51
|
Hall BA, Piterman N, Hajnal A, Fisher J. Emergent stem cell homeostasis in the C. elegans germline is revealed by hybrid modeling. Biophys J 2016. [PMID: 26200879 PMCID: PMC4621618 DOI: 10.1016/j.bpj.2015.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The establishment of homeostasis among cell growth, differentiation, and apoptosis is of key importance for organogenesis. Stem cells respond to temporally and spatially regulated signals by switching from mitotic proliferation to asymmetric cell division and differentiation. Executable computer models of signaling pathways can accurately reproduce a wide range of biological phenomena by reducing detailed chemical kinetics to a discrete, finite form. Moreover, coordinated cell movements and physical cell-cell interactions are required for the formation of three-dimensional structures that are the building blocks of organs. To capture all these aspects, we have developed a hybrid executable/physical model describing stem cell proliferation, differentiation, and homeostasis in the Caenorhabditis elegans germline. Using this hybrid model, we are able to track cell lineages and dynamic cell movements during germ cell differentiation. We further show how apoptosis regulates germ cell homeostasis in the gonad, and propose a role for intercellular pressure in developmental control. Finally, we use the model to demonstrate how an executable model can be developed from the hybrid system, identifying a mechanism that ensures invariance in fate patterns in the presence of instability.
Collapse
Affiliation(s)
- Benjamin A Hall
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, United Kingdom; Microsoft Research Cambridge, Cambridge, UK.
| | - Nir Piterman
- Department of Computer Science, University of Leicester, Leicester, UK
| | - Alex Hajnal
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Jasmin Fisher
- Microsoft Research Cambridge, Cambridge, UK; Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
52
|
Germline Stem Cell Differentiation Entails Regional Control of Cell Fate Regulator GLD-1 in Caenorhabditis elegans. Genetics 2016; 202:1085-103. [PMID: 26757772 DOI: 10.1534/genetics.115.185678] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/07/2016] [Indexed: 12/18/2022] Open
Abstract
Germline stem cell differentiation in Caenorhabditis elegans is controlled by glp-1 Notch signaling. Cell fate regulator GLD-1 is sufficient to induce meiotic entry and expressed at a high level during meiotic prophase, inhibiting mitotic gene activity. glp-1 signaling and other regulators control GLD-1 levels post-transcriptionally (low in stem cells, high in meiotic prophase), but many aspects of GLD-1 regulation are uncharacterized, including the link between glp-1-mediated transcriptional control and post-transcriptional GLD-1 regulation. We established a sensitive assay to quantify GLD-1 levels across an ∼35-cell diameter field, where distal germline stem cells differentiate proximally into meiotic prophase cells in the adult C. elegans hermaphrodite, and applied the approach to mutants in known or proposed GLD-1 regulators. In wild-type GLD-1 levels elevated ∼20-fold in a sigmoidal pattern. We found that two direct transcriptional targets of glp-1 signaling, lst-1 and sygl-1, were individually required for repression of GLD-1. We determined that lst-1 and sygl-1 act in the same genetic pathway as known GLD-1 translational repressor fbf-1, while lst-1 also acts in parallel to fbf-1, linking glp-1-mediated transcriptional control and post-transcriptional GLD-1 repression. Additionally, we estimated the position in wild-type gonads where germ cells irreversibly commit to meiotic development based on GLD-1 levels in worms where glp-1 activity was manipulated to cause an irreversible fate switch. Analysis of known repressors and activators, as well as modeling the sigmoidal accumulation pattern, indicated that regulation of GLD-1 levels is largely regional, which we integrated with the current view of germline stem cell differentiation.
Collapse
|
53
|
Garcia-Segura L, Abreu-Goodger C, Hernandez-Mendoza A, Dimitrova Dinkova TD, Padilla-Noriega L, Perez-Andrade ME, Miranda-Rios J. High-Throughput Profiling of Caenorhabditis elegans Starvation-Responsive microRNAs. PLoS One 2015; 10:e0142262. [PMID: 26554708 PMCID: PMC4640506 DOI: 10.1371/journal.pone.0142262] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/20/2015] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs of ~22 nucleotides in length that regulate gene expression by interfering with the stability and translation of mRNAs. Their expression is regulated during development, under a wide variety of stress conditions and in several pathological processes. In nature, animals often face feast or famine conditions. We observed that subjecting early L4 larvae from Caenorhabditis elegans to a 12-hr starvation period produced worms that are thinner and shorter than well-fed animals, with a decreased lipid accumulation, diminished progeny, reduced gonad size, and an increased lifespan. Our objective was to identify which of the 302 known miRNAs of C. elegans changed their expression under starvation conditions as compared to well-fed worms by means of deep sequencing in early L4 larvae. Our results indicate that 13 miRNAs (miR-34-3p, the family of miR-35-3p to miR-41-3p, miR-39-5p, miR-41-5p, miR-240-5p, miR-246-3p and miR-4813-5p) were upregulated, while 2 miRNAs (let-7-3p and miR-85-5p) were downregulated in 12-hr starved vs. well-fed early L4 larvae. Some of the predicted targets of the miRNAs that changed their expression in starvation conditions are involved in metabolic or developmental process. In particular, miRNAs of the miR-35 family were upregulated 6–20 fold upon starvation. Additionally, we showed that the expression of gld-1, important in oogenesis, a validated target of miR-35-3p, was downregulated when the expression of miR-35-3p was upregulated. The expression of another reported target, the cell cycle regulator lin-23, was unchanged during starvation. This study represents a starting point for a more comprehensive understanding of the role of miRNAs during starvation in C. elegans.
Collapse
Affiliation(s)
- Laura Garcia-Segura
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), México, D.F., México
- Unidad de Genética de la Nutrición, Depto. de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, UNAM e Instituto Nacional de Pediatría, México, D.F., México
| | - Cei Abreu-Goodger
- Unidad de Genómica Avanzada (Langebio), CINVESTAV, Irapuato, Guanajuato, México
| | - Armando Hernandez-Mendoza
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Edo. de Morelos, Cuernavaca, Morelos, México
| | | | - Luis Padilla-Noriega
- Departamento de Virología, Facultad de Medicina, Universidad Nacional Autónoma de México, México, D.F., México
| | - Martha Elva Perez-Andrade
- Unidad de Genética de la Nutrición, Depto. de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, UNAM e Instituto Nacional de Pediatría, México, D.F., México
| | - Juan Miranda-Rios
- Unidad de Genética de la Nutrición, Depto. de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, UNAM e Instituto Nacional de Pediatría, México, D.F., México
- * E-mail:
| |
Collapse
|
54
|
Nousch M, Eckmann CR. Translational activation maintains germline tissue homeostasis during adulthood. WORM 2015; 4:e1042644. [PMID: 26430565 PMCID: PMC4588557 DOI: 10.1080/21624054.2015.1042644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 03/30/2015] [Accepted: 04/10/2015] [Indexed: 02/03/2023]
Abstract
Adult tissue maintenance is achieved through a tightly controlled equilibrium of 2 opposing cell fates: stem cell proliferation and differentiation. In recent years, the germ line emerged as a powerful in vivo model tissue to investigate the underlying gene expression mechanisms regulating this balance. Studies in numerous organisms highlighted the prevalence of post-transcriptional mRNA regulation, which relies on RNA-targeting factors that influence mRNA fates (e.g. decay or translational efficiency). Conserved translational repressors were identified that build negative feedback loops to ensure one or the other cell fate. However, to facilitate a fast and efficient transition between 2 opposing cell fates, translational repression per se appears not to be sufficient, suggesting the involvement of additional modes of gene expression regulation. Cytoplasmic poly(A) polymerases (cytoPAPs) represent a unique class of post-transcriptional mRNA regulators that modify mRNA 3' ends and positively influence cytoplasmic mRNA fates. We recently discovered that the 2 main cytoPAPs, GLD-2 and GLD-4, use distinct mechanisms to promote gene expression and that cytoPAP-mediated mRNA activation is important for regulating the size of the proliferative germ cell pool in the adult Caenorhabditis elegans gonad. Here, we comment on the different mechanisms of the 2 cytoPAPs as translational activators in germ cell development and focus on their biological roles in maintaining the balance between germline stem cell proliferation and differentiation in the Caenorhabditis elegans gonad.
Collapse
Affiliation(s)
- Marco Nousch
- Division of Genetics; Institute of Biology; Martin Luther University, Halle-Wittenberg ; Halle, Saales, Germany
| | - Christian R Eckmann
- Division of Genetics; Institute of Biology; Martin Luther University, Halle-Wittenberg ; Halle, Saales, Germany ; Max Planck Institute of Molecular Cell Biology and Genetics ; Dresden, Germany
| |
Collapse
|
55
|
Glucose-Regulated Phosphorylation of the PUF Protein Puf3 Regulates the Translational Fate of Its Bound mRNAs and Association with RNA Granules. Cell Rep 2015; 11:1638-50. [PMID: 26051939 DOI: 10.1016/j.celrep.2015.05.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 03/04/2015] [Accepted: 05/06/2015] [Indexed: 01/07/2023] Open
Abstract
PUF proteins are post-transcriptional regulators that bind to the 3' UTRs of mRNA transcripts. Herein, we show how a yeast PUF protein, Puf3p, responds to glucose availability to switch the fate of its bound transcripts that encode proteins required for mitochondrial biogenesis. Upon glucose depletion, Puf3p becomes heavily phosphorylated within its N-terminal region of low complexity, associates with polysomes, and promotes translation of its target mRNAs. Such nutrient-responsive phosphorylation toggles the activity of Puf3p to promote either degradation or translation of these mRNAs according to the needs of the cell. Moreover, activation of translation of pre-existing mRNAs might enable rapid adjustment to environmental changes without the need for de novo transcription. Strikingly, a Puf3p phosphomutant no longer promotes translation but becomes trapped in intracellular foci in an mRNA-dependent manner. Our findings suggest that the inability to properly resolve Puf3p-containing RNA-protein granules via a phosphorylation-based mechanism might be toxic to a cell.
