51
|
Goldspink DA, Reimann F, Gribble FM. Models and Tools for Studying Enteroendocrine Cells. Endocrinology 2018; 159:3874-3884. [PMID: 30239642 PMCID: PMC6215081 DOI: 10.1210/en.2018-00672] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022]
Abstract
Gut hormones produced by gastrointestinal enteroendocrine cells modulate key physiological processes including glucose homeostasis and food intake, making them potential therapeutic candidates to treat obesity and diabetes. Understanding the function of enteroendocrine cells and the molecular mechanisms driving hormone production is a key step toward mobilizing endogenous hormone reserves in the gut as a therapeutic strategy. In this review, we will discuss the variety of ex vivo and in vitro model systems driving this research and their contributions to our current understanding of nutrient-sensing mechanisms in enteroendocrine cells.
Collapse
Affiliation(s)
- Deborah A Goldspink
- Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom
| | - Frank Reimann
- Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom
| | - Fiona M Gribble
- Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom
- Correspondence: Fiona M. Gribble, DPhil, BM, BCh, Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, United Kingdom. E-mail:
| |
Collapse
|
52
|
Filippello A, Urbano F, Di Mauro S, Scamporrino A, Di Pino A, Scicali R, Rabuazzo AM, Purrello F, Piro S. Chronic Exposure to Palmitate Impairs Insulin Signaling in an Intestinal L-cell Line: A Possible Shift from GLP-1 to Glucagon Production. Int J Mol Sci 2018; 19:E3791. [PMID: 30487448 PMCID: PMC6321596 DOI: 10.3390/ijms19123791] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 12/11/2022] Open
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are characterized by insulin resistance and impaired glucagon-like peptide-1 (GLP-1) secretion/function. Lipotoxicity, a chronic elevation of free fatty acids in the blood, could affect insulin-signaling in many peripheral tissues. To date, the effects of lipotoxicity on the insulin receptor and insulin resistance in the intestinal L-cells need to be elucidated. Moreover, recent observations indicate that L-cells may be able to process not only GLP-1 but also glucagon from proglucagon. The aim of this study was to investigate the effects of chronic palmitate exposure on insulin pathways, GLP-1 secretion and glucagon synthesis in the GLUTag L-cell line. Cells were cultured in the presence/absence of palmitate (0.5 mM) for 24 h to mimic lipotoxicity. Palmitate treatment affected insulin-stimulated GLP-1 secretion, insulin receptor phosphorylation and IRS-1-AKT pathway signaling. In our model lipotoxicity induced extracellular signal-regulated kinase (ERK 44/42) activation both in insulin stimulated and basal conditions and also up-regulated paired box 6 (PAX6) and proglucagon expression (Gcg). Interestingly, palmitate treatment caused an increased glucagon secretion through the up-regulation of prohormone convertase 2. These results indicate that a state of insulin resistance could be responsible for secretory alterations in L-cells through the impairment of insulin-signaling pathways. Our data support the hypothesis that lipotoxicity might contribute to L-cell deregulation.
Collapse
Affiliation(s)
- Agnese Filippello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy.
| | - Francesca Urbano
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy.
| | - Stefania Di Mauro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy.
| | - Alessandra Scamporrino
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy.
| | - Antonino Di Pino
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy.
| | - Roberto Scicali
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy.
| | - Agata Maria Rabuazzo
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy.
| | - Francesco Purrello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy.
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy.
| |
Collapse
|
53
|
Chen W, Hira T, Nakajima S, Hara H. Wheat gluten hydrolysate potently stimulates peptide-YY secretion and suppresses food intake in rats. Biosci Biotechnol Biochem 2018; 82:1992-1999. [DOI: 10.1080/09168451.2018.1505482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABSTRACT
The study was aimed to compare the satiating effect of various protein hydrolysates in rats and examine the underlying mechanism associated with the satiety hormones. Food intake and portal satiety hormone levels were measured in rats. Enteroendocrine cell-lines were employed to study the direct effect of protein hydrolysates on gut hormone secretions. The results showed that oral preload of wheat gluten hydrolysate (WGH) suppressed food intake greater and longer than other hydrolysates. The portal peptide-YY levels in WGH-treated rats at 2 h and 3 h were higher than those in control- and lactalbumin hydrolysate (LAH)-treated rats. In a distal enteroendocrine cell model, WGH more potently stimulated glucagon-like peptide-1 secretion than LAH, and the effect was largely enhanced by pepsin/pancreatin digestion of WGH. These results suggest WGH is potent in activating enteroendocrine cells to release satiety hormones leading to the prolonged suppression of food intake.
