51
|
Lehmann JS, Corey VC, Ricaldi JN, Vinetz JM, Winzeler EA, Matthias MA. Whole Genome Shotgun Sequencing Shows Selection on Leptospira Regulatory Proteins During in vitro Culture Attenuation. Am J Trop Med Hyg 2015; 94:302-313. [PMID: 26711524 PMCID: PMC4751964 DOI: 10.4269/ajtmh.15-0401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/08/2015] [Indexed: 12/29/2022] Open
Abstract
Leptospirosis is the most common zoonotic disease worldwide with an estimated 500,000 severe cases reported annually, and case fatality rates of 12–25%, due primarily to acute kidney and lung injuries. Despite its prevalence, the molecular mechanisms underlying leptospirosis pathogenesis remain poorly understood. To identify virulence-related genes in Leptospira interrogans, we delineated cumulative genome changes that occurred during serial in vitro passage of a highly virulent strain of L. interrogans serovar Lai into a nearly avirulent isogenic derivative. Comparison of protein coding and computationally predicted noncoding RNA (ncRNA) genes between these two polyclonal strains identified 15 nonsynonymous single nucleotide variant (nsSNV) alleles that increased in frequency and 19 that decreased, whereas no changes in allelic frequency were observed among the ncRNA genes. Some of the nsSNV alleles were in six genes shown previously to be transcriptionally upregulated during exposure to in vivo-like conditions. Five of these nsSNVs were in evolutionarily conserved positions in genes related to signal transduction and metabolism. Frequency changes of minor nsSNV alleles identified in this study likely contributed to the loss of virulence during serial in vitro culture. The identification of new virulence-associated genes should spur additional experimental inquiry into their potential role in Leptospira pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael A. Matthias
- *Address correspondence to Michael A. Matthias, Department of Medicine, Division of Infectious Diseases, School of Medicine, University of California, San Diego School of Medicine, 9500 Gilman Drive, BRF 2, Room 4A15, La Jolla, CA 92093-0760. E-mail:
| |
Collapse
|
52
|
Fernandes LG, Siqueira GH, Teixeira ARF, Silva LP, Figueredo JM, Cosate MR, Vieira ML, Nascimento ALTO. Leptospira spp.: Novel insights into host-pathogen interactions. Vet Immunol Immunopathol 2015; 176:50-7. [PMID: 26727033 DOI: 10.1016/j.vetimm.2015.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 01/30/2023]
Abstract
Leptospirosis is a widespread zoonosis caused by pathogenic Leptospira spp. It is an important infectious disease that affects humans and animals. The disease causes economic losses as it affects livestock, with decreased milk production and death. Our group is investigating the genome sequences of L. interrogans targeting surface-exposed proteins because, due to their location, these proteins are capable to interact with several host components that could allow establishment of the infection. These interactions may involve adhesion of the bacteria to extracellular matrix (ECM) components and, hence, help bacterial colonization. The bacteria could also react with the host fibrinolytic system and/or with the coagulation cascade components, such as, plasminogen (PLG) and fibrinogen (Fg), respectively. The binding with the first system generates plasmin (PLA), increasing the proteolytic power of the bacteria, while the second interferes with clotting in a thrombin-catalyzed reaction, which may promote hemorrhage foci and increase bacterial dissemination. Interaction with the complement system negative regulators may help bacteria to evade the host immune system, facilitating the invasion. This work compiles the main described leptospiral proteins that could act as adhesins, as PLG and fibrinogen receptors and as complement regulator binding proteins. We present models in which we suggest possible mechanisms of how leptospires might colonize and invade host tissues, causing the disease. Understanding leptospiral pathogenesis will help to identify antigen candidates that would contribute to the development of more effective vaccines and diagnostic tests.
Collapse
Affiliation(s)
- Luis G Fernandes
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Programa de Pós Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Gabriela H Siqueira
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Programa de Pós Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Aline R F Teixeira
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Programa de Pós Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Lucas P Silva
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Programa de Pós Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Jupciana M Figueredo
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Programa de Pós Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Maria R Cosate
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Monica L Vieira
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Ana L T O Nascimento
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Programa de Pós Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil.
| |
Collapse
|
53
|
Wang Y, Zhuang X, Zhong Y, Zhang C, Zhang Y, Zeng L, Zhu Y, He P, Dong K, Pal U, Guo X, Qin J. Distribution of Plasmids in Distinct Leptospira Pathogenic Species. PLoS Negl Trop Dis 2015; 9:e0004220. [PMID: 26555137 PMCID: PMC4640553 DOI: 10.1371/journal.pntd.0004220] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/19/2015] [Indexed: 11/18/2022] Open
Abstract
Leptospirosis, caused by pathogenic Leptospira, is a worldwide zoonotic infection. The genus Leptospira includes at least 21 species clustered into three groups--pathogens, non-pathogens, and intermediates--based on 16S rRNA phylogeny. Research on Leptospira is difficult due to slow growth and poor transformability of the pathogens. Recent identification of extrachromosomal elements besides the two chromosomes in L. interrogans has provided new insight into genome complexity of the genus Leptospira. The large size, low copy number, and high similarity of the sequence of these extrachromosomal elements with the chromosomes present challenges in isolating and detecting them without careful genome assembly. In this study, two extrachromosomal elements were identified in L. borgpetersenii serovar Ballum strain 56604 through whole genome assembly combined with S1 nuclease digestion following pulsed-field gel electrophoresis (S1-PFGE) analysis. Further, extrachromosomal elements in additional 15 Chinese epidemic strains of Leptospira, comprising L. borgpetersenii, L. weilii, and L. interrogans, were successfully separated and identified, independent of genome sequence data. Southern blot hybridization with extrachromosomal element-specific probes, designated as lcp1, lcp2 and lcp3-rep, further confirmed their occurrences as extrachromosomal elements. In total, 24 plasmids were detected in 13 out of 15 tested strains, among which 11 can hybridize with the lcp1-rep probe and 11 with the lcp2-rep probe, whereas two can hybridize with the lcp3-rep probe. None of them are likely to be species-specific. Blastp search of the lcp1, lcp2, and lcp3-rep genes with a nonredundant protein database of Leptospira species genomes showed that their homologous sequences are widely distributed among clades of pathogens but not non-pathogens or intermediates. These results suggest that the plasmids are widely distributed in Leptospira species, and further elucidation of their biological significance might contribute to our understanding of biology and infectivity of pathogenic spirochetes.
Collapse
Affiliation(s)
- Yanzhuo Wang
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuran Zhuang
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhong
- Computational Biology Department, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Cuicai Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (ICDC, CCDC), Beijing, China
| | - Yan Zhang
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingbing Zeng
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yongzhang Zhu
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping He
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Dong
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park and Virginia-Maryland Regional College of Veterinary Medicine, College Park, Maryland, United States of America
- * E-mail: (UP); (XG); (JQ)
| | - Xiaokui Guo
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (UP); (XG); (JQ)
| | - Jinhong Qin
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (UP); (XG); (JQ)
| |
Collapse
|
54
|
Comparison of Bacterial Burden and Cytokine Gene Expression in Golden Hamsters in Early Phase of Infection with Two Different Strains of Leptospira interrogans. PLoS One 2015; 10:e0132694. [PMID: 26146835 PMCID: PMC4492770 DOI: 10.1371/journal.pone.0132694] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/17/2015] [Indexed: 01/09/2023] Open
Abstract
Leptospirosis, a zoonotic infection with worldwide prevalence, is caused by pathogenic spirochaetes of Leptospira spp., and exhibits an extremely broad clinical spectrum in human patients. Although previous studies indicated that specific serovars or genotypes of Leptospira spp. were associated with severe leptospirosis or its outbreak, the mechanism underlying the difference in virulence of the various Leptospira serotypes or genotypes remains unclear. The present study addresses this question by measuring and comparing bacterial burden and cytokine gene expression in hamsters infected with strains of two L. interrogans serovars Manilae (highly virulent) and Hebdomadis (less virulent). The histopathology of kidney, liver, and lung tissues was also investigated in infected hamsters. A significantly higher bacterial burden was observed in liver tissues of hamsters infected with serovar Manilae than those infected with serovar Hebdomadis (p < 0.01). The average copy number of the leptospiral genome was 1,302 and 20,559 in blood and liver, respectively, of hamsters infected with serovar Manilae and 1,340 and 4,896, respectively, in hamsters infected with serovar Hebdomadis. The expression levels of mip1alpha in blood; tgfbeta, il1beta, mip1alpha, il10, tnfalpha and cox2 in liver; and tgfbeta, il6, tnfalpha and cox2 in lung tissue were significantly higher in hamsters infected with serovar Manilae than those infected with serovar Hebdomadis (p < 0.05). In addition, infection with serovar Manilae resulted in a significantly larger number of hamsters with tnfalpha upregulation (p = 0.04). Severe distortion of tubular cell arrangement and disruption of renal tubules in kidney tissues and hemorrhage in lung tissues were observed in Manilae-infected hamsters. These results demonstrate that serovar Manilae multiplied more efficiently in liver tissues and induced significantly higher expression of genes encoding pro- and anti-inflammatory cytokines than serovar Hebdomadis even in tissues for which a significant difference in leptospiral load was not observed. In addition, our results suggest a serovar Manilae-specific mechanism responsible for inducing severe damage in kidneys and hemorrhage in lung.
