51
|
Lechowicz K, Drożdżal S, Machaj F, Rosik J, Szostak B, Zegan-Barańska M, Biernawska J, Dabrowski W, Rotter I, Kotfis K. COVID-19: The Potential Treatment of Pulmonary Fibrosis Associated with SARS-CoV-2 Infection. J Clin Med 2020; 9:E1917. [PMID: 32575380 PMCID: PMC7356800 DOI: 10.3390/jcm9061917] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 01/08/2023] Open
Abstract
In December 2019, a novel coronavirus, SARS-CoV-2, appeared, causing a wide range of symptoms, mainly respiratory infection. In March 2020, the World Health Organization (WHO) declared Coronavirus Disease 2019 (COVID-19) a pandemic, therefore the efforts of scientists around the world are focused on finding the right treatment and vaccine for the novel disease. COVID-19 has spread rapidly over several months, affecting patients across all age groups and geographic areas. The disease has a diverse course; patients may range from asymptomatic to those with respiratory failure, complicated by acute respiratory distress syndrome (ARDS). One possible complication of pulmonary involvement in COVID-19 is pulmonary fibrosis, which leads to chronic breathing difficulties, long-term disability and affects patients' quality of life. There are no specific mechanisms that lead to this phenomenon in COVID-19, but some information arises from previous severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS) epidemics. The aim of this narrative review is to present the possible causes and pathophysiology of pulmonary fibrosis associated with COVID-19 based on the mechanisms of the immune response, to suggest possible ways of prevention and treatment.
Collapse
Affiliation(s)
- Kacper Lechowicz
- Department of Anaesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.L.); (M.Z.-B.)
| | - Sylwester Drożdżal
- Department of Pharmacokinetics and Monitored Therapy, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Filip Machaj
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (F.M.); (J.R.); (B.S.)
| | - Jakub Rosik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (F.M.); (J.R.); (B.S.)
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (F.M.); (J.R.); (B.S.)
| | - Małgorzata Zegan-Barańska
- Department of Anaesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.L.); (M.Z.-B.)
| | - Jowita Biernawska
- Department of Anaesthesiology and Intensive Therapy, Pomeranian Medical University, 71-242 Szczecin, Poland;
| | - Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Care, Medical University, 20-090 Lublin, Poland;
| | - Iwona Rotter
- Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University, 71-210 Szczecin, Poland;
| | - Katarzyna Kotfis
- Department of Anaesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.L.); (M.Z.-B.)
| |
Collapse
|
52
|
Wang Z, Wang S, Goplen NP, Li C, Cheon IS, Dai Q, Huang S, Shan J, Ma C, Ye Z, Xiang M, Limper AH, Porquera EC, Kohlmeier JE, Kaplan MH, Zhang N, Johnson AJ, Vassallo R, Sun J. PD-1 hi CD8 + resident memory T cells balance immunity and fibrotic sequelae. Sci Immunol 2020; 4:4/36/eaaw1217. [PMID: 31201259 DOI: 10.1126/sciimmunol.aaw1217] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/17/2019] [Indexed: 12/13/2022]
Abstract
CD8+ tissue-resident memory T (TRM) cells provide frontline immunity in mucosal tissues. The mechanisms regulating CD8+ TRM maintenance, heterogeneity, and protective and pathological functions are largely elusive. Here, we identify a population of CD8+ TRM cells that is maintained by major histocompatibility complex class I (MHC-I) signaling, and CD80 and CD86 costimulation after acute influenza infection. These TRM cells have both exhausted-like phenotypes and memory features and provide heterologous immunity against secondary infection. PD-L1 blockade after the resolution of primary infection promotes the rejuvenation of these exhausted-like TRM cells, restoring protective immunity at the cost of promoting postinfection inflammatory and fibrotic sequelae. Thus, PD-1 serves to limit the pathogenic capacity of exhausted-like TRM cells at the memory phase. Our data indicate that TRM cell exhaustion is the result of a tissue-specific cellular adaptation that balances fibrotic sequelae with protective immunity.
Collapse
Affiliation(s)
- Zheng Wang
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Shaohua Wang
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Nick P Goplen
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Chaofan Li
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - In Su Cheon
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Qigang Dai
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.,Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Su Huang
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chaoyu Ma
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center, San Antonio, San Antonio, TX 78229, USA
| | - Zhenqing Ye
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Min Xiang
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Andrew H Limper
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Eva-Carmona Porquera
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Jacob E Kohlmeier
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mark H Kaplan
- HB Wells Pediatric Research Center, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center, San Antonio, San Antonio, TX 78229, USA
| | - Aaron J Johnson
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Robert Vassallo
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Jie Sun
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA. .,Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| |
Collapse
|
53
|
Sato M. Bronchiolitis obliterans syndrome and restrictive allograft syndrome after lung transplantation: why are there two distinct forms of chronic lung allograft dysfunction? ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:418. [PMID: 32355862 PMCID: PMC7186721 DOI: 10.21037/atm.2020.02.159] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bronchiolitis obliterans syndrome (BOS) had been considered to be the representative form of chronic rejection or chronic lung allograft dysfunction (CLAD) after lung transplantation. In BOS, small airways are affected by chronic inflammation and obliterative fibrosis, whereas peripheral lung tissue remains relatively intact. However, recognition of another form of CLAD involving multiple tissue compartments in the lung, termed restrictive allograft syndrome (RAS), raised a fundamental question: why there are two phenotypes of CLAD? Increasing clinical and experimental data suggest that RAS may be a prototype of chronic rejection after lung transplantation involving both cellular and antibody-mediated alloimmune responses. Some cases of RAS are also induced by fulminant general inflammation in lung allografts. However, BOS involves alloimmune responses and the airway-centered disease process can be explained by multiple mechanisms such as external alloimmune-independent stimuli (such as infection, aspiration and air pollution), exposure of airway-specific autoantigens and airway ischemia. Localization of immune responses in different anatomical compartments in different phenotypes of CLAD might be associated with lymphoid neogenesis or the de novo formation of lymphoid tissue in lung allografts. Better understanding of distinct mechanisms of BOS and RAS will facilitate the development of effective preventive and therapeutic strategies of CLAD.
Collapse
Affiliation(s)
- Masaaki Sato
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
54
|
Jafarian AH, Mohamadian Roshan N, Ayatollahi H, Omidi AA, Ghaznavi M, Gharib M. Epstein-Barr Virus and Human Herpesvirus 8 in Idiopathic Pulmonary Fibrosis. IRANIAN JOURNAL OF PATHOLOGY 2020; 15:34-40. [PMID: 32095147 PMCID: PMC6995674 DOI: 10.30699/ijp.2019.77233.1728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background & Objective: Idiopathic pulmonary fibrosis (IPF) is a chronic and uniformly fatal interstitial lung disease with incompletely understood pathogenesis. Several studies have given the evidence for and against viral cofactors in the pathogenesis of Idiopathic pulmonary fibrosis. In this study Epstein-Bar Virus (EBV) and HumanHerpesvirus 8 (HHV-8) have been studied for a possible role in the pathogenesis of IPF. Methods: Polymerase chain reaction (PCR) was employed for the detection of EBV and HHV-8 in 58 formalin-fixed paraffin-embedded lung tissue specimens (29 controls and 29 IPF specimens). Results: EBV DNA was present in the lung tissue of 6 out of 29 (20.7%) IPF specimens compared with 1 out of 29 (3.4%) controls (P=0.102). The HHV-8 gene was identified in 3 out of 29 (10.3%) cases of IPF specimens. The control group showed no evidence of HHV-8 gene (P=0.227). Conclusion: Although multiple studies are strongly suggestive of a role for EBV and HHV-8 in the development of IPF, there was no statistically significant difference in the prevalence of EBV and HHV-8 DNA in the IPF specimens and controls in this study.