Collapse
Affiliation(s)
- Wenya Chen
- Academy of State Administration of Grain, Beijing, P.R. China
- Division of Applied Biosciences, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tohru Hira
- Research Group of Bioscience and Chemistry, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shingo Nakajima
- Research Group of Bioscience and Chemistry, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroshi Hara
- Research Group of Bioscience and Chemistry, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
54
|
Irish Cheddar cheese increases glucagon-like peptide-1 secretion in vitro but bioactivity is lost during gut transit. Food Chem 2018; 265:9-17. [DOI: 10.1016/j.foodchem.2018.05.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/10/2018] [Accepted: 05/13/2018] [Indexed: 12/22/2022]
|
55
|
Komatsu Y, Wada Y, Izumi H, Shimizu T, Takeda Y, Hira T, Hara H. Casein materials show different digestion patterns using an in vitro gastrointestinal model and different release of glucagon-like peptide-1 by enteroendocrine GLUTag cells. Food Chem 2018; 277:423-431. [PMID: 30502166 DOI: 10.1016/j.foodchem.2018.10.123] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 01/22/2023]
Abstract
Physicochemical properties of casein (CN) materials manufactured using different processes are well studied; however, data on their bioaccessibility or bioactivity are limited. We compared the digestion patterns and glucagon-like peptide-1 (GLP-1)-releasing activities of micellar CN concentrate (MCC) and sodium caseinate (SCN). MCC and SCN mixed with whey protein isolate (SCN + WPI) were subjected to in vitro gastrointestinal digestion; the digestibility of MCC was higher than that of SCN + WPI, and both CN materials showed different patterns of peptides released after in vitro digestion. A comparison of GLP-1-releasing activities showed that MCC induced GLP-1 secretion to a greater extent than SCN + WPI. Candidate peptides identified from CN digesta were chemically synthesized to test their GLP-1-releasing activity. GPVRGPFPIIV identified only in the MCC digesta, could stimulate GLP-1 release. In conclusion, the digestion patterns and GLP-1-releasing activity of CN materials depend on the production process.
Collapse
Affiliation(s)
- Yosuke Komatsu
- Wellness & Nutrition Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan; Center for Food and Medical Innovation Promotion, Institute for the Promotion of Business-Regional Collaboration of Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.
| | - Yasuaki Wada
- Wellness & Nutrition Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan; Center for Food and Medical Innovation Promotion, Institute for the Promotion of Business-Regional Collaboration of Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Hirohisa Izumi
- Wellness & Nutrition Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan; Center for Food and Medical Innovation Promotion, Institute for the Promotion of Business-Regional Collaboration of Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Takashi Shimizu
- Wellness & Nutrition Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Yasuhiro Takeda
- Wellness & Nutrition Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Tohru Hira
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Hiroshi Hara
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| |
Collapse
|
56
|
Wang D, Meng Q, Leech CA, Yepuri N, Zhang L, Holz GG, Wang C, Cooney RN. α7 Nicotinic Acetylcholine Receptor Regulates the Function and Viability of L Cells. Endocrinology 2018; 159:3132-3142. [PMID: 29992246 PMCID: PMC6456923 DOI: 10.1210/en.2018-00433] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/02/2018] [Indexed: 12/20/2022]
Abstract
Enteroendocrine L cells secrete the incretin hormone glucagon-like peptide-1 (GLP-1), and they also express the α7 nicotinic acetylcholine receptor (α7nAChR), which may regulate GLP-1 secretion. Here, GTS-21, a selective α7nAChR agonist, was used to examine the effect of α7nAChR activation in L-cell lines, mouse intestinal primary cell cultures, and C57BL/6 mice. GTS-21 stimulated GLP-1 secretion in vitro, and this effect was attenuated by an α7nAChR antagonist or by α7nAChR-specific small interfering RNA. Under in vitro cell culture conditions of glucotoxicity, GTS-21 restored GLP-1 secretion and improved L-cell viability while also acting in vivo to raise levels of circulating GLP-1 in mice. To assess potential signaling mechanisms underlying these actions of GTS-21, we first monitored Ca2+, cAMP, and phosphatidylinositol 3-kinase (PI3K) activity. As expected for a GLP-1 secretagogue promoting Ca2+ influx through α7nAChR cation channels, [Ca2+]i increased in response to GTS-21, but [cAMP]i was unchanged. Surprisingly, pharmacological inhibition of growth factor signaling pathways revealed that GTS-21 also acts on the PI3K-protein kinase B-mammalian target of rapamycin pathway to promote L-cell viability. Moreover, the Ca2+ chelator BAPTA-AM counteracted GTS-21‒stimulated PI3K activity, thereby indicating unexpected crosstalk of L-cell Ca2+ and growth factor signaling pathways. Collectively, these data demonstrate that α7nAChR activation enhances GLP-1 secretion by increasing levels of cytosolic Ca2+ while also revealing Ca2+- and PI3K-dependent processes of α7nAChR activation that promote L-cell survival.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York