Collapse
|
56
|
Gennarino VA, Singh RK, White JJ, De Maio A, Han K, Kim JY, Jafar-Nejad P, di Ronza A, Kang H, Sayegh LS, Cooper TA, Orr HT, Sillitoe RV, Zoghbi HY. Pumilio1 haploinsufficiency leads to SCA1-like neurodegeneration by increasing wild-type Ataxin1 levels. Cell 2015; 160:1087-98. [PMID: 25768905 DOI: 10.1016/j.cell.2015.02.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 12/01/2014] [Accepted: 01/30/2015] [Indexed: 01/27/2023]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a paradigmatic neurodegenerative proteinopathy, in which a mutant protein (in this case, ATAXIN1) accumulates in neurons and exerts toxicity; in SCA1, this process causes progressive deterioration of motor coordination. Seeking to understand how post-translational modification of ATAXIN1 levels influences disease, we discovered that the RNA-binding protein PUMILIO1 (PUM1) not only directly regulates ATAXIN1 but also plays an unexpectedly important role in neuronal function. Loss of Pum1 caused progressive motor dysfunction and SCA1-like neurodegeneration with motor impairment, primarily by increasing Ataxin1 levels. Breeding Pum1(+/-) mice to SCA1 mice (Atxn1(154Q/+)) exacerbated disease progression, whereas breeding them to Atxn1(+/-) mice normalized Ataxin1 levels and largely rescued the Pum1(+/-) phenotype. Thus, both increased wild-type ATAXIN1 levels and PUM1 haploinsufficiency could contribute to human neurodegeneration. These results demonstrate the importance of studying post-transcriptional regulation of disease-driving proteins to reveal factors underlying neurodegenerative disease.
Collapse
Affiliation(s)
- Vincenzo A Gennarino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Ravi K Singh
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joshua J White
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Antonia De Maio
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Kihoon Han
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Ji-Yoen Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Paymaan Jafar-Nejad
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Alberto di Ronza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Hyojin Kang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Layal S Sayegh
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Thomas A Cooper
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Harry T Orr
- Institute for Translational Neuroscience, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
57
|
Krepl M, Havrila M, Stadlbauer P, Banas P, Otyepka M, Pasulka J, Stefl R, Sponer J. Can We Execute Stable Microsecond-Scale Atomistic Simulations of Protein-RNA Complexes? J Chem Theory Comput 2015; 11:1220-43. [PMID: 26579770 DOI: 10.1021/ct5008108] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We report over 30 μs of unrestrained molecular dynamics simulations of six protein-RNA complexes in explicit solvent. We utilize the AMBER ff99bsc0χ(OL3) RNA force field combined with the ff99SB protein force field and its more recent ff12SB version with reparametrized side-chain dihedrals. The simulations show variable behavior, ranging from systems that are essentially stable to systems with progressive deviations from the experimental structure, which we could not stabilize anywhere close to the starting experimental structure. For some systems, microsecond-scale simulations are necessary to achieve stabilization after initial sizable structural perturbations. The results show that simulations of protein-RNA complexes are challenging and every system should be treated individually. The simulations are affected by numerous factors, including properties of the starting structures (the initially high force field potential energy, resolution limits, conformational averaging, crystal packing, etc.), force field imbalances, and real flexibility of the studied systems. These factors, and thus the simulation behavior, differ from system to system. The structural stability of simulated systems does not correlate with the size of buried interaction surface or experimentally determined binding affinities but reflects the type of protein-RNA recognition. Protein-RNA interfaces involving shape-specific recognition of RNA are more stable than those relying on sequence-specific RNA recognition. The differences between the protein force fields are considerably smaller than the uncertainties caused by sampling and starting structures. The ff12SB improves description of the tyrosine side-chain group, which eliminates some problems associated with tyrosine dynamics.
Collapse
Affiliation(s)
- M Krepl
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic
| | - M Havrila
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic
| | - P Stadlbauer
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic
| | - P Banas
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University , Tř. 17 Listopadu 12, 771 46 Olomouc, Czech Republic
| | - M Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University , Tř. 17 Listopadu 12, 771 46 Olomouc, Czech Republic
| | | | | | - J Sponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
58
|
Millonigg S, Minasaki R, Nousch M, Eckmann CR. GLD-4-mediated translational activation regulates the size of the proliferative germ cell pool in the adult C. elegans germ line. PLoS Genet 2014; 10:e1004647. [PMID: 25254367 PMCID: PMC4177745 DOI: 10.1371/journal.pgen.1004647] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 08/04/2014] [Indexed: 12/26/2022] Open
Abstract
To avoid organ dysfunction as a consequence of tissue diminution or tumorous growth, a tight balance between cell proliferation and differentiation is maintained in metazoans. However, cell-intrinsic gene expression mechanisms controlling adult tissue homeostasis remain poorly understood. By focusing on the adult Caenorhabditis elegans reproductive tissue, we show that translational activation of mRNAs is a fundamental mechanism to maintain tissue homeostasis. Our genetic experiments identified the Trf4/5-type cytoplasmic poly(A) polymerase (cytoPAP) GLD-4 and its enzymatic activator GLS-1 to perform a dual role in regulating the size of the proliferative zone. Consistent with a ubiquitous expression of GLD-4 cytoPAP in proliferative germ cells, its genetic activity is required to maintain a robust proliferative adult germ cell pool, presumably by regulating many mRNA targets encoding proliferation-promoting factors. Based on translational reporters and endogenous protein expression analyses, we found that gld-4 activity promotes GLP-1/Notch receptor expression, an essential factor of continued germ cell proliferation. RNA-protein interaction assays documented also a physical association of the GLD-4/GLS-1 cytoPAP complex with glp-1 mRNA, and ribosomal fractionation studies established that GLD-4 cytoPAP activity facilitates translational efficiency of glp-1 mRNA. Moreover, we found that in proliferative cells the differentiation-promoting factor, GLD-2 cytoPAP, is translationally repressed by the stem cell factor and PUF-type RNA-binding protein, FBF. This suggests that cytoPAP-mediated translational activation of proliferation-promoting factors, paired with PUF-mediated translational repression of differentiation factors, forms a translational control circuit that expands the proliferative germ cell pool. Our additional genetic experiments uncovered that the GLD-4/GLS-1 cytoPAP complex promotes also differentiation, forming a redundant translational circuit with GLD-2 cytoPAP and the translational repressor GLD-1 to restrict proliferation. Together with previous findings, our combined data reveals two interconnected translational activation/repression circuitries of broadly conserved RNA regulators that maintain the balance between adult germ cell proliferation and differentiation. Throughout adulthood, animal tissue homeostasis requires adult stem cell activities. A tight balance between self-renewal and differentiation protects against tissue overgrowth or loss. This balance is strongly influenced by niche-mediated signaling pathways that primarily trigger a transcriptional response in stem cells to promote self-renewal/proliferation. However, the cell-intrinsic mechanisms that modulate signaling pathways to promote proliferation or differentiation are poorly understood. Recently, post-transcriptional mRNA regulation emerged in diverse germline stem cell systems as an important gene expression mechanism, primarily preventing the protein synthesis of factors that promote the switch to differentiation. In the adult C. elegans germ line, this study finds that the evolutionarily conserved cytoplasmic poly(A) polymerase, GLD-4, plays an crucial role in maintaining a healthy balance between proliferation and differentiation forces. This is in part due to translational activation of the mRNA that encodes the germ cell-expressed Notch signaling receptor, an essential regulator of proliferation. Moreover, GLD-4 activity is part of a redundant genetic network downstream of Notch that, together with several other conserved mRNA regulators, promotes differentiation onset. Given the widespread expression of these conserved RNA regulators in metazoans, cell fate balances that are reinforced by translational activation and repression circuitries may therefore be a general mechanism of adult tissue maintenance.
Collapse
Affiliation(s)
- Sophia Millonigg
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Ryuji Minasaki
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Marco Nousch
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Christian R. Eckmann
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
- * E-mail:
| |
Collapse
|
59
|
Datla US, Scovill NC, Brokamp AJ, Kim E, Asch AS, Lee MH. Role of PUF-8/PUF protein in stem cell control, sperm-oocyte decision and cell fate reprogramming. J Cell Physiol 2014; 229:1306-11. [PMID: 24638209 DOI: 10.1002/jcp.24618] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/14/2014] [Indexed: 01/18/2023]
Abstract
Pumilio and FBF (PUF) proteins are conserved stem cell regulators that maintain germline stem cells (GSCs) in worms and flies. Moreover, they are also present in vertebrate stem cells. The nematode Caenorhabditis elegans has multiple PUF proteins with specialized roles. Among them, PUF-8 protein controls multiple cellular processes, including proliferation, differentiation, sperm-oocyte decision, and cell fate reprogramming, depending on the genetic context in the C. elegans germline. In this review, we describe the possible mechanisms of how PUF-8 protein systematically controls multiple cellular processes in the C. elegans germline. Since PUF proteins are evolutionarily conserved, we suggest that a similar mechanism may be involved in controlling stem cell regulation and differentiation in other organisms, including humans.