Collapse
Affiliation(s)
- Amir Hossein Jafarian
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nema Mohamadian Roshan
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Ayatollahi
- Department of Hematology and Blood Bank, Cancer Molecular Pathology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Ali Omidi
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Ghaznavi
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Gharib
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
55
|
Sheng G, Chen P, Wei Y, Yue H, Chu J, Zhao J, Wang Y, Zhang W, Zhang HL. Viral Infection Increases the Risk of Idiopathic Pulmonary Fibrosis: A Meta-Analysis. Chest 2019; 157:1175-1187. [PMID: 31730835 DOI: 10.1016/j.chest.2019.10.032] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 10/11/2019] [Accepted: 10/19/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrotic lung disease with a poor prognosis. Although many factors have been identified that possibly trigger or aggravate IPF, such as viral infection, the exact cause of IPF remains unclear. Until now, there has been no systematic review to assess the role of viral infection in IPF quantitatively. OBJECTIVE This meta-analysis aims to present a collective view on the relationship between viral infection and IPF. METHODS We searched studies reporting the effect of viral infection on IPF in the PubMed, Embase, Cochrane Library, Web of Science, and Wiley Online Library databases. We calculated ORs with 95% CIs to assess the risk of virus in IPF. We also estimated statistical heterogeneity by using I2 and Cochran Q tests and publication bias by using the funnel plot, Begg test, Egger test, and trim-and-fill methods. Regression, sensitivity, and subgroup analyses were performed to assess the effects of confounding factors, such as sex and age. RESULTS We analyzed 20 case-control studies from 10 countries with 1,287 participants. The pooled OR of all viruses indicated that viral infection could increase the risk of IPF significantly (OR, 3.48; 95% CI, 1.61-7.52; P = .001), but not that of exacerbation of IPF (OR, 0.99; 95% CI, 0.47-2.12; P = .988). All analyzed viruses, including Epstein-Barr virus (EBV), cytomegalovirus (CMV), human herpesvirus 7 (HHV-7), and human herpesvirus 8 (HHV-8), were associated with a significant elevation in the risk of IPF, except human herpesvirus 6 (HHV-6). CONCLUSIONS The presence of persistent or chronic, but not acute, viral infections, including EBV, CMV, HHV-7, and HHV-8, significantly increases the risk of developing IPF, but not exacerbation of IPF. These findings imply that viral infection could be a potential risk factor for IPF.
Collapse
Affiliation(s)
- Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Chen
- Division of Cardiology, Departments of Internal Medicine and Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan, China
| | - Yanqiu Wei
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huihui Yue
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaojiao Chu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, and the Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Wanguang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Lan Zhang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
56
|
Yanık Ö, Hoşal B, Tekeli A, Nalcı H. Viral nucleic acid analysis with PCR in lacrimal tissue and nasal swab samples of primary acquired nasolacrimal duct obstruction cases. Eur J Ophthalmol 2019; 31:138-143. [PMID: 31630558 PMCID: PMC7140976 DOI: 10.1177/1120672119882331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE To evaluate the role of viral infections in the pathogenesis of primary acquired nasolacrimal duct obstruction. METHODS The study included 48 patients diagnosed with primary acquired nasolacrimal duct obstruction undergoing dacryocystorhinostomy surgery. Prior to dacryocystorhinostomy surgery, nasal swab sample was taken from the inferior meatus at the same side. During dacryocystorhinostomy, tissue biopsy sample (2 × 2 mm) was taken from the junction area of the lacrimal sac and nasolacrimal duct. Following nucleic acid extraction, polymerase chain reaction was performed. RESULTS The patients consisted of 9 (18.8%) men and 39 (81.2%) women with a mean age of 51.0 ± 14.3 years. Qualitative polymerase chain reaction showed viral genome in the nasal swabs of 10 (20.8%) patients, including coronavirus 229E (three cases), coronavirus HKU1 (two cases), respiratory syncytial virus (two cases), coronavirus OC43 (one case), coronavirus NL63 (one case), and adenovirus (one case). In the dacryocystorhinostomy samples, viral genomes were detected in four (8.3%) cases, including respiratory syncytial virus (two cases), coronavirus HKU1 (one case), and adenovirus (one case). There was a statistically significant agreement between nasal mucosal swab and dacryocystorhinostomy biopsy samples in terms of respiratory syncytial virus positivity (kappa = 1.000, p = 0.001). CONCLUSION Although the viral genome was detected in the samples, a direct relationship between viruses and pathogenesis of primary acquired nasolacrimal duct obstruction could not be revealed because of the low number of positive results. However, considering the profibrotic characteristics of specific viruses such as respiratory syncytial virus and adenovirus, viral infections may be one of the many predisposing factors of primary acquired nasolacrimal duct obstruction.
Collapse
Affiliation(s)
- Özge Yanık
- Department of Ophthalmology, Ankara University School of Medicine, Ankara, Turkey
| | - Banu Hoşal
- Department of Ophthalmology, Ankara University School of Medicine, Ankara, Turkey
| | - Alper Tekeli
- Department of Medical Microbiology, Ankara University School of Medicine, Ankara, Turkey
| | | |
Collapse
|
57
|
Stoeger T, Adler H. "Novel" Triggers of Herpesvirus Reactivation and Their Potential Health Relevance. Front Microbiol 2019; 9:3207. [PMID: 30666238 PMCID: PMC6330347 DOI: 10.3389/fmicb.2018.03207] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/11/2018] [Indexed: 12/27/2022] Open
Affiliation(s)
- Tobias Stoeger
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Heiko Adler
- Research Unit Lung Repair and Regeneration, Comprehensive Pneumology Center, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), and University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
58
|
Sandbo N. Mechanisms of Fibrosis in IPF. Respir Med 2019. [DOI: 10.1007/978-3-319-99975-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
59
|
Telomere shortening activates TGF-β/Smads signaling in lungs and enhances both lipopolysaccharide and bleomycin-induced pulmonary fibrosis. Acta Pharmacol Sin 2018; 39:1735-1745. [PMID: 29925920 DOI: 10.1038/s41401-018-0007-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/15/2018] [Indexed: 12/20/2022] Open
Abstract
Telomere shortening is associated with idiopathic pulmonary fibrosis (IPF), a high-morbidity and high-mortality lung disease of unknown etiology. However, the underlying mechanisms remain largely unclear. In this study, wild-type (WT) mice with normal telomeres and generation 3 (G3) or G2 telomerase RNA component (TERC) knockout Terc-/- mice with short telomeres were treated with and without lipopolysaccharide (LPS) or bleomycin by intratracheal injection. We show that under LPS induction, G3 Terc-/- mice develop aggravated pulmonary fibrosis as indicated by significantly increased α-SMA, collagen I and hydroxyproline content. Interestingly, TGF-β/Smads signaling is markedly activated in the lungs of G3 Terc-/- mice, as indicated by markedly elevated levels of phosphorylated Smad3 and TGF-β1, compared with those of WT mice. This TGF-β/Smads signaling activation is significantly increased in the lungs of LPS-treated G3 Terc-/- mice compared with those of LPS-treated WT or untreated G3 Terc-/- mice. A similar pattern of TGF-β/Smads signaling activation and the enhancing role of telomere shortening in pulmonary fibrosis are also confirmed in bleomycin-induced model. Moreover, LPS challenge produced more present cellular senescence, apoptosis and infiltration of innate immune cells, including macrophages and neutrophils in the lungs of G3 Terc-/- mice, compared with WT mice. To our knowledge, this is the first time to report telomere shortening activated TGF-β/Smads signaling in lungs. Our data suggest that telomere shortening cooperated with environment-induced lung injury accelerates the development of pulmonary fibrosis, and telomere shortening confers an inherent enhancing factor to the genesis of IPF through activation of TGF-β/Smads signaling.
