51
|
Barberino RS, Silva RLS, Palheta Junior RC, Smitz JEJ, Matos MHT. Protective Effects of Antioxidants on Cyclophosphamide-Induced Ovarian Toxicity. Biopreserv Biobank 2022; 21:121-141. [PMID: 35696235 DOI: 10.1089/bio.2021.0159] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The most common limitation of anticancer chemotherapy is the injury to normal cells. Cyclophosphamide, which is one of the most widely used alkylating agents, can cause premature ovarian insufficiency and infertility since the ovarian follicles are extremely sensitive to their effects. Although little information is available about the pathogenic mechanism of cyclophosphamide-induced ovarian damage, its toxicity is attributed to oxidative stress, inflammation, and apoptosis. The use of compounds with antioxidant and cytoprotective properties to protect ovarian function from deleterious effects during chemotherapy would be a significant advantage. Thus, this article reviews the mechanism by which cyclophosphamide exerts its toxic effects on the different cellular components of the ovary, and describes 24 cytoprotective compounds used to ameliorate cyclophosphamide-induced ovarian injury and their possible mechanisms of action. Understanding these mechanisms is essential for the development of efficient and targeted pharmacological complementary therapies that could protect and prolong female fertility.
Collapse
Affiliation(s)
- Ricássio S Barberino
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Department of Veterinary Medicine, Federal University of São Francisco Valley-UNIVASF, Petrolina, Brazil
| | - Regina Lucia S Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Department of Veterinary Medicine, Federal University of São Francisco Valley-UNIVASF, Petrolina, Brazil
| | - Raimundo C Palheta Junior
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Federal University of São Francisco Valley-UNIVASF, Petrolina, Brazil
| | - Johan E J Smitz
- Follicle Biology Laboratory, Center for Reproductive Medicine, Free University Brussels-VUB, Brussels, Belgium
| | - Maria Helena T Matos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Department of Veterinary Medicine, Federal University of São Francisco Valley-UNIVASF, Petrolina, Brazil
| |
Collapse
|
52
|
Su YL, Liu D, Liu YJ, Ji YL, Liu GS, Wang JLT, Wang B, Wang H. Phlorizin alleviates cholinergic memory impairment and regulates gut microbiota in d-galactose induced mice. Exp Gerontol 2022; 165:111863. [PMID: 35660419 DOI: 10.1016/j.exger.2022.111863] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/24/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023]
Abstract
We explored the effect of phlorizin against cholinergic memory impairment and dysbacteriosis in D-galactose induced ICR mice. The control (CON) group, D-galactose model (DGM) group, and three groups (DG-PL, DG-PM, DG-PH) treated with phlorizin at 0.01%, 0.02%, and 0.04% (w/w) in diets were raised for 12 weeks. Supplementing with phlorizin reversed the loss of organ coefficient and body weight caused by D-galactose. The functional abilities of phlorizin on hippocampal-dependent spatial learning and memory, anti-oxidation, anti-inflammation were also observed. Meanwhile, phlorizin intervention upregulated the gene expression of Nrf2, GSH-PX, SOD1, decreased the gene expression of NF-κB, TLR-4, TNF-α, and IL-1β in the hippocampus, while enhanced the gene expression of JAM-A, Mucin2, Occludin in the caecum. Furthermore, a neurotransmitter of acetylcholine (ACh) was enhanced, while acetylcholinesterase (AChE) activity was inhibited by phlorizin administration. Moreover, phlorizin administration increased short-chain fatty acids (SCFAs) content, and reduced lipopolysaccharides (LPS) levels, which may relate to the rebuilding of gut microbiota homeostasis. Treatment with phlorizin may be an effective intervention for alleviating cognitive decline and gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Yan-Ling Su
- Department of Biological Science and Technology, Jinzhong University, Jinzhong 030619, China; State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Dong Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou 215123, China
| | - Yao-Jie Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yang-Lin Ji
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Gui-Shan Liu
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
| | - Ji-Li-Te Wang
- Department of Agriculture, Hetao College, Inner Mongolia, Bayannur 015000, China
| | - Biao Wang
- College of Chemical Engineering and Material Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
53
|
Guo L, Gao Q, Zhu J, Jin X, Yin H, Liu T. A Docosahexaenoic Acid Derivative ( N-Benzyl Docosahexaenamide) as a Potential Therapeutic Candidate for Treatment of Ovarian Injury in the Mouse Model. Molecules 2022; 27:molecules27092754. [PMID: 35566104 PMCID: PMC9102315 DOI: 10.3390/molecules27092754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 02/04/2023] Open
Abstract
Commonly used clinical chemotherapy drugs, such as cyclophosphamide (CTX), may cause injury to the ovaries. Hormone therapies can reduce the ovarian injury risk; however, they do not achieve the desired effect and have obvious side effects. Therefore, it is necessary to find a potential therapeutic candidate for ovarian injury after chemotherapy. N-Benzyl docosahexaenamide (NB-DHA) is a docosahexaenoic acid derivative. It was recently identified as the specific macamide with a high degree of unsaturation in maca (Lepidium meyenii). In this study, the purified NB-DHA was administered intragastrically to the mice with CTX-induced ovarian injury at three dose levels. Blood and tissue samples were collected to assess the regulation of NB-DHA on ovarian function. The results indicated that NB-DHA was effective in improving the disorder of estrous cycle, and the CTX+NB-H group can be recovered to normal levels. NB-DHA also significantly increased the number of primordial follicles, especially in the CTX+NB-M and CTX+NB-H groups. Follicle-stimulating hormone and luteinizing hormone levels in all treatment groups and estradiol levels in the CTX+NB-H group returned to normal. mRNA expression of ovarian development-related genes was positive regulated. The proportion of granulosa cell apoptosis decreased significantly, especially in the CTX+NB-H group. The expression of anti-Müllerian hormone and follicle-stimulating hormone receptor significantly increased in ovarian tissues after NB-DHA treatment. NB-DHA may be a promising agent for treating ovarian injury.
Collapse
Affiliation(s)
- Lirong Guo
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (L.G.); (Q.G.); (J.Z.); (X.J.)
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qing Gao
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (L.G.); (Q.G.); (J.Z.); (X.J.)
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jieqiong Zhu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (L.G.); (Q.G.); (J.Z.); (X.J.)
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (L.G.); (Q.G.); (J.Z.); (X.J.)
| | - Hui Yin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (L.G.); (Q.G.); (J.Z.); (X.J.)
- Correspondence: (H.Y.); (T.L.)
| | - Tao Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (L.G.); (Q.G.); (J.Z.); (X.J.)
- Correspondence: (H.Y.); (T.L.)
| |
Collapse
|
54
|
Chitosan Oligosaccharides Alleviate H2O2-stimulated Granulosa Cell Damage via HIF-1α Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4247042. [PMID: 35401926 PMCID: PMC8993563 DOI: 10.1155/2022/4247042] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/02/2022] [Accepted: 03/02/2022] [Indexed: 12/23/2022]
Abstract
Oocyte maturation disorder and decreased quality are the main causes of infertility in women, and granulosa cells (GCs) provide the only microenvironment for oocyte maturation through autocrine and paracrine signaling by steroid hormones and growth factors. However, chronic inflammation and oxidative stress caused by ovarian hypoxia are the largest contributors to ovarian aging and GC dysfunction. Therefore, the amelioration of chronic inflammation and oxidative stress is expected to be a pivotal method to improve GC function and oocyte quality. In this study, we detected the protective effect of chitosan oligosaccharides (COS), on hydrogen peroxide- (H2O2-) stimulated oxidative damage in a human ovarian granulosa cell line (KGN). COS significantly increased cell viability, mitochondrial function, and the cellular glutathione (GSH) content and reduced apoptosis, reactive oxygen species (ROS) content, and the levels of 8-hydroxy-2′-deoxyguanosine (8-OHdG), 4-hydroxynonenal (4-HNE), hypoxia-inducible factor-1α (HIF-1α), and vascular endothelial-derived growth factor (VEGF) in H2O2-stimulated KGN cells. COS treatment significantly increased levels of the TGF-β1 and IL-10 proteins and decreased levels of the IL-6 protein. Compared with H2O2-stimulated KGN cells, COS significantly increased the levels of E2 and P4 and decreased SA-β-gal protein expression. Furthermore, COS caused significant inactivation of the HIF-1α-VEGF pathway in H2O2-stimulated KGN cells. Moreover, inhibition of this pathway enhanced the inhibitory effects of COS on H2O2-stimulated oxidative injury and apoptosis in GCs. Thus, COS protected GCs from H2O2-stimulated oxidative damage and apoptosis by inactivating the HIF-1α-VEGF signaling pathway. In the future, COS might represent a therapeutic approach for ameliorating disrupted follicle development.
Collapse
|
55
|
Shojaei-Zarghani S, Molani-Gol R, Rafraf M. Curcumin and Polycystic Ovary Syndrome: a Systematic Review. Reprod Sci 2022; 29:2105-2118. [DOI: 10.1007/s43032-021-00826-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/05/2021] [Indexed: 10/19/2022]
|
56
|
Zhang M, Yu X, Li D, Ma N, Wei Z, Ci X, Zhang S. Nrf2 Signaling Pathway Mediates the Protective Effects of Daphnetin Against D-Galactose Induced-Premature Ovarian Failure. Front Pharmacol 2022; 13:810524. [PMID: 35153783 PMCID: PMC8832979 DOI: 10.3389/fphar.2022.810524] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/05/2022] [Indexed: 12/20/2022] Open
Abstract
Oxidative damage can lead to severe ovarian dysfunctions and even premature ovarian failure. Nrf2, a significant transcription factor that regulates the oxidative stress response of cells, declines with age. Daphnetin, as a kind of natural Chinese herbal medicine, can activate Nrf2 and further promote the antioxidant defense of cells. However, whether Daphnetin treatment can protect ovary from premature ovarian failure and the specific mechanism involved are not understood. This study aimed to investigate the protective function of Daphnetin against the ovarian aging induced by D-galactose in wild-type and Nrf2−/− mice. Female C57BL/6 mice with Wild-type and Nrf2−/− were divided into five groups separately and the premature ovarian failure model were established by D-galactose and then Daphnetin and VE were given for treatment. After 42 days, ovaries tissue and serum were collected for biochemical determination, H&E staining, Immunohistochemical staining and western blot analysis. In the WT-POF group, ovarian function was broke, and the expression of the ovarian senescence-associated protein P16 and the level of oxidative stress were significantly increased, while the expression of the anti-senescence protein klotho was significantly decreased. In addition, the expression of Nrf2 and the antioxidases GCLC, HO-1 and NQO1 were decreased, but TXNIP and NLRP3 were significantly increased. Furthermore, the characteristics of premature ovarian failure were more significant in Nrf2 knockout mice than in wild-type mice, especially the expression of NLRP3 and TXNIP. Moreover, daphnetin, an Nrf2 activator, rescued d-gal-induced POF in a dose-dependent manner, while the protective effect was weakened or even lost in Nrf2 knockout mice. Our results suggested that daphnetin is likely to be a candidate drug for premature ovarian failure treatment and it is mostly possible referred to the molecular mechanism of increasing Nrf2 expression and inhibiting NLRP3 activation in the ovarian aging process.
Collapse
Affiliation(s)
- Mengwen Zhang
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Xiaowei Yu
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Danjie Li
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Ning Ma
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Zhentong Wei
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Xinxin Ci
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Xinxin Ci, ; Songling Zhang,
| | - Songling Zhang
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Xinxin Ci, ; Songling Zhang,
| |
Collapse
|
57
|
Zhao YT, Yin H, Hu C, Zeng J, Shi X, Chen S, Zhang K, Zheng W, Wu W, Liu S. Tilapia skin peptides restore cyclophosphamide-induced premature ovarian failure via inhibiting oxidative stress and apoptosis in mice. Food Funct 2022; 13:1668-1679. [PMID: 35083997 DOI: 10.1039/d1fo04239d] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tilapia (Oreochromis mossambicus) skin high value-added compounds have not been fully utilized in tilapia processing. Here, the protective effects of tilapia skin peptides (TSP) on primary ovarian failure (POF) and their underlying mechanisms in mice were investigated. Cyclophosphamide (CP) was injected intraperitoneally (ip) for 14 days (10 mg kg-1 d-1) to establish a mouse model of POF. At the same time, the mice were given intragastrically (ig) TSP for 30 days (250 mg kg-1 d-1, 500 mg kg-1 d-1, and 1000 mg kg-1 d-1, respectively). The ovarian index, estrous cycle, hormone level, changes in the number of follicles at various levels, and biochemical tests were carried out at the end of the experiment. The body weight and ovarian index of mice in the POF group were markedly lower than that of the control group. Treatment with TSP reversed these changes significantly. TSP administration significantly restored the estrous cycle disorder of the mice versus that of the POF group. The level changes of progesterone (P), estradiol (E2), follicle-stimulating hormone (FSH), and luteinizing hormone (LH) induced by CP were significantly reversed by TSP treatment. TSP inhibited oxidative stress in CP-induced mice by enhancing the total superoxide dismutase (T-SOD) activity and reducing malondialdehyde (MDA) levels in the ovaries. TSP improved the apoptosis of ovarian granulosa cells in CP-induced mice compared with the POF group. Furthermore, TSP regulated the Bcl-2/Bax/caspase-3 apoptosis pathway and enhanced the Nrf2/HO-1 signaling pathway. In conclusion, TSP could improve CP-induced POF via alleviating ovarian oxidative stress and granulosa cell apoptosis.
