contraction and other Ca2+-dependent intracellular processes. Recent results (e.g. circular waves and Ca2+ sparks in perinuclear area) raised questions about the classical views of RyR2 distribution and organization within ventricular cells. A Ca2+ spark is a fluorescent signal reflecting the activation of a small group of RyR2s. Frequency and spatio-temporal characteristics of Ca2+ sparks depend on the state of cytoplasmic and intraluminal macromolecular complexes regulating cardiac RyR2 function. We employed electron microscopy, confocal imaging of spontaneous Ca2+ sparks and immunofluorescence to visualize the distribution of RyR2s in ventricular myocytes and to evaluate the local involvement of the macromolecular complexes in regulation of functional activity of the RyR2 group. An electron microscopy study revealed that the axial tubules of the transverse-axial tubular system probably do not have junctions with the network SR (nSR). The nSR was found to be wrapped around intermyofibrillar mitochondria and contained structures similar to feet of the junctional cleft. Treatment of ventricular myocytes with antibodies against RyR2 showed that in addition to the junctional SR, a small number of RyR2s can be localized at the middle of the sarcomere and in the zone of perinuclear mitochondria. Recordings of spontaneous Ca2+ sparks showed the existence of functional groups of RyR2s in these intracellular compartments. We found that within the sarcomere about 20% of Ca2+ sparks were not colocalized with the zone of the junctional or corbular SR (Z-line zone). The spatio-temporal characteristics of sparks found in the Z-line and A-band zones were very similar, whereas sparks from the zone of the perinuclear mitochondria were about 25% longer. Analysis of the initiation sites of Ca2+ sparks within the same junctional SR cluster suggested that 18-25 RyR2s are in the functional group producing a spark. Because of the similarity of the spatio-temporal characteristics of sarcomeric sparks and ultrastructural characteristics of nSR, we suggest that the functional groups of RyR2s in the middle of the sarcomere are macromolecular complexes of approximately 20 RyR2s with regulatory proteins. Our data allowed us to conclude that a significant number of functional RyR2s is located in the middle of the sarcomere and in the zone of perinuclear mitochondria. These RyR2s could contribute to excitation-contraction coupling, mitochondrial and nuclear signalling, and Ca2+-dependent gene regulation, but their existence raises many additional questions.
Collapse
Affiliation(s)
- V Lukyanenko
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, 725 W. Lombard St, Room S213, Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
71
|
Abstract
Mitochondrial research has made an enormous leap since mitochondrial DNA mutations were identified as a primary cause for human diseases in 1988 and the organelle’s crucial role in apoptosis was identified during the 1990s. Considerable progress has been made in identifying the molecular components of the mitochondrial machinery responsible for life and cell death; however, effective therapies for diseases caused by mitochondrial dysfunction remain elusive. An impediment to manipulating, probing and assessing the functional components of mammalian mitochondria within living cells is their limited accessibility to direct physical, biochemical and pharmacological manipulation. Recent advances in nanotechnology hold the promise of helping to overcome these obstacles. New tools will undoubtedly emerge, creating new avenues for the diagnosis and therapy of mitochondrial disorders. This review briefly discusses current efforts to merge nanobiotechnology with mitochondrial medicine.
Collapse
Affiliation(s)
- Volkmar Weissig
- Northeastern University, Bouve College of Health Sciences, School of Pharmacy, Department of Pharmaceutical Sciences, Boston, MA, USA.
| | | | | | | |
Collapse
|