| | - Qinghe Meng
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York
| | - Colin A Leech
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York
| | - Natesh Yepuri
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York
| | - Linlin Zhang
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York
| | - George G Holz
- Department of Medicine, SUNY Upstate Medical University, Syracuse, New York
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York
| | - Chunting Wang
- Department of Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, China
- Correspondence: Robert N. Cooney, MD, Department of Surgery, SUNY Upstate Medical University, 750 East Adams Street, Suite 8141, Syracuse, New York 13210. E-mail: ; or Chunting Wang, MD, Department of Critical Care Medicine, Shandong Provincial Hospital, Shandong University, 9677 Jing 10 Road, Jinan 250101, Shandong, China. E-mail:
| | - Robert N Cooney
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York
- Correspondence: Robert N. Cooney, MD, Department of Surgery, SUNY Upstate Medical University, 750 East Adams Street, Suite 8141, Syracuse, New York 13210. E-mail: ; or Chunting Wang, MD, Department of Critical Care Medicine, Shandong Provincial Hospital, Shandong University, 9677 Jing 10 Road, Jinan 250101, Shandong, China. E-mail:
| |
Collapse
|
57
|
Hira T, Ogasawara S, Yahagi A, Kamachi M, Li J, Nishimura S, Sakaino M, Yamashita T, Kishino S, Ogawa J, Hara H. Novel Mechanism of Fatty Acid Sensing in Enteroendocrine Cells: Specific Structures in Oxo-Fatty Acids Produced by Gut Bacteria Are Responsible for CCK Secretion in STC-1 Cells via GPR40. Mol Nutr Food Res 2018; 62:e1800146. [DOI: 10.1002/mnfr.201800146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/19/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Tohru Hira
- Research Faculty of Agriculture; Hokkaido University; Sapporo 060-8589 Japan
| | - Shono Ogasawara
- Graduate School of Agriculture; Hokkaido University; Sapporo 060-8589 Japan
| | - Asuka Yahagi
- Graduate School of Agriculture; Hokkaido University; Sapporo 060-8589 Japan
| | - Minami Kamachi
- Graduate School of Agriculture; Hokkaido University; Sapporo 060-8589 Japan
| | - Jiaxin Li
- School of Agriculture; Hokkaido University; Sapporo 060-8589 Japan
| | - Saki Nishimura
- Fundamental Research Laboratory, Research and Development Division; J-Oil Mills, Inc.; Yokohama 230-0053 Japan
| | - Masayoshi Sakaino
- Fundamental Research Laboratory, Research and Development Division; J-Oil Mills, Inc.; Yokohama 230-0053 Japan
| | - Takatoshi Yamashita
- Fundamental Research Laboratory, Research and Development Division; J-Oil Mills, Inc.; Yokohama 230-0053 Japan
| | - Shigenobu Kishino
- Graduate School of Agriculture; Kyoto University; Kyoto 606-8502 Japan
| | - Jun Ogawa
- Graduate School of Agriculture; Kyoto University; Kyoto 606-8502 Japan
| | - Hiroshi Hara
- Research Faculty of Agriculture; Hokkaido University; Sapporo 060-8589 Japan
| |
Collapse
|
58
|
Ang SY, Evans BA, Poole DP, Bron R, DiCello JJ, Bathgate RAD, Kocan M, Hutchinson DS, Summers RJ. INSL5 activates multiple signalling pathways and regulates GLP-1 secretion in NCI-H716 cells. J Mol Endocrinol 2018. [PMID: 29535183 DOI: 10.1530/jme-17-0152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Insulin-like peptide 5 (INSL5) is a newly discovered gut hormone expressed in colonic enteroendocrine L-cells but little is known about its biological function. Here, we show using RT-qPCR and in situ hybridisation that Insl5 mRNA is highly expressed in the mouse colonic mucosa, colocalised with proglucagon immunoreactivity. In comparison, mRNA for RXFP4 (the cognate receptor for INSL5) is expressed in various mouse tissues, including the intestinal tract. We show that the human enteroendocrine L-cell model NCI-H716 cell line, and goblet-like colorectal cell lines SW1463 and LS513 endogenously express RXFP4. Stimulation of NCI-H716 cells with INSL5 produced phosphorylation of ERK1/2 (Thr202/Tyr204), AKT (Thr308 and Ser473) and S6RP (Ser235/236) and inhibited cAMP production but did not stimulate Ca2+ release. Acute INSL5 treatment had no effect on GLP-1 secretion mediated by carbachol or insulin, but modestly inhibited forskolin-stimulated GLP-1 secretion in NCI-H716 cells. However, chronic INSL5 pre-treatment (18 h) increased basal GLP-1 secretion and prevented the inhibitory effect of acute INSL5 administration. LS513 cells were found to be unresponsive to INSL5 despite expressing RXFP4 Another enteroendocrine L-cell model, mouse GLUTag cells did not express detectable levels of Rxfp4 and were unresponsive to INSL5. This study provides novel insights into possible autocrine/paracrine roles of INSL5 in the intestinal tract.