Collapse
|
55
|
Vieira ML, Nascimento ALTO. Interaction of spirochetes with the host fibrinolytic system and potential roles in pathogenesis. Crit Rev Microbiol 2015; 42:573-87. [PMID: 25914944 DOI: 10.3109/1040841x.2014.972336] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The pathogenic spirochetes Borrelia burgdorferi, B. hermsii, B. recurrentis, Treponema denticola and Leptospira spp. are the etiologic agents of Lyme disease, relapsing fever, periodontitis and leptospirosis, respectively. Lyme borreliosis is a multi-systemic disorder and the most prevalent tick-borne disease in the northern hemisphere. Tick-borne relapsing fever is persistent in endemic areas worldwide, representing a significant burden in some African regions. Periodontal disease, a chronic inflammatory disorder that often leads to tooth loss, is caused by several potential pathogens found in the oral cavity including T. denticola. Leptospirosis is considered the most widespread zoonosis, and the predominant human disease in tropical, undeveloped regions. What these diseases have in common is that they are a significant burden to healthcare costs in the absence of prophylactic measures. This review addresses the interaction of these spirochetes with the fibrinolytic system, plasminogen (Plg) binding to the surface of bacteria and the generation of plasmin (Pla) on their surface. The consequences on host-pathogen interactions when the spirochetes are endowed with this proteolytic activity are discussed on the basis of the results reported in the literature. Spirochetes equipped with Pla activity have been shown to degrade extracellular matrix (ECM) components, in addition to digesting fibrin, facilitating bacterial invasion and dissemination. Pla generation triggers the induction of matrix metalloproteases (MMPs) in a cascade of events that enhances the proteolytic capacity of the spirochetes. These activities in concert with the interference exerted by the Plg/Pla on the complement system - helping the bacteria to evade the immune system - should illuminate our understanding of the mechanisms involved in host infection.
Collapse
|
56
|
Teixeira AF, de Morais ZM, Kirchgatter K, Romero EC, Vasconcellos SA, Nascimento ALTO. Features of two new proteins with OmpA-like domains identified in the genome sequences of Leptospira interrogans. PLoS One 2015; 10:e0122762. [PMID: 25849456 PMCID: PMC4388678 DOI: 10.1371/journal.pone.0122762] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/13/2015] [Indexed: 12/12/2022] Open
Abstract
Leptospirosis is an acute febrile disease caused by pathogenic spirochetes of the genus Leptospira. It is considered an important re-emerging infectious disease that affects humans worldwide. The knowledge about the mechanisms by which pathogenic leptospires invade and colonize the host remains limited since very few virulence factors contributing to the pathogenesis of the disease have been identified. Here, we report the identification and characterization of two new leptospiral proteins with OmpA-like domains. The recombinant proteins, which exhibit extracellular matrix-binding properties, are called Lsa46 - LIC13479 and Lsa77 - LIC10050 (Leptospiral surface adhesins of 46 and 77 kDa, respectively). Attachment of Lsa46 and Lsa77 to laminin was specific, dose dependent and saturable, with KD values of 24.3 ± 17.0 and 53.0 ± 17.5 nM, respectively. Lsa46 and Lsa77 also bind plasma fibronectin, and both adhesins are plasminogen (PLG)-interacting proteins, capable of generating plasmin (PLA) and as such, increase the proteolytic ability of leptospires. The proteins corresponding to Lsa46 and Lsa77 are present in virulent L. interrogans L1-130 and in saprophyte L. biflexa Patoc 1 strains, as detected by immunofluorescence. The adhesins are recognized by human leptospirosis serum samples at the onset and convalescent phases of the disease, suggesting that they are expressed during infection. Taken together, our data could offer valuable information to the understanding of leptospiral pathogenesis.
Collapse
Affiliation(s)
- Aline F. Teixeira
- Centro de Biotecnologia, Instituto Butantan, Sao Paulo, SP, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia,Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Zenaide M. de Morais
- Laboratório de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Karin Kirchgatter
- Nucleo de Estudos em Malária, Superintendência de Controle de Endemias - Instituto de Medicina Tropical, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Eliete C. Romero
- Centro de Bacteriologia, Instituto Adolfo Lutz, Sao Paulo, Brazil
| | - Silvio A. Vasconcellos
- Laboratório de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Ana Lucia T. O. Nascimento
- Centro de Biotecnologia, Instituto Butantan, Sao Paulo, SP, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia,Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
57
|
Zhu W, Wang J, Zhu Y, Tang B, Zhang Y, He P, Zhang Y, Liu B, Guo X, Zhao G, Qin J. Identification of three extra-chromosomal replicons in Leptospira pathogenic strain and development of new shuttle vectors. BMC Genomics 2015; 16:90. [PMID: 25887950 PMCID: PMC4338851 DOI: 10.1186/s12864-015-1321-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 02/04/2015] [Indexed: 12/20/2022] Open
Abstract
Background The genome of pathogenic Leptospira interrogans contains two chromosomes. Plasmids and prophages are known to play specific roles in gene transfer in bacteria and can potentially serve as efficient genetic tools in these organisms. Although plasmids and prophage remnants have recently been reported in Leptospira species, their characteristics and potential applications in leptospiral genetic transformation systems have not been fully evaluated. Results Three extrachromosomal replicons designated lcp1 (65,732 bp), lcp2 (56,757 bp), and lcp3 (54,986 bp) in the L. interrogans serovar Linhai strain 56609 were identified through whole genome sequencing. All three replicons were stable outside of the bacterial chromosomes. Phage particles were observed in the culture supernatant of 56609 after mitomycin C induction, and lcp3, which contained phage-related genes, was considered to be an inducible prophage. L. interrogans–Escherichia coli shuttle vectors, constructed with the predicted replication elements of single rep or rep combined with parAB loci from the three plasmids were shown to successfully transform into both saprophytic and pathogenic Leptospira species, suggesting an essential function for rep genes in supporting auto-replication of the plasmids. Additionally, a wide distribution of homologs of the three rep genes was identified in L. interrogans isolates, and correlation tests showed that the transformability of the shuttle vectors in L. interrogans isolates depended, to certain extent, on genetic compatibility between the rep sequences of both plasmid and host. Conclusions Three extrachromosomal replicons co-exist in L. interrogans, one of which we consider to be an inducible prophage. The vectors constructed with the rep genes of the three replicons successfully transformed into saprophytic and pathogenic Leptospira species alike, but this was partly dependent on genetic compatibility between the rep sequences of both plasmid and host. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1321-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weinan Zhu
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Jin Wang
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Yongzhang Zhu
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Biao Tang
- State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Yunyi Zhang
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Ping He
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Yan Zhang
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Boyu Liu
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Xiaokui Guo
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Guoping Zhao
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China. .,State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Jinhong Qin
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| |
Collapse
|
58
|
Domingos RF, Fernandes LG, Romero EC, de Morais ZM, Vasconcellos SA, Nascimento ALTO. Novel Leptospira interrogans protein Lsa32 is expressed during infection and binds laminin and plasminogen. MICROBIOLOGY-SGM 2015; 161:851-64. [PMID: 25627443 DOI: 10.1099/mic.0.000041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/19/2015] [Indexed: 11/18/2022]
Abstract
Pathogenic Leptospira is the aetiological agent of leptospirosis, a life-threatening disease of human and veterinary concern. The quest for novel antigens that could mediate host-pathogen interactions is being pursued. Owing to their location, these antigens have the potential to elicit numerous activities, including immune response and adhesion. This study focuses on a hypothetical protein of Leptospira, encoded by the gene LIC11089, and its three derived fragments: the N-terminal, intermediate and C terminus regions. The gene coding for the full-length protein and fragments was cloned and expressed in Escherichia coli BL21(SI) strain by using the expression vector pAE. The recombinant protein and fragments tagged with hexahistidine at the N terminus were purified by metal affinity chromatography. The leptospiral full-length protein, named Lsa32 (leptospiral surface adhesin, 32 kDa), adheres to laminin, with the C terminus region being responsible for this interaction. Lsa32 binds to plasminogen in a dose-dependent fashion, generating plasmin when an activator is provided. Moreover, antibodies present in leptospirosis serum samples were able to recognize Lsa32. Lsa32 is most likely a new surface protein of Leptospira, as revealed by proteinase K susceptibility. Altogether, our data suggest that this multifaceted protein is expressed during infection and may play a role in host-L. interrogans interactions.
