51
|
Development of a Rat Model of Sick Sinus Syndrome Using Pinpoint Press Permeation. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7487324. [PMID: 30581867 PMCID: PMC6276488 DOI: 10.1155/2018/7487324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/06/2018] [Indexed: 02/06/2023]
Abstract
Objective Sick sinus syndrome (SSS) is one of the most common causes of cardiac impairment necessitating pacemaker implantation. However, studies of SSS pathogenesis are neither comprehensive nor conclusive due to limited success in achieving a stable rat SSS model. Here, we modified pinpoint press permeation to establish a stable rat SSS model. Methods We randomly assigned 138 male Sprague-Dawley rats into three groups: normal control (n = 8), sham (n = 10), and SSS (n = 120). Postoperatively, the SSS group was further divided into SSSA (n = 40), SSSB (n = 40), and SSSC (n = 40), based on reduction in heart rates by 20–30%, 31–40%, and 41–50%, respectively. We also assessed histomorphological characteristics and hyperpolarization-activated cyclic nucleotide-gated cation channel 4 (HCN4) expression in the sinoatrial node (SAN) at 1, 2, 3, and 4 weeks after surgery. Results Mortality was statistically higher in SSSC compared to SSSA and SSSB (7.5% versus 90.0% and 87.5%; P < 0.05). Heart rate in SSSA was gradually restored to preoperative levels by week 4 after surgery. In contrast, heart rate in SSSB was stable at 2–3 weeks after surgery. However, we observed that the tissues and cells in SAN were severely injured and also found a time-dependent increase in collagen content and atrium myocardium in SSSB. HCN4 expression was significantly reduced at all 4 time points in SSSB, with statistically significant differences among the groups (P < 0.01). Conclusion We successfully developed a rat SSS model that was sustainable for up to 4 weeks.
Collapse
|
52
|
Thomas D, Christ T, Fabritz L, Goette A, Hammwöhner M, Heijman J, Kockskämper J, Linz D, Odening KE, Schweizer PA, Wakili R, Voigt N. German Cardiac Society Working Group on Cellular Electrophysiology state-of-the-art paper: impact of molecular mechanisms on clinical arrhythmia management. Clin Res Cardiol 2018; 108:577-599. [PMID: 30306295 DOI: 10.1007/s00392-018-1377-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Abstract
Cardiac arrhythmias remain a common challenge and are associated with significant morbidity and mortality. Effective and safe rhythm control strategies are a primary, yet unmet need in everyday clinical practice. Despite significant pharmacological and technological advances, including catheter ablation and device-based therapies, the development of more effective alternatives is of significant interest to increase quality of life and to reduce symptom burden, hospitalizations and mortality. The mechanistic understanding of pathophysiological pathways underlying cardiac arrhythmias has advanced profoundly, opening up novel avenues for mechanism-based therapeutic approaches. Current management of arrhythmias, however, is primarily guided by clinical and demographic characteristics of patient groups as opposed to individual, patient-specific mechanisms and pheno-/genotyping. With this state-of-the-art paper, the Working Group on Cellular Electrophysiology of the German Cardiac Society aims to close the gap between advanced molecular understanding and clinical decision-making in cardiac electrophysiology. The significance of cellular electrophysiological findings for clinical arrhythmia management constitutes the main focus of this document. Clinically relevant knowledge of pathophysiological pathways of arrhythmias and cellular mechanisms of antiarrhythmic interventions are summarized. Furthermore, the specific molecular background for the initiation and perpetuation of atrial and ventricular arrhythmias and mechanism-based strategies for therapeutic interventions are highlighted. Current "hot topics" in atrial fibrillation are critically appraised. Finally, the establishment and support of cellular and translational electrophysiology programs in clinical rhythmology departments is called for to improve basic-science-guided patient management.