Collapse
Affiliation(s)
- Yun-Tao Zhao
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, P.R. China.
| | - Haowen Yin
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, P.R. China.
| | - Chuanyin Hu
- Department of Biology, Guangdong Medical University, Zhanjiang, 524023, P.R. China
| | - Jian Zeng
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, P.R. China.
| | - Xinyi Shi
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, P.R. China.
| | - Shaohong Chen
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, P.R. China.
| | - Kun Zhang
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, P.R. China.
| | - Wenjing Zheng
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, P.R. China.
| | - Wenjin Wu
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, P.R. China.
| | - Shucheng Liu
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, P.R. China.
| |
Collapse
|
58
|
Autophagy as a Therapeutic Target of Natural Products Enhancing Embryo Implantation. Pharmaceuticals (Basel) 2021; 15:ph15010053. [PMID: 35056110 PMCID: PMC8779555 DOI: 10.3390/ph15010053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022] Open
Abstract
Infertility is an emerging health issue worldwide, and female infertility is intimately associated with embryo implantation failure. Embryo implantation is an essential process during the initiation of prenatal development. Recent studies have strongly suggested that autophagy in the endometrium is the most important factor for successful embryo implantation. In addition, several studies have reported the effects of various natural products on infertility improvement via the regulation of embryo implantation, embryo quality, and endometrial receptivity. However, it is unclear whether natural products can improve embryo implantation ability by regulating endometrial autophagy. Therefore, we performed a literature review of studies on endometrial autophagy, embryo implantation, natural products, and female infertility. Based on the information from these studies, this review suggests a new treatment strategy for female infertility by proposing natural products that have been proven to be safe and effective as endometrial autophagy regulators; additionally, we provide a comprehensive understanding of the relationship between the regulation of endometrial autophagy by natural products and female infertility, with an emphasis on embryo implantation.
Collapse
|
59
|
Singh A, Dasgupta S, Bhattacharya A, Mukherjee G, Chaudhury K. Therapeutic potential of curcumin in endometrial disorders: Current status and future perspectives. Drug Discov Today 2021; 27:900-911. [PMID: 34775103 DOI: 10.1016/j.drudis.2021.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 08/27/2021] [Accepted: 11/08/2021] [Indexed: 11/20/2022]
Abstract
Endometrial disorders collectively encompass a broad spectrum of pathologies, including but not limited to endometriosis, endometrial cancer and endometritis. The current therapeutic management of these diseases is associated with several limitations. This has prompted interest in the use of plant-based bioactive compounds as alternative strategies to achieve high therapeutic efficacy and avoid adverse effects. In this context, curcumin, a polyphenol abundantly present in turmeric, is gaining increasing attention for its therapeutic potential to restore homeostasis in endometrial dysfunctionality. We comprehensively review the multifaceted role of curcumin, discussing mechanistic insights in various endometrial pathologies. We also provide an in-depth analysis of the concerns and challenges associated with the role of curcumin in endometrial research and outline a road map for future investigations.
Collapse
Affiliation(s)
- Apoorva Singh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India
| | - Sanjukta Dasgupta
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India
| | - Anindita Bhattacharya
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India
| | - Gayatri Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India.
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India.
| |
Collapse
|
60
|
Zhou L, Liu J, Bu LL, Liao DF, Cheng SW, Zheng XL. Curcumin Acetylsalicylate Extends the Lifespan of Caenorhabditis elegans. Molecules 2021; 26:molecules26216609. [PMID: 34771018 PMCID: PMC8586958 DOI: 10.3390/molecules26216609] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
Aspirin and curcumin have been reported to be beneficial to anti-aging in a variety of biological models. Here, we synthesized a novel compound, curcumin acetylsalicylate (CA), by combining aspirin and curcumin. We characterized how CA affects the lifespan of Caenorhabditis elegans (C. elegans) worms. Our results demonstrated that CA extended the lifespan of worms in a dose-dependent manner and reached its highest anti-aging effect at the concentration of 20 μM. In addition, CA reduced the deposition of lipofuscin or "age pigment" without affecting the reproductivity of worms. CA also caused a rightward shift of C. elegans lifespan curves in the presence of paraquat-induced (5 mM) oxidative stress or 37 °C acute heat shock. Additionally, CA treatment decreased the reactive oxygen species (ROS) level in C. elegans and increased the expression of downstream genes superoxide dismutase (sod)-3, glutathione S-transferase (gst)-4, heat shock protein (hsp)-16.2, and catalase-1 (ctl-1). Notably, CA treatment resulted in nuclear translocation of the DAF-16 transcription factor, which is known to stimulate the expression of SOD-3, GST-4, HSP-16, and CTL-1. CA did not produce a longevity effect in daf-16 mutants. In sum, our data indicate that CA delayed the aging of C. elegans without affecting reproductivity, and this effect may be mediated by its activation of DAF-16 and subsequent expression of antioxidative genes, such as sod-3 and gst-4. Our study suggests that novel anti-aging drugs may be developed by combining two individual drugs.
Collapse
Affiliation(s)
- Lei Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (J.L.)
| | - Jin Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (J.L.)
| | - Lan-Lan Bu
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Shao-Wu Cheng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (J.L.)
- Correspondence: (S.-W.C.); (X.-L.Z.); Tel.: +1 (403)-220-8715 (X.-L.Z.); Fax: +1 (403)-210-9180 (X.-L.Z.)
| | - Xi-Long Zheng
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Correspondence: (S.-W.C.); (X.-L.Z.); Tel.: +1 (403)-220-8715 (X.-L.Z.); Fax: +1 (403)-210-9180 (X.-L.Z.)
| |
Collapse
|
61
|
Zhao G, Qi L, Wang Y, Li X, Li Q, Tang X, Wang X, Wu C. Antagonizing effects of curcumin against mercury-induced autophagic death and trace elements disorder by regulating PI3K/AKT and Nrf2 pathway in the spleen. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112529. [PMID: 34293585 DOI: 10.1016/j.ecoenv.2021.112529] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/27/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Mercury is a naturally occurring element and highly toxic to humans even at a low dosage. Curcumin is a polyphenol found in turmeric (Curcuma longa), widely used as a treatment strategy to improve antioxidant and anti-inflammatory properties. The purpose of this study was to investigate the potential protective mechanisms of curcumin in spleen damage induced by HgCl2. The mice were given curcumin by intragastric administration 2 h before HgCl2 injection for 24 h. At first, splenic transcriptome analysis showed that 3334 genes (2134 up and 1200 down) were differently expressed in HgCl2-induced spleen damage model. Notably, KEGG enrichment showed phosphatidylinositol 3-kinase (PI3K)-AKT might be a key signaling pathways in HgCl2-induced spleen damage. Furthermore, our data demonstrated that HgCl2 could induce autophagic cell death, evidenced by increases the protein expression of PI3K, AKT, LC3-II and p62 and the number of apoptotic cells. Furthermore, we found that curcumin significantly combated autophagic cell death, sodium overload and calcium leak induced by HgCl2. Simultaneously, further studies demonstrated that curcumin significantly activated nuclear factor (erythroid-derived-2)-like 2 (Nrf2) signaling pathway, and subsequent enhancing antioxidant defenses. Taken together, our data indicated that inorganic mercury could result in autophagic cell death, which may be related to the regulation of PI3K-AKT signaling cascades. Furthermore, Nrf2-mediated antioxidant defenses may be the target of curcumin to confers an adaptive survival response to resist spleen damage induced by HgCl2. The present study perfects the mechanism theory of HgCl2-induced spleen damage and provides a way for pharmacological intervention to prevent spleen injury.
Collapse
Affiliation(s)
- Guifang Zhao
- Department of Core Medical Laboratory, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, PR China
| | - Ling Qi
- Department of Core Medical Laboratory, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, PR China
| | - Yanling Wang
- Department of Pathophysiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan Province, PR China
| | - Xinlian Li
- Department of Pathophysiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan Province, PR China
| | - Qiuyue Li
- Department of Pathophysiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan Province, PR China
| | - Xiaoqing Tang
- Department of Pathophysiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan Province, PR China
| | - Xiali Wang
- Department of Pathophysiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan Province, PR China
| | - Chunling Wu
- Department of Pathophysiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan Province, PR China.
| |
Collapse
|
62
|
B SAMPATHKUMAR, NANDI S, GUPTA PSP, MONDAL S, V GIRISHKUMAR. Influence of curcumin and carbazole on ovine ovarian preantral follicle and granulosa cell functions. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v91i7.115899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The present study was undertaken to study the effect of plant bioactive compounds curcumin and carbazole on sheep ovarian functions. In the present study, both the bioactive compounds were tested at different levels (Control, T1-1 μM, T2-5 μM, T3-10 μM, T4- 25 μM, T5- 50μM, T6-100 μM) on preantral follicle (PF) growth rate, survival rate (6 days culture), granulosa cell (GC) number increment (2 days culture) and estradiol production (5 days GC culture spent media). Curcumin had shown a significantly higher PF survival rate (%), i.e. 74.3±1.5, 76.3±1.4 at 10 and 25 μM levels respectively. Similarly, higher PF growth rates (μm per day), i.e. 16.1±0.9 was observed at 50 μM levels. Similarly, curcumin was effective @ 50 μM level to increase the granulosa cell number as well as estradiol production with a mean granulosa cell number (×105) and estradiol production (pg) values of 1.55±0.04 and 85.3±3.3 respectively. Likewise, carbazole was effective at the level of 25 μM to increase the PF growth rate (μm per day), survival rate (%)with mean values of 74.3±1.3, 12.1±0.9. Similarly, carbazole was effective at 50 μM dose levels in the granulosa cell number increment (×105) with a mean value of 1.57±0.02. No significant change in estradiol production was observed in carbazole treated group.
Collapse
|
63
|
Potential Health Benefits of Curcumin on Female Reproductive Disorders: A Review. Nutrients 2021; 13:nu13093126. [PMID: 34579002 PMCID: PMC8471428 DOI: 10.3390/nu13093126] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 12/11/2022] Open
Abstract
Curcumin is one of the main polyphenolic compounds in the turmeric rhizome. It possesses antioxidant, anti-inflammatory, anti-cancer, anti-arthritis, anti-asthmatic, anti-microbial, anti-viral and anti-fungal properties. This review aims to provide an overview of the potential health benefits of curcumin to treat female reproductive disorders, including polycystic ovary syndrome (PCOS), ovarian failure and endometriosis. Comprehensive information on curcumin was retrieved from electronic databases, which were MEDLINE via EBSCOhost, Scopus and Google Scholar. The available evidence showed that curcumin reduced the high level of androgen in PCOS. Studies in rodents suggest that curcumin resulted in the disappearance of cysts and the appearance of healthy follicles and corpora lutea. Furthermore, animal studies showed curcumin improved the overall function of the ovary in ovarian diseases and reversed the disturbance in oxidative stress parameters. Meanwhile, in vitro and in vivo studies reported the positive effects of curcumin in alleviating endometriosis through anti-inflammatory, anti-proliferative, anti-angiogenic and pro-apoptotic mechanisms. Thus, curcumin possesses various effects on PCOS, ovarian diseases and endometriosis. Some studies found considerable therapeutic effects, whereas others found no effect. However, none of the investigations found curcumin to be harmful. Curcumin clinical trials in endometriosis and ovarian illness are still scarce; thus, future studies need to be conducted to confirm the safety and efficacy of curcumin before it could be offered as a complementary therapy agent.