Collapse
Affiliation(s)
- Sheng Y Ang
- Drug Discovery BiologyMonash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Bronwyn A Evans
- Drug Discovery BiologyMonash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Daniel P Poole
- Drug Discovery BiologyMonash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Romke Bron
- Drug Discovery BiologyMonash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jesse J DiCello
- Drug Discovery BiologyMonash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental HealthUniversity of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular BiologyUniversity of Melbourne, Melbourne, Victoria, Australia
| | - Martina Kocan
- The Florey Institute of Neuroscience and Mental HealthUniversity of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular BiologyUniversity of Melbourne, Melbourne, Victoria, Australia
| | - Dana S Hutchinson
- Drug Discovery BiologyMonash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Department of PharmacologyMonash University, Clayton, Victoria, Australia
| | - Roger J Summers
- Drug Discovery BiologyMonash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
59
|
Kuhre RE, Wewer Albrechtsen NJ, Larsen O, Jepsen SL, Balk-Møller E, Andersen DB, Deacon CF, Schoonjans K, Reimann F, Gribble FM, Albrechtsen R, Hartmann B, Rosenkilde MM, Holst JJ. Bile acids are important direct and indirect regulators of the secretion of appetite- and metabolism-regulating hormones from the gut and pancreas. Mol Metab 2018; 11:84-95. [PMID: 29656109 PMCID: PMC6001409 DOI: 10.1016/j.molmet.2018.03.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/03/2018] [Accepted: 03/13/2018] [Indexed: 02/06/2023] Open
Abstract
Objective Bile acids (BAs) facilitate fat absorption and may play a role in glucose and metabolism regulation, stimulating the secretion of gut hormones. The relative importance and mechanisms involved in BA-stimulated secretion of appetite and metabolism regulating hormones from the gut and pancreas is not well described and was the purpose of this study. Methods The effects of bile acids on the secretion of gut and pancreatic hormones was studied in rats and compared to the most well described nutritional secretagogue: glucose. The molecular mechanisms that underlie the secretion was studied by isolated perfused rat and mouse small intestine and pancreas preparations and supported by immunohistochemistry, expression analysis, and pharmacological studies. Results Bile acids robustly stimulate secretion of not only the incretin hormones, glucose-dependent insulinotropic peptide (GIP), and glucagon-like peptide-1 (GLP-1), but also glucagon and insulin in vivo, to levels comparable to those resulting from glucose stimulation. The mechanisms of GLP-1, neurotensin, and peptide YY (PYY) secretion was secondary to intestinal absorption and depended on activation of basolateral membrane Takeda G-protein receptor 5 (TGR5) receptors on the L-cells in the following order of potency: Lithocholic acid (LCA) >Deoxycholicacid (DCA)>Chenodeoxycholicacid (CDCA)> Cholic acid (CA). Thus BAs did not stimulate secretion of GLP-1 and PYY from perfused small intestine in TGR5 KO mice but stimulated robust responses in wild type littermates. TGR5 is not expressed on α-cells or β-cells, and BAs had no direct effects on glucagon or insulin secretion from the perfused pancreas. Conclusion BAs should be considered not only as fat emulsifiers but also as important regulators of appetite- and metabolism-regulating hormones by activation of basolateral intestinal TGR5. Bile acids stimulate the secretion of metabolism-regulating hormones from the gut. Bile acids stimulate secretion of gut hormones to a similar extent as glucose. Activation of basolateral TGR5 receptors mediates the responses. Bile acids stimulate glucagon and insulin secretion, but only indirectly. Bile acids should be regarded as important regulators of blood glucose and metabolism.
Collapse
Affiliation(s)
- Rune E Kuhre
- Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark; NNF Center for Basic Metabolic Research, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark; NNF Center for Basic Metabolic Research, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Olav Larsen
- Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Sara L Jepsen
- Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark; NNF Center for Basic Metabolic Research, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Emilie Balk-Møller
- Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark; NNF Center for Basic Metabolic Research, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Daniel B Andersen
- Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark; NNF Center for Basic Metabolic Research, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Carolyn F Deacon
- Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark; NNF Center for Basic Metabolic Research, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Ecole Polytechnique Fédérale de Lausanne, Station 15, CH-1015, Lausanne, Switzerland
| | - Frank Reimann
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, CB2 0QQ, United Kingdom
| | - Fiona M Gribble
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, CB2 0QQ, United Kingdom
| | - Reidar Albrechtsen
- Department of Biomedical Sciences, and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark; NNF Center for Basic Metabolic Research, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark; NNF Center for Basic Metabolic Research, University of Copenhagen, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
60
|
Pathak V, Flatt PR, Irwin N. Cholecystokinin (CCK) and related adjunct peptide therapies for the treatment of obesity and type 2 diabetes. Peptides 2018; 100:229-235. [PMID: 29412823 DOI: 10.1016/j.peptides.2017.09.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 02/07/2023]
Abstract
Cholecystokinin (CCK) is a hormone secreted from I-cells of the gut, as well as neurons in the enteric and central nervous system, that binds and activates CCK-1 and CCK-2 receptors to mediate its biological actions. To date knowledge relating to the physiological significance of CCK has predominantly focused around induction of short-term satiety. However, CCK has also been highlighted to possess important actions in relation to the regulation of insulin secretion, as well as overall beta-cell function and survival. Consequently, this has led to the development of enzymatically stable, biologically active, CCK peptide analogues with proposed therapeutic promise for both obesity and type 2 diabetes. In addition, several studies have demonstrated metabolic, and therapeutically relevant, complementary biological actions of CCK with those of the incretin hormones GIP and GLP-1, as well as with amylin and leptin. Thus, stable CCK derivatives not only offer promise as potential independent weight-reducing and glucose-lowering drugs, but also as effective adjunctive therapies. This review focuses on the recent and ongoing developments of CCK in the context of new therapies for obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Varun Pathak
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK.