Collapse
Affiliation(s)
- Dierk Thomas
- Department of Cardiology, Medical University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany. .,HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany. .,DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Torsten Christ
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK.,Department of Cardiology, UHB NHS Trust, Birmingham, UK.,Department of Cardiovascular Medicine, Division of Rhythmology, University Hospital Münster, Münster, Germany
| | - Andreas Goette
- St. Vincenz-Hospital, Paderborn, Germany.,Working Group: Molecular Electrophysiology, University Hospital Magdeburg, Magdeburg, Germany
| | - Matthias Hammwöhner
- St. Vincenz-Hospital, Paderborn, Germany.,Working Group: Molecular Electrophysiology, University Hospital Magdeburg, Magdeburg, Germany
| | - Jordi Heijman
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany.,Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jens Kockskämper
- Biochemical and Pharmacological Center (BPC) Marburg, Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
| | - Dominik Linz
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, SA, Australia.,Experimental Electrophysiology, University Hospital of Saarland, Homburg, Saar, Germany
| | - Katja E Odening
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Experimental Cardiovascular Medicine, Heart Center University of Freiburg, Freiburg, Germany
| | - Patrick A Schweizer
- Department of Cardiology, Medical University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.,Heidelberg Research Center for Molecular Medicine (HRCMM), Heidelberg, Germany
| | - Reza Wakili
- Department of Cardiology and Vascular Medicine, Medical Faculty, West German Heart Center, University Hospital Essen, Essen, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany. .,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany.
| |
Collapse
|
53
|
Shah MM, Nishtala A, Goldschlager N. Electrocardiographic Abnormalities in a Woman in Her 70s With Syncope. JAMA Intern Med 2018; 178:1411-1413. [PMID: 30178039 DOI: 10.1001/jamainternmed.2018.4069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Muazzum M Shah
- Department of Medicine, University of California, San Francisco, San Francisco
| | - Arvind Nishtala
- Department of Medicine, University of California, San Francisco, San Francisco
| | - Nora Goldschlager
- Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco.,Division of Cardiology, Department of Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, California.,Section Editor
| |
Collapse
|
54
|
Stoyek MR, Rog-Zielinska EA, Quinn TA. Age-associated changes in electrical function of the zebrafish heart. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:91-104. [DOI: 10.1016/j.pbiomolbio.2018.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/17/2022]
|
55
|
Aziz Q, Li Y, Tinker A. Potassium channels in the sinoatrial node and their role in heart rate control. Channels (Austin) 2018; 12:356-366. [PMID: 30301404 PMCID: PMC6207292 DOI: 10.1080/19336950.2018.1532255] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022] Open
Abstract
Potassium currents determine the resting membrane potential and govern repolarisation in cardiac myocytes. Here, we review the various currents in the sinoatrial node focussing on their molecular and cellular properties and their role in pacemaking and heart rate control. We also describe how our recent finding of a novel ATP-sensitive potassium channel population in these cells fits into this picture.
Collapse
Affiliation(s)
- Qadeer Aziz
- William Harvey Heart Centre, Barts & The London School of Medicine & Dentistry, Queen Mary, University of London, London, UK
| | - Yiwen Li
- William Harvey Heart Centre, Barts & The London School of Medicine & Dentistry, Queen Mary, University of London, London, UK
| | - Andrew Tinker
- William Harvey Heart Centre, Barts & The London School of Medicine & Dentistry, Queen Mary, University of London, London, UK
| |
Collapse
|
56
|
Ionic mechanisms of the action of anaesthetics on sinoatrial node automaticity. Eur J Pharmacol 2017; 814:63-72. [DOI: 10.1016/j.ejphar.2017.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/06/2017] [Accepted: 08/07/2017] [Indexed: 12/11/2022]
|
57
|
Kerr KF, Avery CL, Lin HJ, Raffield LM, Zhang QS, Browning BL, Browning SR, Conomos MP, Gogarten SM, Laurie CC, Sofer T, Thornton TA, Hohensee C, Jackson RD, Kooperberg C, Li Y, Méndez-Giráldez R, Perez MV, Peters U, Reiner AP, Zhang ZM, Yao J, Sotoodehnia N, Taylor KD, Guo X, Lange LA, Soliman EZ, Wilson JG, Rotter JI, Heckbert SR, Jain D, Whitsel EA. Genome-wide association study of heart rate and its variability in Hispanic/Latino cohorts. Heart Rhythm 2017; 14:1675-1684. [PMID: 28610988 PMCID: PMC5671896 DOI: 10.1016/j.hrthm.2017.06.