Collapse
|
64
|
Chen Q, Ke H, Luo X, Wang L, Wu Y, Tang S, Li J, Jin L, Zhang F, Qin Y, Chen X. Rare deleterious BUB1B variants induce premature ovarian insufficiency and early menopause. Hum Mol Genet 2021; 29:2698-2707. [PMID: 32716490 DOI: 10.1093/hmg/ddaa153] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/19/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Losing of ovarian functions prior to natural menopause age causes female infertility and early menopause. Premature ovarian insufficiency (POI) is defined as the loss of ovarian activity before 40 years of age. Known genetic causes account for 25-30% of POI cases, demonstrating the high genetic heterogeneity of POI and the necessity for further genetic explorations. Here we conducted genetic analyses using whole-exome sequencing in a Chinese non-syndromic POI family with the affected mother and at least four affected daughters. Intriguingly, a rare missense variant of BUB1B c.273A>T (p.Gln91His) was shared by all the cases in this family. Furthermore, our replication study using targeted sequencing revealed a novel stop-gain variant of BUB1B c.1509T>A (p.Cys503*) in one of 200 sporadic POI cases. Both heterozygous BUB1B variants were evaluated to be deleterious by multiple in silico tools. BUB1B encodes BUBR1, a crucial spindle assembly checkpoint component involved in cell division. BUBR1 insufficiency may induce vulnerability to oxidative stress. Therefore, we generated a mouse model with a loss-of-function mutant of Bub1b, and also employed D-galactose-induced aging assays for functional investigations. Notably, Bub1b+/- female mice presented late-onset subfertility, and they were more sensitive to oxidative stress than wild-type female controls, mimicking the clinical phenotypes of POI cases affected by deleterious BUB1B variants. Our findings in human cases and mouse models consistently suggest, for the first time, that heterozygous deleterious variants of BUB1B are involved in late-onset POI and related disorders.
Collapse
Affiliation(s)
- Qing Chen
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China.,State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hanni Ke
- Center for Reproductive Medicine, Shandong University, Jinan 250021, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250021, China.,The Key Laboratory of Reproductive Endocrinology, Shandong University, Ministry of Education, Jinan 250021, China
| | - Xuezhen Luo
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Lingbo Wang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China.,State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanhua Wu
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Shuyan Tang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China.,State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Jin
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China.,State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yingying Qin
- Center for Reproductive Medicine, Shandong University, Jinan 250021, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250021, China.,The Key Laboratory of Reproductive Endocrinology, Shandong University, Ministry of Education, Jinan 250021, China
| | - Xiaojun Chen
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| |
Collapse
|
65
|
Qi L, Jiang J, Zhang J, Zhang L, Wang T. Maternal curcumin supplementation ameliorates placental function and fetal growth in mice with intrauterine growth retardation†. Biol Reprod 2021; 102:1090-1101. [PMID: 31930336 DOI: 10.1093/biolre/ioaa005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/17/2019] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
Intrauterine growth retardation (IUGR) is a serious reproductive problem in humans. The objective of this study was to investigate the effects of daily maternal curcumin supplementation during pregnancy on placental function and fetal growth in a mouse model of IUGR fed the low-protein (LP) diet. Pregnant mice were divided into four groups: (1) normal protein (19% protein) diet (NP); (2) LP (8% protein) diet; (3) LP diet + 100 mg/kg curcumin (LPL); (4) LP diet +400 mg/kg curcumin (LPH). The results showed that the LP group decreased fetal weight, placental weight, placental efficiency, serum progesterone level, placental glutathione peroxidase activity activity, blood sinusoids area, and antioxidant gene expression of placenta. In addition, in comparison with the NP group, LP diet increased serum corticosterone level, placental malondialdehyde content, and apoptotic index. Daily curcumin administration decreased the placental apoptosis, while it increased placental efficiency, placental redox balance, blood sinusoids area, and antioxidant-related protein expression in fetal liver. The antioxidant gene expression of placenta and fetal liver was normalized to the NP level after curcumin administration. In conclusion, daily curcumin supplementation could improve maternal placental function and fetal growth in mice with IUGR.
Collapse
Affiliation(s)
- Lina Qi
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Jingle Jiang
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Jingfei Zhang
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Lili Zhang
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Tian Wang
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
66
|
Benameur T, Soleti R, Panaro MA, La Torre ME, Monda V, Messina G, Porro C. Curcumin as Prospective Anti-Aging Natural Compound: Focus on Brain. Molecules 2021; 26:molecules26164794. [PMID: 34443381 PMCID: PMC8398038 DOI: 10.3390/molecules26164794] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
The nutrients and their potential benefits are a new field of study in modern medicine for their positive impact on health. Curcumin, the yellow polyphenolic compound extracted from Curcuma longa species, is widely used in traditional Ayurvedic medicine to prevent and contrast many diseases, considering its antioxidant, immunomodulatory, anti-inflammatory, anti-microbial, cardio-protective, nephron-protective, hepato-protective, anti-neoplastic, and anti-rheumatic proprieties. In recent years, the investigations of curcumin have been focused on its application to aging and age-associated diseases. Aging is a physiological process in which there is a decreasing of cellular function due to internal or external stimuli. Oxidative stress is one of the most important causes of aging and age-related diseases. Moreover, many age-related disorders such as cancer, neuroinflammation, and infections are due to a low-grade chronic systemic inflammation. Curcumin acting on different proteins is able to contrast both oxidative stress than inflammation. In the brain, curcumin is able to modulate inflammation induced by microglia. Finally in brain tumors curcumin is able to reduce tumor growth by inhibition of telomerase activity. This review emphasizes the anti-aging role of curcumin focusing on its mechanism to counteract aging in the brain. Moreover, new formulations to increase the bioavailability of curcumin are discussed.
Collapse
Affiliation(s)
- Tarek Benameur
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Raffaella Soleti
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, F-49800 Angers, France;
| | - Maria Antonietta Panaro
- Biotechnologies and Biopharmaceutics, Department of Biosciences, University of Bari, 70125 Bari, Italy;
| | - Maria Ester La Torre
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy; (M.E.L.T.); (V.M.); (G.M.)
| | - Vincenzo Monda
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy; (M.E.L.T.); (V.M.); (G.M.)
- Unit of Dietetic and Sport Medicine, Section of Human Physiology, Department of Experimental Medicine, Luigi Vanvitelli University of Campania, 81100 Naples, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy; (M.E.L.T.); (V.M.); (G.M.)
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy; (M.E.L.T.); (V.M.); (G.M.)
- Correspondence:
| |
Collapse
|
67
|
Timóteo-Ferreira F, Abreu D, Mendes S, Matos L, Rodrigues A, Almeida H, Silva E. Redox imbalance in age-related ovarian dysfunction and perspectives for its prevention. Ageing Res Rev 2021; 68:101345. [PMID: 33894395 DOI: 10.1016/j.arr.2021.101345] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022]
Abstract
The age at which women have their first child is increasing. This change represents a major health problem to society because advanced maternal age is related with a decay in fertility and an increase in the incidence of a variety of pregnancy complications and offspring health issues. The ovary stands as the main contributor for female reproductive ageing because of the progressive age-related decrease in follicle number and oocyte quality. Loss of redox homeostasis and establishment of an ovarian oxidative microenvironment are seen as major underlying causes for such downfall and impairment of ovarian function. Thus, the use of antioxidants to preserve fertility became an important field of research. In this review, new insights on mechanisms underlying the establishment of oxidative stress and its repercussions on ovarian ageing are addressed, along with the current state of knowledge on antioxidant supplementation and its contribution for healthy ageing and extension of ovarian lifespan.
Collapse
|
68
|
Lv Y, Cao RC, Liu HB, Su XW, Lu G, Ma JL, Chan WY. Single-Oocyte Gene Expression Suggests That Curcumin Can Protect the Ovarian Reserve by Regulating the PTEN-AKT-FOXO3a Pathway. Int J Mol Sci 2021; 22:ijms22126570. [PMID: 34207376 PMCID: PMC8235657 DOI: 10.3390/ijms22126570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 02/02/2023] Open
Abstract
A better understanding of the mechanism of primordial follicle activation will help us better understand the causes of premature ovarian insufficiency (POI), and will help us identify new drugs that can be applied to the clinical treatment of infertility. In this study, single oocytes were isolated from primordial and primary follicles, and were used for gene profiling with TaqMan array cards. Bioinformatics analysis was performed on the gene expression data, and Ingenuity Pathway Analysis was used to analyze and predict drugs that affect follicle activation. An ovarian in vitro culture system was used to verify the function of the drug candidates, and we found that curcumin maintains the ovarian reserve. Long-term treatment with 100 mg/kg curcumin improved the ovarian reserve indicators of AMH, FSH, and estradiol in aging mice. Mechanistic studies show that curcumin can affect the translocation of FOXO3, thereby inhibiting the PTEN-AKT-FOXO3a pathway and protecting primordial follicles from overactivation. These results suggest that curcumin is a potential drug for the treatment of POI patients and for fertility preservation.
Collapse
Affiliation(s)
- Yue Lv
- School of Basic Medical Sciences, Shandong University, Jinan 250012, China;
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (R.-C.C.); (H.-B.L.); (G.L.); (W.-Y.C.)
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China
| | - Rui-Can Cao
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (R.-C.C.); (H.-B.L.); (G.L.); (W.-Y.C.)
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China
| | - Hong-Bin Liu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (R.-C.C.); (H.-B.L.); (G.L.); (W.-Y.C.)
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China
| | - Xian-Wei Su
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (R.-C.C.); (H.-B.L.); (G.L.); (W.-Y.C.)
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China
| | - Jin-Long Ma
- School of Basic Medical Sciences, Shandong University, Jinan 250012, China;
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China
- Correspondence: ; Tel.: +86-0531-8565-1166
| | - Wai-Yee Chan
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (R.-C.C.); (H.-B.L.); (G.L.); (W.-Y.C.)
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China
| |
Collapse
|
69
|
Frungieri MB, Calandra RS, Bartke A, Matzkin ME. Male and female gonadal ageing: its impact on health span and life span. Mech Ageing Dev 2021; 197:111519. [PMID: 34139215 DOI: 10.1016/j.mad.2021.111519] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023]
Abstract
Ageing is linked to changes in the hypothalamic-pituitary-gonadal axis and a progressive decline in gonadal function. While women become infertile when they enter menopause, fertility decline in ageing men does not necessarily involve a complete cessation of spermatogenesis. Gonadal dysfunction in elderly people is characterized by morphological, endocrine and metabolic alterations affecting the reproductive function and quality of life. With advancing age, sexuality turns into a critical emotional and physical factor actually defining the number of years that ageing people live a healthy life. Gonadal ageing correlates with comorbidities and an increased risk of age-related diseases including diabetes, kidney problems, cardiovascular failures and cancer. This article briefly summarizes the current state of knowledge on ovarian and testicular senescence, explores the experimental models used in the study of gonadal ageing, and describes the local pro-inflammatory, oxidative and apoptotic events and the associated signalling pathways that take place in the gonads while people get older. Overall, literature reports that ageing exacerbates a mutual crosstalk among oxidative stress, apoptosis and the inflammatory response in the gonads leading to detrimental effects on fertility. Data also highlight the clinical implications of novel therapeutic interventions using antioxidant, anti-apoptotic and anti-inflammatory drugs on health span and life span.