Collapse
|
60
|
Hewlett JC, Kropski JA, Blackwell TS. Idiopathic pulmonary fibrosis: Epithelial-mesenchymal interactions and emerging therapeutic targets. Matrix Biol 2018; 71-72:112-127. [PMID: 29625182 PMCID: PMC6146058 DOI: 10.1016/j.matbio.2018.03.021] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/11/2018] [Accepted: 03/29/2018] [Indexed: 12/18/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic fibrotic disease of the lung that is marked by progressive decline in pulmonary function and ultimately respiratory failure. Genetic and environmental risk factors have been identified that indicate injury to, and dysfunction of the lung epithelium is central to initiating the pathogenic process. Following injury to the lung epithelium, growth factors, matrikines and extracellular matrix driven signaling together activate a variety of repair pathways that lead to inflammatory cell recruitment, fibroblast proliferation and expansion of the extracellular matrix, culminating in tissue fibrosis. This tissue fibrosis then leads to changes in the biochemical and biomechanical properties of the extracellular matrix, which potentiate profibrotic mechanisms through a "feed-forward cycle." This review provides an overview of the interactions of the pathogenic mechanisms of IPF with a focus on epithelial-mesenchymal crosstalk and the extracellular matrix as a therapeutic target for idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Justin C Hewlett
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jonathan A Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Veterans Affairs Medical Center, Nashville, TN, United States.
| | - Timothy S Blackwell
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Veterans Affairs Medical Center, Nashville, TN, United States; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, United States.
| |
Collapse
|
61
|
Diffuse Parenchymal Lung Diseases in the Elderly. CURRENT GERIATRICS REPORTS 2018. [DOI: 10.1007/s13670-018-0249-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
62
|
López-Ramírez C, Suarez Valdivia L, Rodríguez Portal JA. Causes of Pulmonary Fibrosis in the Elderly. Med Sci (Basel) 2018; 6:medsci6030058. [PMID: 30042329 PMCID: PMC6164854 DOI: 10.3390/medsci6030058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 01/19/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common and most lethal type of idiopathic interstitial pneumonia. It is a chronic, aging-associated lung disease characterized by fibrotic foci and inflammatory infiltrates, with no cure and very limited therapeutic options. Although its etiology is unknown, several pathogenic pathways have been described that could explain this process, involving aging, environmental factors, genomic instability, loss of proteostasis, telomere attrition, epigenetic changes, mitochondrial dysfunction, cell senescence, and altered intercellular communication. One of the main prognostic factors for the development of IPF in broad epidemiological studies is age. The incidence increases with age, making this a disease that predominantly affects the elderly population, being exceptional under 45 years of age. However, the degree to which each of these mechanisms is involved in the etiology of the uncontrolled fibrogenesis that defines IPF is still unknown. Clarifying these questions is crucial to the development of points of intervention in the pathogenesis of the disease. This review briefly summarizes what is known about each possible etiological factor, and the questions that most urgently need to be addressed.
Collapse
Affiliation(s)
- Cecilia López-Ramírez
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, 41013 Sevilla, Spain.
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Lionel Suarez Valdivia
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, 41013 Sevilla, Spain.
| | - Jose Antonio Rodríguez Portal
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, 41013 Sevilla, Spain.
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
63
|
Abstract
PURPOSE OF REVIEW The pathogenesis of lung cancer and pulmonary fibrotic disorders partially overlaps. This review focuses on the common features of the two disease categories, aimed at advancing our translational understanding of their pathobiology and at fostering the development of new therapies. RECENT FINDINGS Both malignant and collagen-producing lung cells display enhanced cellular proliferation, increased resistance to apoptosis, a propensity for invading and distorting the lung parenchyma, as well as stemness potential. These characteristics are reinforced by the tissue microenvironment and inflammation seems to play an important adjuvant role in both types of disorders. SUMMARY Unraveling the thread of the common and distinct characteristics of lung fibrosis and cancer might contribute to a more comprehensive approach of the pathobiology of both diseases and to a pathfinder for novel and personalized therapeutic strategies.
Collapse
|
64
|
Tashiro J, Rubio GA, Limper AH, Williams K, Elliot SJ, Ninou I, Aidinis V, Tzouvelekis A, Glassberg MK. Exploring Animal Models That Resemble Idiopathic Pulmonary Fibrosis. Front Med (Lausanne) 2017; 4:118. [PMID: 28804709 PMCID: PMC5532376 DOI: 10.3389/fmed.2017.00118] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/11/2017] [Indexed: 02/03/2023] Open
Abstract
Large multicenter clinical trials have led to two recently approved drugs for patients with idiopathic pulmonary fibrosis (IPF); yet, both of these therapies only slow disease progression and do not provide a definitive cure. Traditionally, preclinical trials have utilized mouse models of bleomycin (BLM)-induced pulmonary fibrosis—though several limitations prevent direct translation to human IPF. Spontaneous pulmonary fibrosis occurs in other animal species, including dogs, horses, donkeys, and cats. While the fibrotic lungs of these animals share many characteristics with lungs of patients with IPF, current veterinary classifications of fibrotic lung disease are not entirely equivalent. Additional studies that profile these examples of spontaneous fibroses in animals for similarities to human IPF should prove useful for both human and animal investigators. In the meantime, studies of BLM-induced fibrosis in aged male mice remain the most clinically relevant model for preclinical study for human IPF. Addressing issues such as time course of treatment, animal size and characteristics, clinically irrelevant treatment endpoints, and reproducibility of therapeutic outcomes will improve the current status of preclinical studies. Elucidating the mechanisms responsible for the development of fibrosis and disrepair associated with aging through a collaborative approach between researchers will promote the development of models that more accurately represent the realm of interstitial lung diseases in humans.
Collapse
Affiliation(s)
- Jun Tashiro
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Gustavo A Rubio
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Andrew H Limper
- Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Kurt Williams
- Department Pathobiology and Diagnostic Investigations, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Sharon J Elliot
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ioanna Ninou
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | - Vassilis Aidinis
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | - Argyrios Tzouvelekis
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | - Marilyn K Glassberg
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States.,Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
65
|
Venkataraman T, Frieman MB. The role of epidermal growth factor receptor (EGFR) signaling in SARS coronavirus-induced pulmonary fibrosis. Antiviral Res 2017; 143:142-150. [PMID: 28390872 PMCID: PMC5507769 DOI: 10.1016/j.antiviral.2017.03.022] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/28/2017] [Indexed: 12/30/2022]
Abstract
Many survivors of the 2003 outbreak of severe acute respiratory syndrome (SARS) developed residual pulmonary fibrosis with increased severity seen in older patients. Autopsies of patients that died from SARS also showed fibrosis to varying extents. Pulmonary fibrosis can be occasionally seen as a consequence to several respiratory viral infections but is much more common after a SARS coronavirus (SARS-CoV) infection. Given the threat of future outbreaks of severe coronavirus disease, including Middle East respiratory syndrome (MERS), it is important to understand the mechanisms responsible for pulmonary fibrosis, so as to support the development of therapeutic countermeasures and mitigate sequelae of infection. In this article, we summarize pulmonary fibrotic changes observed after a SARS-CoV infection, discuss the extent to which other respiratory viruses induce fibrosis, describe available animal models to study the development of SARS-CoV induced fibrosis and review evidence that pulmonary fibrosis is caused by a hyperactive host response to lung injury mediated by epidermal growth factor receptor (EGFR) signaling. We summarize work from our group and others indicating that inhibiting EGFR signaling may prevent an excessive fibrotic response to SARS-CoV and other respiratory viral infections and propose directions for future research. Patients who survived SARS coronavirus infection often developed pulmonary fibrosis. Mouse models of SARS-CoV infection recapitulate fibrotic lesions seen in humans. Epidermal growth factor receptor (EGFR) may modulate the wound healing response to SARS-CoV. The EGFR pathway is a prime target for therapeutic interventions to reduce fibrosis after respiratory virus infection.