Collapse
Affiliation(s)
- Renan F Domingos
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil Programa Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Professor Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Luis G Fernandes
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil Programa Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Professor Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Eliete C Romero
- Divisão de Biologia Medica, Instituto Adolfo Lutz, São Paulo, SP, Brazil
| | - Zenaide M de Morais
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Professor Dr Orlando Marques de Paiva, 87, 05508-270, São Paulo, SP, Brazil
| | - Silvio A Vasconcellos
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Professor Dr Orlando Marques de Paiva, 87, 05508-270, São Paulo, SP, Brazil
| | - Ana L T O Nascimento
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil Programa Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Professor Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| |
Collapse
|
59
|
Abstract
Vaccines against leptospirosis followed within a year of the first isolation of Leptospira, with the first use of a killed whole cell bacterin vaccine in guinea pigs published in 1916. Since then, bacterin vaccines have been used in humans, cattle, swine, and dogs and remain the only vaccines licensed at the present time. The immunity elicited is restricted to serovars with related lipopolysaccharide (LPS) antigen. Likewise, vaccines based on LPS antigens have clearly demonstrated protection in animal models, which is also at best serogroup specific. The advent of leptospiral genome sequences has allowed a reverse vaccinology approach for vaccine development. However, the use of inadequate challenge doses and inappropriate statistical analysis invalidates many of the claims of protection with recombinant proteins.
Collapse
Affiliation(s)
- Ben Adler
- Department of Microbiology, Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, VIC, 3800, Australia,
| |
Collapse
|
60
|
Zeng LB, Zhuang XR, Huang LL, Zhang YY, Chen CY, Dong K, Zhang Y, Cui ZL, Ding XL, Chang YF, Guo XK, Zhu YZ. Comparative subproteome analysis of three representative Leptospira interrogans vaccine strains reveals cross-reactive antigens and novel virulence determinants. J Proteomics 2015; 112:27-37. [DOI: 10.1016/j.jprot.2014.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/08/2014] [Accepted: 08/25/2014] [Indexed: 12/26/2022]
|
61
|
Abstract
Members of the family Leptospiraceae are thin, spiral, highly motile bacteria that are best visualized by darkfield microscopy. These characteristics are shared with other members of the Order Spirochaetales, but few additional parallels exist among spirochetes. This chapter describes basal features of Leptospira Leptospira that are central to survival and, in the case of pathogenic leptospiral species, intimately linked with pathogenesis, including its morphology, characteristic motility, and unusual metabolism. This chapter also describes the general methodology and critical requirements for in vitro cultivation and storage of Leptospira within a laboratory setting.
Collapse
Affiliation(s)
- Caroline E Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada,
| |
Collapse
|
62
|
Potential impact on kidney infection: a whole-genome analysis of Leptospira santarosai serovar Shermani. Emerg Microbes Infect 2014; 3:e82. [PMID: 26038504 PMCID: PMC4274889 DOI: 10.1038/emi.2014.78] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 09/01/2014] [Accepted: 09/11/2014] [Indexed: 11/21/2022]
Abstract
Leptospira santarosai serovar Shermani is the most frequently encountered
serovar, and it causes leptospirosis and tubulointerstitial nephritis in Taiwan. This
study aims to complete the genome sequence of L. santarosai serovar Shermani
and analyze the transcriptional responses of L. santarosai serovar Shermani
to renal tubular cells. To assemble this highly repetitive genome, we combined reads
that were generated from four next-generation sequencing platforms by using hybrid
assembly approaches to finish two-chromosome contiguous sequences without gaps by
validating the data with optical restriction maps and Sanger sequencing. Whole-genome
comparison studies revealed a 28-kb region containing genes that encode transposases
and hypothetical proteins in L. santarosai serovar Shermani, but this region
is absent in other pathogenic Leptospira spp. We found that lipoprotein gene
expression in both L. santarosai serovar Shermani and L.
interrogans serovar Copenhageni were upregulated upon interaction with renal
tubular cells, and LSS19962, a L. santarosai serovar Shermani-specific gene
within a 28-kb region that encodes hypothetical proteins, was upregulated in L.
santarosai serovar Shermani-infected renal tubular cells. Lipoprotein
expression during leptospiral infection might facilitate the interactions of
leptospires within kidneys. The availability of the whole-genome sequence of L.
santarosai serovar Shermani would make it the first completed sequence of
this species, and its comparison with that of other Leptospira spp. may
provide invaluable information for further studies in leptospiral pathogenesis.
Collapse
|
63
|
Ferreira AS, Costa P, Rocha T, Amaro A, Vieira ML, Ahmed A, Thompson G, Hartskeerl RA, Inácio J. Direct detection and differentiation of pathogenic Leptospira species using a multi-gene targeted real time PCR approach. PLoS One 2014; 9:e112312. [PMID: 25398140 PMCID: PMC4232388 DOI: 10.1371/journal.pone.0112312] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/03/2014] [Indexed: 11/18/2022] Open
Abstract
Leptospirosis is a growing public and veterinary health concern caused by pathogenic species of Leptospira. Rapid and reliable laboratory tests for the direct detection of leptospiral infections in animals are in high demand not only to improve diagnosis but also for understanding the epidemiology of the disease. In this work we describe a novel and simple TaqMan-based multi-gene targeted real-time PCR approach able to detect and differentiate Leptospira interrogans, L. kirschneri, L. borgpeteresenii and L. noguchii, which constitute the veterinary most relevant pathogenic species of Leptospira. The method uses sets of species-specific probes, and respective flanking primers, designed from ompL1 and secY gene sequences. To monitor the presence of inhibitors, a duplex amplification assay targeting both the mammal β-actin and the leptospiral lipL32 genes was implemented. The analytical sensitivity of all primer and probe sets was estimated to be <10 genome equivalents (GE) in the reaction mixture. Application of the amplification reactions on genomic DNA from a variety of pathogenic and non-pathogenic Leptospira strains and other non-related bacteria revealed a 100% analytical specificity. Additionally, pathogenic leptospires were successfully detected in five out of 29 tissue samples from animals (Mus spp., Rattus spp., Dolichotis patagonum and Sus domesticus). Two samples were infected with L. borgpetersenii, two with L. interrogans and one with L. kirschneri. The possibility to detect and identify these pathogenic agents to the species level in domestic and wildlife animals reinforces the diagnostic information and will enhance our understanding of the epidemiology of leptopirosis.
Collapse
Affiliation(s)
- Ana Sofia Ferreira
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV, I.P.), Unidade Estratégica de Investigação e Serviços em Produção e Saúde Animal, Lisboa, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- * E-mail: (ASF); (JI)
| | - Pedro Costa
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV, I.P.), Unidade Estratégica de Investigação e Serviços em Produção e Saúde Animal, Lisboa, Portugal
- Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Teresa Rocha
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV, I.P.), Unidade Estratégica de Investigação e Serviços em Produção e Saúde Animal, Lisboa, Portugal
| | - Ana Amaro
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV, I.P.), Unidade Estratégica de Investigação e Serviços em Produção e Saúde Animal, Lisboa, Portugal
| | - Maria Luísa Vieira
- Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Ahmed Ahmed
- WHO/FAO/OIE and National Collaborating Centre for Reference and Research on Leptospirosis, KIT Biomedical Research, Amsterdam, The Netherlands
| | - Gertrude Thompson
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- Research Center in Biodiversity and Genetic Resources (CIBIO-ICETA), Universidade do Porto, Porto, Portugal
| | - Rudy A. Hartskeerl
- WHO/FAO/OIE and National Collaborating Centre for Reference and Research on Leptospirosis, KIT Biomedical Research, Amsterdam, The Netherlands
| | - João Inácio
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV, I.P.), Unidade Estratégica de Investigação e Serviços em Produção e Saúde Animal, Lisboa, Portugal
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
- * E-mail: (ASF); (JI)
| |
Collapse
|
64
|
Voronina OL, Kunda MS, Aksenova EI, Ryzhova NN, Semenov AN, Petrov EM, Didenko LV, Lunin VG, Ananyina YV, Gintsburg AL. The characteristics of ubiquitous and unique Leptospira strains from the collection of Russian centre for leptospirosis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:649034. [PMID: 25276806 PMCID: PMC4167648 DOI: 10.1155/2014/649034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/29/2014] [Accepted: 08/05/2014] [Indexed: 12/05/2022]
Abstract
BACKGROUND AND AIM Leptospira, the causal agent of leptospirosis, has been isolated from the environment, patients, and wide spectrum of animals in Russia. However, the genetic diversity of Leptospira in natural and anthropurgic foci was not clearly defined. METHODS The recent MLST scheme was used for the analysis of seven pathogenic species. 454 pyrosequencing technology was the base of the whole genome sequencing (WGS). RESULTS The most wide spread and prevalent Leptospira species in Russia were L. interrogans, L. kirschneri, and L. borgpetersenii. Five STs, common for Russian strains: 37, 17, 199, 110, and 146, were identified as having a longtime and ubiquitous distribution in various geographic areas. Unexpected properties were revealed for the environmental Leptospira strain Bairam-Ali. WGS of this strain genome suggested that it combined the features of the pathogenic and nonpathogenic strains and may be a reservoir of the natural resistance genes. Results of the comparative analysis of rrs and rpoB genes and MLST loci for different Leptospira species strains and phenotypic and serological properties of the strain Bairam-Ali suggested that it represented separate Leptospira species. CONCLUSIONS Thus, the natural and anthropurgic foci supported ubiquitous Leptospira species and the pool of genes important for bacterial adaptivity to various conditions.