Collapse
Affiliation(s)
- Mónica B Frungieri
- Instituto de Biología y Medicina Experimental, CONICET, Ciudad de Buenos Aires, C1428ADN, Argentina; Cátedra de Química, Ciclo Básico Común, Ciudad de Buenos Aires, C1405CAE, Argentina.
| | - Ricardo S Calandra
- Instituto de Biología y Medicina Experimental, CONICET, Ciudad de Buenos Aires, C1428ADN, Argentina
| | - Andrzej Bartke
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University, School of Medicine, Springfield, IL 62702, USA
| | - María E Matzkin
- Instituto de Biología y Medicina Experimental, CONICET, Ciudad de Buenos Aires, C1428ADN, Argentina; Cátedra de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, C1121ABG, Argentina
| |
Collapse
|
70
|
The Keap1-Nrf2 System: A Mediator between Oxidative Stress and Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6635460. [PMID: 34012501 PMCID: PMC8106771 DOI: 10.1155/2021/6635460] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
Oxidative stress, a term that describes the imbalance between oxidants and antioxidants, leads to the disruption of redox signals and causes molecular damage. Increased oxidative stress from diverse sources has been implicated in most senescence-related diseases and in aging itself. The Kelch-like ECH-associated protein 1- (Keap1-) nuclear factor-erythroid 2-related factor 2 (Nrf2) system can be used to monitor oxidative stress; Keap1-Nrf2 is closely associated with aging and controls the transcription of multiple antioxidant enzymes. Simultaneously, Keap1-Nrf2 signaling is also modulated by a more complex regulatory network, including phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), protein kinase C, and mitogen-activated protein kinase. This review presents more information on aging-related molecular mechanisms involving Keap1-Nrf2. Furthermore, we highlight several major signals involved in Nrf2 unbinding from Keap1, including cysteine modification of Keap1 and phosphorylation of Nrf2, PI3K/Akt/glycogen synthase kinase 3β, sequestosome 1, Bach1, and c-Myc. Additionally, we discuss the direct interaction between Keap1-Nrf2 and the mammalian target of rapamycin pathway. In summary, we focus on recent progress in research on the Keap1-Nrf2 system involving oxidative stress and aging, providing an empirical basis for the development of antiaging drugs.
Collapse
|
71
|
Chen L, Yan Y, Li Z, Li H. Hesperidin Reduces Ovary Toxicity Induces by Cyclophosphamide in Female Rats via Anti-inflammatory and Antioxidant Effects. INT J PHARMACOL 2021. [DOI: 10.3923/ijp.2021.328.338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
72
|
Yousefzadeh Y, Soltani-Zangbar MS, Hemmatzadeh M, Shomali N, Mahmoodpoor A, Ahmadian Heris J, Yousefi M. Fetomaternal Immune Tolerance: Crucial Mechanisms of Tolerance for Successful Pregnancy in Humans. Immunol Invest 2021; 51:1108-1125. [PMID: 33830854 DOI: 10.1080/08820139.2021.1909061] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
For many years, the question of how the maternal immune system tolerates the foreign fetus has remained unanswered, and numerous studies have considerably attempted to elucidate underlying mechanisms for fetomaternal tolerance. This review aimed at discussing various significant mechanisms in fetomaternal compatibility. At the fetomaternal interface, in addition to having efficient control against infections, innate and adaptive maternal immune systems selectively prevent fetal rejection. In general, understanding the complex mechanisms of fetomaternal tolerance is critical for immunologic tolerance induction and spontaneous abortion prevention in high-risk populations. Different cells and molecules, such as regulatory T-cells, dendritic cells, decidua cells, IDO, Class I HLA molecules, TGF-β, and IL-10, induce maternal immune tolerance in the fetus in numerous ways. The findings on fetomaternal immune tolerance have remained controversial and require further research.
Collapse
Affiliation(s)
- Yousef Yousefzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Committee Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sadegh Soltani-Zangbar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hemmatzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Shomali
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
73
|
Catalpol protects rat ovarian granulosa cells against oxidative stress and apoptosis through modulating the PI3K/Akt/mTOR signaling pathway. Biosci Rep 2021; 40:222506. [PMID: 32227125 PMCID: PMC7167250 DOI: 10.1042/bsr20194032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 12/20/2022] Open
Abstract
Disrupted follicular development may result in increased follicular atresia, which is a crucial mechanism of various ovarian pathologies. It has been demonstrated that oxidative stress is associated with disrupted follicular development. Catalpol is a natural compound that has been found to possess antioxidative stress. However, the effects of catalpol on oxidative stress-induced disrupted follicular development remain unclear. In the present study, we evaluated the protective effect of catalpol on hydrogen peroxide (H2O2)-induced oxidative damage in granulosa cells (GCs), which play crucial roles in the follicular development. Our results showed that catalpol significantly improved cell viability, reduced reactive oxygen species (ROS) and malondialdehyde (MDA) production, and elevated superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in H2O2-induced GCs. Catalpol treatment caused significant increase in bcl-2 expression, and decreases in bax and caspase-9 expressions. Compared with the H2O2-induced GCs, caspase-3 activity in catalpol-treated cells was markedly decreased. Furthermore, catalpol caused significant activation of PI3K/Akt/mTOR pathway in GCs in response to H2O2 stimulation. Additionally, inhibition of this pathway reversed the inhibitory effects of catalpol on H2O2-induced oxidative injury and apoptosis in GCs. In conclusion, these findings suggested that catalpol protected GCs from H2O2-induced oxidative injury and apoptosis via activating PI3K/Akt/mTOR signaling pathway. Thus, catalpol might serve as a therapeutic approach for regulating disrupted follicular development.
Collapse
|
74
|
Yan F, Zhao Q, Gao H, Wang X, Xu K, Wang Y, Han F, Liu Q, Shi Y. Exploring the mechanism of (-)-Epicatechin on premature ovarian insufficiency based on network pharmacology and experimental evaluation. Biosci Rep 2021; 41:BSR20203955. [PMID: 33521822 PMCID: PMC7881164 DOI: 10.1042/bsr20203955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/11/2021] [Accepted: 01/25/2021] [Indexed: 12/30/2022] Open
Abstract
METHODS Relevant potential targets for EC were obtained based on Traditional Chinese Medicine System Pharmacology Database (TCMSP), a bioinformatics analysis tool for molecular mechanism of Traditional Chinese Medicine (BATMAN-TCM) and STITCH databases. The Online Mendelian Inheritance in Man (OMIM) and GeneCards databases were utilized to screen the known POI-related targets, while Cytoscape software was used for network construction and visualization. Then, the Gene Ontology (GO) and pathway enrichment analysis were carried out by the Database for Annotation, Visualization and Integrated Discovery (DAVID) database. Furthermore, KGN cells were performed to validate the predicted results in oxidative stress (OS) model, and antioxidant effect was examined. RESULTS A total of 70 potential common targets for EC in the treatment of POI were obtained through network pharmacology. Metabolic process, response to stimulus and antioxidant activity occupied a leading position of Gene Ontology (GO) enrichment. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that PI3K/protein kinase B (AKT), TNF, estrogen, VEGF and MAPK signaling pathways were significantly enriched. In addition, cell experiments showed that EC exhibited antioxidant effects in an H2O2-mediated OS model in ovarian granulosa cells by regulating the expression of PI3K/AKT/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway and multiple downstream antioxidant enzymes. CONCLUSION EC could regulate multiple signaling pathways and several biological processes (BPs). EC had the ability to down-regulate elevated OS level through the PI3K/AKT/Nrf2 signaling pathway and represented a potential novel treatment for POI.
Collapse
Affiliation(s)
- Fei Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Zhao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Huanpeng Gao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaomei Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ke Xu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yishu Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fuguo Han
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Qingfei Liu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yun Shi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
75
|
Li JH, Wei TT, Guo L, Cao JH, Feng YK, Guo SN, Liu GH, Ding Y, Chai YR. Curcumin protects thymus against D-galactose-induced senescence in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:411-420. [PMID: 32686020 DOI: 10.1007/s00210-020-01945-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022]
Abstract
Senescence-related decline of thymus affects immune function in the elderly population and contributes to the prevalence of many relevant diseases like cancer, autoimmune diseases, and other chronic diseases. In this study, we investigated the therapeutic effects of curcumin, an agent that could counter aging, and explored its optimal intake and the alteration of autoimmune regulator (Aire) after curcumin treatment in the D-galactose (D-gal)-induced accelerated aging mice. ICR mice were intraperitoneally injected with D-gal for 8 weeks to establish the accelerated aging model and given curcumin with 50, 100, and 200 mg/kg body weight per day by gavage, respectively, for 6 weeks. It indicated that the D-gal-treated mice developed structural changes in the thymi compared with the control group without D-gal and curcumin treatment. As the supplements of curcumin, it resulted in a restoration of the normal thymic anatomy with an increase of proliferating cells and a reduction of apoptotic cells in the thymi of the D-gal-induced aging model mice. Curcumin administration could also expand the expression level of Aire from mRNA level and protein level. The current study demonstrated that curcumin could ameliorate senescence-related thymus involution via upregulating Aire expression, suggesting that curcumin can rejuvenate senescence-associated alterations of thymus induced by D-gal accumulation.
Collapse
Affiliation(s)
- Jie-Han Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, No. 100 Ke Xue Road, Zhengzhou, 450001, Henan, China
| | - Ting-Ting Wei
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, No. 100 Ke Xue Road, Zhengzhou, 450001, Henan, China
| | - Li Guo
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, No. 100 Ke Xue Road, Zhengzhou, 450001, Henan, China
| | - Jia-Hui Cao
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, No. 100 Ke Xue Road, Zhengzhou, 450001, Henan, China
| | - Yuan-Kang Feng
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, No. 100 Ke Xue Road, Zhengzhou, 450001, Henan, China
| | - Shu-Ning Guo
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, No. 100 Ke Xue Road, Zhengzhou, 450001, Henan, China
| | - Guo-Hong Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, No. 100 Ke Xue Road, Zhengzhou, 450001, Henan, China
| | - Yi Ding
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, No. 100 Ke Xue Road, Zhengzhou, 450001, Henan, China
| | - Yu-Rong Chai
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, No. 100 Ke Xue Road, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
76
|
Yang L, Chen Y, Liu Y, Xing Y, Miao C, Zhao Y, Chang X, Zhang Q. The Role of Oxidative Stress and Natural Antioxidants in Ovarian Aging. Front Pharmacol 2021; 11:617843. [PMID: 33569007 PMCID: PMC7869110 DOI: 10.3389/fphar.2020.617843] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022] Open
Abstract
The ovarian system comprises vital organs in females and is of great significance for the maintenance of reproductive potential and endocrine stability. Although complex pathogenesis undoubtedly contributes to ovarian aging, increasing attention is being paid to the extensive influence of oxidative stress. However, the role of oxidative stress in ovarian aging is yet to be fully elucidated. Exploring oxidative stress-related processes might be a promising strategy against ovarian aging. In this review, compelling evidence is shown that oxidative stress plays a role in the etiology of ovarian aging and promotes the development of other ovarian aging-related etiologies, including telomere shortening, mitochondrial dysfunction, apoptosis, and inflammation. In addition, some natural antioxidants such as quercetin, resveratrol, and curcumin have a protective role in the ovaries through multiple mechanisms. These findings raise the prospect of oxidative stress modulator-natural antioxidants as therapeutic interventions for delaying ovarian aging.
Collapse
Affiliation(s)
- Liuqing Yang
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yun Chen
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Liu
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Xing
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chenyun Miao
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Zhao
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiangwei Chang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qin Zhang
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
77
|
Sohrevardi SM, Heydari B, Azarpazhooh MR, Teymourzadeh M, Simental-Mendía LE, Atkin SL, Sahebkar A, Karimi-Zarchi M. Therapeutic Effect of Curcumin in Women with Polycystic Ovary Syndrome Receiving Metformin: A Randomized Controlled Trial. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:109-117. [PMID: 33861440 DOI: 10.1007/978-3-030-64872-5_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the most common cause of anovulatory infertility, for which the insulin sensitizer metformin has been used therapeutically. It has been shown that curcumin also exhibits insulin-sensitizing properties. Given that metformin acts as an ovulation inducing agent and both curcumin and metformin can reduce insulin resistance, the aim of the current study was to evaluate the effect of metformin with and without curcumin nanomicelles in the treatment of women with polycystic ovary syndrome. This clinical trial was conducted on 100 women with PCOS, diagnosed according to the Rotterdam criteria, who were sequentially recruited and randomly divided into two groups (n = 50 each). Group 1 received 500 mg metformin three times daily and group 2 received 80 mg/day capsule of curcumin nanomicelle and 500 mg metformin three times a day for 3 months. After collecting fasting blood samples, biochemical parameters including triglycerides, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol, plasma glucose, alanine amino transferase (ALT) and aspartate aminotransferase (AST) were evaluated based on enzymatic methods. Hormonal parameters were assessed using immunoassay kits. Insulin resistance (HOMA-IR) and insulin-sensitivity check index (QUICKI) were also assessed. After treatment, fasting insulin, HOMA-IR, and total testosterone in group 2 were significantly lower than those in group 1 (p < 0.05). Post-treatment LDL-C levels in groups 1 and 2 were 117.9 ± 24 and 91.12 ± 19.46 mg/dL, respectively (p < 0.01). In addition, HDL-C levels were increased with curcumin (group 1: 38.1 ± 4.36 mg/dL; group 2: 44.12 ± 7.3 mg/dL, p < 0.05). Total cholesterol was decreased with curcumin level (group 1: 207.9 ± 39.84 mg/dL; group 2; 159.7 ± 48.43 mg/dL, p < 0.05), with a decrease in triglycerides levels (group 1: 141.6 ± 9.57; group 2: 97.5 ± 8.8 mg/dL, p < 0.01). This study showed that curcumin has a synergistic effect with metformin in the improvement of insulin resistance and lipid profile in patients with PCOS. Therefore, the combined use of metformin and curcumin may have therapeutic utility in patients with PCOS.