Collapse
Affiliation(s)
- Udaya Sree Datla
- Program in Biomedical Sciences, Brody School of Medicine, East Carolina University, Greenville, North Carolina; Department of Oncology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | | | | | | | | | | |
Collapse
|
60
|
Weidmann CA, Raynard NA, Blewett NH, Van Etten J, Goldstrohm AC. The RNA binding domain of Pumilio antagonizes poly-adenosine binding protein and accelerates deadenylation. RNA (NEW YORK, N.Y.) 2014; 20:1298-319. [PMID: 24942623 PMCID: PMC4105754 DOI: 10.1261/rna.046029.114] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/20/2014] [Indexed: 05/24/2023]
Abstract
PUF proteins are potent repressors that serve important roles in stem cell maintenance, neurological processes, and embryonic development. These functions are driven by PUF protein recognition of specific binding sites within the 3' untranslated regions of target mRNAs. In this study, we investigated mechanisms of repression by the founding PUF, Drosophila Pumilio, and its human orthologs. Here, we evaluated a previously proposed model wherein the Pumilio RNA binding domain (RBD) binds Argonaute, which in turn blocks the translational activity of the eukaryotic elongation factor 1A. Surprisingly, we found that Argonautes are not necessary for repression elicited by Drosophila and human PUFs in vivo. A second model proposed that the RBD of Pumilio represses by recruiting deadenylases to shorten the mRNA's polyadenosine tail. Indeed, the RBD binds to the Pop2 deadenylase and accelerates deadenylation; however, this activity is not crucial for regulation. Rather, we determined that the poly(A) is necessary for repression by the RBD. Our results reveal that poly(A)-dependent repression by the RBD requires the poly(A) binding protein, pAbp. Furthermore, we show that repression by the human PUM2 RBD requires the pAbp ortholog, PABPC1. Pumilio associates with pAbp but does not disrupt binding of pAbp to the mRNA. Taken together, our data support a model wherein the Pumilio RBD antagonizes the ability of pAbp to promote translation. Thus, the conserved function of the PUF RBD is to bind specific mRNAs, antagonize pAbp function, and promote deadenylation.
Collapse
Affiliation(s)
- Chase A Weidmann
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA Genetics Training Program, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Nathan A Raynard
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA Genetics Training Program, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Nathan H Blewett
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Jamie Van Etten
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Aaron C Goldstrohm
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA Genetics Training Program, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
61
|
Liu M, Miao J, Liu T, Sullivan WJ, Cui L, Chen X. Characterization of TgPuf1, a member of the Puf family RNA-binding proteins from Toxoplasma gondii. Parasit Vectors 2014; 7:141. [PMID: 24685055 PMCID: PMC3997814 DOI: 10.1186/1756-3305-7-141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 03/24/2014] [Indexed: 12/15/2022] Open
Abstract
Background Puf proteins act as translational regulators and affect many cellular processes in a wide range of eukaryotic organisms. Although Puf proteins have been well characterized in many model systems, little is known about the structural and functional characteristics of Puf proteins in the parasite Toxoplasma gondii. Methods Using a combination of conventional molecular approaches, we generated endogenous TgPuf1 tagged with hemagglutinin (HA) epitope and investigated the TgPuf1 expression levels and localization in the tachyzoites and bradyzoites. We used RNA Electrophoretic Mobility Shfit Assay (EMSA) to determine whether the recombination TgPuf1 has conserverd RNA binding activity and specificity. Results TgPuf1 was expressed at a significantly higher level in bradyzoites than in tachyzoites. TgPuf1 protein was predominantly localized within the cytoplasm and showed a much more granular cytoplasmic staining pattern in bradyzoites. The recombinant Puf domain of TgPuf1 showed strong binding affinity to two RNA fragments containing Puf-binding motifs from other organisms as artificial target sequences. However, two point mutations in the core Puf-binding motif resulted in a significant reduction in binding affinity, indicating that TgPuf1 also binds to conserved Puf-binding motif. Conclusions TgPuf1 appears to exhibit different expression levels in the tachyzoites and bradyzoites, suggesting that TgPuf1 may function in regulating the proliferation or/and differentiation that are important in providing parasites with the ability to respond rapidly to changes in environmental conditions. This study provides a starting point for elucidating the function of TgPuf1 during parasite development.
Collapse
Affiliation(s)
| | | | | | | | - Liwang Cui
- Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | | |
Collapse
|
62
|
Minasaki R, Rudel D, Eckmann CR. Increased sensitivity and accuracy of a single-stranded DNA splint-mediated ligation assay (sPAT) reveals poly(A) tail length dynamics of developmentally regulated mRNAs. RNA Biol 2014; 11:111-23. [PMID: 24526206 DOI: 10.4161/rna.27992] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Poly(A) tail length is a readout of an mRNA's translatability and stability, especially in developmental systems. PolyAdenylation Test (PAT) assays attempt to quickly measure the average poly(A) tail length of RNAs of experimental interest. Here we present sPAT, splint-mediated PAT, a procedure that uses a DNA splint to aid in the ligation of an RNA-tag to the poly(A) tail of an mRNA. In comparison to other PAT methodologies, including ePAT, sPAT is highly sensitive to low-abundance mRNAs, gives a more accurate profile of the poly(A) tail distribution, and requires little starting material. To demonstrate its strength, we calibrated sPAT on defined poly(A) tails of synthetic mRNAs, reassessed developmentally regulated poly(A) tail-length changes of known mRNAs from established model organisms, and extended it to the emerging evolutionary developmental nematode model Pristionchus pacificus. Lastly, we used sPAT to analyze the contribution of the two cytoplasmic poly(A) polymerases GLD-2 and GLD-4, and the deadenylase CCR-4, onto Caenorhabditis elegans gld-1 mRNA that encodes a translationally controlled tumor suppressor whose poly(A) tail length measurement proved elusive.
Collapse
Affiliation(s)
- Ryuji Minasaki
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG); Pfotenhauerstrasse 108; 01307 Dresden, Germany
| | - David Rudel
- Department of Biology; East Carolina University; Greenville, NC USA
| | - Christian R Eckmann
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG); Pfotenhauerstrasse 108; 01307 Dresden, Germany
| |
Collapse
|
63
|
Charlesworth A, Meijer HA, de Moor CH. Specificity factors in cytoplasmic polyadenylation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 4:437-61. [PMID: 23776146 PMCID: PMC3736149 DOI: 10.1002/wrna.1171] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 12/12/2022]
Abstract
Poly(A) tail elongation after export of an messenger RNA (mRNA) to the cytoplasm is called cytoplasmic polyadenylation. It was first discovered in oocytes and embryos, where it has roles in meiosis and development. In recent years, however, has been implicated in many other processes, including synaptic plasticity and mitosis. This review aims to introduce cytoplasmic polyadenylation with an emphasis on the factors and elements mediating this process for different mRNAs and in different animal species. We will discuss the RNA sequence elements mediating cytoplasmic polyadenylation in the 3' untranslated regions of mRNAs, including the CPE, MBE, TCS, eCPE, and C-CPE. In addition to describing the role of general polyadenylation factors, we discuss the specific RNA binding protein families associated with cytoplasmic polyadenylation elements, including CPEB (CPEB1, CPEB2, CPEB3, and CPEB4), Pumilio (PUM2), Musashi (MSI1, MSI2), zygote arrest (ZAR2), ELAV like proteins (ELAVL1, HuR), poly(C) binding proteins (PCBP2, αCP2, hnRNP-E2), and Bicaudal C (BICC1). Some emerging themes in cytoplasmic polyadenylation will be highlighted. To facilitate understanding for those working in different organisms and fields, particularly those who are analyzing high throughput data, HUGO gene nomenclature for the human orthologs is used throughout. Where human orthologs have not been clearly identified, reference is made to protein families identified in man.
Collapse
Affiliation(s)
- Amanda Charlesworth
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | | | | |
Collapse
|
64
|
Kramer S. RNA in development: how ribonucleoprotein granules regulate the life cycles of pathogenic protozoa. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:263-84. [PMID: 24339376 DOI: 10.1002/wrna.1207] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/22/2013] [Accepted: 10/29/2013] [Indexed: 12/11/2022]
Abstract
Ribonucleoprotein (RNP) granules are important posttranscriptional regulators of messenger RNA (mRNA) fate. Several types of RNP granules specifically regulate gene expression during development of multicellular organisms and are commonly referred to as germ granules. The function of germ granules is not entirely understood and probably diverse, but it is generally agreed that one main function is posttranscriptional regulation of gene expression during early development, when transcription is silent. One example is the translational repression of maternally derived mRNAs in oocytes. Here, I hope to show that the need for regulation of gene expression by RNP granules is not restricted to animal development, but plays an equally important role during the development of pathogenic protozoa. Apicomplexa and Trypanosomatidae have complex life cycles with frequent host changes. The need to quickly adapt gene expression to a new environment as well as the ability to suppress translation to survive latencies is critical for successful completion of life cycles. Posttranscriptional gene regulation is not necessarily simpler in protozoa. Apicomplexa surprise with the presence of micro RNA (miRNAs) and upstream open reading frames (µORFs). Trypanosomes have an unusually large repertoire of different RNP granule types. A better understanding of RNP granules in protozoa may help to gain insight into the evolutionary origin of RNP granules: Trypanosomes for example have two types of granules with interesting similarities to animal germ granules.