Collapse
Affiliation(s)
- Olga L. Voronina
- N.F. Gamaleya Institute for Epidemiology and Microbiology, Ministry of Health of Russia, Gamaleya Street 18, Moscow 123098, Russia
| | - Marina S. Kunda
- N.F. Gamaleya Institute for Epidemiology and Microbiology, Ministry of Health of Russia, Gamaleya Street 18, Moscow 123098, Russia
| | - Ekaterina I. Aksenova
- N.F. Gamaleya Institute for Epidemiology and Microbiology, Ministry of Health of Russia, Gamaleya Street 18, Moscow 123098, Russia
| | - Natalia N. Ryzhova
- N.F. Gamaleya Institute for Epidemiology and Microbiology, Ministry of Health of Russia, Gamaleya Street 18, Moscow 123098, Russia
| | - Andrey N. Semenov
- N.F. Gamaleya Institute for Epidemiology and Microbiology, Ministry of Health of Russia, Gamaleya Street 18, Moscow 123098, Russia
| | - Evgeny M. Petrov
- N.F. Gamaleya Institute for Epidemiology and Microbiology, Ministry of Health of Russia, Gamaleya Street 18, Moscow 123098, Russia
| | - Lubov V. Didenko
- N.F. Gamaleya Institute for Epidemiology and Microbiology, Ministry of Health of Russia, Gamaleya Street 18, Moscow 123098, Russia
| | - Vladimir G. Lunin
- N.F. Gamaleya Institute for Epidemiology and Microbiology, Ministry of Health of Russia, Gamaleya Street 18, Moscow 123098, Russia
| | - Yuliya V. Ananyina
- N.F. Gamaleya Institute for Epidemiology and Microbiology, Ministry of Health of Russia, Gamaleya Street 18, Moscow 123098, Russia
| | - Alexandr L. Gintsburg
- N.F. Gamaleya Institute for Epidemiology and Microbiology, Ministry of Health of Russia, Gamaleya Street 18, Moscow 123098, Russia
| |
Collapse
|
65
|
Screening of a Leptospira biflexa mutant library to identify genes involved in ethidium bromide tolerance. Appl Environ Microbiol 2014; 80:6091-103. [PMID: 25063661 DOI: 10.1128/aem.01619-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Leptospira spp. are spirochete bacteria comprising both pathogenic and free-living species. The saprophyte L. biflexa is a model bacterium for studying leptospiral biology due to relative ease of culturing and genetic manipulation. In this study, we constructed a library of 4,996 random transposon mutants in L. biflexa. We screened the library for increased susceptibility to the DNA intercalating agent, ethidium bromide (EtBr), in order to identify genetic determinants that reduce L. biflexa susceptibility to antimicrobial agents. By phenotypic screening, using subinhibitory EtBr concentrations, we identified 29 genes that, when disrupted via transposon insertion, led to increased sensitivity of the bacteria to EtBr. At the functional level, these genes could be categorized by function as follows: regulation and signaling (n=11), transport (n=6), membrane structure (n=5), stress response (n=2), DNA damage repair (n=1), and other processes (n=3), while 1 gene had no predicted function. Genes involved in transport (including efflux pumps) and regulation (two-component systems, anti-sigma factor antagonists, etc.) were overrepresented, demonstrating that these genes are major contributors to EtBr tolerance. This finding suggests that transport genes which would prevent EtBr to enter the cell cytoplasm are critical for EtBr resistance. We identified genes required for the growth of L. biflexa in the presence of sublethal EtBr concentration and characterized their potential as antibiotic resistance determinants. This study will help to delineate mechanisms of adaptation to toxic compounds, as well as potential mechanisms of antibiotic resistance development in pathogenic L. interrogans.
Collapse
|
66
|
Lopes APY, Lopes LM, Fraga TR, Chura-Chambi RM, Sanson AL, Cheng E, Nakajima E, Morganti L, Martins EAL. VapC from the leptospiral VapBC toxin-antitoxin module displays ribonuclease activity on the initiator tRNA. PLoS One 2014; 9:e101678. [PMID: 25047537 PMCID: PMC4105405 DOI: 10.1371/journal.pone.0101678] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/10/2014] [Indexed: 11/30/2022] Open
Abstract
The prokaryotic ubiquitous Toxin-Antitoxin (TA) operons encode a stable toxin and an unstable antitoxin. The most accepted hypothesis of the physiological function of the TA system is the reversible cessation of cellular growth under stress conditions. The major TA family, VapBC is present in the spirochaete Leptospira interrogans. VapBC modules are classified based on the presence of a predicted ribonucleasic PIN domain in the VapC toxin. The expression of the leptospiral VapC in E. coli promotes a strong bacterial growth arrestment, making it difficult to express the recombinant protein. Nevertheless, we showed that long term induction of expression in E. coli enabled the recovery of VapC in inclusion bodies. The recombinant protein was successfully refolded by high hydrostatic pressure, providing a new method to obtain the toxin in a soluble and active form. The structural integrity of the recombinant VapB and VapC proteins was assessed by circular dichroism spectroscopy. Physical interaction between the VapC toxin and the VapB antitoxin was demonstrated in vivo and in vitro by pull down and ligand affinity blotting assays, respectively, thereby indicating the ultimate mechanism by which the activity of the toxin is regulated in bacteria. The predicted model of the leptospiral VapC structure closely matches the Shigella's VapC X-ray structure. In agreement, the ribonuclease activity of the leptospiral VapC was similar to the activity described for Shigella's VapC, as demonstrated by the cleavage of tRNAfMet and by the absence of unspecific activity towards E. coli rRNA. This finding suggests that the cleavage of the initiator transfer RNA may represent a common mechanism to a larger group of bacteria and potentially configures a mechanism of post-transcriptional regulation leading to the inhibition of global translation.
Collapse
Affiliation(s)
| | - Luana M. Lopes
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Tatiana R. Fraga
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Rosa M. Chura-Chambi
- Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear, São Paulo, São Paulo, Brazil
| | - André L. Sanson
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Elisabeth Cheng
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Erika Nakajima
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Ligia Morganti
- Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear, São Paulo, São Paulo, Brazil
| | | |
Collapse
|
67
|
Affiliation(s)
| | - Jorge Kalil
- Instituto Butantan, São Paulo, São Paulo, Brazil
| |
Collapse
|
68
|
Huang L, Zhu W, He P, Zhang Y, Zhuang X, Zhao G, Guo X, Qin J, Zhu Y. Re-characterization of an extrachromosomal circular plasmid in the pathogenic Leptospira interrogans serovar Lai strain 56601. Acta Biochim Biophys Sin (Shanghai) 2014; 46:605-11. [PMID: 24874103 DOI: 10.1093/abbs/gmu033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In China, Leptospira interrogans serovar Lai strain 56601 (str.56601) is one of main pathogenic strains that cause severe leptospirosis in both human and animals. The genome of this organism was completely sequenced in 2003. However, in 2011, we identified and corrected some assembly errors in the str.56601 genome due to the repeat sequences widely distributed in the Leptospira genome. In this study, we re-analyzed the previously reported mobile, phage-related genomic island in the chromosome and rectified detailed sequence information in both the plasmid and chromosome using various experimental methods. The presence of a separate circular extrachromosomal plasmid was also confirmed, and its location in the genomic region was determined relative to the genomic island reported in L. interrogans serovar Lai by a combination of pulsed-field gel electrophoresis -based and plasmid extraction-based Southern blot analysis. This report confirmed that the separate extrachromosomal circular plasmid is not integrated into the chromosome of L. interrogans str.56601 and markedly improved our understanding of the genomic organization, evolution, and pathogenesis of L. interrogans. In particular, characterization of this extrachromosomal circular plasmid will contribute to the development of genetic manipulation systems in pathogenic Leptospira species.