Collapse
Affiliation(s)
- Seyed Mojtaba Sohrevardi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Stroke Prevention & Atherosclerosis Research Center, University of Western Ontario, London, ON, Canada
| | - Behrooz Heydari
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahmoud Reza Azarpazhooh
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada.,Department of Epidemiology and Biostatistics, University of Western Ontario, London, ON, Canada
| | - Mohammad Teymourzadeh
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Mojgan Karimi-Zarchi
- Department of Gynecology and Obstetrics, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
78
|
Heshmati J, Moini A, Sepidarkish M, Morvaridzadeh M, Salehi M, Palmowski A, Mojtahedi MF, Shidfar F. Effects of curcumin supplementation on blood glucose, insulin resistance and androgens in patients with polycystic ovary syndrome: A randomized double-blind placebo-controlled clinical trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153395. [PMID: 33137599 DOI: 10.1016/j.phymed.2020.153395] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Curcumin is a biologically active phytochemical ingredient found in turmeric. It has several pharmacologic effects that might benefit patients with polycystic ovary syndrome (PCOS). OBJECTIVE We hypothesized curcumin to be effective in improving blood sugar levels, insulin resistance and hyperandrogenism in individuals with PCOS. METHODS In a randomized double-blind placebo-controlled trial, individuals with PCOS were treated with curcumin (500 mg three times daily) or placebo for 12 weeks. Primary outcome measures were fasting plasma glucose (FPG), fasting insulin (FI), sex hormone levels, and hirsutism (Ferriman-Gallwey [mFG] score). Secondary outcomes included anthropometric measurements. RESULTS Of 72 randomized individuals, 67 completed the trial. The two groups were comparable at baseline. At the end of the study, FPG and Dehydroepiandrosterone levels had decreased significantly in the intervention group compared to control (difference of change (post-pre) between intervention and placebo groups: -4.11 mg/dL; 95% CI: -8.35, -0.35 mg/dL; p = 0.033 and -26.53 microg/dL; 95% CI: -47.99, -4.34 µg/dL; p = 0.035, respectively). We also observed a statistically non-significant increase (p = 0.082) in Estradiol levels in the intervention group compared to control. No serious adverse events were reported throughout the trial. CONCLUSIONS Curcumin might be a safe and useful supplement to ameliorate PCOS-associated hyperandrogenemia and hyperglycemia. However, longer trials investigating different dosages in longer durations are needed to underpin these findings.
Collapse
Affiliation(s)
- Javad Heshmati
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ashraf Moini
- Breast Disease Research Center(BDRC), Tehran University Of Medical Sciences, Tehran, Iran; Department of Obstetrics and Gynecology, Endocrinology and Female Infertility Unit, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran; Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mahdi Sepidarkish
- Department of Biostatistics and Epidemiology, School of Public Health, Babol University of Medical Sciences, Babol, Iran
| | - Mojgan Morvaridzadeh
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Salehi
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Andriko Palmowski
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Maryam Farid Mojtahedi
- Department of Obstetrics and Gynecology, Endocrinology and Female Infertility Unit, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
79
|
Liang X, Yan Z, Ma W, Qian Y, Zou X, Cui Y, Liu J, Meng Y. Peroxiredoxin 4 protects against ovarian ageing by ameliorating D-galactose-induced oxidative damage in mice. Cell Death Dis 2020; 11:1053. [PMID: 33311472 PMCID: PMC7732846 DOI: 10.1038/s41419-020-03253-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023]
Abstract
Peroxiredoxin 4 (Prdx4), a member of the Prdx family, is a vital ER-resident antioxidant in cells. As revealed in our previous study, Prdx4 expression was detected in ovarian granulosa cells and was closely related to ovarian function. This research aimed to explore the effect and underlying molecular mechanism of the protective role of Prdx4 against D-gal-induced ovarian ageing in mice. The D-gal-induced ovarian ageing model has been extensively used to study the mechanisms of premature ovarian failure (POF). In this study, adult Prdx4-/- and wild-type mice were intraperitoneally injected with D-gal (150 mg/kg/day) daily for 6 weeks. Ovarian function, granulosa cell apoptosis, oxidative damage and ER stress in the ovaries were evaluated in the two groups. Ovarian weight was significantly lower, the HPO axis was more strongly disrupted, and the numbers of atretic follicles and apoptotic granulosa cells were obviously higher in Prdx4-/- mice. In addition, Prdx4-/- mice showed increased expression of oxidative damage-related factors and the ovarian senescence-related protein P16. Moreover, the levels of the proapoptotic factors CHOP and activated caspase-12 protein, which are involved in the ER stress pathway, and the level of the apoptosis-related BAX protein were elevated in the ovaries of Prdx4-/- mice. Thus, D-gal-induced ovarian ageing is accelerated in Prdx4-/- mice due to granulosa cell apoptosis via oxidative damage and ER stress-related pathways, suggesting that Prdx4 is a protective agent against POF.
Collapse
Affiliation(s)
- Xiuru Liang
- The State Key Laboratory of Reproductive Medicine, The Center for Clinical Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhengjie Yan
- The State Key Laboratory of Reproductive Medicine, The Center for Clinical Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Weiwei Ma
- The State Key Laboratory of Reproductive Medicine, The Center for Clinical Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yi Qian
- The State Key Laboratory of Reproductive Medicine, The Center for Clinical Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaofei Zou
- The State Key Laboratory of Reproductive Medicine, The Center for Clinical Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yugui Cui
- The State Key Laboratory of Reproductive Medicine, The Center for Clinical Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jiayin Liu
- The State Key Laboratory of Reproductive Medicine, The Center for Clinical Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yan Meng
- The State Key Laboratory of Reproductive Medicine, The Center for Clinical Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
80
|
He L, Wang X, Cheng D, Xiong Z, Liu X. Ginsenoside Rg1 improves pathological damages by activating the p21‑p53‑STK pathway in ovary and Bax‑Bcl2 in the uterus in premature ovarian insufficiency mouse models. Mol Med Rep 2020; 23:37. [PMID: 33179093 PMCID: PMC7684879 DOI: 10.3892/mmr.2020.11675] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/25/2020] [Indexed: 01/02/2023] Open
Abstract
The aim of the present study was to investigate the effects of the ginsenoside Rg1 on D-galactose (D-gal)-induced mouse models of premature ovarian insufficiency (POI) and the related mechanisms. C57BL/6 female mice were randomly grouped into the following: i) D-gal [subcutaneously (s.c.) 200 mg/kg/d D-gal for 42 days]; ii) Rg1 [intraperitoneally (i.p.) 20 mg/kg/d Rg1 for 28 days]; iii) D-gal + Rg1 (s.c. 200 mg/kg/d D-gal for 42 days followed by i.p. 20 mg/kg/d Rg1 for 28 days); and iv) saline groups (equivalent volume of saline s.c. and i.p.). Hematoxylin and eosin staining and electron microscopy were used to analyze uterine and ovarian morphology. Expression levels of senescence factors (p21, p53 and serine/threonine kinase), secretion of pro-inflammatory cytokines [interleukin (IL)-6, tumor necrosis factor (TNF)-α and IL-1β] and the activities of oxidation biomarkers [superoxide dismutase (T-SOD), malondialdehyde (MDA) and glutathione peroxidase (GSH-px)] were analyzed. The results showed that mice in the Rg1 + D-gal group had significantly higher uterine and ovarian weight compared with those in the D-gal group. Uterus morphology was also improved, based on the comparison between the D-gal group and the Rg1 + D-gal group. In addition, the Rg1 treatment after D-gal administration significantly decreased the expression of senescence-associated factors, enhanced the activities of anti-oxidant enzymes total T-SOD and GSH-px in addition to reducing TNF-α, IL-1β, MDA and IL-6 (based on the comparison between the D-gal group and the Rg1 + D-gal group). In conclusion, the present study suggested that the ginsenoside Rg1 improved pathological damages in the ovary and uterus by increasing anti-oxidant and anti-inflammatory abilities whilst reducing the expression of senescence signaling pathways in POI mouse models.
Collapse
Affiliation(s)
- Lianli He
- Department of Gynecology and Obstetrics, The First People's Hospital of Zunyi and Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xiaojuan Wang
- Department of Gynecology and Obstetrics, The First People's Hospital of Zunyi and Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Daigang Cheng
- Department of Gynecology and Obstetrics, The First People's Hospital of Zunyi and Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Zhengai Xiong
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xiaoyun Liu
- Department of Gynecology and Obstetrics, The First People's Hospital of Zunyi and Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
81
|
Zhang JQ, Ren QL, Chen JF, Gao BW, Wang XW, Zhang ZJ, Wang J, Xu ZJ, Xing BS. Autophagy Contributes to Oxidative Stress-Induced Apoptosis in Porcine Granulosa Cells. Reprod Sci 2020; 28:2147-2160. [PMID: 33079330 DOI: 10.1007/s43032-020-00340-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/01/2020] [Indexed: 11/25/2022]
Abstract
Oxidative stress-induced granulosa cell (GC) death is a major cause of follicular atresia. As the major types of programmed cell death, autophagy and apoptosis have been observed in response to H2O2-mediated oxidative stress and have been demonstrated to be responsible for porcine GC death. To date, however, the cellular reactions linking autophagy to the apoptosis of porcine GC under oxidative stress are still poorly understood. Porcine GC were treated with H2O2, and autophagic flux was examined by western blotting. Cell viability and cell death assays were performed after cotreatment of porcine GC with autophagy activator (rapamycin) or inhibitor (3-methyladenine, 3-MA) together with H2O2. We revealed that short exposure (1-3 h) of porcine GC to H2O2 dramatically increased autophagic flux (1.8- to 2.5-fold over that in the control), whereas 6-12 h prolonged treatment decreased autophagy but elevated the caspase-3 activity and GC apoptotic rate. Furthermore, we showed that pretreatment with rapamycin exacerbated H2O2-mediated cytotoxicity and caspase-3 activation but that 3-MA or siRNAs specific for Beclin 1 and Atg7 genes ameliorated H2O2-mediated GC apoptosis. Together, our results indicate that autophagy plays a pivotal role in H2O2-mediated porcine GC apoptosis. Importantly, we show that the early induction of autophagic flux contributes to oxidative stress-induced apoptosis in porcine GC. The results also suggest that regulating the autophagy response in porcine GC under oxidative stress might be a new strategy for abnormal follicular atresia.