Collapse
Affiliation(s)
- Thiagarajan Venkataraman
- Department of Microbiology and Immunology, University of Maryland at Baltimore, 685 West Baltimore St. Room 380, Baltimore, MD, 21201, USA
| | - Matthew B Frieman
- Department of Microbiology and Immunology, University of Maryland at Baltimore, 685 West Baltimore St. Room 380, Baltimore, MD, 21201, USA.
| |
Collapse
|
66
|
Ashley SL, Xia M, Murray S, O’Dwyer DN, Grant E, White ES, Flaherty KR, Martinez FJ, Moore BB. Six-SOMAmer Index Relating to Immune, Protease and Angiogenic Functions Predicts Progression in IPF. PLoS One 2016; 11:e0159878. [PMID: 27490795 PMCID: PMC4973878 DOI: 10.1371/journal.pone.0159878] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/08/2016] [Indexed: 12/31/2022] Open
Abstract
RATIONALE Biomarkers in easily accessible compartments like peripheral blood that can predict disease progression in idiopathic pulmonary fibrosis (IPF) would be clinically useful regarding clinical trial participation or treatment decisions for patients. In this study, we used unbiased proteomics to identify relevant disease progression biomarkers in IPF. METHODS Plasma from IPF patients was measured using an 1129 analyte slow off-rate modified aptamer (SOMAmer) array, and patient outcomes were followed over the next 80 weeks. Receiver operating characteristic (ROC) curves evaluated sensitivity and specificity for levels of each biomarker and estimated area under the curve (AUC) when prognostic biomarker thresholds were used to predict disease progression. Both logistic and Cox regression models advised biomarker selection for a composite disease progression index; index biomarkers were weighted via expected progression-free days lost during follow-up with a biomarker on the unfavorable side of the threshold. RESULTS A six-analyte index, scaled 0 to 11, composed of markers of immune function, proteolysis and angiogenesis [high levels of ficolin-2 (FCN2), cathepsin-S (Cath-S), legumain (LGMN) and soluble vascular endothelial growth factor receptor 2 (VEGFsR2), but low levels of inducible T cell costimulator (ICOS) or trypsin 3 (TRY3)] predicted better progression-free survival in IPF with a ROC AUC of 0.91. An index score ≥ 3 (group ≥ 2) was strongly associated with IPF progression after adjustment for age, gender, smoking status, immunomodulation, forced vital capacity % predicted and diffusing capacity for carbon monoxide % predicted (HR 16.8, 95% CI 2.2-126.7, P = 0.006). CONCLUSION This index, derived from the largest proteomic analysis of IPF plasma samples to date, could be useful for clinical decision making in IPF, and the identified analytes suggest biological processes that may promote disease progression.
Collapse
Affiliation(s)
- Shanna L. Ashley
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, United States of America
| | - Meng Xia
- Biostatistics Department, University of Michigan School of Public Health, Ann Arbor, MI, United States of America
| | - Susan Murray
- Biostatistics Department, University of Michigan School of Public Health, Ann Arbor, MI, United States of America
| | - David N. O’Dwyer
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States of America
| | - Ethan Grant
- MedImmune, Gaithersburg, MD, United States of America
| | - Eric S. White
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States of America
| | - Kevin R. Flaherty
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States of America
| | - Fernando J. Martinez
- Department of Internal Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - Bethany B. Moore
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States of America
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
67
|
Horowitz JC, Osterholzer JJ, Marazioti A, Stathopoulos GT. "Scar-cinoma": viewing the fibrotic lung mesenchymal cell in the context of cancer biology. Eur Respir J 2016; 47:1842-54. [PMID: 27030681 DOI: 10.1183/13993003.01201-2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/28/2016] [Indexed: 12/22/2022]
Abstract
Lung cancer and pulmonary fibrosis are common, yet distinct, pathological processes that represent urgent unmet medical needs. Striking clinical and mechanistic parallels exist between these distinct disease entities. The goal of this article is to examine lung fibrosis from the perspective of cancer-associated phenotypic hallmarks, to discuss areas of mechanistic overlap and distinction, and to highlight profibrotic mechanisms that contribute to carcinogenesis. Ultimately, we speculate that such comparisons might identify opportunities to leverage our current understanding of the pathobiology of each disease process in order to advance novel therapeutic approaches for both. We anticipate that such "outside the box" concepts could be translated to a more precise and individualised approach to fibrotic diseases of the lung.
Collapse
Affiliation(s)
- Jeffrey C Horowitz
- Division of Pulmonary and Critical Care Medicine, Dept of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Dept of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Antonia Marazioti
- Laboratory for Molecular Respiratory Carcinogenesis, Dept of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Dept of Physiology, Faculty of Medicine, University of Patras, Rio, Greece Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
68
|
Consensus document for the diagnosis and treatment of idiopathic pulmonary fibrosis: Joint Consensus of Sociedade Portuguesa de Pneumologia, Sociedade Portuguesa de Radiologia e Medicina Nuclear e Sociedade Portuguesa de Anatomia Patológica. REVISTA PORTUGUESA DE PNEUMOLOGIA 2016; 22:112-22. [PMID: 26906287 DOI: 10.1016/j.rppnen.2016.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a rare interstitial lung disease included in the Idiopathic Interstitial Pneumonias group. Although several potential risk factors have been described, it is a progressive fibrosing disease of unknown cause affecting mainly adults over 50 years and associated with a poor prognosis, reflected in a median survival of 2-3 years after diagnosis. The concept of a multidisciplinary working group for the diagnosis of idiopathic pulmonary fibrosis is based on the need to have experienced pulmonologists, radiologists and pathologists in the evaluation and correct treatment of the disease, and requires the use of all available data about individual patients, standardized (largely through High Resolution Computed Tomography and pathology when needed) as well as non-standardized data (laboratory, serology and biomarkers). This approach helps to increase diagnostic accuracy and is an internationally accepted recommendation. In regard to therapy, the situation has changed radically since the publication of the ATS/ERS/JRS/ALAT 2011 guidelines on the diagnosis and management of idiopathic pulmonary fibrosis where it was stressed that no proven therapy exists for this disease. Currently besides non-pharmacological treatment, therapy of complications and comorbidities and palliative care, nintedanib and pirfenidone, two compounds with pleiotropic mechanisms of action, are to date, the two drugs with confirmed efficacy in slowing functional decline and disease progression in idiopathic pulmonary fibrosis patients.