Collapse
Affiliation(s)
- Lili Huang
- Department of Microbiology and Immunology, Institute of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Weinan Zhu
- Department of Microbiology and Immunology, Institute of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Ping He
- Department of Microbiology and Immunology, Institute of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Yan Zhang
- Department of Microbiology and Immunology, Institute of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Xuran Zhuang
- Department of Microbiology and Immunology, Institute of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Guoping Zhao
- CAS-Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaokui Guo
- Department of Microbiology and Immunology, Institute of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Jinhong Qin
- Department of Microbiology and Immunology, Institute of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Yongzhang Zhu
- Department of Microbiology and Immunology, Institute of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| |
Collapse
|
69
|
Oliveira R, Domingos RF, de Morais ZM, Vasconcellos SA, Alves IJ, Romero EC, Nascimento ALTO. Intermediate and C-terminal regions of leptospiral adhesin Lsa66 are responsible for binding with plasminogen and extracellular matrix components. J Med Microbiol 2014; 63:1119-1130. [PMID: 24928214 DOI: 10.1099/jmm.0.078378-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leptospirosis, a worldwide zoonotic infection, is an important human and veterinary health problem. We have previously identified a leptospiral multipurpose adhesin, Lsa66, capable of binding extracellular matrix (ECM) components and plasminogen (PLG). In this work, we report the cloning, expression, purification and characterization of three fragments derived from the full-length Lsa66: N-terminal, intermediate and C-terminal regions. We employed Escherichia coli BL21-SI as expression cells. The recombinant fragments tagged with N-terminal His6 were purified by metal-charged chromatography to major protein bands that were recognized by anti-His-tag mAbs. The recombinant fragments were evaluated for their capacity to attach to ECM components and to PLG. The intermediate region bound to laminin, plasma fibronectin and PLG. Laminin also bound to the C-terminal region. Antibodies in leptospirosis-positive serum samples recognized Lsa66, being the immune epitopes located at the N-terminal and intermediate fragments. The data confirm that Lsa66 is expressed during infection and that this protein might have a role in bacterial infection.
Collapse
Affiliation(s)
- Rosane Oliveira
- Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900 São Paulo, SP, Brazil.,Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 São Paulo, SP, Brazil
| | - Renan F Domingos
- Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900 São Paulo, SP, Brazil.,Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 São Paulo, SP, Brazil
| | - Zenaide M de Morais
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr Orlando Marques de Paiva, 87, 05508-270 São Paulo, SP, Brazil
| | - Silvio A Vasconcellos
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr Orlando Marques de Paiva, 87, 05508-270 São Paulo, SP, Brazil
| | - Ivy J Alves
- Instituto Adolfo Lutz, Laboratório Regional de Santos, Núcleo de Ciências Biomédicas, Rua Silva Jardim, 90, 11015-020, Santos, SP, Brazil
| | - Eliete C Romero
- Centro de Bacteriologia, Instituto Adolfo Lutz, Av. Dr Arnaldo, 355, 01246-902 São Paulo, SP, Brazil
| | - Ana L T O Nascimento
- Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900 São Paulo, SP, Brazil.,Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 São Paulo, SP, Brazil
| |
Collapse
|
70
|
A model system for studying the transcriptomic and physiological changes associated with mammalian host-adaptation by Leptospira interrogans serovar Copenhageni. PLoS Pathog 2014; 10:e1004004. [PMID: 24626166 PMCID: PMC3953431 DOI: 10.1371/journal.ppat.1004004] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/01/2014] [Indexed: 12/23/2022] Open
Abstract
Leptospirosis, an emerging zoonotic disease with worldwide distribution, is caused by spirochetes belonging to the genus Leptospira. More than 500,000 cases of severe leptospirosis are reported annually, with >10% of these being fatal. Leptospires can survive for weeks in suitably moist conditions before encountering a new host. Reservoir hosts, typically rodents, exhibit little to no signs of disease but shed large numbers of organisms in their urine. Transmission occurs when mucosal surfaces or abraded skin come into contact with infected urine or urine-contaminated water or soil. In humans, leptospires can cause a variety of clinical manifestations, ranging from asymptomatic or mild fever to severe icteric (Weil's) disease and pulmonary haemorrhage. Currently, little is known about how Leptospira persist within a reservoir host. Prior in vitro studies have suggested that leptospires alter their transcriptomic and proteomic profiles in response to environmental signals encountered during mammalian infection. However, no study has examined gene expression by leptospires within a mammalian host-adapted state. To obtain a more faithful representation of how leptospires respond to host-derived signals, we used RNA-Seq to compare the transcriptome of L. interrogans cultivated within dialysis membrane chambers (DMCs) implanted into the peritoneal cavities of rats with that of organisms grown in vitro. In addition to determining the relative expression levels of “core” housekeeping genes under both growth conditions, we identified 166 genes that are differentially-expressed by L. interrogans in vivo. Our analyses highlight physiological aspects of host adaptation by leptospires relating to heme uptake and utilization. We also identified 11 novel non-coding transcripts that are candidate small regulatory RNAs. The DMC model provides a facile system for studying the transcriptional and antigenic changes associated with mammalian host-adaption, selection of targets for mutagenesis, and the identification of previously unrecognized virulence determinants. Leptospirosis, a global disease caused by the unusual bacterium Leptospira, is transmitted from animals to humans. Pathogenic species of Leptospira are excreted in urine from infected animals and can continue to survive in suitable environments before coming into contact with a new reservoir or accidental host. Leptospires have an inherent ability to survive a wide range of conditions encountered in nature during transmission and within mammals. However, we know very little about the regulatory pathways and gene products that promote mammalian host adaptation and enable leptospires to establish infection. In this study, we used a novel system whereby leptospires are cultivated in dialysis membrane chambers implanted into the peritoneal cavities of rats to compare the gene expression profiles of mammalian host-adapted and in vitro-cultivated organisms. In addition to providing a facile system for studying the transcriptional and physiologic changes leptospires undergo during mammalian infection, our data provide a rational basis for selecting new targets for mutagenesis.
Collapse
|
71
|
Thongboonkerd V. Proteomics in leptospirosis research: towards molecular diagnostics and vaccine development. Expert Rev Mol Diagn 2014; 8:53-61. [DOI: 10.1586/14737159.8.1.53] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
72
|
Fernandes LGV, Vieira ML, Alves IJ, de Morais ZM, Vasconcellos SA, Romero EC, Nascimento ALTO. Functional and immunological evaluation of two novel proteins of Leptospira spp. Microbiology (Reading) 2014; 160:149-164. [DOI: 10.1099/mic.0.072074-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This work shows the production and characterization of two novel putative lipoproteins encoded by the genes LIC10645 and LIC10731 identified in the genome sequences of Leptospira
interrogans. In silico conservation analysis indicated that the proteins are well conserved among pathogenic leptospiral serovars and species. Recombinant proteins were obtained in Escherichia coli BL21(DE3) Star pLysS strain, purified by metal-affinity chromatography, and used for characterization and immunological evaluations. Recombinant proteins were capable of eliciting a combination of humoral and cellular immune responses in animal models, and could be recognized by antibodies present in human serum samples. The recombinant proteins Lsa44 and Lsa45 were able to bind laminin, and were named Lsa44 and Lsa45 for leptospiral surface adhesins of 44 and 45 kDa, respectively. The attachment to laminin was dose-responsive with K
D values of 108.21 and 250.38 nM for Lsa44 and Lsa45, respectively. Moreover, these proteins interact with plasminogen (PLG) with K
D values of 53.56 and 36.80 nM, respectively. PLG bound to the recombinant proteins could be converted to plasmin (PLA) in the presence of an activator. Cellular localization assays suggested that the Lsa44 and Lsa45 were surface-exposed. These are versatile proteins capable of interacting with laminin and PLG/PLA, and hence could mediate bacterial adhesion and contribute to tissue penetration.