Collapse
Affiliation(s)
- Jia-Qing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Zhengzhou, 450002, China.
| | - Qiao-Ling Ren
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Zhengzhou, 450002, China
| | - Jun-Feng Chen
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Zhengzhou, 450002, China
| | - Bin-Wen Gao
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Zhengzhou, 450002, China
| | - Xian-Wei Wang
- Henan Provincial Animal Husbandry General Station, Zhengzhou, 450008, China
| | - Zi-Jing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Zhengzhou, 450002, China
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Zhengzhou, 450002, China
| | - Ze-Jun Xu
- Henan Provincial Animal Husbandry General Station, Zhengzhou, 450008, China
| | - Bao-Song Xing
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Zhengzhou, 450002, China
| |
Collapse
|
82
|
El Bakly W, Medhat M, Shafei M, Tash R, Elrefai M, Shoukry Y, Omar NN. Optimized platelet rich plasma releasate (O-rPRP) repairs galactosemia-induced ovarian follicular loss in rats by activating mTOR signaling and inhibiting apoptosis. Heliyon 2020; 6:e05006. [PMID: 33005806 PMCID: PMC7509792 DOI: 10.1016/j.heliyon.2020.e05006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/25/2020] [Accepted: 09/17/2020] [Indexed: 11/30/2022] Open
Abstract
Platelet rich plasma contains a collection of growth factors, and an optimal formulation, named O-rPRP, contains the highest possible concentration of growth factors. Purpose Challenging the healing power of O-rPRP in a high-galactose diet-induced premature ovarian insufficiency (POI) experimental rat model. Methods Rats were divided into four groups of ten rats each and treated for four week as follows; 1) the control group, fed with normal diet and received intraperitoneal (i.p.) injection of PBS once/week; 2) the POI group, fed with galactose diet (50%) and received PBS (i.p.) once/week; 3) the POI/O-rPRP group, fed a 50% galactose diet and received O-rPRP (i.p.) once/week; 4) the O-rPRP group (negative control), fed with a normal diet and received O-rPRP (i.p.) once/week. The levels of galactose, follicle stimulating hormone, 17 β-estradiol, anti-mullerian hormone and inhibin B were measured in serum samples. Western blotting and quantitative real-time PCR assays were employed to investigate the levels of miR-223, β1 integrin, p70S6k and MCL-1 in ovarian tissues. Results After O-rPRP treatment, β1 integrin expression was enhanced, and miR-223 expression was decreased. Unlike the untreated galactose group, in the group treated with O-rPRP, p70S6k and MCL-1 expression levels were increased, indicating that the mTOR growth signaling pathway was active and that apoptosis was inactive. After the introduction of O-rPRP, the number of follicles and the follicular maturation improved, which was consistent with the improvement of inhibin B levels and subsequent inhibition of FSH. Conclusion O-rPRP inhibited galactose-induced excessive atresia and provided an overall protective effect on the ovarian follicles.
Collapse
Affiliation(s)
- Wesam El Bakly
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa Medhat
- Department of Pharmacology, National Center for Social & Criminological Research, Egypt
| | - Mohamed Shafei
- Obstetrician and Gynecologist at Sidnawy Health Insurance Hospital, Cairo, Egypt.,Dar Alshifa Hospital, Kuwait
| | - Reham Tash
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.,Department of Anatomy and Embryology, Faculty of Medicine in Rabigh, King Abdulaziz University, Saudi Arabia
| | - Mohamed Elrefai
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.,Basic Medical Science Department, Faculty of Medicine, Hashemite University, Alzarqa, Jordan
| | - Yousef Shoukry
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nesreen Nabil Omar
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information, 11 Saudia Buildings, Nozha Street, 11371, Cairo, Egypt
| |
Collapse
|
83
|
Bhardwaj JK, Panchal H, Saraf P. Ameliorating Effects of Natural Antioxidant Compounds on Female Infertility: a Review. Reprod Sci 2020; 28:1227-1256. [PMID: 32935256 DOI: 10.1007/s43032-020-00312-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022]
Abstract
The prevalence of female infertility cases has been increasing at a frightening rate, affecting approximately 48 million women across the world. However, oxidative stress has been recognized as one of the main mediators of female infertility by causing various reproductive pathologies in females such as endometriosis, PCOS, preeclampsia, spontaneous abortion, and unexplained infertility. Nowadays, concerned women prefer dietary supplements with antioxidant properties over synthetic drugs as a natural way to lessen the oxidative stress and enhance their fertility. Therefore, the current review is an attempt to explore the efficacy of various natural antioxidant compounds including vitamins, carotenoids, and plant polyphenols and also of some medicinal plants in improving the fertility status of females. Our summarization of recent findings in the current article would pave the way toward the development of new possible antioxidant therapy to treat infertility in females. Natural antioxidant compounds found in fruits, vegetables, and other dietary sources, alone or in combination with other antioxidants, were found to be effective in ameliorating the oxidative stress-mediated infertility problems in both natural and assisted reproductive settings. Numerous medicinal plants showed promising results in averting the various reproductive disorders associated with female infertility, suggesting a plant-based herbal medicine to treat infertility. Although optimum levels of natural antioxidants have shown favorable results, however, their excessive intake may have adverse health impacts. Therefore, larger well-designed, dose-response studies in humans are further warranted to incorporate natural antioxidant compounds into the clinical management of female infertility.
Collapse
Affiliation(s)
- Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| | - Harish Panchal
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Priyanka Saraf
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| |
Collapse
|
84
|
Ebrahimzade M, Mirdoraghi M, Alikarami A, Heidari S, Rastegar T, Partoazar AR, Takzaree N. Comparison of the Effect of Adipocyte-derived Stem Cells and Curcumin Nanoliposomes with Phenytoin on Open Cutaneous Wound Healing in Rats. Endocr Metab Immune Disord Drug Targets 2020; 21:866-877. [PMID: 32811405 DOI: 10.2174/1871530320999200817172200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/16/2020] [Accepted: 07/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Reducing the healing time of wounds can decrease the patient's immobility time and their medical costs, leading a faster return of the patients to daily work. OBJECTIVE The aim of the present study is to compare the effect of adipose-derived stem cells and curcumin- containing liposomal nanoparticles with phenytoin on wound healing. METHODS After anesthesia of the rats, open skin ulcers were made by a bistoury blade. Subsequently, stem cells were removed from the adipose tissue of the upper border of the epididymis. The originality of stem cells was then confirmed by the flow cytometry. The fusion method was used to prepare the liposome; and also, nanoliposomal particles were confirmed by using the DLS microscope. The percentage of recovery and the cell count was measured with IMAGEJ. The expression of genes was assessed by PCR. The number of fibroblasts was counted by immunohistochemistry techniques. The amount of collagen was determined by Tri-chromosome staining, and the number of capillaries was enumerated by H & E staining. RESULTS The expression of the TGF-β1 gene, vascular number, wound healing rate and the number of fibroblasts increased significantly in adipose tissue-derived stem cells and curcumin nanoliposome groups (p<0.05); the wound surface was also decreased significantly (p<0.05). CONCLUSION Based on the results of our research, adipose tissue-derived stem cells and curcumin nanoliposomes can heal wounds efficiently.
Collapse
Affiliation(s)
| | - Mohammad Mirdoraghi
- Department of Radiology and Radiotherapy, School of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ameneh Alikarami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Heidari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali R Partoazar
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Takzaree
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
85
|
Liu Z, Li F, Xue J, Wang M, Lai S, Bao H, He S. Esculentoside A rescues granulosa cell apoptosis and folliculogenesis in mice with premature ovarian failure. Aging (Albany NY) 2020; 12:16951-16962. [PMID: 32759462 PMCID: PMC7521512 DOI: 10.18632/aging.103609] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/12/2020] [Indexed: 01/24/2023]
Abstract
Follicular atresia is one of the main processes for the loss of granulosa cells and oocytes from the mammalian ovary and any impairment to premature ovarian failure. Large numbers of studies have demonstrated that granulosa cell apoptosis causes follicular atresia, yet the rescue of these cells remains elusive. We aimed to use Esculentoside A (3-O-b-D-glucopyranosyl-1, 4-b-D-xylopyranosyl) phytolaccagenin, a saponin extracted from Phytolacca esculenta roots, as a potential rescue agent for the apoptosis of granulosa cells. Our results revealed the rescue of normal body and ovary weights, normal ovarian histo-architecture of ovaries, and hormones levels with regular estrus cycle. Consistently, the expression of proliferating and anti-apoptotic markers, i.e. KI67 and BCL-2 in granulosa cells, was enhanced. Meanwhile, the expressions of pro-apoptotic markers, which were BAX and CASPASEs (CASPASE-9 and CASPASE-3), were prominently reduced in Esculentoside A-induced premature ovarian failure mice. Additionally, PPARγ, a potential therapeutic target, has also rescued its expression by treating the premature ovarian failure mice with Esculentoside A. Our results advocated that Esculentoside A could restore folliculogenesis in premature ovarian failure mice. Furthermore, it has the potential to be investigated as a therapeutic agent for premature ovarian failure.
Collapse
Affiliation(s)
- Zhenteng Liu
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| | - Fenghua Li
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| | - Jingwen Xue
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| | - Meimei Wang
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| | - Shoucui Lai
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| | - Hongchu Bao
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| | - Shunzhi He
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| |
Collapse
|
86
|
Sun TC, Liu XC, Yang SH, Song LL, Zhou SJ, Deng SL, Tian L, Cheng LY. Melatonin Inhibits Oxidative Stress and Apoptosis in Cryopreserved Ovarian Tissues via Nrf2/HO-1 Signaling Pathway. Front Mol Biosci 2020; 7:163. [PMID: 32850957 PMCID: PMC7403229 DOI: 10.3389/fmolb.2020.00163] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
In the field of assisted reproductive technology, female fertility preservation, particularly ovarian tissue cryopreservation in adolescent cancer patients, has attracted much attention. Melatonin (MLT) is well known for its antioxidative and anti-apoptotic properties; however, whether it can ameliorate the cryoinjury and inhibit the generation of reactive oxygen species (ROS) in cryopreserved ovarian tissues (OTs) has not yet been reported. Here, we demonstrated that MLT could protect follicular integrity; prevent cell apoptosis; decrease ROS, malondialdehyde (MDA), and nitric oxide (NO) levels; and increase activities of glutathione peroxidases (GSH-Px), glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD) in cryopreserved OTs. Furthermore, these effects may be related with the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, as evidenced by increased mRNA levels of Nrf2 downstream genes, including heme oxygenase-1 (HO-1), glutathione S-transferase M1 (GSTM1), SOD, and CAT. In summary, MLT can not only directly scavenge ROS but also significantly induce the activation of antioxidative enzymes via the Nrf2 signaling pathway, which is a new mechanism underlying the protection effects of MLT on cryopreserved OTs.
Collapse
Affiliation(s)
- Tie Cheng Sun
- Faculty of Graduate Studies, Chengde Medical University, Chengde, China.,Department of Immunology, Basic Medical Institute, Chengde Medical University, Chengde, China.,Reproductive Medicine Center, Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, China
| | - Xiao Chao Liu
- Faculty of Graduate Studies, Chengde Medical University, Chengde, China.,Department of Immunology, Basic Medical Institute, Chengde Medical University, Chengde, China
| | - Song He Yang
- Faculty of Graduate Studies, Chengde Medical University, Chengde, China.,Department of Immunology, Basic Medical Institute, Chengde Medical University, Chengde, China
| | - Ling Li Song
- Department of Immunology, Basic Medical Institute, Chengde Medical University, Chengde, China
| | - Shan Jie Zhou
- Department of Immunology, Basic Medical Institute, Chengde Medical University, Chengde, China
| | - Shou Long Deng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Li Tian
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, China
| | - Lu Yang Cheng
- Faculty of Graduate Studies, Chengde Medical University, Chengde, China.,Department of Immunology, Basic Medical Institute, Chengde Medical University, Chengde, China
| |
Collapse
|
87
|
Exercise and Curcumin in Combination Improves Cognitive Function and Attenuates ER Stress in Diabetic Rats. Nutrients 2020; 12:nu12051309. [PMID: 32375323 PMCID: PMC7284733 DOI: 10.3390/nu12051309] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease associated with chronic low-grade inflammation that is mainly associated with lifestyles. Exercise and healthy diet are known to be beneficial for adults with T2DM in terms of maintaining blood glucose control and overall health. We investigated whether a combination of exercise and curcumin supplementation ameliorates diabetes-related cognitive distress by regulating inflammatory response and endoplasmic reticulum (ER) stress. This study was performed using male Otsuka Long-Evans Tokushima Fatty (OLETF) rats (a spontaneous diabetes Type 2 model) and Long-Evans Tokushima Otsuka (LETO) rats (LETO controls) by providing them with exercise alone or exercise and curcumin in combination. OLETF rats were fed either a diet of chow (as OLETF controls) or a diet of chow containing curcumin (5 g/kg diet) for five weeks. OLETF rats exercised with curcumin supplementation exhibited weight loss and improved glucose homeostasis and lipid profiles as compared with OLETF controls or exercised OLETF rats. Next, we examined cognitive functions using a Morris water maze test. Exercise plus curcumin improved escape latency and memory retention compared to OLETF controls. Furthermore, OLETF rats exercised and fed curcumin had lower IL6, TNFα, and IL10 levels (indicators of inflammatory response) and lower levels of ER stress markers (BiP and CHOP) in the intestine than OLETF controls. These observations suggest exercise plus curcumin may offer a means of treating diabetes-related cognitive dysfunction.