Collapse
Affiliation(s)
- Susanne Kramer
- Lehrstuhl für Zell- und Entwicklungsbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
| |
Collapse
|
65
|
Liu Q, Haag ES. Evolutionarily dynamic roles of a PUF RNA-binding protein in the somatic development of Caenorhabditis briggsae. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 322:129-41. [PMID: 24254995 DOI: 10.1002/jez.b.22550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 08/19/2013] [Accepted: 10/18/2013] [Indexed: 11/12/2022]
Abstract
Gene duplication and divergence has emerged as an important aspect of developmental evolution. The genomes of Caenorhabditis nematodes encode an ancient family of PUF RNA-binding proteins. Most have been implicated in germline development, and are often redundant with paralogs of the same sub-family. An exception is Cbr-puf-2 (one of three Caenorhabditis briggsae PUF-2 sub-family paralogs), which is required for development past the second larval stage. Here, we provide a detailed functional characterization of Cbr-puf-2. The larval arrest of Cbr-puf-2 mutant animals is caused by inefficient breakdown of bacterial food, which leads to starvation. Cbr-puf-2 is required for the normal grinding cycle of the muscular terminal bulb during early larval stages, and is transiently expressed in this tissue. In addition, rescue of larval arrest reveals that Cbr-puf-2 also promotes normal vulval development. It is expressed in the anchor cell (which induces vulval fate) and vulval muscles, but not in the vulva precursor cells (VPCs) themselves. This contrasts with the VPC-autonomous repression of vulval development described for the Caenorhabditis elegans homologs fbf-1/2. These different roles for PUF proteins occur even as the vulva and pharynx maintain highly conserved anatomies across Caenorhabditis, indicating pervasive developmental system drift (DSD). Because Cbr-PUF-2 shares RNA-binding specificity with its paralogs and with C. elegans FBF, we suggest that functional novelty of RNA-binding proteins evolves through changes in the site of their expression, perhaps in concert with cis-regulatory evolution in target mRNAs.
Collapse
Affiliation(s)
- Qinwen Liu
- Department of Biology, University of Maryland, College Park, Maryland
| | | |
Collapse
|
66
|
Abstract
PUF proteins are a conserved family of RNA binding proteins found in all eukaryotes examined so far. This study focussed on PUF5, one of 11 PUF family members encoded in the Trypanosoma brucei genome. Native PUF5 is present at less than 50000 molecules per cell in both bloodstream and procyclic form trypanosomes. C-terminally myc-tagged PUF5 was mainly found in the cytoplasm and could be cross-linked to RNA. PUF5 knockdown by RNA interference had no effect on the growth of bloodstream forms. Procyclic forms lacking PUF5 grew normally, but expression of PUF5 bearing a 21 kDa tandem affinity purification tag inhibited growth. Knockdown of PUF5 did not have any effect on the ability of trypanosomes to differentiate from the mammalian to the insect form of the parasite.
Collapse
|
67
|
Nousch M, Techritz N, Hampel D, Millonigg S, Eckmann CR. The Ccr4-Not deadenylase complex constitutes the main poly(A) removal activity in C. elegans. J Cell Sci 2013; 126:4274-85. [PMID: 23843623 DOI: 10.1242/jcs.132936] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Post-transcriptional regulatory mechanisms are widely used to control gene expression programs of tissue development and physiology. Controlled 3' poly(A) tail-length changes of mRNAs provide a mechanistic basis of such regulation, affecting mRNA stability and translational competence. Deadenylases are a conserved class of enzymes that facilitate poly(A) tail removal, and their biochemical activities have been mainly studied in the context of single-cell systems. Little is known about the different deadenylases and their biological role in multicellular organisms. In this study, we identify and characterize all known deadenylases of Caenorhabditis elegans, and identify the germ line as tissue that depends strongly on deadenylase activity. Most deadenylases are required for hermaphrodite fertility, albeit to different degrees. Whereas ccr-4 and ccf-1 deadenylases promote germline function under physiological conditions, panl-2 and parn-1 deadenylases are only required under heat-stress conditions. We also show that the Ccr4-Not core complex in nematodes is composed of the two catalytic subunits CCR-4 and CCF-1 and the structural subunit NTL-1, which we find to regulate the stability of CCF-1. Using bulk poly(A) tail measurements with nucleotide resolution, we detect strong deadenylation defects of mRNAs at the global level only in the absence of ccr-4, ccf-1 and ntl-1, but not of panl-2, parn-1 and parn-2. Taken together, this study suggests that the Ccr4-Not complex is the main deadenylase complex in C. elegans germ cells. On the basis of this and as a result of evidence in flies, we propose that the conserved Ccr4-Not complex is an essential component in post-transcriptional regulatory networks promoting animal reproduction.
Collapse
Affiliation(s)
- Marco Nousch
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
68
|
Miao J, Fan Q, Parker D, Li X, Li J, Cui L. Puf mediates translation repression of transmission-blocking vaccine candidates in malaria parasites. PLoS Pathog 2013; 9:e1003268. [PMID: 23637595 PMCID: PMC3630172 DOI: 10.1371/journal.ppat.1003268] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 02/08/2013] [Indexed: 01/01/2023] Open
Abstract
Translational control of gene expression plays an essential role in development. In malaria parasites, translational regulation is critical during the development of specialized transition stages between the vertebrate host and mosquito vector. Here we show that a Pumilio/FBF (Puf) family RNA-binding protein, PfPuf2, is required for the translation repression of a number of transcripts in gametocytes including two genes encoding the transmission-blocking vaccine candidates Pfs25 and Pfs28. Whereas studies to date support a paradigm of Puf-mediated translation regulation through 3' untranslated regions (UTRs) of target mRNAs, this study, for the first time, identifies a functional Puf-binding element (PBE) in the 5'UTR of pfs25. We provide both in vitro and in vivo evidence to demonstrate that PfPuf2 binds to the PBEs in pfs25 and pfs28 to mediate translation repression. This finding provides a renewed view of Pufs as versatile translation regulators and sheds light on their functions in the development of lower branches of eukaryotes.
Collapse
Affiliation(s)
- Jun Miao
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Qi Fan
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Dalian Institute of Biotechnology, Dalian, Liaoning Province, China
| | - Daniel Parker
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Xiaolian Li
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jianyong Li
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
69
|
Campbell ZT, Bhimsaria D, Valley CT, Rodriguez-Martinez JA, Menichelli E, Williamson JR, Ansari AZ, Wickens M. Cooperativity in RNA-protein interactions: global analysis of RNA binding specificity. Cell Rep 2013; 1:570-81. [PMID: 22708079 DOI: 10.1016/j.celrep.2012.04.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The control and function of RNA are governed by the specificity of RNA binding proteins. Here, we describe a method for global unbiased analysis of RNA-protein interactions that uses in vitro selection, high-throughput sequencing, and sequence-specificity landscapes. The method yields affinities for a vast array of RNAs in a single experiment, including both low- and high-affinity sites. It is reproducible and accurate. Using this approach,we analyzed members of the PUF (Pumilio and FBF) family of eukaryotic mRNA regulators. Our data identify effects of a specific protein partner on PUF-RNA interactions, reveal subsets of target sites not previously detected, and demonstrate that designer PUF proteins can precisely alter specificity. The approach described here is, in principle, broadly applicable for analysis of any molecule that binds RNA, including proteins, nucleic acids, and small molecules.
Collapse
Affiliation(s)
- Zachary T Campbell
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1554, USA
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Zanetti S, Puoti A. Sex Determination in the Caenorhabditis elegans Germline. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:41-69. [DOI: 10.1007/978-1-4614-4015-4_3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
71
|
Hansen D, Schedl T. Stem cell proliferation versus meiotic fate decision in Caenorhabditis elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:71-99. [PMID: 22872475 PMCID: PMC3786863 DOI: 10.1007/978-1-4614-4015-4_4] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The C. elegans germ line has emerged as an important model for -understanding how a stem cell population is maintained throughout the life of the animal while still producing the gametes necessary for propagation of the species. The stem cell population in the adult hermaphrodite is relatively large, with stem cells giving rise to daughters that appear intrinsically equivalent; however, some of the daughters retain the proliferative fate while others enter meiotic prophase. While machinery exists for cells to progress through the mitotic cell cycle and machinery exists for cells to progress through meiotic prophase, central to understanding germ line development is identifying the genes and regulatory processes that determine whether the mitotic cell cycle or meiotic prophase machinery will be utilized; in other words, the genes that regulate the switch of germ cells from the proliferative stem cell fate to the meiotic development fate. Whether a germ cell self-renews or enters meiotic prophase is largely determined by its proximity to the distal tip cell (DTC), which is the somatic niche cell that caps the distal end of the gonad. Germ cells close to the DTC have high levels of GLP-1 Notch signaling, which promotes the proliferative fate, while cells further from the DTC have high activity levels of the GLD-1 and GLD-2 redundant RNA regulatory pathways, as well as a third uncharacterized pathway, each of which direct cells to enter meiotic prophase. Other factors and pathways modulate this core genetic pathway, or work in parallel to it, presumably to ensure that a tight balance is maintained between proliferation and meiotic entry.
Collapse
Affiliation(s)
- Dave Hansen
- Department of Biological Sciences, 2500 University Drive, University of Calgary, Calgary, Alberta, Canada
| | - Tim Schedl
- Department of Genetics, Campus Box 8232, Washington University School of Medicine, 4566 Scott Ave, St Louis MO
| |
Collapse
|
72
|
Kershner A, Crittenden SL, Friend K, Sorensen EB, Porter DF, Kimble J. Germline stem cells and their regulation in the nematode Caenorhabditis elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:29-46. [PMID: 23696350 DOI: 10.1007/978-94-007-6621-1_3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
C. elegans germline stem cells exist within a stem cell pool that is maintained by a single-celled mesenchymal niche and Notch signaling. Downstream of Notch signaling, a regulatory network governs stem cells and differentiation. Central to that network is the FBF RNA-binding protein, a member of the widely conserved PUF family that functions by either of two broadly conserved mechanisms to repress its target mRNAs. Without FBF, germline stem cells do not proliferate and they do not maintain their naïve, undifferentiated state. Therefore, FBF is a pivotal regulator of germline self-renewal. Validated FBF targets include several key differentiation regulators as well as a major cell cycle regulator. A genomic analysis identifies many other developmental and cell cycle regulators as likely FBF targets and suggests that FBF is a broad-spectrum regulator of the genome with >1,000 targets. A comparison of the FBF target list with similar lists for human PUF proteins, PUM1 and PUM2, reveals ∼200 shared targets. The FBF hub works within a network controlling self-renewal vs. differentiation. This network consists of classical developmental cell fate regulators and classical cell cycle regulators. Recent results have begun to integrate developmental and cell cycle regulation within the network. The molecular dynamics of the network remain a challenge for the future, but models are proposed. We suggest that molecular controls of C. elegans germline stem cells provide an important model for controls of stem cells more broadly.