Collapse
Affiliation(s)
- Luis G. V. Fernandes
- Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil 1500, 05503-900 São Paulo, SP, Brazil
| | - Monica L. Vieira
- Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil 1500, 05503-900 São Paulo, SP, Brazil
| | - Ivy J. Alves
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil 1500, 05503-900 São Paulo, SP, Brazil
| | - Zenaide M. de Morais
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Silvio A. Vasconcellos
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Eliete C. Romero
- Divisão de Biologia Medica, Instituto Adolfo Lutz, São Paulo, Brazil
| | - Ana L. T. O. Nascimento
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil 1500, 05503-900 São Paulo, SP, Brazil
| |
Collapse
|
73
|
Vieira ML, Fernandes LG, Domingos RF, Oliveira R, Siqueira GH, Souza NM, Teixeira ARF, Atzingen MV, Nascimento ALTO. Leptospiral extracellular matrix adhesins as mediators of pathogen-host interactions. FEMS Microbiol Lett 2013; 352:129-39. [PMID: 24289724 DOI: 10.1111/1574-6968.12349] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/19/2013] [Accepted: 11/26/2013] [Indexed: 01/21/2023] Open
Abstract
Leptospirosis is been considered an important infectious disease that affects humans and animals worldwide. This review summarizes our current knowledge of bacterial attachment to extracellular matrix (ECM) components and discusses the possible role of these interactions for leptospiral pathogenesis. Leptospiral proteins show different binding specificity for ECM molecules: some are exclusive laminin-binding proteins (Lsa24/LfhA/LenA, Lsa27), while others have broader spectrum binding profiles (LigB, Lsa21, LipL53). These proteins may play a primary role in the colonization of host tissues. Moreover, there are multifunctional proteins that exhibit binding activities toward a number of target proteins including plasminogen/plasmin and regulators of the complement system, and as such, might also act in bacterial dissemination and immune evasion processes. Many ECM-interacting proteins are recognized by human leptospirosis serum samples indicating their expression during infection. This compilation of data should enhance our understanding of the molecular mechanisms of leptospiral pathogenesis.
Collapse
Affiliation(s)
- Monica L Vieira
- Centro de Biotecnologia, Instituto Butantan, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Fonseca LS, da Silva JB, Milanez JS, Monteiro-Vitorello CB, Momo L, de Morais ZM, Vasconcellos SA, Marques MV, Ho PL, da Costa RMA. Leptospira interrogans serovar copenhageni harbors two lexA genes involved in SOS response. PLoS One 2013; 8:e76419. [PMID: 24098496 PMCID: PMC3789691 DOI: 10.1371/journal.pone.0076419] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 08/28/2013] [Indexed: 11/24/2022] Open
Abstract
Bacteria activate a regulatory network in response to the challenges imposed by DNA damage to genetic material, known as the SOS response. This system is regulated by the RecA recombinase and by the transcriptional repressor lexA. Leptospira interrogans is a pathogen capable of surviving in the environment for weeks, being exposed to a great variety of stress agents and yet retaining its ability to infect the host. This study aims to investigate the behavior of L. interrogans serovar Copenhageni after the stress induced by DNA damage. We show that L. interrogans serovar Copenhageni genome contains two genes encoding putative LexA proteins (lexA1 and lexA2) one of them being potentially acquired by lateral gene transfer. Both genes are induced after DNA damage, but the steady state levels of both LexA proteins drop, probably due to auto-proteolytic activity triggered in this condition. In addition, seven other genes were up-regulated following UV-C irradiation, recA, recN, dinP, and four genes encoding hypothetical proteins. This set of genes is potentially regulated by LexA1, as it showed binding to their promoter regions. All these regions contain degenerated sequences in relation to the previously described SOS box, TTTGN 5CAAA. On the other hand, LexA2 was able to bind to the palindrome TTGTAN10TACAA, found in its own promoter region, but not in the others. Therefore, the L. interrogans serovar Copenhageni SOS regulon may be even more complex, as a result of LexA1 and LexA2 binding to divergent motifs. New possibilities for DNA damage response in Leptospira are expected, with potential influence in other biological responses such as virulence.
Collapse
Affiliation(s)
- Luciane S Fonseca
- Centro de Biotecnologia, Instituto Butantan, São Paulo, Brazil ; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Role for cis-acting RNA sequences in the temperature-dependent expression of the multiadhesive lig proteins in Leptospira interrogans. J Bacteriol 2013; 195:5092-101. [PMID: 24013626 DOI: 10.1128/jb.00663-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The spirochete Leptospira interrogans causes a systemic infection that provokes a febrile illness. The putative lipoproteins LigA and LigB promote adhesion of Leptospira to host proteins, interfere with coagulation, and capture complement regulators. In this study, we demonstrate that the expression level of the LigA and LigB proteins was substantially higher when L. interrogans proliferated at 37°C instead of the standard culture temperature of 30°C. The RNA comprising the 175-nucleotide 5' untranslated region (UTR) and first six lig codons, whose sequence is identical in ligA and ligB, is predicted to fold into two distinct stem-loop structures separated by a single-stranded region. The ribosome-binding site is partially sequestered in double-stranded RNA within the second structure. Toeprint analysis revealed that in vitro formation of a 30S-tRNA(fMet)-mRNA ternary complex was inhibited unless a 5' deletion mutation disrupted the second stem-loop structure. To determine whether the lig sequence could mediate temperature-regulated gene expression in vivo, the 5' UTR and the first six codons were inserted between the Escherichia coli l-arabinose promoter and bgaB (β-galactosidase from Bacillus stearothermophilus) to create a translational fusion. The lig fragment successfully conferred thermoregulation upon the β-galactosidase reporter in E. coli. The second stem-loop structure was sufficient to confer thermoregulation on the reporter, while sequences further upstream in the 5' UTR slightly diminished expression at each temperature tested. Finally, the expression level of β-galactosidase was significantly higher when point mutations predicted to disrupt base pairs in the second structure were introduced into the stem. Compensatory mutations that maintained base pairing of the stem without restoring the wild-type sequence reinstated the inhibitory effect of the 5' UTR on expression. These results indicate that ligA and ligB expression is limited by double-stranded RNA that occludes the ribosome-binding site. At elevated temperatures, the ribosome-binding site is exposed to promote translation initiation.
Collapse
|
76
|
Siqueira GH, Atzingen MV, Alves IJ, de Morais ZM, Vasconcellos SA, Nascimento ALTO. Characterization of three novel adhesins of Leptospira interrogans. Am J Trop Med Hyg 2013; 89:1103-16. [PMID: 23958908 DOI: 10.4269/ajtmh.13-0205] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We report cloning, expression, purification, and characterization of three predicted leptospiral membrane proteins (LIC11360, LIC11009, and LIC11975). In silico analysis and proteinase K accessibility data suggest that these proteins might be surface exposed. We show that proteins encoded by LIC11360, LIC11009 and LIC11975 genes interact with laminin in a dose-dependent and saturable manner. The proteins are referred to as leptospiral surface adhesions 23, 26, and 36 (Lsa23, Lsa26, and Lsa36), respectively. These proteins also bind plasminogen and generate active plasmin. Attachment of Lsa23 and Lsa36 to fibronectin occurs through the involvement of the 30-kDa and 70-kDa heparin-binding domains of the ligand. Dose-dependent, specific-binding of Lsa23 to the complement regulator C4BP and to a lesser extent, to factor H, suggests that this protein may interfere with the complement cascade pathways. Leptospira spp. may use these interactions as possible mechanisms during the establishment of infection.
Collapse
Affiliation(s)
- Gabriela H Siqueira
- Centro de Biotecnologia, Instituto Butantan, São Paulo, Brazil; Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, e Laboratório de Zoonoses Bacterianas do Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
77
|
Evaluation of the elastinolytic activity and protective effect of Leptallo I, a protein composed by metalloprotease and FA5/8C domains, from Leptospira interrogans Copenhageni. Microb Pathog 2013; 61-62:29-36. [DOI: 10.1016/j.micpath.2013.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/20/2013] [Accepted: 04/23/2013] [Indexed: 11/21/2022]
|
78
|
Zeng L, Zhang Y, Zhu Y, Yin H, Zhuang X, Zhu W, Guo X, Qin J. Extracellular proteome analysis of Leptospira interrogans serovar Lai. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:527-35. [PMID: 23895271 DOI: 10.1089/omi.2013.0043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Abstract Leptospirosis is one of the most important zoonoses. Leptospira interrogans serovar Lai is a pathogenic spirochete that is responsible for leptospirosis. Extracellular proteins play an important role in the pathogenicity of this bacterium. In this study, L. interrogans serovar Lai was grown in protein-free medium; the supernatant was collected and subsequently analyzed as the extracellular proteome. A total of 66 proteins with more than two unique peptides were detected by MS/MS, and 33 of these were predicted to be extracellular proteins by a combination of bioinformatics analyses, including Psortb, cello, SoSuiGramN and SignalP. Comparisons of the transcriptional levels of these 33 genes between in vivo and in vitro conditions revealed that 15 genes were upregulated and two genes were downregulated in vivo compared to in vitro. A BLAST search for the components of secretion system at the genomic and proteomic levels revealed the presence of the complete type I secretion system and type II secretion system in this strain. Moreover, this strain also exhibits complete Sec translocase and Tat translocase systems. The extracellular proteome analysis of L. interrogans will supplement the previously generated whole proteome data and provide more information for studying the functions of specific proteins in the infection process and for selecting candidate molecules for vaccines or diagnostic tools for leptospirosis.