Collapse
|
88
|
Zhou Y, Zhang A, Gong M, Lu Y, Zhao C, Shen X, Zhang X, Wang L, Chen J, Ju R. Maternal Testosterone Excess Contributes to Reproductive System Dysfunction of Female Offspring Mice. Endocrinology 2020; 161:5611346. [PMID: 31680156 DOI: 10.1210/endocr/bqz011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/03/2019] [Indexed: 12/31/2022]
Abstract
Hyperandrogenism is considered 1 of the most important characteristics of polycystic ovary syndrome, which affects more than 10% of females of reproductive age and is a common cause of infertility. In addition to the effects on patients themselves, maternal androgen excess has also been reported to impair the growth and development of offspring. In our current study, we found that maternal testosterone (T) treatment during different gestational stages increased the percentage of atretic follicle and decreased corpus luteum formation in female offspring. In addition, decreased serum estradiol and increased T levels were also observed in female offspring of T-treated mice during late gestational stage. Further studies revealed that Forkhead box protein L2 (FOXL2) and Cytochrome P450 family 19 subfamily a member 1 (CYP19A1) expression in granulosa cells of these female offspring mice were decreased. By using mouse primary granulosa cells and the KGN cell line, we demonstrated that decreasing FOXL2 and CYP19A1 levels in ovarian granulosa cells partially may contribute to disturbed sex hormone synthesis in female offspring of T-treated mice during the late gestational stage. Findings from our current study highlight a critical role of excess maternal T exposure, especially during the late gestational stage, which could further lead to aberrant ovary development and sex hormone synthesis in female offspring.
Collapse
Affiliation(s)
- Yu Zhou
- Central Laboratory, Translational Medicine Research Center, Nanjing, Jiangsu, China
- Department of Obstetrics and Gynecology, Nanjing, Jiangsu, China
| | - Anhong Zhang
- Department of Obstetrics and Gynecology, Nanjing, Jiangsu, China
| | - Min Gong
- Department of Obstetrics and Gynecology, Nanjing, Jiangsu, China
| | - Yingfei Lu
- Central Laboratory, Translational Medicine Research Center, Nanjing, Jiangsu, China
| | - Chengcheng Zhao
- Central Laboratory, Translational Medicine Research Center, Nanjing, Jiangsu, China
| | - Xia Shen
- Department of Obstetrics and Gynecology, Nanjing, Jiangsu, China
| | - Xiaomei Zhang
- Department of Pathology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lin Wang
- Department of Pathology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianquan Chen
- Central Laboratory, Translational Medicine Research Center, Nanjing, Jiangsu, China
- Department of Obstetrics and Gynecology, Nanjing, Jiangsu, China
| | - Rong Ju
- Department of Obstetrics and Gynecology, Nanjing, Jiangsu, China
| |
Collapse
|
89
|
Xu HX, Lin SX, Gong Y, Huo ZX, Zhao CY, Zhu HM, Xi SY. Chaiyu-Dixian Formula Exerts Protective Effects on Ovarian Follicular Abnormal Development in Chronic Unpredictable Mild Stress (CUMS) Rat Model. Front Pharmacol 2020; 11:245. [PMID: 32265693 PMCID: PMC7105682 DOI: 10.3389/fphar.2020.00245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/21/2020] [Indexed: 01/02/2023] Open
Abstract
Background Chronic stress has been known to impair the female reproductive function, but the mechanism remains to be further investigated. Chaiyu-Dixian Formula (CYDXF) has been reported to regulate human endocrine disorders clinically. However, whether this formula can affect chronic stress-induced ovarian follicular development is not clear. Aim of the study To examine effects of CYDXF on follicular development and explore possible mech anisms in a chronic unpredictable mild stress (CUMS) model. Materials and Methods Adult female rats were randomly divided into 5 groups control group, CUMS group (saline treatment), CUMS+Estradiol (E2) (0.1 mg/kg) group, CUMS+CYDXF (2.73 g/kg) group, and CUMS+CYDXF (5.46 g/kg) group. Body weights and behavioral tests were documented. Serum hormone levels were determined by enzyme-linked immunosorbent assay (ELISA). Western blotting was used to detect the protein levels in the PI3K/Akt pathway and brain-derived neurotrophic factor (BDNF). The follicles were analyzed and classified according to their morphological characterization. Results CYDXF relieved depression-like behaviors and ameliorated the abnormality in rat estrous cycle within the rat model of CUMS. Moreover, CYDXF could regulate endocrine disorders, increase the proportion of antral follicles as well as decrease the proportion of follicular atresia, which suggested that CYDXF could alleviate abnormal follicular development and improve overall ovarian function. Furthermore, CYDXF also activated the BDNF-mediated PI3K/Akt signaling pathway. Conclusions CYDXF (at dose of both 2.73 and 5.46 g/kg) attenuated chronic stress-induced abnormal ovarian follicular development by relieving depression-like behaviors and improving ovarian function through partly the regulation of the BDNF-mediated PI3K/Akt pathway.
Collapse
Affiliation(s)
- Hui-Xian Xu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.,Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Shu-Xia Lin
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.,Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Yuewen Gong
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Zi-Xuan Huo
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.,Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Cheng-Yun Zhao
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.,Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Hong-Mei Zhu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.,Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Sheng-Yan Xi
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.,Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
90
|
Fatemi Abhari SM, Khanbabaei R, Hayati Roodbari N, Parivar K, Yaghmaei P. Curcumin-loaded super-paramagnetic iron oxide nanoparticle affects on apoptotic factors expression and histological changes in a prepubertal mouse model of polycystic ovary syndrome-induced by dehydroepiandrosterone - A molecular and stereological study. Life Sci 2020; 249:117515. [PMID: 32147428 DOI: 10.1016/j.lfs.2020.117515] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 02/09/2023]
Abstract
AIMS This study investigated the effects of curcumin-loaded super-paramagnetic iron oxide (Fe3O4) nanoparticles (NPs) (SPIONs) on histological parameters and apoptosis-inducing factors (AIFs) in an experimental mouse model of polycystic ovary syndrome (PCOS). MATERIALS AND METHODS A total number of 40 female prepuberal BALB/c mice were randomly divided into four groups. Group 1 was selected as control and Group 2 was considered as a vehicle taking sesame oil, in the form of a curcumin carrier. Moreover, Group 3 was administered with dehydroepiandrosterone (DHEA) at 6 mg/100 g of the body weight and Group 4 received the DHEA plus the NPs of curcumin (5.4 mg/100 g) for twenty consecutive days. Finally, histology, stereology, and apoptosis of the ovary were evaluated. KEY FINDINGS The results revealed that the NPs of curcumin had reduced ovarian volume (p < 0.05) and a total number of primary, secondary, antral, and primordial follicles in comparison with the PCOS and vehicle groups (p < 0.05). Furthermore, curcumin treatment following administration of the DHEA resulted in a significant decrease in BAX (p < 0.001) and levels of expression of Caspase3 (CASP3) protein, increased levels of B-cell lymphoma 2 (Bcl2) expression (p < 0.05), and moderated apoptosis in granulosa cells in comparison with the ones seen in the PCOS group. SIGNIFICANCE Ovarian injuries and DHEA-induced apoptosis were efficiently suppressed by curcumin, indicating the probable protective property of NPs of curcumin against PCOS.
Collapse
Affiliation(s)
| | - Ramzan Khanbabaei
- Department of Biology, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran.
| | - Nasim Hayati Roodbari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
91
|
Heidarzadeh S, Azarbayjani MA, Matin Homaei H, Hedayati M. Evaluation of the Effect of Aerobic Exercise and Curcumin Consumption on HPG Axis (Hypothalamus-Pituitary-Gonadotropic) in Alcohol Binge Drinking Rats. NUTRITION AND FOOD SCIENCES RESEARCH 2020. [DOI: 10.29252/nfsr.7.2.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
92
|
Ma Q, Tan Y, Mo G. Effectiveness of Cotreatment with Kuntai Capsule and Climen for Premature Ovarian Failure: A Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:4367359. [PMID: 32215038 PMCID: PMC7053475 DOI: 10.1155/2020/4367359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To compare the treatment efficacy of Kuntai capsule with Climen only in the therapy of premature ovarian failure. METHODS Randomized controlled trials were electronically retrieved from PubMed, Cochrane Library, Web of science, CBM, CNKI, Wanfang, and Weipu database. In addition, some related papers were manually checked. All papers were assessed according to the Cochrane Handbook for Systematic Reviews of Interventions, and the effective data were analyzed by Revman 5.3 Software. RESULTS 11 randomized control trials involving 1068 patients were included. Results of meta-analysis showed that E2 (estrogen), the total therapeutic effective rate of the group of Kuntai capsule, and hormone were higher than hormone only. The LH (luteinizing hormone), FSH (follicle-stimulating hormone), and Kupperman score of the group of Kuntai capsule and Climen were lower than Climen only. CONCLUSION Available evidence shows that Kuntai capsule with Climen is more effective than Climen in the therapy of premature ovarian failure. Nowadays, the quality of the research studies is low. More large-scaled randomized trials will need to be carried out.
Collapse
Affiliation(s)
- Qianwen Ma
- Gynecology Department, Zhenjiang Hospital Affiliated to Nanjing University of Chinese Medicine (Zhenjiang Hospital of Traditional Chinese Medicine), Zhenjiang, China
- Reproductive Medicine Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong Tan
- Reproductive Medicine Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Genlin Mo
- Advanced Manufacturing Institution, Jiangsu University, Zhenjiang, China
| |
Collapse
|
93
|
Azami SH, Nazarian H, Abdollahifar MA, Eini F, Farsani MA, Novin MG. The antioxidant curcumin postpones ovarian aging in young and middle-aged mice. Reprod Fertil Dev 2020; 32:292-303. [PMID: 31656219 DOI: 10.1071/rd18472] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 07/04/2019] [Indexed: 11/23/2022] Open
Abstract
Reproductive senescence is accompanied by a reduced number and quality of ovarian follicles in response to the accumulation of free radicals and the process of apoptosis. Having selected mice as models, we examined the hypothesis that curcumin as an antioxidant and anti-inflammatory agent might prevent or retard ovarian aging. Female NMRI 21-day-old mice were divided into control, vehicle and curcumin groups. In the treatment group the mice received curcumin at 100mgkg-1day-1 intraperitoneally. After 6, 12 and 33 weeks several parameters were examined including ovarian reserve, oocyte quality, oxidative status, invitro fertilisation and expression of ovulation-related (growth differentiation factor 9 (GDF-9) and bone morphogenetic protein 15 (BMP-15)) and anti-aging-related (sirtuin 1 (SIRT-1) and SIRT-3) genes. Curcumin treatment up to 12 and 33 weeks resulted in increased ovarian volume and number of follicles and was associated with elevated anti-Müllerian hormone and oestrogen and diminished FSH serum levels. Furthermore, enhanced oocyte maturation, fertilisation and embryo development plus reduced oxidative stress were seen in the curcumin group. Also, the expression of GDF-9, BMP-15, SIRT-1 and SIRT-3 genes was increased in the curcumin group. Concerning gestational age, the findings of the study suggested that administration of curcumin could delay the process of oocyte aging in a mouse model.