| |
Collapse
|
61
|
Kondrashina A, Papkovsky D, Giblin L. Physiological Gut Oxygenation Alters GLP-1 Secretion from the Enteroendocrine Cell Line STC-1. Mol Nutr Food Res 2018; 62. [DOI: 10.1002/mnfr.201700568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/05/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Alina Kondrashina
- Food for Health Ireland; Teagasc Food Research Centre; Moorepark Fermoy Co. Cork Ireland
| | - Dmitri Papkovsky
- School of Biochemistry and Cell Biology; University College Cork; Cork Ireland
| | - Linda Giblin
- Food for Health Ireland; Teagasc Food Research Centre; Moorepark Fermoy Co. Cork Ireland
| |
Collapse
|
62
|
Shrestha N, Bouttefeux O, Vanvarenberg K, Lundquist P, Cunarro J, Tovar S, Khodus G, Andersson E, Keita ÅV, Gonzalez Dieguez C, Artursson P, Préat V, Beloqui A. The stimulation of GLP-1 secretion and delivery of GLP-1 agonists via nanostructured lipid carriers. NANOSCALE 2018; 10:603-613. [PMID: 29235598 DOI: 10.1039/c7nr07736j] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanoparticulate based drug delivery systems have been extensively studied to efficiently encapsulate and deliver peptides orally. However, most of the existing data mainly focus on the nanoparticles as a drug carrier, but the ability of nanoparticles having a biological effect has not been exploited. Herein, we hypothesize that nanostructured lipid carriers (NLCs) could activate the endogenous glucagon-like peptide-1 (GLP-1) secretion and also act as oral delivery systems for GLP-1 analogs (exenatide and liraglutide). NLCs effectively encapsulated the peptides, the majority of which were only released under the intestinal conditions. NLCs, with and without peptide encapsulation, showed effective induction of GLP-1 secretion in vitro from the enteroendocrinal L-cells (GLUTag). NLCs also showed a 2.9-fold increase in the permeability of exenatide across the intestinal cell monolayer. The intestinal administration of the exenatide and liraglutide loaded NLCs did not demonstrate any glucose lowering effect on normal mice. Further, ex vivo studies depicted that the NLCs mainly adhered to the mucus layer. In conclusion, this study demonstrates that NLCs need further optimization to overcome the mucosal barrier in the intestine; nonetheless, this study also presents a promising strategy to use a dual-action drug delivery nanosystem which synergizes its own biological effect and that of the encapsulated drug molecule.
Collapse
Affiliation(s)
- Neha Shrestha
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Paternoster S, Falasca M. Dissecting the Physiology and Pathophysiology of Glucagon-Like Peptide-1. Front Endocrinol (Lausanne) 2018; 9:584. [PMID: 30364192 PMCID: PMC6193070 DOI: 10.3389/fendo.2018.00584] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/14/2018] [Indexed: 12/11/2022] Open
Abstract
An aging world population exposed to a sedentary life style is currently plagued by chronic metabolic diseases, such as type-2 diabetes, that are spreading worldwide at an unprecedented rate. One of the most promising pharmacological approaches for the management of type 2 diabetes takes advantage of the peptide hormone glucagon-like peptide-1 (GLP-1) under the form of protease resistant mimetics, and DPP-IV inhibitors. Despite the improved quality of life, long-term treatments with these new classes of drugs are riddled with serious and life-threatening side-effects, with no overall cure of the disease. New evidence is shedding more light over the complex physiology of GLP-1 in health and metabolic diseases. Herein, we discuss the most recent advancements in the biology of gut receptors known to induce the secretion of GLP-1, to bridge the multiple gaps into our understanding of its physiology and pathology.
Collapse
|
64
|
Andersen ES, Deacon CF, Holst JJ. Do we know the true mechanism of action of the DPP-4 inhibitors? Diabetes Obes Metab 2018; 20:34-41. [PMID: 28544214 DOI: 10.1111/dom.13018] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/18/2017] [Accepted: 05/21/2017] [Indexed: 12/19/2022]
Abstract
The prevalence of type 2 diabetes is increasing, which is alarming because of its serious complications. Anti-diabetic treatment aims to control glucose homeostasis as tightly as possible in order to reduce these complications. Dipeptidyl peptidase-4 (DPP-4) inhibitors are a recent addition to the anti-diabetic treatment modalities, and have become widely accepted because of their good efficacy, their benign side-effect profile and their low hypoglycaemia risk. The actions of DPP-4 inhibitors are not direct, but rather are mediated indirectly through preservation of the substrates they protect from degradation. The two incretin hormones, glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide, are known substrates, but other incretin-independent mechanisms may also be involved. It seems likely therefore that the mechanisms of action of DPP-4 inhibitors are more complex than originally thought, and may involve several substrates and encompass local paracrine, systemic endocrine and neural pathways, which are discussed here.