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Although time-domain measures of heart rate variability (HRV) are used to estimate cardiac autonomic tone and disease risk in multiethnic populations, the genetic epidemiology of HRV in Hispanics/Latinos has not been characterized. OBJECTIVE The purpose of this study was to conduct a genome-wide association study of heart rate (HR) and its variability in the Hispanic Community Health Study/Study of Latinos, Multi-Ethnic Study of Atherosclerosis, and Women's Health Initiative Hispanic SNP-Health Association Resource project (n = 13,767). METHODS We estimated HR (bpm), standard deviation of normal-to-normal interbeat intervals (SDNN, ms), and root mean squared difference in successive, normal-to-normal interbeat intervals (RMSSD, ms) from resting, standard 12-lead ECGs. We estimated associations between each phenotype and 17 million genotyped or imputed single nucleotide polymorphisms (SNPs), accounting for relatedness and adjusting for age, sex, study site, and ancestry. Cohort-specific estimates were combined using fixed-effects, inverse-variance meta-analysis. We investigated replication for select SNPs exceeding genome-wide (P <5 × 10-8) or suggestive (P <10-6) significance thresholds. RESULTS Two genome-wide significant SNPs replicated in a European ancestry cohort, 1 one for RMSSD (rs4963772; chromosome 12) and another for SDNN (rs12982903; chromosome 19). A suggestive SNP for HR (rs236352; chromosome 6) replicated in an African-American cohort. Functional annotation of replicated SNPs in cardiac and neuronal tissues identified potentially causal variants and mechanisms. CONCLUSION This first genome-wide association study of HRV and HR in Hispanics/Latinos underscores the potential for even modestly sized samples of non-European ancestry to inform the genetic epidemiology of complex traits.
Collapse
Affiliation(s)
- Kathleen F Kerr
- Department of Biostatistics, University of Washington, Seattle, Washington.
| | - Christy L Avery
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Henry J Lin
- The Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, California
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Qian S Zhang
- Department of Biostatistics, University of Washington, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Brian L Browning
- Department of Medicine, University of Washington, Seattle, Washington
| | - Sharon R Browning
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Matthew P Conomos
- Department of Biostatistics, University of Washington, Seattle, Washington
| | | | - Cathy C Laurie
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Tamar Sofer
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Timothy A Thornton
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Chancellor Hohensee
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Rebecca D Jackson
- Division of Endocrinology, Diabetes and Metabolism, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Raúl Méndez-Giráldez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Marco V Perez
- Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Stanford University, Palo Alto, California
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Alexander P Reiner
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Zhu-Ming Zhang
- Epidemiological Cardiology Research Center (EPICARE), Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, California
| | - Nona Sotoodehnia
- Department of Epidemiology, University of Washington, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington; Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, California
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, California
| | - Leslie A Lange
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Elsayed Z Soliman
- Epidemiological Cardiology Research Center (EPICARE), Wake Forest School of Medicine, Winston Salem, North Carolina
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, California
| | - Susan R Heckbert
- Department of Epidemiology, University of Washington, Seattle, Washington; Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington
| | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Eric A Whitsel
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
58
|
Brand T, Schindler R. New kids on the block: The Popeye domain containing (POPDC) protein family acting as a novel class of cAMP effector proteins in striated muscle. Cell Signal 2017; 40:156-165. [PMID: 28939104 PMCID: PMC6562197 DOI: 10.1016/j.cellsig.2017.09.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 01/16/2023]
Abstract
The cyclic 3′,5′-adenosine monophosphate (cAMP) signalling pathway constitutes an ancient signal transduction pathway present in prokaryotes and eukaryotes. Previously, it was thought that in eukaryotes three effector proteins mediate cAMP signalling, namely protein kinase A (PKA), exchange factor directly activated by cAMP (EPAC) and the cyclic-nucleotide gated channels. However, recently a novel family of cAMP effector proteins emerged and was termed the Popeye domain containing (POPDC) family, which consists of three members POPDC1, POPDC2 and POPDC3. POPDC proteins are transmembrane proteins, which are abundantly present in striated and smooth muscle cells. POPDC proteins bind cAMP with high affinity comparable to PKA. Presently, their biochemical activity is poorly understood. However, mutational analysis in animal models as well as the disease phenotype observed in patients carrying missense mutations suggests that POPDC proteins are acting by modulating membrane trafficking of interacting proteins. In this review, we will describe the current knowledge about this gene family and also outline the apparent gaps in our understanding of their role in cAMP signalling and beyond. Popeye domain containing (POPDC) proteins are novel class of cAMP effector proteins. POPDC proteins control membrane trafficking of interacting proteins. POPDC proteins play a role in cardiac pacemaking and atrioventricular conduction. Mutations of POPDC genes are causing muscular dystrophy.