Collapse
|
69
|
O’Flaherty BM, Matar CG, Wakeman BS, Garcia A, Wilke CA, Courtney CL, Moore BB, Speck SH. CD8+ T Cell Response to Gammaherpesvirus Infection Mediates Inflammation and Fibrosis in Interferon Gamma Receptor-Deficient Mice. PLoS One 2015; 10:e0135719. [PMID: 26317335 PMCID: PMC4552722 DOI: 10.1371/journal.pone.0135719] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/24/2015] [Indexed: 02/05/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), one of the most severe interstitial lung diseases, is a progressive fibrotic disorder of unknown etiology. However, there is growing appreciation for the role of viral infection in disease induction and/or progression. A small animal model of multi-organ fibrosis, which involves murine gammaherpesvirus (MHV68) infection of interferon gamma receptor deficient (IFNγR-/-) mice, has been utilized to model the association of gammaherpesvirus infections and lung fibrosis. Notably, several MHV68 mutants which fail to induce fibrosis have been identified. Our current study aimed to better define the role of the unique MHV68 gene, M1, in development of pulmonary fibrosis. We have previously shown that the M1 gene encodes a secreted protein which possesses superantigen-like function to drive the expansion and activation of Vβ4+ CD8+ T cells. Here we show that M1-dependent fibrosis is correlated with heightened levels of inflammation in the lung. We observe an M1-dependent cellular infiltrate of innate immune cells with most striking differences at 28 days-post infection. Furthermore, in the absence of M1 protein expression we observed reduced CD8+ T cells and MHV68 epitope specific CD8+ T cells to the lungs-despite equivalent levels of viral replication between M1 null and wild type MHV68. Notably, backcrossing the IFNγR-/- onto the Balb/c background, which has previously been shown to exhibit weak MHV68-driven Vβ4+ CD8+ T cell expansion, eliminated MHV68-induced fibrosis-further implicating the activated Vβ4+ CD8+ T cell population in the induction of fibrosis. We further addressed the role that CD8+ T cells play in the induction of fibrosis by depleting CD8+ T cells, which protected the mice from fibrotic disease. Taken together these findings are consistent with the hypothesized role of Vβ4+ CD8+ T cells as mediators of fibrotic disease in IFNγR-/- mice.
Collapse
Affiliation(s)
- Brigid M. O’Flaherty
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States of America
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Caline G. Matar
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States of America
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Brian S. Wakeman
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States of America
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States of America
| | - AnaPatricia Garcia
- Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta GA, United States of America
| | - Carol A. Wilke
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States of America
| | - Cynthia L. Courtney
- Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta GA, United States of America
| | - Bethany B. Moore
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States of America
| | - Samuel H. Speck
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States of America
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States of America
| |
Collapse
|
70
|
Knippenberg S, Ueberberg B, Maus R, Bohling J, Ding N, Tort Tarres M, Hoymann HG, Jonigk D, Izykowski N, Paton JC, Ogunniyi AD, Lindig S, Bauer M, Welte T, Seeger W, Guenther A, Sisson TH, Gauldie J, Kolb M, Maus UA. Streptococcus pneumoniae triggers progression of pulmonary fibrosis through pneumolysin. Thorax 2015; 70:636-46. [PMID: 25964315 DOI: 10.1136/thoraxjnl-2014-206420] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 04/02/2015] [Indexed: 01/22/2023]
Abstract
RATIONALE Respiratory tract infections are common in patients suffering from pulmonary fibrosis. The interplay between bacterial infection and fibrosis is characterised poorly. OBJECTIVES To assess the effect of Gram-positive bacterial infection on fibrosis exacerbation in mice. METHODS Fibrosis progression in response to Streptococcus pneumoniae was examined in two different mouse models of pulmonary fibrosis. MEASUREMENTS AND MAIN RESULTS We demonstrate that wild-type mice exposed to adenoviral vector delivery of active transforming growth factor-β1 (TGFß1) or diphteria toxin (DT) treatment of transgenic mice expressing the DT receptor (DTR) under control of the surfactant protein C (SPC) promoter (SPC-DTR) to induce pulmonary fibrosis developed progressive fibrosis following infection with Spn, without exhibiting impaired lung protective immunity against Spn. Antibiotic treatment abolished infection-induced fibrosis progression. The cytotoxin pneumolysin (Ply) of Spn caused this phenomenon in a TLR4-independent manner, as Spn lacking Ply (SpnΔply) failed to trigger progressive fibrogenesis, whereas purified recombinant Ply did. Progressive fibrogenesis was also observed in AdTGFβ1-exposed Ply-challenged TLR4 KO mice. Increased apoptotic cell death of alveolar epithelial cells along with an attenuated intrapulmonary release of antifibrogenic prostaglandin E2 was found to underlie progressive fibrogenesis in Ply-challenged AdTGFβ1-exposed mice. Importantly, vaccination of mice with the non-cytotoxic Ply derivative B (PdB) substantially attenuated Ply-induced progression of lung fibrosis in AdTGFβ1-exposed mice. CONCLUSIONS Our data unravel a novel mechanism by which infection with Spn through Ply release induces progression of established lung fibrosis, which can be attenuated by protein-based vaccination of mice.
Collapse
Affiliation(s)
- Sarah Knippenberg
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Bianca Ueberberg
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Regina Maus
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Jennifer Bohling
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Nadine Ding
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | | | - Heinz-Gerd Hoymann
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Nicole Izykowski
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - James C Paton
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Abiodun D Ogunniyi
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Sandro Lindig
- Center for Sepsis Control and Care, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Michael Bauer
- Center for Sepsis Control and Care, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Tobias Welte
- Clinic for Pneumology, Hannover Medical School, Hannover, Germany German Centre for Lung Research, partner site BREATH and UGMLC
| | - Werner Seeger
- German Centre for Lung Research, partner site BREATH and UGMLC Faculty of Medicine, Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Andreas Guenther
- German Centre for Lung Research, partner site BREATH and UGMLC Faculty of Medicine, Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Thomas H Sisson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Hospital, Michigan, USA
| | - Jack Gauldie
- Department of Medicine, Pathology, and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Martin Kolb
- Department of Medicine, Pathology, and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ulrich A Maus
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany German Centre for Lung Research, partner site BREATH and UGMLC
| |
Collapse
|
71
|
Kropski JA, Pritchett JM, Zoz DF, Crossno PF, Markin C, Garnett ET, Degryse AL, Mitchell DB, Polosukhin VV, Rickman OB, Choi L, Cheng DS, McConaha ME, Jones BR, Gleaves LA, McMahon FB, Worrell JA, Solus JF, Ware LB, Lee JW, Massion PP, Zaynagetdinov R, White ES, Kurtis JD, Johnson JE, Groshong SD, Lancaster LH, Young LR, Steele MP, Phillips Iii JA, Cogan JD, Loyd JE, Lawson WE, Blackwell TS. Extensive phenotyping of individuals at risk for familial interstitial pneumonia reveals clues to the pathogenesis of interstitial lung disease. Am J Respir Crit Care Med 2015; 191:417-26. [PMID: 25389906 DOI: 10.1164/rccm.201406-1162oc] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
RATIONALE Asymptomatic relatives of patients with familial interstitial pneumonia (FIP), the inherited form of idiopathic interstitial pneumonia, carry increased risk for developing interstitial lung disease. OBJECTIVES Studying these at-risk individuals provides a unique opportunity to investigate early stages of FIP pathogenesis and develop predictive models of disease onset. METHODS Seventy-five asymptomatic first-degree relatives of FIP patients (mean age, 50.8 yr) underwent blood sampling and high-resolution chest computed tomography (HRCT) scanning in an ongoing cohort study; 72 consented to bronchoscopy with bronchoalveolar lavage (BAL) and transbronchial biopsies. Twenty-seven healthy individuals were used as control subjects. MEASUREMENTS AND MAIN RESULTS Eleven of 75 at-risk subjects (14%) had evidence of interstitial changes by HRCT, whereas 35.2% had abnormalities on transbronchial biopsies. No differences were noted in inflammatory cells in BAL between at-risk individuals and control subjects. At-risk subjects had increased herpesvirus DNA in cell-free BAL and evidence of herpesvirus antigen expression in alveolar epithelial cells (AECs), which correlated with expression of endoplasmic reticulum stress markers in AECs. Peripheral blood mononuclear cell and AEC telomere length were shorter in at-risk individuals than healthy control subjects. The minor allele frequency of the Muc5B rs35705950 promoter polymorphism was increased in at-risk subjects. Levels of several plasma biomarkers differed between at-risk subjects and control subjects, and correlated with abnormal HRCT scans. CONCLUSIONS Evidence of lung parenchymal remodeling and epithelial dysfunction was identified in asymptomatic individuals at risk for FIP. Together, these findings offer new insights into the early pathogenesis of idiopathic interstitial pneumonia and provide an ongoing opportunity to characterize presymptomatic abnormalities that predict progression to clinical disease.