Collapse
Affiliation(s)
- Emilie S Andersen
- Department of Internal Medicine F, Hospital Gentofte, Copenhagen University, Copenhagen, Denmark
- Department of Biomedical Sciences, NNF Center of Basic Metabolic Research, The Panum Institute, Copenhagen University, Copenhagen, Denmark
| | - Carolyn F Deacon
- Department of Biomedical Sciences, NNF Center of Basic Metabolic Research, The Panum Institute, Copenhagen University, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, NNF Center of Basic Metabolic Research, The Panum Institute, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
65
|
Farb TB, Adeva M, Beauchamp TJ, Cabrera O, Coates DA, Meredith TD, Droz BA, Efanov A, Ficorilli JV, Gackenheimer SL, Martinez-Grau MA, Molero V, Ruano G, Statnick MA, Suter TM, Syed SK, Toledo MA, Willard FS, Zhou X, Bokvist KB, Barrett DG. Regulation of Endogenous (Male) Rodent GLP-1 Secretion and Human Islet Insulin Secretion by Antagonism of Somatostatin Receptor 5. Endocrinology 2017; 158:3859-3873. [PMID: 28938487 DOI: 10.1210/en.2017-00639] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/06/2017] [Indexed: 12/25/2022]
Abstract
Incretin and insulin responses to nutrient loads are suppressed in persons with diabetes, resulting in decreased glycemic control. Agents including sulfonylureas and dipeptidyl peptidase-4 inhibitors (DPP4i) partially reverse these effects and provide therapeutic benefit; however, their modes of action limit efficacy. Because somatostatin (SST) has been shown to suppress insulin and glucagonlike peptide-1 (GLP-1) secretion through the Gi-coupled SST receptor 5 (SSTR5) isoform in vitro, antagonism of SSTR5 may improve glycemic control via intervention in both pathways. Here, we show that a potent and selective SSTR5 antagonist reverses the blunting effects of SST on insulin secretion from isolated human islets, and demonstrate that SSTR5 antagonism affords increased levels of systemic GLP-1 in vivo. Knocking out Sstr5 in mice provided a similar increase in systemic GLP-1 levels, which were not increased further by treatment with the antagonist. Treatment of mice with the SSTR5 antagonist in combination with a DPP4i resulted in increases in systemic GLP-1 levels that were more than additive and resulted in greater glycemic control compared with either agent alone. In isolated human islets, the SSTR5 antagonist completely reversed the inhibitory effect of exogenous SST-14 on insulin secretion. Taken together, these data suggest that SSTR5 antagonism should increase circulating GLP-1 levels and stimulate insulin secretion (directly and via GLP-1) in humans, improving glycemic control in patients with diabetes.
Collapse
Affiliation(s)
- Thomas B Farb
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Marta Adeva
- Centro de Investigacion Lilly, Eli Lilly and Company, 28108-Alcobendas, Madrid, Spain
| | - Thomas J Beauchamp
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Over Cabrera
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - David A Coates
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| | | | - Brian A Droz
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Alexander Efanov
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - James V Ficorilli
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| | | | - Maria A Martinez-Grau
- Centro de Investigacion Lilly, Eli Lilly and Company, 28108-Alcobendas, Madrid, Spain
| | - Victoriano Molero
- Centro de Investigacion Lilly, Eli Lilly and Company, 28108-Alcobendas, Madrid, Spain
| | - Gema Ruano
- Centro de Investigacion Lilly, Eli Lilly and Company, 28108-Alcobendas, Madrid, Spain
| | - Michael A Statnick
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Todd M Suter
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Samreen K Syed
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Miguel A Toledo
- Centro de Investigacion Lilly, Eli Lilly and Company, 28108-Alcobendas, Madrid, Spain
| | - Francis S Willard
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Xin Zhou
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Krister B Bokvist
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - David G Barrett
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| |
Collapse
|
66
|
Pichette J, Fynn-Sackey N, Gagnon J. Hydrogen Sulfide and Sulfate Prebiotic Stimulates the Secretion of GLP-1 and Improves Glycemia in Male Mice. Endocrinology 2017; 158:3416-3425. [PMID: 28977605 DOI: 10.1210/en.2017-00391] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022]
Abstract
Recently, the gastrointestinal microbiome, and its metabolites, has emerged as a potential regulator of host metabolism. However, to date little is known on the precise mechanisms of how this regulation occurs. Hydrogen sulfide (H2S) is abundantly produced in the colon by sulfate-reducing bacteria (SRB). H2S is a bioactive gas that plays regulatory roles in many systems, including metabolic hormone regulation. This gas metabolite is produced in close proximity to the glucagonlike peptide-1 (GLP-1)-secreting cells in the gut epithelium. GLP-1 is a peptide hormone that plays pivotal roles in both glucose homeostasis and appetite regulation. We hypothesized that H2S can directly regulate GLP-1 secretion. We demonstrated that H2S donors (NaHS and GYY4137) directly stimulate GLP-1 secretion in murine L-cells (GLUTag) and that this occurs through p38 mitogen-activated protein kinase without affecting cell viability. We then increased SRB in mice by supplementing the diet with a prebiotic chondroitin sulfate for 4 weeks. Mice treated with chondroitin sulfate had elevated Desulfovibrio piger levels in the feces and increased colonic and fecal H2S concentration. These animals also had enhanced GLP-1 and insulin secretion, improved oral glucose tolerance, and reduced food consumption. These results indicate that H2S plays a stimulatory role in GLP-1 secretion and that sulfate prebiotics can enhance GLP-1 release and its downstream metabolic actions.