Collapse
Affiliation(s)
- Aaron Kershner
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
73
|
Stem Cell Niche. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
74
|
Translational control in the Caenorhabditis elegans germ line. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:205-47. [PMID: 22872479 DOI: 10.1007/978-1-4614-4015-4_8] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Translational control is a prevalent form of gene expression regulation in the Caenorhabditis elegans germ line. Linking the amount of protein synthesis to mRNA quantity and translational accessibility in the cell cytoplasm provides unique advantages over DNA-based controls for developing germ cells. This mode of gene expression is especially exploited in germ cell fate decisions and during oogenesis, when the developing oocytes stockpile hundreds of different mRNAs required for early embryogenesis. Consequently, a dense web of RNA regulators, consisting of diverse RNA-binding proteins and RNA-modifying enzymes, control the translatability of entire mRNA expression programs. These RNA regulatory networks are tightly coupled to germ cell developmental progression and are themselves under translational control. The underlying molecular mechanisms and RNA codes embedded in the mRNA molecules are beginning to be understood. Hence, the C. elegans germ line offers fertile grounds for discovering post-transcriptional mRNA regulatory mechanisms and emerges as great model for a systems level understanding of translational control during development.
Collapse
|
75
|
The Caenorhabditis elegans THO complex is required for the mitotic cell cycle and development. PLoS One 2012; 7:e52447. [PMID: 23285047 PMCID: PMC3527488 DOI: 10.1371/journal.pone.0052447] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 11/13/2012] [Indexed: 01/04/2023] Open
Abstract
THO is a conserved eukaryotic complex involved in mRNP biogenesis and RNA export that plays an important role in preventing transcription- and RNA-mediated genome instability in mitosis and meiosis. In mammals THO is essential for embryogenesis, which limits our capacity to analyze the physiological relevance of THO during development and in adult organisms. Using Caenorhabditis elegans as a model system we show that the THO complex is essential for mitotic genome integrity and the developmentally regulated mitotic cell cycles occurring during late postembryonic stages.
Collapse
|
76
|
Voronina E, Paix A, Seydoux G. The P granule component PGL-1 promotes the localization and silencing activity of the PUF protein FBF-2 in germline stem cells. Development 2012; 139:3732-40. [PMID: 22991439 DOI: 10.1242/dev.083980] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the C. elegans germline, maintenance of undifferentiated stem cells depends on the PUF family RNA-binding proteins FBF-1 and FBF-2. FBF-1 and FBF-2 are 89% identical and are required redundantly to silence the expression of mRNAs that promote meiosis. Here we show that, despite their extensive sequence similarity, FBF-1 and FBF-2 have different effects on target mRNAs. FBF-1 promotes the degradation and/or transport of meiotic mRNAs out of the stem cell region, whereas FBF-2 prevents translation. FBF-2 activity depends on the P granule component PGL-1. PGL-1 is required to localize FBF-2 to perinuclear P granules and for efficient binding of FBF-2 to its mRNA targets. We conclude that multiple regulatory mechanisms converge on meiotic RNAs to ensure silencing in germline stem cells. Our findings also support the view that P granules facilitate mRNA silencing by providing an environment in which translational repressors can encounter their mRNA targets immediately upon exit from the nucleus.
Collapse
Affiliation(s)
- Ekaterina Voronina
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
77
|
Wu J, Campbell ZT, Menichelli E, Wickens M, Williamson JR. A protein.protein interaction platform involved in recruitment of GLD-3 to the FBF.fem-3 mRNA complex. J Mol Biol 2012; 425:738-54. [PMID: 23159559 DOI: 10.1016/j.jmb.2012.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 11/01/2012] [Accepted: 11/07/2012] [Indexed: 02/03/2023]
Abstract
The Pumilio and FBF (PUF) family of RNA-binding proteins interacts with protein partners to post-transcriptionally regulate mRNAs in eukaryotes. The interaction between PUF family member fem-3 binding factor (FBF) and germline development defective-3 (GLD-3) protein promotes spermatogenesis in Caenorhabditis elegans by increasing expression of the fem-3 mRNA. Defined here in these studies is the molecular basis for this critical interaction. A 10-amino-acid region within GLD-3 is required for FBF binding, while a 7-amino-acid loop in FBF between PUF repeats 7 and 8 is necessary for GLD-3 binding. These short sequences are conserved, as other FBF-binding proteins bear sequences similar to those in GLD-3 and other C. elegans PUF proteins contain sequences similar to those in FBF. The FBF-binding region of GLD-3 forms a ternary complex with FBF on the point mutation element (PME) in the fem-3 3' untranslated region, and formation of this GLD-3⋅FBF complex does not impact the RNA-binding activity of FBF. These data raise the possibility of alternative models involving the formation of a GLD-3⋅FBF⋅RNA complex in the regulation of germline mRNAs.
Collapse
Affiliation(s)
- Joann Wu
- Department of Molecular Biology, Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
78
|
Menichelli E, Wu J, Campbell ZT, Wickens M, Williamson JR. Biochemical characterization of the Caenorhabditis elegans FBF.CPB-1 translational regulation complex identifies conserved protein interaction hotspots. J Mol Biol 2012; 425:725-37. [PMID: 23159558 DOI: 10.1016/j.jmb.2012.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 11/01/2012] [Accepted: 11/07/2012] [Indexed: 10/27/2022]
Abstract
Caenorhabditis elegans CPB-1 (cytoplasmic polyadenylation element binding protein homolog-1) and FBF (fem-3 mRNA binding factor) are evolutionary conserved regulators of mRNA translation that belong to the CPEB (cytoplasmic polyadenylation element binding) and PUF (Pumilio and FBF) protein families, respectively. In hermaphrodite worms, CPB-1 and FBF control key steps during germline development, including stem cell maintenance and sex determination. While CPB-1 and FBF are known to interact, the molecular basis and function of the CPB-1⋅FBF complex are not known. The surface of CPB-1 that interacts with FBF was localized using in vivo and in vitro methods to a 10-residue region at the N-terminus of the protein and these residues are present in the FBF-binding protein GLD-3 (germline development defective-3). PUF proteins are characterized by the presence of eight α-helical repeats (PUF repeats) arranged side by side in an elongated structure. Critical residues for CPB-1 binding are found in the extended loop that connects PUF repeats 7 and 8. The same FBF residues also mediate binding to GLD-3, indicating a conserved binding mode between different protein partners. CPB-1 binding was competitive with GLD-3, suggestive of mutual exclusivity in vivo. RNA binding measurements demonstrated that CPB-1 alters the affinity of FBF for specific RNA sequences, implying a functional model where the coregulatory protein CPB-1 modulates FBF target selection.
Collapse
Affiliation(s)
- Elena Menichelli
- Department of Molecular Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
79
|
Van Etten J, Schagat TL, Hrit J, Weidmann CA, Brumbaugh J, Coon JJ, Goldstrohm AC. Human Pumilio proteins recruit multiple deadenylases to efficiently repress messenger RNAs. J Biol Chem 2012; 287:36370-83. [PMID: 22955276 PMCID: PMC3476303 DOI: 10.1074/jbc.m112.373522] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 09/05/2012] [Indexed: 11/06/2022] Open
Abstract
PUF proteins are a conserved family of eukaryotic RNA-binding proteins that regulate specific mRNAs: they control many processes including stem cell proliferation, fertility, and memory formation. PUFs repress protein expression from their target mRNAs but the mechanism by which they do so remains unclear, especially for humans. Humans possess two PUF proteins, PUM1 and PUM2, which exhibit similar RNA binding specificities. Here we report new insights into their regulatory activities and mechanisms of action. We developed functional assays to measure sequence-specific repression by PUM1 and PUM2. Both robustly inhibit translation and promote mRNA degradation. Purified PUM complexes were found to contain subunits of the CCR4-NOT (CNOT) complex, which contains multiple enzymes that catalyze mRNA deadenylation. PUMs interact with the CNOT deadenylase subunits in vitro. We used three approaches to determine the importance of deadenylases for PUM repression. First, dominant-negative mutants of CNOT7 and CNOT8 reduced PUM repression. Second, RNA interference depletion of the deadenylases alleviated PUM repression. Third, the poly(A) tail was necessary for maximal PUM repression. These findings demonstrate a conserved mechanism of PUF-mediated repression via direct recruitment of the CCR4-POP2-NOT deadenylase leading to translational inhibition and mRNA degradation. A second, deadenylation independent mechanism was revealed by the finding that PUMs repress an mRNA that lacks a poly(A) tail. Thus, human PUMs are repressors capable of deadenylation-dependent and -independent modes of repression.
Collapse
Affiliation(s)
- Jamie Van Etten
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600
| | - Trista L. Schagat
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600
- the Promega Corporation, Madison, Wisconsin 53711, and
| | - Joel Hrit
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600
| | - Chase A. Weidmann
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600
| | - Justin Brumbaugh
- the Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Joshua J. Coon
- the Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Aaron C. Goldstrohm
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600
| |
Collapse
|
80
|
PUF-8, a Pumilio homolog, inhibits the proliferative fate in the Caenorhabditis elegans germline. G3-GENES GENOMES GENETICS 2012; 2:1197-205. [PMID: 23050230 PMCID: PMC3464112 DOI: 10.1534/g3.112.003350] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 08/06/2012] [Indexed: 01/10/2023]
Abstract
Stem cell populations are maintained by keeping a balance between self-renewal (proliferation) and differentiation of dividing stem cells. Within the Caenorhabditis elegans germline, the key regulator maintaining this balance is the canonical Notch signaling pathway, with GLP-1/Notch activity promoting the proliferative fate. We identified the Pumilio homolog, PUF-8, as an inhibitor of the proliferative fate of stem cells in the C. elegans germline. puf-8(0) strongly enhances overproliferation of glp-1(gf) mutants and partially suppresses underproliferation of a weak glp-1(lf) mutant. The germline tumor that is formed in a puf-8(0); glp-1(gf) double mutant is due to a failure of germ cells to enter meiotic prophase. puf-8 likely inhibits the proliferative fate through negatively regulating GLP-1/Notch signaling or by functioning parallel to it.