Collapse
|
72
|
Interstitial lung disease: NHLBI Workshop on the Primary Prevention of Chronic Lung Diseases. Ann Am Thorac Soc 2015; 11 Suppl 3:S169-77. [PMID: 24754826 DOI: 10.1513/annalsats.201312-429ld] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Population-based, longitudinal studies spanning decades linking risk factors in childhood, adolescence and early adulthood to incident clinical interstitial lung disease (ILD) events in late adulthood have not been performed. In addition, no observational or randomized clinical trials have been conducted; therefore, there is presently no evidence to support the notion that reduction of risk factor levels in early life prevents ILD events in adult life. Primary prevention strategies are host-directed interventions designed to modify adverse risk factors (i.e., smoking) with the goal of preventing the development of ILD, whereas primordial prevention for ILD can be defined as the elimination of external risk factors (i.e., environmental pollutants). As no ILD primary prevention studies have been previously conducted, we propose that research studies that promote implementation of primary prevention strategies could, over time, make a subset of ILD preventable. Herein, we provide a number of initial steps required for the future implementation of prevention strategies; this statement discusses the rationale and available evidence that support potential opportunities for primordial and primary prevention, as well as fertile areas for future research of preventive intervention in ILD.
Collapse
|
73
|
Moore BB, Fry C, Zhou Y, Murray S, Han MK, Martinez FJ, Flaherty KR. Inflammatory leukocyte phenotypes correlate with disease progression in idiopathic pulmonary fibrosis. Front Med (Lausanne) 2014; 1. [PMID: 25580363 PMCID: PMC4286285 DOI: 10.3389/fmed.2014.00056] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by progressive deposition of extracellular matrix, worsening dyspnea, and eventual mortality. Pathogenesis of IPF is poorly understood and the role inflammation and activated leukocytes play in the disease process is controversial. Previous studies demonstrated that activated leukocyte subsets characterize IPF patients. We sought to validate this observation in a well-defined cohort of 35 IPF patients and to correlate the observed leukocyte phenotypes with robust parameters of disease progression. We demonstrate that in univariate and multivariate analyses, increases in the CD14hi, CD16hi subset of monocytes measured at baseline correlated with disease progression, with a threshold value >0.5% of the total peripheral blood mononuclear cells being a significant predictor for worse outcome. In addition, several T cell subsets, including CD25 expressing CD4 cells, and CXCR3 expressing CD4 and CD8 subsets correlated with disease progression when found in increased percentages in the peripheral blood of IPF patients when sampled at baseline. Somewhat surprising in comparison to previous literature, the CD4 T cells did not appear to have lost expression of the co-stimulatory molecule, CD28, but the CD8 T cells did. Taken together, these results are consistent with the presence of an inflammatory process in IPF patients who eventually progress. However, when longitudinal measurements of these same markers were examined, there was significant heterogeneity of expression and these biomarkers did not necessarily remain elevated in IPF patients with progressive disease. We interpret this heterogeneity to suggest that IPF patients experience episodic inflammatory events that once triggered, may lead to disease progression. This longitudinal heterogeneity in biomarker analyses may explain why such markers are not consistently measured in all IPF cohorts.
Collapse
Affiliation(s)
- Bethany B Moore
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA ; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Chris Fry
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yueren Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Susan Murray
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - MeiLan K Han
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Fernando J Martinez
- Department of Internal Medicine, Weill Cornell Medical School, NewYork, NY, USA
| | - Kevin R Flaherty
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
74
|
Ashley SL, Jegal Y, Moore TA, van Dyk LF, Laouar Y, Moore BB. γ-Herpes virus-68, but not Pseudomonas aeruginosa or influenza A (H1N1), exacerbates established murine lung fibrosis. Am J Physiol Lung Cell Mol Physiol 2014; 307:L219-30. [PMID: 24879051 DOI: 10.1152/ajplung.00300.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Patients with idiopathic pulmonary fibrosis (IPF) often do worse following infection, but the cause of the decline is not fully understood. We previously demonstrated that infection with a murine gamma herpes virus (γHV-68) could exacerbate established lung fibrosis following administration of fluorescein isothiocyanate (McMillan et al. Am J Respir Crit Care Med 177: 771-780, 2008). In the present study, we anesthetized mice and injected saline or bleomycin intratracheally on day 0. On day 14, mice were anesthetized again and infected with either a Gram-negative bacteria (Pseudomonas aeruginosa), or with H1N1 or γHV-68 viruses. Measurements were then made on days 15, 21, or 35. We demonstrate that infection with P. aeruginosa does not exacerbate extracellular matrix deposition post-bleomycin. Furthermore, fibrotic mice are effectively able to clear P. aeruginosa infection. In contrast, bleomycin-treated mice develop worse lung fibrosis when infected with γHV-68, but not when infected with H1N1. The differential ability of γHV-68 to cause increased collagen deposition could not be explained by differences in inflammatory cell recruitment or whole lung chemokine and cytokine responses. Alveolar epithelial cells from γHV-68-infected mice displayed increased expression of TGFβ receptor 1, increased SMAD3 phosphorylation, and evidence of apoptosis measured by cleaved poly-ADP ribose polymerase (PARP). The ability of γHV-68 to augment fibrosis required the ability of the virus to reactivate from latency. This property appears unique to γHV-68, as the β-herpes virus, cytomegalovirus, did not have the same effect.
Collapse
Affiliation(s)
- Shanna L Ashley
- Immunology Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Yangjin Jegal
- Department of Internal Medicine, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Korea
| | - Thomas A Moore
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan;
| | - Linda F van Dyk
- Departments of Microbiology and Immunology, University of Colorado, Denver, Colorado; and
| | - Yasmina Laouar
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| | - Bethany B Moore
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
75
|
Abstract
Progressive lung fibrosis in humans, typified by idiopathic pulmonary fibrosis (IPF), is a serious cause of morbidity and mortality in people. Similar diseases have been described in dogs, cats, and horses. The cause and pathogenesis of such diseases in all species is poorly understood. There is growing evidence in human medicine that IPF is a manifestation of abnormal wound repair in response to epithelial injury. Because viruses can contribute to epithelial injury, there is increasing interest in a possible role of viruses, particularly gammaherpesviruses, in the pathogenesis of pulmonary fibrosis. This review provides background information on progressive fibrosing lung disease in human and veterinary medicine and summarizes the evidence for an association between gammaherpesvirus infection and pulmonary fibrosis, especially Epstein-Barr virus in human pulmonary fibrosis, and equine herpesvirus 5 in equine multinodular pulmonary fibrosis. Data derived from experimental lung infection in mice with the gammaherpesvirus murine herpesvirus are presented, emphasizing the host and viral factors that may contribute to lung fibrosis. The experimental data are considered in the context of the pathogenesis of naturally occurring pulmonary fibrosis in humans and horses.