Collapse
Affiliation(s)
- Thomas Brand
- Developmental Dynamics, Myocardial Function, National Heart and Lung Institute, Imperial College London, United Kingdom.
| | - Roland Schindler
- Developmental Dynamics, Myocardial Function, National Heart and Lung Institute, Imperial College London, United Kingdom
| |
Collapse
|
59
|
Maruyoshi H, Maruyoshi N, Hirosue M, Ikeda K, Shimamoto M. Clonazepam-associated Bradycardia in a Disabled Elderly Woman with Multiple Complications. Intern Med 2017; 56:2301-2305. [PMID: 28794360 PMCID: PMC5635303 DOI: 10.2169/internalmedicine.8234-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We herein report an 87-year-old woman who was taking clonazepam at 1.5 mg/day. She was hospitalized with an old cerebral infarction complicated with symptomatic epilepsy, dementia, dyslipidemia, and chronic cholecystitis. Electrocardiogram revealed severe bradycardia at 31 beats/min. The bradycardia disappeared on day 3 after clonazepam withdrawal, although the serum clonazepam level had been within normal limits. She was diagnosed with clonazepam-associated bradycardia, which was likely related to the potential calcium channel-blocking properties of clonazepam. Because of age-related pharmacokinetic and pharmacodynamic changes, the adverse effects of clonazepam should be considered, especially in disabled elderly individuals with multiple comorbidities.
Collapse
Affiliation(s)
| | | | - Motone Hirosue
- Department of Internal Medicine, Shimamoto Hospital, Japan
| | - Komei Ikeda
- Department of Neurological Surgery, Shimamoto Hospital, Japan
| | | |
Collapse
|
60
|
A single center's experience with pacemaker implantation after the Cox maze procedure for atrial fibrillation. J Thorac Cardiovasc Surg 2017; 154:139-146.e1. [DOI: 10.1016/j.jtcvs.2016.12.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 11/15/2016] [Accepted: 12/12/2016] [Indexed: 11/24/2022]
|
61
|
Lodder EM, Verkerk AO, Bezzina CR. Pacing Discovery: G-Protein β Subunit Mutations in Sinus Node Dysfunction. Circ Res 2017; 120:1524-1526. [PMID: 28495981 DOI: 10.1161/circresaha.117.310953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Elisabeth M Lodder
- From the Heart Center, Department of Clinical and Experimental Cardiology (E.M.L., A.O.V., C.R.B.) and Department of Medical Biology (A.O.V.), Academic Medical Center, Amsterdam, the Netherlands
| | - Arie O Verkerk
- From the Heart Center, Department of Clinical and Experimental Cardiology (E.M.L., A.O.V., C.R.B.) and Department of Medical Biology (A.O.V.), Academic Medical Center, Amsterdam, the Netherlands
| | - Connie R Bezzina
- From the Heart Center, Department of Clinical and Experimental Cardiology (E.M.L., A.O.V., C.R.B.) and Department of Medical Biology (A.O.V.), Academic Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
62
|
Burkhard S, van Eif V, Garric L, Christoffels VM, Bakkers J. On the Evolution of the Cardiac Pacemaker. J Cardiovasc Dev Dis 2017; 4:jcdd4020004. [PMID: 29367536 PMCID: PMC5715705 DOI: 10.3390/jcdd4020004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/18/2017] [Accepted: 04/24/2017] [Indexed: 01/26/2023] Open
Abstract
The rhythmic contraction of the heart is initiated and controlled by an intrinsic pacemaker system. Cardiac contractions commence at very early embryonic stages and coordination remains crucial for survival. The underlying molecular mechanisms of pacemaker cell development and function are still not fully understood. Heart form and function show high evolutionary conservation. Even in simple contractile cardiac tubes in primitive invertebrates, cardiac function is controlled by intrinsic, autonomous pacemaker cells. Understanding the evolutionary origin and development of cardiac pacemaker cells will help us outline the important pathways and factors involved. Key patterning factors, such as the homeodomain transcription factors Nkx2.5 and Shox2, and the LIM-homeodomain transcription factor Islet-1, components of the T-box (Tbx), and bone morphogenic protein (Bmp) families are well conserved. Here we compare the dominant pacemaking systems in various organisms with respect to the underlying molecular regulation. Comparative analysis of the pathways involved in patterning the pacemaker domain in an evolutionary context might help us outline a common fundamental pacemaker cell gene programme. Special focus is given to pacemaker development in zebrafish, an extensively used model for vertebrate development. Finally, we conclude with a summary of highly conserved key factors in pacemaker cell development and function.