Collapse
Affiliation(s)
- Jennifer Pichette
- Laurentian University, Department of Biology, Sudbury, Ontario P3E 2C6, Canada
| | - Nancy Fynn-Sackey
- Laurentian University, Department of Biology, Sudbury, Ontario P3E 2C6, Canada
| | - Jeffrey Gagnon
- Laurentian University, Department of Biology, Sudbury, Ontario P3E 2C6, Canada
| |
Collapse
|
67
|
Abstract
The digestion, absorption and utilisation of dietary triglycerides are controlled by gut hormones, released from enteroendocrine cells along the length of the gastrointestinal tract. Major players in the detection of ingested lipids are the free fatty acid receptors FFA1 and FFA4, which are highly expressed on enteroendocrine cells. These receptors are activated when free fatty acids (FFA) are absorbed across the intestinal epithelium, and provide a dynamic hormonal signal indicating that lipids are arriving in the bloodstream from the gut. This review addresses our current knowledge of how ingested triglycerides modulate gut hormone release via FFA1 and FFA4.
Collapse
|
68
|
Aroma compound diacetyl suppresses glucagon-like peptide-1 production and secretion in STC-1 cells. Food Chem 2017; 228:35-42. [DOI: 10.1016/j.foodchem.2017.01.104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 12/07/2016] [Accepted: 01/19/2017] [Indexed: 12/12/2022]
|
69
|
Signalling in the gut endocrine axis. Physiol Behav 2017; 176:183-188. [DOI: 10.1016/j.physbeh.2017.02.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 02/06/2023]
|
70
|
Psichas A, Tolhurst G, Brighton CA, Gribble FM, Reimann F. Mixed Primary Cultures of Murine Small Intestine Intended for the Study of Gut Hormone Secretion and Live Cell Imaging of Enteroendocrine Cells. J Vis Exp 2017. [PMID: 28448057 PMCID: PMC5409300 DOI: 10.3791/55687] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The gut is the largest endocrine organ of the body, with hormone-secreting enteroendocrine cells located along the length of the gastrointestinal epithelium. Despite their physiological importance, enteroendocrine cells represent only a small fraction of the epithelial cell population and in the past, their characterization has presented a considerable challenge resulting in a reliance on cell line models. Here, we provide a detailed protocol for the isolation and culture of mixed murine small intestinal cells. These primary cultures have been used to identify the signaling pathways underlying the stimulation and inhibition of gut peptide secretion in response to a number of nutrients and neuropeptides as well as pharmacological agents. Furthermore, in combination with the use of transgenic fluorescent reporter mice, we have demonstrated that these primary cultures become a powerful tool for the examination of fluorescently-tagged enteroendocrine cells at the intracellular level, using methods such as patch clamping and single-cell calcium and cAMP-FRET imaging.
Collapse
Affiliation(s)
- Arianna Psichas
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge
| | - Gwen Tolhurst
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge
| | - Cheryl A Brighton
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge
| | - Fiona M Gribble
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge;
| | - Frank Reimann
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge;
| |
Collapse
|
71
|
The anti-hyperglycemic efficacy of a lipid-lowering drug Daming capsule and the underlying signaling mechanisms in a rat model of diabetes mellitus. Sci Rep 2016; 6:34284. [PMID: 27721485 PMCID: PMC5056381 DOI: 10.1038/srep34284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder manifested by hyperglycemia. Daming Capsule (DMC), a combination of traditional Chinese herbs, is used clinically as a lipid-lowering drug. This study was designed to evaluate if DMC possesses an anti-hyperglycemic effect and to elucidate the underlying mechanisms. Compared to diabetic rats, the rats received DMC (200 mg/kg/d) had significantly lower blood lipid and glucose levels. DMC markedly restored the decreased secretion of GLP-1 and GIP as well as the coding gene GCG and GIP in ileum. Moreover, DMC normalized depressed GCG and GIP transcription by significantly enhancing the GSK-3β/β-catenin signaling pathway and expression of TCF7L2, a transactivator of GCG and GIP in diabetic rats. DMC possesses an anti-hyperglycemic property characterized by preservation/stimulation of GLP-1 and GIP secretion in DM rats. Here, we proposed DMC → GSK-3β/β-catenin↑ → TCF7L2↑ → GLP-1, GIP secretion↑ → blood glucose↓ as a regulatory pathway of blood glucose homeostasis. Our findings suggest DMC as a promising therapeutic drug in the clinical treatment of diabetes.