Collapse
Affiliation(s)
- K. J. Williams
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
76
|
O'Dwyer DN, Armstrong ME, Trujillo G, Cooke G, Keane MP, Fallon PG, Simpson AJ, Millar AB, McGrath EE, Whyte MK, Hirani N, Hogaboam CM, Donnelly SC. The Toll-like receptor 3 L412F polymorphism and disease progression in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2014; 188:1442-50. [PMID: 24070541 DOI: 10.1164/rccm.201304-0760oc] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Idiopathic pulmonary fibrosis (IPF) is a fatal progressive interstitial pneumonia. The innate immune system provides a crucial function in the recognition of tissue injury and infection. Toll-like receptor 3 (TLR3) is an innate immune system receptor. We investigated the role of a functional TLR3 single-nucleotide polymorphism in IPF. OBJECTIVES To characterize the effects of the TLR3 Leu412Phe polymorphism in primary pulmonary fibroblasts from patients with IPF and disease progression in two independent IPF patient cohorts. To investigate the role of TLR3 in a murine model of pulmonary fibrosis. METHODS TLR3-mediated cytokine, type 1 IFN, and fibroproliferative responses were examined in TLR3 wild-type (Leu/Leu), heterozygote (Leu/Phe), and homozygote (Phe/Phe) primary IPF pulmonary fibroblasts by ELISA, real-time polymerase chain reaction, and proliferation assays. A murine model of bleomycin-induced pulmonary fibrosis was used in TLR3 wild-type (tlr3(+/+)) and TLR3 knockout mice (tlr3(-/-)). A genotyping approach was used to investigate the role of the TLR3 L412F polymorphism in disease progression in IPF using survival analysis and longitudinal decline in FVC. MEASUREMENTS AND MAIN RESULTS Activation of TLR3 in primary lung fibroblasts from TLR3 L412F-variant patients with IPF resulted in defective cytokine, type I IFN, and fibroproliferative responses. We demonstrate increased collagen and profibrotic cytokines in TLR3 knockout mice (tlr3(-/-)) compared with wild-type mice (tlr3(+/+)). TLR3 L412F was also associated with a significantly greater risk of mortality and an accelerated decline in FVC in patients with IPF. CONCLUSIONS This study reveals the crucial role of defective TLR3 function in promoting progressive IPF.
Collapse
Affiliation(s)
- David N O'Dwyer
- 1 School of Medicine and Medical Science, College of Life Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Kasabova M, Joulin-Giet A, Lecaille F, Saidi A, Marchand-Adam S, Lalmanach G. Human cystatin C: a new biomarker of idiopathic pulmonary fibrosis? Proteomics Clin Appl 2013; 8:447-53. [PMID: 24178809 DOI: 10.1002/prca.201300047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/04/2013] [Accepted: 09/14/2013] [Indexed: 11/11/2022]
Abstract
PURPOSE Human idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disorder with a poor prognosis. The identification of a new and specific biomarker in bronchoalveolar lavage fluids (BALFs) may assist in the diagnosis of the disease. EXPERIMENTAL DESIGN Characterization of cysteine Cats and their endogenous inhibitor, cystatin C, was conducted by immunochemical analysis and measurement of endopeptidase activity of control (n = 11) and IPF (n = 25) BALFs (normalized conditions, 20 μg protein/assay). RESULTS Cathepsin (Cat) B was detected as proform and mature enzyme for both control and IPF samples, while Cats K, L, and S were found as zymogens with a strengthened staining in IPF BALFs. The overall endopeptidase activity related mainly to Cat B and did not vary significantly between control and IPF samples. Conversely a significant increase of immunoreactive cystatin C was measured in BALFs for each of three IPF grades. CONCLUSIONS AND CLINICAL RELEVANCE An excessive deposition of extracellular matrix proteins is the hallmark of fibrotic disorders. Cats are potent collagenases and might be essential for lung homeostasis. Taken together, increase of cystatin C in IPF BALFs may reflect abnormal regulation of proteolytic activity of Cats in lung, which in turn can promote the development of fibrosis.
Collapse
Affiliation(s)
- Mariana Kasabova
- INSERM U1100, Pathologies Pulmonaires: Protéolyse et Aérosolthérapie, Equipe 2: Mécanismes Protéolytiques dans l'Inflammation; Faculté de Médecine, Centre d'Etude des Pathologies Respiratoires (CEPR), Université François Rabelais, Tours, France
| | | | | | | | | | | |
Collapse
|
78
|
|
79
|
Abstract
Autophagy is a process of lysosomal self-degradation that helps to maintain the homeostatic balance between the synthesis, degradation and recycling of cellular proteins and organelles. Autophagy does not simply function as the machinery for supplying amino acids in response to energy demands, it is an adaptive pathway of cytoprotection against cellular stressors, including starvation, reactive oxygen species (ROS), endoplasmic reticulum (ER) stress and microbial infection. Accordingly, autophagy is considered to be the mediator of a variety of cellular processes and cell fates, including cell survival and death, cellular senescence and immune responses. Due to the organ-specific role of gas exchange, various cell types within the lungs are serially exposed to a diverse array of cellular stressors, and growing evidence has revealed the crucial involvement of autophagy in the pathogenic processes underlying pulmonary diseases. We herein review recent findings regarding the role of autophagy in cellular processes and cell fates and summarize the role that autophagy appears to play in the pathogenesis of pulmonary diseases.
Collapse
Affiliation(s)
- Jun Araya
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Japan
| | | | | |
Collapse
|
80
|
Araya J, Kojima J, Takasaka N, Ito S, Fujii S, Hara H, Yanagisawa H, Kobayashi K, Tsurushige C, Kawaishi M, Kamiya N, Hirano J, Odaka M, Morikawa T, Nishimura SL, Kawabata Y, Hano H, Nakayama K, Kuwano K. Insufficient autophagy in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2012; 304:L56-69. [PMID: 23087019 DOI: 10.1152/ajplung.00213.2012] [Citation(s) in RCA: 241] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Autophagy, a process that helps maintain homeostatic balance between the synthesis, degradation, and recycling of organelles and proteins to meet metabolic demands, plays an important regulatory role in cellular senescence and differentiation. Here we examine the regulatory role of autophagy in idiopathic pulmonary fibrosis (IPF) pathogenesis. We test the hypothesis that epithelial cell senescence and myofibroblast differentiation are consequences of insufficient autophagy. Using biochemical evaluation of in vitro models, we find that autophagy inhibition is sufficient to induce acceleration of epithelial cell senescence and myofibroblast differentiation in lung fibroblasts. Immunohistochemical evaluation of human IPF biospecimens reveals that epithelial cells show increased cellular senescence, and both overlaying epithelial cells and fibroblasts in fibroblastic foci (FF) express both ubiquitinated proteins and p62. These findings suggest that insufficient autophagy is an underlying mechanism of both accelerated cellular senescence and myofibroblast differentiation in a cell-type-specific manner and is a promising clue for understanding the pathogenesis of IPF.