Collapse
Affiliation(s)
- Silja Burkhard
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands.
| | - Vincent van Eif
- Department of Medical Biology, Academic Medical Center Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Laurence Garric
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands.
| | - Vincent M Christoffels
- Department of Medical Biology, Academic Medical Center Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands.
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands.
| |
Collapse
|
63
|
Hoffmann S, Schmitteckert S, Griesbeck A, Preiss H, Sumer S, Rolletschek A, Granzow M, Eckstein V, Niesler B, Rappold GA. Comparative expression analysis of Shox2-deficient embryonic stem cell-derived sinoatrial node-like cells. Stem Cell Res 2017; 21:51-57. [PMID: 28390247 DOI: 10.1016/j.scr.2017.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 02/05/2023] Open
Abstract
The homeodomain transcription factor Shox2 controls the development and function of the native cardiac pacemaker, the sinoatrial node (SAN). Moreover, SHOX2 mutations have been associated with cardiac arrhythmias in humans. For detailed examination of Shox2-dependent developmental mechanisms in SAN cells, we established a murine embryonic stem cell (ESC)-based model using Shox2 as a molecular tool. Shox2+/+ and Shox2-/- ESC clones were isolated and differentiated according to five different protocols in order to evaluate the most efficient enrichment of SAN-like cells. Expression analysis of cell subtype-specific marker genes revealed most efficient enrichment after CD166-based cell sorting. Comparative cardiac expression profiles of Shox2+/+ and Shox2-/- ESCs were examined by nCounter technology. Among other genes, we identified Nppb as a novel putative Shox2 target during differentiation in ESCs. Differential expression of Nppb could be confirmed in heart tissue of Shox2-/- embryos. Taken together, we established an ESC-based cardiac differentiation model and successfully purified Shox2+/+ and Shox2-/- SAN-like cells. This now provides an excellent basis for the investigation of molecular mechanisms under physiological and pathophysiological conditions for evaluating novel therapeutic approaches.
Collapse
Affiliation(s)
- Sandra Hoffmann
- Department of Human Molecular Genetics, Institute of Human Genetics, University Heidelberg, Germany; DZHK, German Centre for Cardiovascular Research, Partner site Heidelberg/Mannheim, Germany
| | - Stefanie Schmitteckert
- Department of Human Molecular Genetics, Institute of Human Genetics, University Heidelberg, Germany
| | - Anne Griesbeck
- Department of Human Molecular Genetics, Institute of Human Genetics, University Heidelberg, Germany
| | - Hannes Preiss
- Department of Human Molecular Genetics, Institute of Human Genetics, University Heidelberg, Germany
| | - Simon Sumer
- Department of Human Molecular Genetics, Institute of Human Genetics, University Heidelberg, Germany; DZHK, German Centre for Cardiovascular Research, Partner site Heidelberg/Mannheim, Germany
| | - Alexandra Rolletschek
- Institute for Biological Interfaces, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Martin Granzow
- Department of Human Genetics, Institute of Human Genetics, University Heidelberg, Germany
| | - Volker Eckstein
- FACS Core Facility, Department of Medicine V, University Hospital Heidelberg, Germany
| | - Beate Niesler
- Department of Human Molecular Genetics, Institute of Human Genetics, University Heidelberg, Germany; DZHK, German Centre for Cardiovascular Research, Partner site Heidelberg/Mannheim, Germany; nCounter Core Facility, Department of Human Molecular Genetics, Institute of Human Genetics, University Heidelberg, Germany
| | - Gudrun A Rappold
- Department of Human Molecular Genetics, Institute of Human Genetics, University Heidelberg, Germany; DZHK, German Centre for Cardiovascular Research, Partner site Heidelberg/Mannheim, Germany.