Collapse
|
81
|
Hubstenberger A, Cameron C, Shtofman R, Gutman S, Evans TC. A network of PUF proteins and Ras signaling promote mRNA repression and oogenesis in C. elegans. Dev Biol 2012; 366:218-31. [PMID: 22542599 PMCID: PMC3361503 DOI: 10.1016/j.ydbio.2012.03.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 02/21/2012] [Accepted: 03/19/2012] [Indexed: 11/16/2022]
Abstract
Cell differentiation requires integration of gene expression controls with dynamic changes in cell morphology, function, and control. Post-transcriptional mRNA regulation and signaling systems are important to this process but their mechanisms and connections are unclear. During C. elegans oogenesis, we find that two groups of PUF RNA binding proteins (RNABPs), PUF-3/11 and PUF-5/6/7, control different specific aspects of oocyte formation. PUF-3/11 limits oocyte growth, while PUF-5/6/7 promotes oocyte organization and formation. These two PUF groups repress mRNA translation through overlapping but distinct sets of 3' untranslated regions (3'UTRs). Several PUF-dependent mRNAs encode other mRNA regulators suggesting both PUF groups control developmental patterning of mRNA regulation circuits. Furthermore, we find that the Ras-MapKinase/ERK pathway functions with PUF-5/6/7 to repress specific mRNAs and control oocyte organization and growth. These results suggest that diversification of PUF proteins and their integration with Ras-MAPK signaling modulates oocyte differentiation. Together with other studies, these findings suggest positive and negative interactions between the Ras-MAPK system and PUF RNA-binding proteins likely occur at multiple levels. Changes in these interactions over time can influence spatiotemporal patterning of tissue development.
Collapse
Affiliation(s)
- Arnaud Hubstenberger
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora CO 80045
| | - Cristiana Cameron
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora CO 80045
| | - Rebecca Shtofman
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora CO 80045
| | - Shiri Gutman
- Program in Cell biology, Stem Cells, and Development, University of Colorado Anschutz Medical Campus, Aurora CO 80045
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora CO 80045
| | - Thomas C. Evans
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora CO 80045
| |
Collapse
|
82
|
Conservation of the RNA Transport Machineries and Their Coupling to Translation Control across Eukaryotes. Comp Funct Genomics 2012; 2012:287852. [PMID: 22666086 PMCID: PMC3361156 DOI: 10.1155/2012/287852] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 02/09/2012] [Indexed: 01/03/2023] Open
Abstract
Restriction of proteins to discrete subcellular regions is a common mechanism to establish cellular asymmetries and depends on a coordinated program of mRNA localization and translation control. Many processes from the budding of a yeast to the establishment of metazoan embryonic axes and the migration of human neurons, depend on this type of cell polarization. How factors controlling transport and translation assemble to regulate at the same time the movement and translation of transported mRNAs, and whether these mechanisms are conserved across kingdoms is not yet entirely understood. In this review we will focus on some of the best characterized examples of mRNA transport machineries, the "yeast locasome" as an example of RNA transport and translation control in unicellular eukaryotes, and on the Drosophila Bic-D/Egl/Dyn RNA localization machinery as an example of RNA transport in higher eukaryotes. This focus is motivated by the relatively advanced knowledge about the proteins that connect the localizing mRNAs to the transport motors and the many well studied proteins involved in translational control of specific transcripts that are moved by these machineries. We will also discuss whether the core of these RNA transport machineries and factors regulating mRNA localization and translation are conserved across eukaryotes.
Collapse
|
83
|
Minasaki R, Eckmann CR. Subcellular specialization of multifaceted 3'end modifying nucleotidyltransferases. Curr Opin Cell Biol 2012; 24:314-22. [PMID: 22551970 DOI: 10.1016/j.ceb.2012.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/24/2012] [Accepted: 03/29/2012] [Indexed: 10/28/2022]
Abstract
While canonical 3'end modifications of mRNAs or tRNAs are well established, recent technological advances in RNA analysis have given us a glimpse of how widespread other types of distinctive 3'end modifications appear to be. Next to alternative nuclear or cytoplasmic polyadenylation mechanisms, evidence accumulated for a variety of 3'end mono-nucleotide and oligo-nucleotide additions of primarily adenosines or uracils on a variety of RNA species. Enzymes responsible for such non-templated additions are non-canonical RNA nucleotidyltransferases, which possess surprising flexibility in RNA substrate selection and enzymatic activity. We will highlight recent findings supporting the view that RNA nucleotidyltransferase activity, RNA target selection and sub-compartimentalization are spatially, temporally and physiologically regulated by dedicated co-factors. Along with the diversification of non-coding RNA classes, the evolutionary conservation of these multifaceted RNA modifiers underscores the prevalence and importance of diverse 3'end formation mechanisms.
Collapse
Affiliation(s)
- Ryuji Minasaki
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | |
Collapse
|
84
|
Campbell ZT, Menichelli E, Friend K, Wu J, Kimble J, Williamson JR, Wickens M. Identification of a conserved interface between PUF and CPEB proteins. J Biol Chem 2012; 287:18854-62. [PMID: 22496444 DOI: 10.1074/jbc.m112.352815] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Members of the PUF (Pumilio and FBF) and CPEB (cytoplasmic polyadenylation element-binding) protein families collaborate to regulate mRNA expression throughout eukaryotes. Here, we focus on the physical interactions between members of these two families, concentrating on Caenorhabditis elegans FBF-2 and CPB-1. To localize the site of interaction on FBF-2, we identified conserved amino acids within C. elegans PUF proteins. Deletion of an extended loop containing several conserved residues abolished binding to CPB-1. We analyzed alanine substitutions at 13 individual amino acids in FBF-2, each identified via its conservation. Multiple single point mutations disrupted binding to CPB-1 but not to RNA. Position Tyr-479 was particularly critical as multiple substitutions to other amino acids at this position did not restore binding. The complex of FBF-2 and CPB-1 repressed translation of an mRNA containing an FBF binding element. Repression required both proteins and was disrupted by FBF-2 alleles that failed to bind CPB-1 or RNA. The equivalent loop in human PUM2 is required for binding to human CPEB3 in vitro, although the primary sequences of the human and C. elegans PUF proteins have diverged in that region. Our findings define a key region in PUF/CPEB interactions and imply a conserved platform through which PUF proteins interact with their protein partners.
Collapse
Affiliation(s)
- Zachary T Campbell
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
85
|
Patterns and plasticity in RNA-protein interactions enable recruitment of multiple proteins through a single site. Proc Natl Acad Sci U S A 2012; 109:6054-9. [PMID: 22467831 DOI: 10.1073/pnas.1200521109] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
mRNA control hinges on the specificity and affinity of proteins for their RNA binding sites. Regulatory proteins must bind their own sites and reject even closely related noncognate sites. In the PUF [Pumilio and fem-3 binding factor (FBF)] family of RNA binding proteins, individual proteins discriminate differences in the length and sequence of binding sites, allowing each PUF to bind a distinct battery of mRNAs. Here, we show that despite these differences, the pattern of RNA interactions is conserved among PUF proteins: the two ends of the PUF protein make critical contacts with the two ends of the RNA sites. Despite this conserved "two-handed" pattern of recognition, the RNA sequence is flexible. Among the binding sites of yeast Puf4p, RNA sequence dictates the pattern in which RNA bases are flipped away from the binding surface of the protein. Small differences in RNA sequence allow new modes of control, recruiting Puf5p in addition to Puf4p to a single site. This embedded information adds a new layer of biological meaning to the connections between RNA targets and PUF proteins.
Collapse
|
86
|
Liu Q, Stumpf C, Thomas C, Wickens M, Haag ES. Context-dependent function of a conserved translational regulatory module. Development 2012; 139:1509-21. [PMID: 22399679 DOI: 10.1242/dev.070128] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The modification of transcriptional regulation is a well-documented evolutionary mechanism in both plants and animals, but post-transcriptional controls have received less attention. The derived hermaphrodite of C. elegans has regulated spermatogenesis in an otherwise female body. The PUF family RNA-binding proteins FBF-1 and FBF-2 limit XX spermatogenesis by repressing the male-promoting proteins FEM-3 and GLD-1. Here, we examine the function of PUF homologs from other Caenorhabditis species, with emphasis on C. briggsae, which evolved selfing convergently. C. briggsae lacks a bona fide fbf-1/2 ortholog, but two members of the related PUF-2 subfamily, Cbr-puf-2 and Cbr-puf-1.2, do have a redundant germline sex determination role. Surprisingly, this is to promote, rather than limit, hermaphrodite spermatogenesis. We provide genetic, molecular and biochemical evidence that Cbr-puf-2 and Cbr-puf-1.2 repress Cbr-gld-1 by a conserved mechanism. However, Cbr-gld-1 acts to limit, rather than promote, XX spermatogenesis. As with gld-1, no sex determination function for fbf or puf-2 orthologs is observed in gonochoristic Caenorhabditis. These results indicate that PUF family genes were co-opted for sex determination in each hermaphrodite via their long-standing association with gld-1, and that their precise sex-determining roles depend on the species-specific context in which they act. Finally, we document non-redundant roles for Cbr-puf-2 in embryonic and early larval development, the latter role being essential. Thus, recently duplicated PUF paralogs have already acquired distinct functions.