Collapse
|
72
|
Lo SH, Cheng KC, Li YX, Chang CH, Cheng JT, Lee KS. Development of betulinic acid as an agonist of TGR5 receptor using a new in vitro assay. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:2669-76. [PMID: 27578964 PMCID: PMC5001664 DOI: 10.2147/dddt.s113197] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background G-protein-coupled bile acid receptor 1, also known as TGR5 is known to be involved in glucose homeostasis. In animal models, treatment with a TGR5 agonist induces incretin secretion to reduce hyperglycemia. Betulinic acid, a triterpenoid present in the leaves of white birch, has been introduced as a selective TGR5 agonist. However, direct activation of TGR5 by betulinic acid has not yet been reported. Methods Transfection of TGR5 into cultured Chinese hamster ovary (CHO-K1) cells was performed to establish the presence of TGR5. Additionally, TGR5-specific small interfering RNA was employed to silence TGR5 in cells (NCI-H716 cells) that secreted incretins. Uptake of glucose by CHO-K1 cells was evaluated using a fluorescent indicator. Amounts of cyclic adenosine monophosphate and glucagon-like peptide were quantified using enzyme-linked immunosorbent assay kits. Results Betulinic acid dose-dependently increases glucose uptake by CHO-K1 cells transfected with TGR5 only, which can be considered an alternative method instead of radioligand binding assay. Additionally, signals coupled to TGR5 activation are also increased by betulinic acid in cells transfected with TGR5. In NCI-H716 cells, which endogenously express TGR5, betulinic acid induces glucagon-like peptide secretion via increasing calcium levels. However, the actions of betulinic acid were markedly reduced in NCI-H716 cells that received TGR5-silencing treatment. Therefore, the present study demonstrates the activation of TGR5 by betulinic acid for the first time. Conclusion Similar to the positive control lithocholic acid, which is the established agonist of TGR5, betulinic acid has been characterized as a useful agonist of TGR5 and can be used to activate TGR5 in the future.
Collapse
Affiliation(s)
- Shih-Hsiang Lo
- Division of Cardiology, Department of Internal Medicine, Zhongxing Branch of Taipei City Hospital; Department of History and Geography, University of Taipei, Taipei, Taiwan
| | - Kai-Chung Cheng
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ying-Xiao Li
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan; Department of Medical Research
| | - Chin-Hong Chang
- Department of Medical Research; Department of Neurosurgery, Chi-Mei Medical Center, Yong Kang
| | - Juei-Tang Cheng
- Department of Medical Research; Institute of Medical Science, College of Health Science, Chang Jung Christian University, Tainan
| | - Kung-Shing Lee
- Department of Surgery, Pingtung Hospital; Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Chung-Ho Memorial Hospital, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
73
|
Wewer Albrechtsen NJ, Kuhre RE, Windeløv JA, Ørgaard A, Deacon CF, Kissow H, Hartmann B, Holst JJ. Dynamics of glucagon secretion in mice and rats revealed using a validated sandwich ELISA for small sample volumes. Am J Physiol Endocrinol Metab 2016; 311:E302-9. [PMID: 27245336 DOI: 10.1152/ajpendo.00119.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 05/26/2016] [Indexed: 12/28/2022]
Abstract
Glucagon is a metabolically important hormone, but many aspects of its physiology remain obscure, because glucagon secretion is difficult to measure in mice and rats due to methodological inadequacies. Here, we introduce and validate a low-volume, enzyme-linked immunosorbent glucagon assay according to current analytical guidelines, including tests of sensitivity, specificity, and accuracy, and compare it, using the Bland-Altman algorithm and size-exclusion chromatography, with three other widely cited assays. After demonstrating adequate performance of the assay, we measured glucagon secretion in response to intravenous glucose and arginine in anesthetized mice (isoflurane) and rats (Hypnorm/midazolam). Glucose caused a long-lasting suppression to very low values (1-2 pmol/l) within 2 min in both species. Arginine stimulated secretion 8- to 10-fold in both species, peaking at 1-2 min and returning to basal levels at 6 min (mice) and 12 min (rats). d-Mannitol (osmotic control) was without effect. Ketamine/xylazine anesthesia in mice strongly attenuated (P < 0.01) α-cell responses. Chromatography of pooled plasma samples confirmed the accuracy of the assay. In conclusion, dynamic analysis of glucagon secretion in rats and mice with the novel accurate sandwich enzyme-linked immunosorbent assay revealed extremely rapid and short-lived responses to arginine and rapid and profound suppression by glucose.
Collapse
Affiliation(s)
- Nicolai J Wewer Albrechtsen
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; and Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Rune E Kuhre
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; and Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Johanne A Windeløv
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; and Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Anne Ørgaard
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; and Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Carolyn F Deacon
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; and Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Hannelouise Kissow
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; and
| | - Bolette Hartmann
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; and Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; and Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|