| |
Collapse
|
64
|
Stallmeyer B, Kuß J, Kotthoff S, Zumhagen S, Vowinkel K, Rinné S, Matschke LA, Friedrich C, Schulze-Bahr E, Rust S, Seebohm G, Decher N, Schulze-Bahr E. A Mutation in the G-Protein Gene GNB2 Causes Familial Sinus Node and Atrioventricular Conduction Dysfunction. Circ Res 2017; 120:e33-e44. [PMID: 28219978 DOI: 10.1161/circresaha.116.310112] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 11/16/2022]
Abstract
RATIONALE Familial sinus node and atrioventricular conduction dysfunction is a rare disorder that leads to paroxysmal dizziness, fatigue, and syncope because of a temporarily or permanently reduced heart rate. To date, only a few genes for familial sinus and atrioventricular conduction dysfunction are known, and the majority of cases remain pathogenically unresolved. OBJECTIVE We aim to identify the disease gene in a large 3-generation family (n=25) with autosomal dominant sinus node dysfunction (SND) and atrioventricular block (AVB) and to characterize the mutation-related pathomechanisms in familial SND+AVB. METHODS AND RESULTS Genome-wide linkage analysis mapped the SND+AVB disease locus to chromosome 7q21.1-q31.1 (2-point logarithm of the odds score: 4.64; θ=0); in this region, targeted exome sequencing identified a novel heterozygous mutation (p.Arg52Leu) in the GNB2 gene that strictly cosegregated with the SND+AVB phenotype. GNB2 encodes the β2 subunit (Gβ2) of the heterotrimeric G-protein complex that is being released from G-protein-coupled receptors on vagal stimulation. In 2 heterologous expression systems (HEK-293T cells and Xenopus laevis oocytes), an enhanced activation of the G-protein-activated K+ channel (GIRK; Kir3.1/Kir3.4) was shown when mutant Gβ2 was coexpressed with Gγ2; this was in contrast to coexpression of mutant Gβ2-Gγ2 with other cardiac ion channels (HCN4, HCN2, and Cav1.2). Molecular dynamics simulations suggested a reduced binding property of mutant Gβ2 to cardiac GIRK channels when compared with native Gβ2. CONCLUSIONS A GNB2 gene mutation is associated with familial SND+AVB and leads to a sustained activation of cardiac GIRK channels, which is likely to hyperpolarize the myocellular membrane potential and thus reduces their spontaneous activity. Our findings describe for the first time a role of a mutant G-protein in the nonsyndromic pacemaker disease because of GIRK channel activation.
Collapse
Affiliation(s)
- Birgit Stallmeyer
- From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Muenster, Germany; and Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps University of Marburg, Germany (K.V., S.R., L.A.M., N.D.)
| | - Johanna Kuß
- From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Muenster, Germany; and Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps University of Marburg, Germany (K.V., S.R., L.A.M., N.D.)
| | - Stefan Kotthoff
- From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Muenster, Germany; and Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps University of Marburg, Germany (K.V., S.R., L.A.M., N.D.)
| | - Sven Zumhagen
- From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Muenster, Germany; and Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps University of Marburg, Germany (K.V., S.R., L.A.M., N.D.)
| | - Kirsty Vowinkel
- From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Muenster, Germany; and Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps University of Marburg, Germany (K.V., S.R., L.A.M., N.D.)
| | - Susanne Rinné
- From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Muenster, Germany; and Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps University of Marburg, Germany (K.V., S.R., L.A.M., N.D.)
| | - Lina A Matschke
- From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Muenster, Germany; and Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps University of Marburg, Germany (K.V., S.R., L.A.M., N.D.)