Collapse
Affiliation(s)
- Lingbing Zeng
- 1 Department of Medical Microbiology and Parasitology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Kung F, Anguita J, Pal U. Borrelia burgdorferi and tick proteins supporting pathogen persistence in the vector. Future Microbiol 2013; 8:41-56. [PMID: 23252492 DOI: 10.2217/fmb.12.121] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Borrelia burgdorferi, a pathogen transmitted by Ixodes ticks, is responsible for a prevalent illness known as Lyme disease, and a vaccine for human use is unavailable. Recently, genome sequences of several B. burgdorferi strains and Ixodes scapularis ticks have been determined. In addition, remarkable progress has been made in developing molecular genetic tools to study the pathogen and vector, including their intricate relationship. These developments are helping unravel the mechanisms by which Lyme disease pathogens survive in a complex enzootic infection cycle. Notable discoveries have already contributed to understanding the spirochete gene regulation accounting for the temporal and spatial expression of B. burgdorferi genes during distinct phases of the lifecycle. A number of pathogen and vector gene products have also been identified that contribute to microbial virulence and/or persistence. These research directions will enrich our knowledge of vector-borne infections and contribute towards the development of preventative strategies against Lyme disease.
Collapse
Affiliation(s)
- Faith Kung
- Department of Veterinary Medicine & Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
80
|
Precipitation of iron on the surface of Leptospira interrogans is associated with mutation of the stress response metalloprotease HtpX. Appl Environ Microbiol 2013; 79:4653-60. [PMID: 23709510 DOI: 10.1128/aem.01097-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High concentrations of free metal ions in the environment can be detrimental to bacterial survival. However, bacteria utilize strategies, including the activation of stress response pathways and immobilizing chemical elements on their surface, to limit this toxicity. In this study, we characterized LA4131, the HtpX-like M48 metalloprotease from Leptospira interrogans, with a putative role in bacterial stress response and membrane homeostasis. Growth of the la4131 transposon mutant strain (L522) in 360 μM FeSO4 (10-fold the normal in vitro concentration) resulted in the production of an amorphous iron precipitate. Atomic force microscopy and transmission electron microscopy analysis of the strain demonstrated that precipitate production was associated with the generation and release of outer membrane vesicles (OMVs) from the leptospiral surface. Transcriptional studies indicated that inactivation of la4131 resulted in altered expression of a subset of metal toxicity and stress response genes. Combining these findings, this report describes OMV production in response to environmental stressors and associates OMV production with the in vitro activity of an HtpX-like metalloprotease.
Collapse
|
81
|
Monte LG, Jorge S, Xavier MA, Leal FM, Amaral MG, Seixas FK, Dellagostin OA, Hartleben CP. Molecular characterization of virulent Leptospira interrogans serogroup icterohaemorrhagiae isolated from Cavia aperea. Acta Trop 2013; 126:164-6. [PMID: 23435256 DOI: 10.1016/j.actatropica.2013.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/31/2013] [Accepted: 02/11/2013] [Indexed: 11/26/2022]
Abstract
Leptospirosis is a worldwide zoonotic infection caused by pathogenic Leptospira. Synanthropic rodents are recognized carriers of leptospires; however, the role of wild rodents in the epidemiology of the disease is still incipient. In this work, we describe Leptospira strain isolated from Cavia aperea (Brazilian guinea pig). The isolated strain was characterized by partial rpoB gene sequencing, variable-number tandem-repeats and histopathological analysis. The strain was identified as Leptospira interrogans, serogroup Icterohaemorrhagiae and caused clinical signs of leptospirosis in the hamster model, attesting to its virulence. In conclusion, these findings could be useful for elucidating the epidemiological role of C. aperea in leptospirosis.
Collapse
|
82
|
Vieira ML, Alvarez-Flores MP, Kirchgatter K, Romero EC, Alves IJ, de Morais ZM, Vasconcellos SA, Chudzinski-Tavassi AM, Nascimento ALTO. Interaction of Leptospira interrogans with human proteolytic systems enhances dissemination through endothelial cells and protease levels. Infect Immun 2013; 81:1764-74. [PMID: 23478319 PMCID: PMC3648023 DOI: 10.1128/iai.00020-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/02/2013] [Indexed: 01/24/2023] Open
Abstract
We have recently reported the ability of Leptospira to capture plasminogen (PLG) and generate plasmin (PLA) bound on the microbial surface in the presence of exogenous activators. In this work, we examined the effects of leptospiral PLG binding for active penetration through the endothelial cell barrier and activation. The results indicate that leptospires with PLG association or PLA activation have enhanced migration activity through human umbilical vein endothelial cell (HUVEC) monolayers compared with untreated bacteria. Leptospira cells coated with PLG were capable of stimulating the expression of PLG activators by HUVECs. Moreover, leptospires endowed with PLG or PLA promoted transcriptional upregulation matrix metalloprotease 9 (MMP-9). Serum samples from patients with confirmed leptospirosis showed higher levels of PLG activators and total MMP-9 than serum samples from normal (healthy) subjects. The highest level of PLG activators and total MMP-9 was detected with microscopic agglutination test (MAT)-negative serum samples, suggesting that this proteolytic activity stimulation occurs at the early stage of the disease. Furthermore, a gelatin zymography profile obtained for MMPs with serum samples from patients with leptospirosis appears to be specific to leptospiral infection because serum samples from patients with unrelated infectious diseases produced no similar degradation bands. Altogether, the data suggest that the Leptospira-associated PLG or PLA might represent a mechanism that contributes to bacterial penetration of endothelial cells through an activation cascade of events that enhances the proteolytic capability of the organism. To our knowledge, this is the first proteolytic activity associated with leptospiral pathogenesis described to date.
Collapse
Affiliation(s)
- Monica L. Vieira
- Centro de Biotecnologia, Instituto Butantan, São Paulo, SP, Brazil
- Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, São Paulo, SP, Brazil
| | | | - Karin Kirchgatter
- Núcleo de Estudos em Malária, Superintendência de Controle de Endemias—SUCEN/IMT-SP, USP, São Paulo, SP, Brazil
| | - Eliete C. Romero
- Centro de Bacteriologia, Instituto Adolfo Lutz, São Paulo, Brazil
| | - Ivy J. Alves
- Centro de Biotecnologia, Instituto Butantan, São Paulo, SP, Brazil
| | - Zenaide M. de Morais
- Laboratorio de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, São Paulo, SP, Brazil
| | - Silvio A. Vasconcellos
- Laboratorio de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, São Paulo, SP, Brazil
| | - Ana M. Chudzinski-Tavassi
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, SP, Brazil
- Programa de Pós-Graduação em Biologia Molecular da UNIFESP, São Paulo, Brazil
| | - Ana L. T. O. Nascimento
- Centro de Biotecnologia, Instituto Butantan, São Paulo, SP, Brazil
- Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, São Paulo, SP, Brazil
| |
Collapse
|
83
|
Takabe K, Nakamura S, Ashihara M, Kudo S. Effect of osmolarity and viscosity on the motility of pathogenic and saprophyticLeptospira. Microbiol Immunol 2013; 57:236-9. [DOI: 10.1111/1348-0421.12018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 12/04/2012] [Accepted: 12/11/2012] [Indexed: 12/01/2022]
Affiliation(s)
- Kyosuke Takabe
- Department of Applied Physics; Graduate School of Engineering, Tohoku University; 6-6-05 Aoba, Aoba-ku; Sendai, Miyagi; 980-8579
| | - Shuichi Nakamura
- Department of Applied Physics; Graduate School of Engineering, Tohoku University; 6-6-05 Aoba, Aoba-ku; Sendai, Miyagi; 980-8579
| | | | - Seishi Kudo
- Department of Applied Physics; Graduate School of Engineering, Tohoku University; 6-6-05 Aoba, Aoba-ku; Sendai, Miyagi; 980-8579
| |
Collapse
|
84
|
Identification of epitopes in Leptospira borgpetersenii leucine-rich repeat proteins. INFECTION GENETICS AND EVOLUTION 2013. [DOI: 10.1016/j.meegid.2012.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
85
|
Pradhan D, Priyadarshini V, Munikumar M, Swargam S, Umamaheswari A, Bitla A. Para-(benzoyl)-phenylalanine as a potential inhibitor against LpxC of Leptospira spp.: homology modeling, docking, and molecular dynamics study. J Biomol Struct Dyn 2013; 32:171-85. [PMID: 23383626 DOI: 10.1080/07391102.2012.758056] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Leptospira interrogans, a Gram-negative bacterial pathogen is the main cause of human leptospirosis. Lipid A is a highly immunoreactive endotoxic center of lipopolysaccharide (LPS) that anchors LPS into the outer membrane of Leptospira. Discovery of compounds inhibiting lipid-A biosynthetic pathway would be promising for dissolving the structural integrity of membrane leading to cell lysis and death of Leptospira. LpxC, a unique enzyme of lipid-A biosynthetic pathway was identified as common drug target of Leptospira. Herein, homology modeling, docking, and molecular dynamics (MD) simulations were employed to discover potential inhibitors of LpxC. A reliable tertiary structure of LpxC in complex with inhibitor BB-78485 was constructed in Modeller 9v8. A data-set of BB-78485 structural analogs were docked with LpxC in Maestro v9.2 virtual screening workflow, which implements three stage Glide docking protocol. Twelve lead molecules with better XP Gscore compared to BB-78485 were proposed as potential inhibitors of LpxC. Para-(benzoyl)-phenylalanine - that showed lowest XP Gscore (-10.35 kcal/mol) - was predicted to have best binding affinity towards LpxC. MD simulations were performed for LpxC and para-(benzoyl)-phenylalanine docking complex in Desmond v3.0. Trajectory analysis showed the docking complex and inter-molecular interactions was stable throughout the entire production part of MD simulations. The results indicate para-(benzoyl)-phenylalanine as a potent drug molecule against leptospirosis. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:10.