Collapse
Affiliation(s)
- Qinwen Liu
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
87
|
Chen D, Zheng W, Lin A, Uyhazi K, Zhao H, Lin H. Pumilio 1 suppresses multiple activators of p53 to safeguard spermatogenesis. Curr Biol 2012; 22:420-5. [PMID: 22342750 DOI: 10.1016/j.cub.2012.01.039] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/14/2011] [Accepted: 01/17/2012] [Indexed: 10/28/2022]
Abstract
During spermatogenesis, germ cells initially expand exponentially through mitoses. A majority of these cells are then eliminated through p53-mediated apoptosis to maintain germline homeostasis. However, the activity of p53 must be precisely modulated, especially suppressed in postmitotic spermatogenic cells, to guarantee robustness of spermatogenesis. Currently, how the suppression is achieved is not understood. Here, we show that Pumilio 1, a posttranscriptional regulator, binds to mRNAs representing 1,527 genes, with significant enrichment for mRNAs involved in pathways regulating p53, cell cycle, and MAPK signaling. In particular, eight mRNAs encoding activators of p53 are repressed by Pumilio 1. Deleting Pumilio 1 results in strong activation of p53 and apoptosis mostly in spermatocytes, which disrupts sperm production and fertility. Removing p53 reduces apoptosis and rescues testicular hypotrophy in Pumilio 1 null mice. These results indicate that key components of the p53 pathway are coordinately regulated by Pumilio 1 at the posttranscriptional level, which may exemplify an RNA operon.
Collapse
Affiliation(s)
- Dong Chen
- Yale Stem Cell Center and Department of Cell Biology, Yale School of Medicine, New Haven, CT 06519, USA
| | | | | | | | | | | |
Collapse
|
88
|
|
89
|
Friend K, Campbell ZT, Cooke A, Kroll-Conner P, Wickens MP, Kimble J. A conserved PUF-Ago-eEF1A complex attenuates translation elongation. Nat Struct Mol Biol 2012; 19:176-83. [PMID: 22231398 PMCID: PMC3293257 DOI: 10.1038/nsmb.2214] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 11/24/2011] [Indexed: 11/15/2022]
Abstract
PUF (Pumilio/FBF) RNA-binding proteins and Argonaute (Ago) miRNA-binding proteins regulate mRNAs post-transcriptionally, each acting through similar yet distinct mechanisms. Here, we report that PUF and Ago proteins can also function together in a complex with a core translation elongation factor, eEF1A, to repress translation elongation. Both nematode and mammalian PUF/Ago/eEF1A complexes were identified, using co-immunoprecipitation and recombinant protein assays. Nematode CSR-1 (Ago) promotes repression of FBF (PUF) target mRNAs in in vivo assays, and the FBF-1/CSR-1 heterodimer inhibits EFT-3 (eEF1A) GTPase activity in vitro. Mammalian PUM2/Ago/eEF1A inhibits translation of nonadenylated and polyadenylated reporter mRNAs in vitro. This repression occurs after translation initiation and leads to ribosome accumulation within the open reading frame, roughly at the site where the nascent polypeptide emerges from the ribosomal exit tunnel. Together, these data suggest that a conserved PUF/Ago/eEF1A complex attenuates translation elongation.
Collapse
Affiliation(s)
- Kyle Friend
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | | | | | |
Collapse
|
90
|
Mainpal R, Priti A, Subramaniam K. PUF-8 suppresses the somatic transcription factor PAL-1 expression in C. elegans germline stem cells. Dev Biol 2011; 360:195-207. [PMID: 21968099 PMCID: PMC3736097 DOI: 10.1016/j.ydbio.2011.09.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 08/30/2011] [Accepted: 09/18/2011] [Indexed: 10/17/2022]
Abstract
RNA-binding proteins of the PUF family are well conserved post-transcriptional regulators that control a variety of developmental processes. The C. elegans protein PUF-8 is essential for several aspects of germ cell development including the maintenance of germline stem cells (GSCs). To explore the molecular mechanisms underlying its function, we have identified 160 germline-expressed mRNAs as potential targets of PUF-8. We generated GFP::H2B-3' UTR fusions for 17 mRNAs to assay their post-transcriptional regulation in germ cells. Twelve transgenes were not expressed in the mitotic germ cells, and depletion of PUF-8 led to misexpression of six of them in these cells. In contrast, the expression of 3' UTR fusion of hip-1, which encodes the HSP-70 interacting protein, was dependent on PUF-8. These results indicate that PUF-8 may regulate the expression of its targets both negatively as well as positively. We investigated the PUF-8-mediated post-transcriptional control of one mRNA, namely pal-1, which encodes a homeodomain transcription factor responsible for muscle development. Our results show that PUF-8 binds in vitro to specific sequences within pal-1 3' UTR that are critical for post-transcriptional suppression in GSCs. Removal of PUF-8 resulted in PAL-1 misexpression, and PAL-1-dependent misexpression of the myogenic promoter HLH-1 in germ cells. We propose that PUF-8 protects GSCs from the influence of somatic differentiation factors such as PAL-1, which are produced in the maternal germline but meant for embryogenesis.
Collapse
Affiliation(s)
- Rana Mainpal
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Agarwal Priti
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Kuppuswamy Subramaniam
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
91
|
Independent recruitments of a translational regulator in the evolution of self-fertile nematodes. Proc Natl Acad Sci U S A 2011; 108:19672-7. [PMID: 22106259 DOI: 10.1073/pnas.1108068108] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pleiotropic developmental regulators have been repeatedly linked to the evolution of anatomical novelties. Known mechanisms include cis-regulatory DNA changes that alter regulator transcription patterns or modify target-gene linkages. Here, we examine the role of another form of regulation, translational control, in the repeated evolution of self-fertile hermaphroditism in Caenorhabditis nematodes. Caenorhabditis elegans hermaphrodites initiate spermatogenesis in an otherwise female body through translational repression of the gene tra-2. This repression is mediated by GLD-1, an RNA-binding protein also required for oocyte meiosis and differentiation. By contrast, we show that in the convergently hermaphroditic Caenorhabditis briggsae, GLD-1 acts to promote oogenesis. The opposite functions of gld-1 in these species are not gene-intrinsic, but instead result from the unique contexts for its action that evolved in each. In C. elegans, GLD-1 became essential for promoting XX spermatogenesis via changes in the tra-2 mRNA and evolution of the species-specific protein FOG-2. C. briggsae GLD-1 became an essential repressor of sperm-promoting genes, including Cbr-puf-8, and did not evolve a strong association with tra-2. Despite its variable roles in sex determination, the function of gld-1 in female meiotic progression is ancient and conserved. This conserved role may explain why gld-1 is repeatedly recruited to regulate hermaphroditism. We conclude that, as with transcription factors, spatially localized translational regulators play important roles in the evolution of anatomical novelties.
Collapse
|
92
|
Drosophila Pumilio protein contains multiple autonomous repression domains that regulate mRNAs independently of Nanos and brain tumor. Mol Cell Biol 2011; 32:527-40. [PMID: 22064486 DOI: 10.1128/mcb.06052-11] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Drosophila melanogaster Pumilio is an RNA-binding protein that potently represses specific mRNAs. In developing embryos, Pumilio regulates a key morphogen, Hunchback, in collaboration with the cofactor Nanos. To investigate repression by Pumilio and Nanos, we created cell-based assays and found that Pumilio inhibits translation and enhances mRNA decay independent of Nanos. Nanos robustly stimulates repression through interactions with the Pumilio RNA-binding domain. We programmed Pumilio to recognize a new binding site, which garners repression of new target mRNAs. We show that cofactors Brain Tumor and eIF4E Homologous Protein are not obligatory for Pumilio and Nanos activity. The conserved RNA-binding domain of Pumilio was thought to be sufficient for its function. Instead, we demonstrate that three unique domains in the N terminus of Pumilio possess the major repressive activity and can function autonomously. The N termini of insect and vertebrate Pumilio and Fem-3 binding factors (PUFs) are related, and we show that corresponding regions of human PUM1 and PUM2 have repressive activity. Other PUF proteins lack these repression domains. Our findings suggest that PUF proteins have evolved new regulatory functions through protein sequences appended to their conserved PUF repeat RNA-binding domains.
Collapse
|
93
|
Kalchhauser I, Farley BM, Pauli S, Ryder SP, Ciosk R. FBF represses the Cip/Kip cell-cycle inhibitor CKI-2 to promote self-renewal of germline stem cells in C. elegans. EMBO J 2011; 30:3823-9. [PMID: 21822213 DOI: 10.1038/emboj.2011.263] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 07/11/2011] [Indexed: 11/09/2022] Open
Abstract
Although the decision between stem cell self-renewal and differentiation has been linked to cell-cycle modifications, our understanding of cell-cycle regulation in stem cells is very limited. Here, we report that FBF/Pumilio, a conserved RNA-binding protein, promotes self-renewal of germline stem cells by repressing CKI-2(Cip/Kip), a Cyclin E/Cdk2 inhibitor. We have previously shown that repression of CYE-1 (Cyclin E) by another RNA-binding protein, GLD-1/Quaking, promotes germ cell differentiation. Together, these findings suggest that a post-transcriptional regulatory circuit involving FBF and GLD-1 controls the self-renewal versus differentiation decision in the germline by promoting high CYE-1/CDK-2 activity in stem cells, and inhibiting CYE-1/CDK-2 activity in differentiating cells.