| | - Corinna Friedrich
- From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Muenster, Germany; and Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps University of Marburg, Germany (K.V., S.R., L.A.M., N.D.)
| | - Ellen Schulze-Bahr
- From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Muenster, Germany; and Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps University of Marburg, Germany (K.V., S.R., L.A.M., N.D.)
| | - Stephan Rust
- From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Muenster, Germany; and Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps University of Marburg, Germany (K.V., S.R., L.A.M., N.D.)
| | - Guiscard Seebohm
- From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Muenster, Germany; and Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps University of Marburg, Germany (K.V., S.R., L.A.M., N.D.)
| | - Niels Decher
- From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Muenster, Germany; and Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps University of Marburg, Germany (K.V., S.R., L.A.M., N.D.)
| | - Eric Schulze-Bahr
- From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Muenster, Germany; and Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps University of Marburg, Germany (K.V., S.R., L.A.M., N.D.).
| |
Collapse
|
65
|
Masarone D, Ammendola E, Rago A, Gravino R, Salerno G, Rubino M, Marrazzo T, Molino A, Calabrò P, Pacileo G, Limongelli G. Management of Bradyarrhythmias in Heart Failure: A Tailored Approach. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1067:255-269. [PMID: 29280096 DOI: 10.1007/5584_2017_136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Patients with heart failure (HF) may develop a range of bradyarrhythmias including sinus node dysfunction, various degrees of atrioventricular block, and ventricular conduction delay. Device implantation has been recommended in these patients, but the specific etiology should be sought as it may influence the choice of the type of device required (pacemaker vs. implantable cardiac defibrillator). Also, pacing mode must be carefully set in patients with heart failure (HF) and left ventricular systolic dysfunction.In this chapter, we summarize the knowledge required for a tailored approach to bradyarrhythmias in patients with heart failure.
Collapse
Affiliation(s)
- Daniele Masarone
- Cardiomyopathies and Heart Failure Unit-Monaldi Hospital, Naples, Italy.
| | - Ernesto Ammendola
- Cardiomyopathies and Heart Failure Unit-Monaldi Hospital, Naples, Italy
| | - Anna Rago
- Cardiomyopathies and Heart Failure Unit-Monaldi Hospital, Naples, Italy
| | - Rita Gravino
- Cardiomyopathies and Heart Failure Unit-Monaldi Hospital, Naples, Italy
| | - Gemma Salerno
- Cardiomyopathies and Heart Failure Unit-Monaldi Hospital, Naples, Italy
| | - Marta Rubino
- Cardiomyopathies and Heart Failure Unit-Monaldi Hospital, Naples, Italy
| | - Tommaso Marrazzo
- Cardiomyopathies and Heart Failure Unit-Monaldi Hospital, Naples, Italy
| | - Antonio Molino
- First Division of Pneumology Monaldi Hospital-University "Federico II", Naples, Italy.,UOC Pneumotisiologia - Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Paolo Calabrò
- Department of Cardiothoracic Sciences, Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Pacileo
- Cardiomyopathies and Heart Failure Unit-Monaldi Hospital, Naples, Italy
| | - Giuseppe Limongelli
- Cardiomyopathies and Heart Failure Unit-Monaldi Hospital, Naples, Italy.,Department of Cardiothoracic Sciences, Università della Campania "Luigi Vanvitelli", Naples, Italy.,Institute of Cardiovascular Sciences - University College of London, London, UK
| |
Collapse
|
66
|
Regan CP, Morissette P, Regan HK, Travis JJ, Gerenser P, Wen J, Fitzgerald K, Gruver S, DeGeorge JJ, Sannajust FJ. Assessment of the clinical cardiac drug-drug interaction associated with the combination of hepatitis C virus nucleotide inhibitors and amiodarone in guinea pigs and rhesus monkeys. Hepatology 2016; 64:1430-1441. [PMID: 27474787 DOI: 10.1002/hep.28752] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/05/2016] [Accepted: 07/24/2016] [Indexed: 02/04/2023]
Abstract