Collapse
Affiliation(s)
- Jun Araya
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Noble PW, Barkauskas CE, Jiang D. Pulmonary fibrosis: patterns and perpetrators. J Clin Invest 2012; 122:2756-62. [PMID: 22850886 DOI: 10.1172/jci60323] [Citation(s) in RCA: 396] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Pulmonary fibrosis occurs in a variety of clinical settings, constitutes a major cause of morbidity and mortality, and represents an enormous unmet medical need. However, the disease is heterogeneous, and the failure to accurately discern between forms of fibrosing lung diseases leads to inaccurate treatments. Pulmonary fibrosis occurring in the context of connective tissue diseases is often characterized by a distinct pattern of tissue pathology and may be amenable to immunosuppressive therapies. In contrast, idiopathic pulmonary fibrosis (IPF) is a progressive and lethal form of fibrosing lung disease that is recalcitrant to therapies that target the immune system. Although animal models of fibrosis imperfectly recapitulate IPF, they have yielded numerous targets for therapeutic intervention. Understanding the heterogeneity of these diseases and elucidating the final common pathways of fibrogenesis are critical for the development of efficacious therapies for severe fibrosing lung diseases.
Collapse
Affiliation(s)
- Paul W Noble
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
| | | | | |
Collapse
|
82
|
Tanjore H, Blackwell TS, Lawson WE. Emerging evidence for endoplasmic reticulum stress in the pathogenesis of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2012; 302:L721-9. [PMID: 22287606 DOI: 10.1152/ajplung.00410.2011] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
While the factors that regulate the onset and progression of idiopathic pulmonary fibrosis (IPF) are incompletely understood, recent investigations have revealed that endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) are prominent in alveolar epithelial cells in this disease. Initial observations linking ER stress and IPF were made in cases of familial interstitial pneumonia (FIP), the familial form of IPF, in a family with a mutation in surfactant protein C (SFTPC). Subsequent studies involving lung biopsy specimens revealed that ER stress markers are highly expressed in the alveolar epithelium in IPF and FIP. Recent mouse modeling has revealed that induction of ER stress in the alveolar epithelium predisposed to enhanced lung fibrosis after treatment with bleomycin, which is mediated at least in part by increased alveolar epithelial cell (AEC) apoptosis. Emerging data also indicate that ER stress in AECs could impact fibrotic remodeling by altering inflammatory responses and inducing epithelial-mesenchymal transition. Although the cause of ER stress in IPF remains unknown, common environmental exposures such as herpesviruses, inhaled particulates, and cigarette smoke induce ER stress and are candidates for contributing to AEC dysfunction by this mechanism. Together, investigations to date suggest that ER stress predisposes to AEC dysfunction and subsequent lung fibrosis. However, many questions remain regarding the role of ER stress in initiation and progression of lung fibrosis, including whether ER stress or the UPR could be targeted for therapeutic benefit.
Collapse
Affiliation(s)
- Harikrishna Tanjore
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-2650, USA.
| | | | | |
Collapse
|
83
|
Naik PN, Horowitz JC, Moore TA, Wilke CA, Toews GB, Moore BB. Pulmonary fibrosis induced by γ-herpesvirus in aged mice is associated with increased fibroblast responsiveness to transforming growth factor-β. J Gerontol A Biol Sci Med Sci 2011; 67:714-25. [PMID: 22193547 DOI: 10.1093/gerona/glr211] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Young (4 month) and aged (15-18 months) mice were given intranasal saline or γ--herpesvirus-68 infection. After 21 days, aged, but not young mice, showed significant increases in collagen content and fibrosis. There were no differences in viral clearance or inflammatory cells (including fibrocytes) between infected aged and young mice. Enzyme-linked immunosorbent assays showed increased transforming growth factor-β in whole lung homogenates of infected aged mice compared with young mice. When fibroblasts from aged and young mice were infected in vitro, aged, but not young, fibroblasts upregulate alpha-smooth muscle actin and collagen I protein. Infection with virus in vivo also demonstrates increased alpha-smooth muscle actin and collagen I protein and collagen I, collagen III, and fibronectin messenger RNA in aged fibroblasts. Furthermore, evaluation revealed that aged fibroblasts at baseline have increased transforming growth factor-β receptor 1 and 2 levels compared with young fibroblasts and are resistant to apoptosis. Increased responsiveness to transforming growth factor-β was verified by increased collagen III and fibronectin messenger RNA after treatment in vitro with transforming growth factor-β.
Collapse
Affiliation(s)
- Payal N Naik
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | | | |
Collapse
|
84
|
Kropski JA, Lawson WE, Blackwell TS. Right place, right time: the evolving role of herpesvirus infection as a "second hit" in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2011; 302:L441-4. [PMID: 22180659 DOI: 10.1152/ajplung.00335.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Over the course of the past decade, increasing evidence has implicated alveolar epithelial cell injury and dysfunction in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Genetic factors, cigarette smoking, and other environmental exposures have been identified as potential factors leading to a population of vulnerable alveolar epithelial cells. In addition, molecular techniques have demonstrated herpesviruses are commonly detectable in the lungs of patients with IPF, raising suspicion that, in the setting of a vulnerable alveolar epithelium, lytic (or latent) herpesvirus infection may act as a "second hit" leading to the development of pulmonary fibrosis. Intriguingly, in vivo modeling has shown that herpesvirus infection induces or worsens lung fibrosis when combined with immunodeficiency or other injurious stimuli. Here, we discuss potential mechanisms through which herpesvirus infection may contribute to the pathogenesis of IPF. Ultimately, antiviral therapy may hold promise for halting the progression of this deadly disease.
Collapse
Affiliation(s)
- Jonathan A Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | |
Collapse
|
85
|
Damjanovic D, Divangahi M, Kugathasan K, Small CL, Zganiacz A, Brown EG, Hogaboam CM, Gauldie J, Xing Z. Negative regulation of lung inflammation and immunopathology by TNF-α during acute influenza infection. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2963-76. [PMID: 22001698 DOI: 10.1016/j.ajpath.2011.09.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/22/2011] [Accepted: 09/01/2011] [Indexed: 02/06/2023]
Abstract
Lung immunopathology is the main cause of influenza-mediated morbidity and death, and much of its molecular mechanisms remain unclear. Whereas tumor necrosis factor-α (TNF-α) is traditionally considered a proinflammatory cytokine, its role in influenza immunopathology is unresolved. We have investigated this issue by using a model of acute H1N1 influenza infection established in wild-type and TNF-α-deficient mice and evaluated lung viral clearance, inflammatory responses, and immunopathology. Whereas TNF-α was up-regulated in the lung after influenza infection, it was not required for normal influenza viral clearance. However, TNF-α deficiency led not only to a greater extent of illness but also to heightened lung immunopathology and tissue remodeling. The severe lung immunopathology was associated with increased inflammatory cell infiltration, anti-influenza adaptive immune responses, and expression of cytokines such as monocyte chemoattractant protein-1 (MCP-1) and fibrotic growth factor, TGF-β1. Thus, in vivo neutralization of MCP-1 markedly attenuated lung immunopathology and blunted TGF-β1 production following influenza infection in these hosts. On the other hand, in vivo transgenic expression of MCP-1 worsened lung immunopathology following influenza infection in wild-type hosts. Thus, TNF-α is dispensable for influenza clearance; however, different from the traditional belief, this cytokine is critically required for negatively regulating the extent of lung immunopathology during acute influenza infection.
Collapse
Affiliation(s)
- Daniela Damjanovic
- Department of Pathology and Molecular Medicine & McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|