Collapse
Affiliation(s)
- Saeideh Hasani Azami
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Postal code: 1985717443
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Postal code: 1985717443
| | - Mohammad Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Postal code: 1985717443
| | - Fatemeh Eini
- Fertility and Infertility Research Centre, Hormozgan University of Medical Sciences, Bandar Abbas, Iran. Postal code: 7919915519; and Corresponding authors. Emails: ;
| | - Mehdi Allahbakhshian Farsani
- Laboratory Haematology and Blood Bank Department, Faculty of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Postal code: 1971653313
| | - Marefat Ghaffari Novin
- Cellular and Molecular Biology Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Postal code: 1985717443; and Corresponding authors. Emails: ;
| |
Collapse
|
94
|
Li Y, Qiu W, Zhang Z, Han X, Bu G, Meng F, Kong F, Cao X, Huang A, Feng Z, Li Y, Zeng X, Du X. Oral oyster polypeptides protect ovary against d-galactose-induced premature ovarian failure in C57BL/6 mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:92-101. [PMID: 31435952 DOI: 10.1002/jsfa.9997] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Oyster polypeptides have various biofunctions, such as anti-cancer and anti-oxidative stress, but whether it has the protective effects to primary ovarian failure (POF) remains poorly understand. To address this issue, daily gavage of oyster polypeptides was performed to investigate their protective effect, basing on d-galactose-induced POF model in C57BL/6 female mice. RESULTS Oyster polypeptides restored the irregular estrous cycles and the abnormal serum follicle stimulating hormone (FSH), luteinizing hormone (LH) and progesterone (P) levels as well as the decreased mRNA expression level of Amh that were induced by d-galactose. The follicle development of POF mice was improved by increasing the primordial follicle ratio and decreasing the atretic follicle number after oral administration of oyster polypeptides. Moreover, in the oyster polypeptides treated mice, the total superoxide dismutase (T-SOD) activity was significantly increased, while the malondialdehyde levels were significantly decreased. The mRNA expression levels of stress-related genes (SOD2, SIRT1 and FOXO3a) were remarkably up-regulated after d-galactose induction, but the up-regulation was weakened or disappeared by the gavage of oyster polypeptides. In addition, oyster polypeptides treatment also reduced the apoptosis of the ovarian granulosa cells and down-regulated the mRNA expression levels of apoptosis-related genes (p53 and Bad but not Bcl-2). CONCLUSION This study reveals that oyster polypeptides may protect ovary against d-galactose-induced POF by their anti-oxidative stress activity to rescue d-galactose-induced ovarian oxidative damage and therefore to prevent ovarian cells apoptosis, thereby tipping the abnormality trigged by POF to get close to the normal levels. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yunkun Li
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Wei Qiu
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Zhi Zhang
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Xingfa Han
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Guixian Bu
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Fengyan Meng
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Fanli Kong
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Xiaohan Cao
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Anqi Huang
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Zhijiang Feng
- Ningbo Bofeng Biological Science and Technology Co., Ltd, Zhejiang, China
| | - Yun Li
- Ningbo Yunmi Biological Science and Technology Co., Ltd, Zhejiang, China
| | - Xianyin Zeng
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Xiaogang Du
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
95
|
Omidi M, Ahangarpour A, Ali Mard S, Khorsandi L. The effects of myricitrin and vitamin E against reproductive changes induced by D-galactose as an aging model in female mice: An experimental study. Int J Reprod Biomed 2019; 17:789-798. [PMID: 31911961 PMCID: PMC6906854 DOI: 10.18502/ijrm.v17i10.5486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 06/11/2019] [Accepted: 07/10/2019] [Indexed: 12/16/2022] Open
Abstract
Background Aging is accompanied by decreasing general function in the cells and tissues. D-galactose (D-gal) induces aging and plays a role in the pathogenesis of it. Myricitrin is a plant-derived antioxidant. Objective The present study was performed to evaluate the effects of myricitrin on antioxidant defense, sex hormone levels, uterus, and ovarian histology in D-gal-induced aging female mouse model. Materials and Methods In this experimental study, 72 female adult NMRI mice, weighing 30-35 gr, 3-4 months old, were randomly divided into six groups (n = 12/each): (I) Control (vehicle; normal saline), (II) D-gal at 500 mg/kg/d for 45 days, (III-V) D-gal + myricitrin-treated groups (these groups received myricitrin at 5, 10, and 20 mg/kg/d, and (VI) D-gal + 100 mg/kg/d vitamin E orally for the last 28 days. The antioxidant indices were done on the basis of colorimetric method, and sex hormone levels were measured by using enzyme-linked immunosorbent assay kits. Histological assessment of the uterus and ovaries were also evaluated. Results D-gal impaired the estrous cycle, also degenerative changes occur in the ovarian follicles and damage to the uterus and ovarian tissue occurs. In D-gal group, the level of sex hormones (p = 0.03) and the total antioxidant capacity (p = 0.002) decreased, while the level of malondialdehyde and gonadotropins increased (p = 0.03). Myricitrin at lower doses and vitamin E ameliorated the D-gal effects. Conclusion These findings suggest that myricitrin at low doses can effectively prevent D-gal-induced oxidation and aging in mice. The effect of myricitrin was equivalent and sometimes better than vitamin E.
Collapse
Affiliation(s)
- Mina Omidi
- Department of Physiology, Faculty of Medicine, Student Research Committee, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Akram Ahangarpour
- Physiology Research Center, Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Ali Mard
- Physiology Research Center, Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Department of Anatomical Sciences, Faculty of Medicine, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
96
|
Xu W, Li L, Sun J, Zhu S, Yan Z, Gao L, Gao C, Cui Y, Mao C. Putrescine delays postovulatory aging of mouse oocytes by upregulating PDK4 expression and improving mitochondrial activity. Aging (Albany NY) 2019; 10:4093-4106. [PMID: 30554191 PMCID: PMC6326651 DOI: 10.18632/aging.101699] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022]
Abstract
If fertilization does not occur for a prolonged period in vivo or in vitro, the postovulatory oocytes will deteriorate, which called the postovulatory aging. This process disrupts the developmental competence. In the present study, we showed that the reactive oxygen species (ROS) was accumulated in oocytes during the postovulatory aging. ROS inhibited Sirt1 expression, and then increased oxidative stress by downregulating the intracellular Sirt1-FOXO3a-SOD2 axis. Moreover, the inhibited Sirt1 expression was related to the decreased mitochondrial function and the lowered level of autophagy. The mitochondrial-related apoptosis was increased by inhibiting the AKT and ERK1/2 pathways, due to the accumulation of ROS in the postovulatory oocytes. The mitochondrial pyruvate dehydrogenase kinase-4 (PDK4) can reduce ROS by inhibiting the tricarboxylic acid (TAC) cycle. We found that PDK4 was significantly decreased in the postovulatory aging oocytes. Putrescine, one of the abundant biogenic amines, ameliorated the effects of ROS and therefore improved the quality of the postovulatory aging oocytes by increasing the expression of PDK4. When PDK4 was downregulated using siRNAs, the effects of putrescine were significantly receded. We concluded that putrescine delayed the aging process of postovulatory oocytes by upregulating PDK4 expression and improving mitochondrial activity.
Collapse
Affiliation(s)
- Wendan Xu
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Jiangsu Sheng, China.,State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Lingjun Li
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jingwen Sun
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Jiangsu Sheng, China
| | - Songyue Zhu
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Jiangsu Sheng, China
| | - Zhengjie Yan
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Li Gao
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Chao Gao
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Caiping Mao
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Jiangsu Sheng, China
| |
Collapse
|
97
|
Zhou J, Xue Z, He HN, Liu X, Yin SY, Wu DY, Zhang X, Schatten H, Miao YL. Resveratrol delays postovulatory aging of mouse oocytes through activating mitophagy. Aging (Albany NY) 2019; 11:11504-11519. [PMID: 31834867 PMCID: PMC6932885 DOI: 10.18632/aging.102551] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022]
Abstract
Resveratrol (3,5,4'-trihydroxystilbene, RSV) is a natural potential anti-aging polyphenolic compound frequently used as a nutritional supplement against several diseases. However, the underlying mechanisms by which resveratrol regulates postovulatory aging of oocytes are still insufficiently known. In this study, we found that resveratrol could delay postovulatory aging and improve developmental competence of oocytes through activating selective mitophagy in the mouse. Resveratrol could maintain spindle morphology but it disturbed cortical granule (CG) distribution during oocyte aging. This might be due to upregulated mitophagy, since blocking mitophagy by cyclosporin A (CsA) treatment affected oocyte quality by damaging mitochondrial function and it decreased embryonic development. In addition, we also observed an involvement of FoxO3a in regulating mitophagy in aging oocytes following resveratrol treatment. Taken together, our results provide evidence that mitophagy induced by resveratrol is a potential mechanism to protect against postovulatory oocyte aging.
Collapse
Affiliation(s)
- Jilong Zhou
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Zhouyiyuan Xue
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Hai-Nan He
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Xin Liu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Shu-Yuan Yin
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Dan-Ya Wu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Xia Zhang
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Experimental Veterinary Medicine Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
98
|
Grape Seed Procyanidin B2 Protects Porcine Ovarian Granulosa Cells against Oxidative Stress-Induced Apoptosis by Upregulating let-7a Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1076512. [PMID: 31827667 PMCID: PMC6885843 DOI: 10.1155/2019/1076512] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 09/10/2019] [Accepted: 10/15/2019] [Indexed: 01/13/2023]
Abstract
Oxidative stress is a causal factor and key promoter of all kinds of reproductive disorders related to granulosa cell (GC) apoptosis that acts by dysregulating the expression of related genes. Various studies have suggested that grape seed procyanidin B2 (GSPB2) may protect GCs from oxidative injury, though the underlying mechanisms are not fully understood. Therefore, whether the beneficial effects of GSPB2 are associated with microRNAs, which have been suggested to play a critical role in GC apoptosis by regulating the expression of protein-coding genes, was investigated in this study. The results showed that GSPB2 treatment protected GCs from a H2O2-induced apoptosis, as detected by an MTT assay and TUNEL staining, and increased let-7a expression in GCs. Furthermore, let-7a overexpression markedly increased cell viability and inhibited H2O2-induced GC apoptosis. Furthermore, the overexpression of let-7a reduced the upregulation of Fas expression in H2O2-treated GCs at the mRNA and protein levels. Dual-luciferase reporter assay results indicated that let-7a directly targets the Fas 3′-UTR. Furthermore, the overexpression of let-7a enhanced the protective effects of GSPB2 against GC apoptosis induced by H2O2. These results indicate that GSPB2 inhibits H2O2-induced apoptosis of GCs, possibly through the upregulation of let-7a.
Collapse
|
99
|
Rostami Dovom M, Noroozzadeh M, Mosaffa N, Zadeh-Vakili A, Piryaei A, Ramezani Tehrani F. Induced premature ovarian insufficiency by using D galactose and its effects on reproductive profiles in small laboratory animals: a systematic review. J Ovarian Res 2019; 12:96. [PMID: 31619267 PMCID: PMC6796372 DOI: 10.1186/s13048-019-0565-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/10/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Development of a hyper-gonadotropic hypoestrogenism condition in women < 40 years, defined as premature ovarian insufficiency (POI), is the most common long-term complication in female survivors of galactosemia. In this systematic review, summarize the galactose (GAL) induced POI in rat and mice models. METHODS For this systematic review, we conducted a search of case control studies published from 1990 until August 2018 in PubMed/Medline, and Web of science, using the descriptors in the title/abstract field. A 'pearl growing' strategy was employed whereby, after obtaining the full text articles, reference lists of all included studies (n = 14) were reviewed for additional publications that could be used. RESULTS We selected and categorized 14 studies according to the time of exposure to GAL into two groups of prenatal (n = 4) and postnatal (n = 10). Findings of these studies showed that the different stages of follicular development are targeted differently by galactose exposure during the prenatal and postnatal periods: The small follicles (primordial and primary follicles) are targeted by galactose toxicity during prenatal exposure and the pre-antral and antral follicles are targeted by galactose toxicity during postnatal exposure. CONCLUSIONS This systematic review shows that galactose has an ovotoxicity effect that can be used to induce appropriate POI animal models only if sufficient doses, proper onset time, and duration of prenatal exposure are taken into account. An optimized model of POI induction should manifest all the required ovarian morphological, hormonal, and estrus cycle changes.
Collapse
Affiliation(s)
- Marzieh Rostami Dovom
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, N.24 Shahid Arabi st. Yaman Ave. Velenjak, Tehran, IR, Iran
| | - Mahsa Noroozzadeh
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, N.24 Shahid Arabi st. Yaman Ave. Velenjak, Tehran, IR, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azita Zadeh-Vakili
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Piryaei
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, N.24 Shahid Arabi st. Yaman Ave. Velenjak, Tehran, IR, Iran.
| |
Collapse
|
100
|
D-Galactose-induced accelerated aging model: an overview. Biogerontology 2019; 20:763-782. [PMID: 31538262 DOI: 10.1007/s10522-019-09837-y] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
Abstract
To facilitate the process of aging healthily and prevent age-related health problems, efforts to properly understand aging mechanisms and develop effective and affordable anti-aging interventions are deemed necessary. Systemic administration of D-galactose has been established to artificially induce senescence in vitro and in vivo as well as for anti-aging therapeutic interventions studies. The aim of this article is to comprehensively discuss the use of D-galactose to generate a model of accelerated aging and its possible underlying mechanisms involved in different tissues/organs.
Collapse
|