UNLABELLED In 2015, European and U.S. health agencies issued warning letters in response to 9 reported clinical cases of severe bradycardia/bradyarrhythmia in hepatitis C virus (HCV)-infected patients treated with sofosbuvir (SOF) in combination with other direct acting antivirals (DAAs) and the antiarrhythmic drug, amiodarone (AMIO). We utilized preclinical in vivo models to better understand this cardiac effect, the potential pharmacological mechanism(s), and to identify a clinically translatable model to assess the drug-drug interaction (DDI) cardiac risk of current and future HCV inhibitors. An anesthetized guinea pig model was used to elicit a SOF+AMIO-dependent bradycardia. Detailed cardiac electrophysiological studies in this species revealed SOF+AMIO-dependent selective nodal dysfunction, with initial, larger effects on the sinoatrial node. Further studies in conscious, rhesus monkeys revealed an emergent bradycardia and bradyarrhythmia in 3 of 4 monkeys administered SOF+AMIO, effects not observed with either agent alone. Morever, bradycardia and bradyarrhythmia were not observed in rhesus monkeys when intravenous infusion of MK-3682 was completed after AMIO pretreatment. CONCLUSIONS These are the first preclinical in vivo experiments reported to replicate the severe clinical SOF+AMIO cardiac DDI and provide potential in vivo mechanism of action. As such, these data provide a preclinical risk assessment paradigm, including a clinically relevant nonhuman primate model, with which to better understand cardiovascular DDI risk for this therapeutic class. Furthermore, these studies suggest that not all HCV DAAs and, in particular, not all HCV nonstructural protein 5B inhibitors may exhibit this cardiac DDI with amiodarone. Given the selective in vivo cardiac electrophysiological effect, these data enable targeted cellular/molecular mechanistic studies to more precisely identify cell types, receptors, and/or ion channels responsible for the clinical DDI. (Hepatology 2016;64:1430-1441).
Collapse
Affiliation(s)
- Christopher P Regan
- Department of Safety & Exploratory Pharmacology, Merck Research Laboratories, West Point, PA.
| | - Pierre Morissette
- Department of Safety & Exploratory Pharmacology, Merck Research Laboratories, West Point, PA
| | - Hillary K Regan
- Department of Safety & Exploratory Pharmacology, Merck Research Laboratories, West Point, PA
| | - Jeffery J Travis
- Department of Safety & Exploratory Pharmacology, Merck Research Laboratories, West Point, PA
| | - Pamela Gerenser
- Department of Safety & Exploratory Pharmacology, Merck Research Laboratories, West Point, PA
| | - Jianzhong Wen
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck Research Laboratories, West Point, PA
| | - Kevin Fitzgerald
- Department of Safety & Exploratory Pharmacology, Merck Research Laboratories, West Point, PA
| | - Shaun Gruver
- Department of Safety & Exploratory Pharmacology, Merck Research Laboratories, West Point, PA
| | - Joseph J DeGeorge
- Safety Assessment and Laboratory Animal Resources, Merck Research Laboratories, West Point, PA
| | - Frederick J Sannajust
- Department of Safety & Exploratory Pharmacology, Merck Research Laboratories, West Point, PA
| |
Collapse
|
67
|
Development of the cardiac pacemaker. Cell Mol Life Sci 2016; 74:1247-1259. [PMID: 27770149 DOI: 10.1007/s00018-016-2400-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/16/2016] [Accepted: 10/17/2016] [Indexed: 01/11/2023]
Abstract
The sinoatrial node (SAN) is the dominant pacemaker of the heart. Abnormalities in SAN formation and function can cause sinus arrhythmia, including sick sinus syndrome and sudden death. A better understanding of genes and signaling pathways that regulate SAN development and function is essential to develop more effective treatment to sinus arrhythmia, including biological pacemakers. In this review, we briefly summarize the key processes of SAN morphogenesis during development, and focus on the transcriptional network that drives SAN development.
Collapse
|
68
|
Brand T. Tbx18 and the generation of a biological pacemaker. Are we there yet? J Mol Cell Cardiol 2016; 97:263-5. [PMID: 27291063 PMCID: PMC5080448 DOI: 10.1016/j.yjmcc.2016.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Thomas Brand
- Developmental Dynamics, Heart Science Center, National Heart and Lung Institute, Imperial College London, United Kingdom.
| |
Collapse
|