Collapse
Affiliation(s)
- Irene Kalchhauser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | | | | | | |
Collapse
|
94
|
Villalba A, Coll O, Gebauer F. Cytoplasmic polyadenylation and translational control. Curr Opin Genet Dev 2011; 21:452-7. [DOI: 10.1016/j.gde.2011.04.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 04/01/2011] [Accepted: 04/05/2011] [Indexed: 12/22/2022]
|
95
|
Chritton JJ, Wickens M. A role for the poly(A)-binding protein Pab1p in PUF protein-mediated repression. J Biol Chem 2011; 286:33268-78. [PMID: 21768112 DOI: 10.1074/jbc.m111.264572] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PUF proteins regulate translation and mRNA stability throughout eukaryotes. Using a cell-free translation assay, we examined the mechanisms of translational repression of PUF proteins in the budding yeast Saccharomyces cerevisiae. We demonstrate that the poly(A)-binding protein Pab1p is required for PUF-mediated translational repression for two distantly related PUF proteins: S. cerevisiae Puf5p and Caenorhabditis elegans FBF-2. Pab1p interacts with oligo(A) tracts in the HO 3'-UTR, a target of Puf5p, to dramatically enhance the efficiency of Puf5p repression. Both the Pab1p ability to activate translation and interact with eukaryotic initiation factor 4G (eIF4G) were required to observe maximal repression by Puf5p. Repression was also more efficient when Pab1p was bound in close proximity to Puf5p. Puf5p may disrupt translation initiation by interfering with the interaction between Pab1p and eIF4G. Finally, we demonstrate two separable mechanisms of translational repression employed by Puf5p: a Pab1p-dependent mechanism and a Pab1p-independent mechanism.
Collapse
Affiliation(s)
- Jacqueline J Chritton
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
96
|
Lu G, Hall TMT. Alternate modes of cognate RNA recognition by human PUMILIO proteins. Structure 2011; 19:361-7. [PMID: 21397187 DOI: 10.1016/j.str.2010.12.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 12/16/2010] [Accepted: 12/20/2010] [Indexed: 01/20/2023]
Abstract
Human PUMILIO1 (PUM1) and PUMILIO2 (PUM2) are members of the PUMILIO/FBF (PUF) family that regulate specific target mRNAs posttranscriptionally. Recent studies have identified mRNA targets associated with human PUM1 and PUM2. Here, we explore the structural basis of natural target RNA recognition by human PUF proteins through crystal structures of the RNA-binding domains of PUM1 and PUM2 in complex with four cognate RNA sequences, including sequences from p38α and erk2 MAP kinase mRNAs. We observe three distinct modes of RNA binding around the fifth RNA base, two of which are different from the prototypical 1 repeat:1 RNA base binding mode previously identified with model RNA sequences. RNA-binding affinities of PUM1 and PUM2 are not affected dramatically by the different binding modes in vitro. However, these modes of binding create structurally variable recognition surfaces that suggest a mechanism in vivo for recruitment of downstream effector proteins defined by the PUF:RNA complex.
Collapse
Affiliation(s)
- Gang Lu
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
97
|
mir-35 is involved in intestine cell G1/S transition and germ cell proliferation in C. elegans. Cell Res 2011; 21:1605-18. [PMID: 21691303 DOI: 10.1038/cr.2011.102] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
MicroRNA (miRNA) regulates gene expression in many cellular events, yet functions of only a few miRNAs are known in C. elegans. We analyzed the function of mir-35-41 unique to the worm, and show here that mir-35 regulates the G1/S transition of intestinal cells and germ cell proliferation. Loss of mir-35 leads to a decrease of nuclei numbers in intestine and distal mitotic gonad, while re-introduction of mir-35 rescues the mutant phenotypes. Genetic analysis indicates that mir-35 may act through Rb/E2F and SCF pathways. Further bioinformatic and functional analyses demonstrate that mir-35 targets evolutionally conserved lin-23 and gld-1. Together, our study reveals a novel function of mir-35 family in cell division regulation.
Collapse
|
98
|
Koh YY, Wang Y, Qiu C, Opperman L, Gross L, Tanaka Hall TM, Wickens M. Stacking interactions in PUF-RNA complexes. RNA (NEW YORK, N.Y.) 2011; 17:718-27. [PMID: 21372189 PMCID: PMC3062182 DOI: 10.1261/rna.2540311] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Stacking interactions between amino acids and bases are common in RNA-protein interactions. Many proteins that regulate mRNAs interact with single-stranded RNA elements in the 3' UTR (3'-untranslated region) of their targets. PUF proteins are exemplary. Here we focus on complexes formed between a Caenorhabditis elegans PUF protein, FBF, and its cognate RNAs. Stacking interactions are particularly prominent and involve every RNA base in the recognition element. To assess the contribution of stacking interactions to formation of the RNA-protein complex, we combine in vivo selection experiments with site-directed mutagenesis, biochemistry, and structural analysis. Our results reveal that the identities of stacking amino acids in FBF affect both the affinity and specificity of the RNA-protein interaction. Substitutions in amino acid side chains can restrict or broaden RNA specificity. We conclude that the identities of stacking residues are important in achieving the natural specificities of PUF proteins. Similarly, in PUF proteins engineered to bind new RNA sequences, the identity of stacking residues may contribute to "target" versus "off-target" interactions, and thus be an important consideration in the design of proteins with new specificities.
Collapse
Affiliation(s)
- Yvonne Yiling Koh
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
99
|
Jeong J, Verheyden JM, Kimble J. Cyclin E and Cdk2 control GLD-1, the mitosis/meiosis decision, and germline stem cells in Caenorhabditis elegans. PLoS Genet 2011; 7:e1001348. [PMID: 21455289 PMCID: PMC3063749 DOI: 10.1371/journal.pgen.1001348] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 02/18/2011] [Indexed: 11/29/2022] Open
Abstract
Coordination of the cell cycle with developmental events is crucial for generation of tissues during development and their maintenance in adults. Defects in that coordination can shift the balance of cell fates with devastating clinical effects. Yet our understanding of the molecular mechanisms integrating core cell cycle regulators with developmental regulators remains in its infancy. This work focuses on the interplay between cell cycle and developmental regulators in the Caenorhabditis elegans germline. Key developmental regulators control germline stem cells (GSCs) to self-renew or begin differentiation: FBF RNA–binding proteins promote self-renewal, while GLD RNA regulatory proteins promote meiotic entry. We first discovered that many but not all germ cells switch from the mitotic into the meiotic cell cycle after RNAi depletion of CYE-1 (C. elegans cyclin E) or CDK-2 (C. elegans Cdk2) in wild-type adults. Therefore, CYE-1/CDK-2 influences the mitosis/meiosis balance. We next found that GLD-1 is expressed ectopically in GSCs after CYE-1 or CDK-2 depletion and that GLD-1 removal can rescue cye-1/cdk-2 defects. Therefore, GLD-1 is crucial for the CYE-1/CDK-2 mitosis/meiosis control. Indeed, GLD-1 appears to be a direct substrate of CYE-1/CDK-2: GLD-1 is a phosphoprotein; CYE-1/CDK-2 regulates its phosphorylation in vivo; and human cyclin E/Cdk2 phosphorylates GLD-1 in vitro. Transgenic GLD-1(AAA) harbors alanine substitutions at three consensus CDK phosphorylation sites. GLD-1(AAA) is expressed ectopically in GSCs, and GLD-1(AAA) transgenic germlines have a smaller than normal mitotic zone. Together these findings forge a regulatory link between CYE-1/CDK-2 and GLD-1. Finally, we find that CYE-1/CDK-2 works with FBF-1 to maintain GSCs and prevent their meiotic entry, at least in part, by lowering GLD-1 abundance. Therefore, CYE-1/CDK-2 emerges as a critical regulator of stem cell maintenance. We suggest that cyclin E and Cdk-2 may be used broadly to control developmental regulators. How are cell cycle regulators coordinated with cell fate and patterning regulators during development? Several studies suggest that core cell cycle regulators can influence development, but molecular mechanisms remain unknown for the most part. We have tackled this question in the nematode Caenorhabditis elegans. Specifically, we have investigated how cell cycle regulators affect germline stem cells. Previous work had identified conserved developmental regulators that control the choice between self-renewal and differentiation in this tissue. In this work, we focus on cyclin E/Cdk-2, which is a core cell cycle kinase, and GLD-1, a key regulator of stem cell differentiation. Our work shows that cyclin E/Cdk-2 phosphorylates GLD-1 and lowers its abundance in stem cells via a post-translational mechanism. We also find that a post-transcriptional GLD-1 regulator, called FBF-1, works synergistically with cyclin E/Cdk-2 to ensure that GLD-1 is off in germline stem cells. When both FBF-1 and cyclin E/Cdk-2 are removed, the stem cells are no longer maintained and instead differentiate. Our findings reveal that cyclin E/Cdk-2 kinase is a critical stem cell regulator and provide a paradigm for how cell cycle regulators interface with developmental regulators.
Collapse
Affiliation(s)
- Johan Jeong
- Program in Cellular and Molecular Biology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Jamie M. Verheyden
- Howard Hughes Medical Institute, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Judith Kimble
- Program in Cellular and Molecular Biology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Howard Hughes Medical Institute, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
100
|
Waters KA, Reinke V. Extrinsic and intrinsic control of germ cell proliferation in Caenorhabditis elegans. Mol Reprod Dev 2011; 78:151-60. [PMID: 21337453 DOI: 10.1002/mrd.21289] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 01/06/2011] [Indexed: 12/23/2022]
Abstract
The germ cells of Caenorhabditis elegans serve as a useful model to study the balance between proliferation and differentiation within the context of development and changing environmental signals experienced by the animal. Germ cells adjacent to a stem cell niche in the distal region of the gonad retain the capacity to divide during adulthood, making them unique from other cells in the organism. We will highlight recent advances in our understanding of mechanisms that control proliferation, as well as the signaling pathways involved in promoting mitosis at the expense of differentiation.
Collapse
|