Collapse
Affiliation(s)
- Dibyabhaba Pradhan
- a Department of Bioinformatics , SVIMS Bioinformatics Centre, SVIMS University , Tirupati , 517507 , AP , India
| | | | | | | | | | | |
Collapse
|
86
|
Boonsilp S, Thaipadungpanit J, Amornchai P, Wuthiekanun V, Bailey MS, Holden MTG, Zhang C, Jiang X, Koizumi N, Taylor K, Galloway R, Hoffmaster AR, Craig S, Smythe LD, Hartskeerl RA, Day NP, Chantratita N, Feil EJ, Aanensen DM, Spratt BG, Peacock SJ. A single multilocus sequence typing (MLST) scheme for seven pathogenic Leptospira species. PLoS Negl Trop Dis 2013; 7:e1954. [PMID: 23359622 PMCID: PMC3554523 DOI: 10.1371/journal.pntd.0001954] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/26/2012] [Indexed: 01/20/2023] Open
Abstract
Background The available Leptospira multilocus sequence typing (MLST) scheme supported by a MLST website is limited to L. interrogans and L. kirschneri. Our aim was to broaden the utility of this scheme to incorporate a total of seven pathogenic species. Methodology and Findings We modified the existing scheme by replacing one of the seven MLST loci (fadD was changed to caiB), as the former gene did not appear to be present in some pathogenic species. Comparison of the original and modified schemes using data for L. interrogans and L. kirschneri demonstrated that the discriminatory power of the two schemes was not significantly different. The modified scheme was used to further characterize 325 isolates (L. alexanderi [n = 5], L. borgpetersenii [n = 34], L. interrogans [n = 222], L. kirschneri [n = 29], L. noguchii [n = 9], L. santarosai [n = 10], and L. weilii [n = 16]). Phylogenetic analysis using concatenated sequences of the 7 loci demonstrated that each species corresponded to a discrete clade, and that no strains were misclassified at the species level. Comparison between genotype and serovar was possible for 254 isolates. Of the 31 sequence types (STs) represented by at least two isolates, 18 STs included isolates assigned to two or three different serovars. Conversely, 14 serovars were identified that contained between 2 to 10 different STs. New observations were made on the global phylogeography of Leptospira spp., and the utility of MLST in making associations between human disease and specific maintenance hosts was demonstrated. Conclusion The new MLST scheme, supported by an updated MLST website, allows the characterization and species assignment of isolates of the seven major pathogenic species associated with leptospirosis. Leptospirosis is a common zoonotic disease worldwide. Genotyping of the causative organisms provides important insights into disease transmission and informs preventive strategies and vaccine development. Multilocus sequence typing (MLST) is the most widespread genotyping methodology for bacterial pathogens, but the Leptospira scheme supported by a public MLST database is currently only applicable to L. interrogans and L. kirschneri. The purpose of this study was to extend the scheme to a total of seven pathogenic Leptospira species. This was achieved through the development of a modified scheme in which one of the seven MLST loci was replaced, together with newly designed primers for the remaining 6 loci. Comparison of the original and modified scheme demonstrated that they were very similar, hence sequence type (ST) assignments were largely carried over to the modified scheme. Phylogenetic trees reconstructed from concatenated sequences of the seven loci of the modified scheme demonstrated perfect classification of isolates into seven pathogenic species, which resided in clearly distinct phylogenetic clusters. Congruence was low between STs and serovars. The MLST scheme was used to gain new insights into the population genetic structure of Leptospira species associated with clinical disease and maintenance hosts in Asia.
Collapse
Affiliation(s)
- Siriphan Boonsilp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Janjira Thaipadungpanit
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- * E-mail:
| | - Premjit Amornchai
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Vanaporn Wuthiekanun
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mark S. Bailey
- Department of Infection and Tropical Medicine, Birmingham Heartlands Hospital, West Midlands, United Kingdom
| | | | - Cuicai Zhang
- Department of Leptospirosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xiugao Jiang
- Department of Leptospirosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Nobuo Koizumi
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kyle Taylor
- Laboratory of Wildlife Biology and Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Renee Galloway
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Diseases Control and Prevention, Atlanta, Georgia, United States of America
| | - Alex R. Hoffmaster
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Diseases Control and Prevention, Atlanta, Georgia, United States of America
| | - Scott Craig
- WHO/FAO/OIE Collaborating Center for Reference and Research on Leptospirosis, Queensland Health Forensic and Scientific Services, Health Services Support Agency, Queensland Health, Brisbane, Queensland, Australia
| | - Lee D. Smythe
- WHO/FAO/OIE Collaborating Center for Reference and Research on Leptospirosis, Queensland Health Forensic and Scientific Services, Health Services Support Agency, Queensland Health, Brisbane, Queensland, Australia
| | - Rudy A. Hartskeerl
- WHO/FAO/OIE and National Leptospirosis Reference Centre, KIT Biomedical Research, Royal Tropical Institute, Amsterdam, The Netherlands
| | - Nicholas P. Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Center for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Narisara Chantratita
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Edward J. Feil
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - David M. Aanensen
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Brian G. Spratt
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Sharon J. Peacock
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
87
|
Characterization of LIC11207, a novel leptospiral protein that is recognized by human convalescent sera and prevents apoptosis of polymorphonuclear leukocytes. Microb Pathog 2012; 56:21-8. [PMID: 23092690 DOI: 10.1016/j.micpath.2012.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 10/09/2012] [Accepted: 10/15/2012] [Indexed: 01/01/2023]
Abstract
We report the study of a predicted outer-membrane leptospiral protein encoded by the gene lic11207. This protein is conserved in several pathogenic leptospiral strains but is absent in the saprophyte Leptospira biflexa. This putative outer-membrane protein has a domain of unknown function (DUF) 1565 found in several phylogenetically diverse bacteria and in the archaeon Methanosarcina acetivorans. The gene was cloned and expressed in Escherichia coli BL21 (SI) strain using the expression vector pDEST17. The 34 kDa recombinant protein was tagged with N-terminal hexahistidine and purified by metal-charged chromatography. The purified protein was used to assess: reactivity with human convalescent sera; in vivo expression; ability to activate endothelial cells (EC); and ability to modulate the apoptosis of polymorphonuclear cells (PMNs). The LIC11207 coding sequence was identified in vivo in the hamster renal tubules during experimental infection with Leptospira interrogans. The rLIC11207 showed significant antigenicity against human convalescent sera when compared with sera from healthy donors. The recombinant protein did not alter the surface expression of E-selectin or intercellular adhesion molecule 1 (ICAM-1) in EC and failed to induce the release of von Willebrand factor (vWF). Interestingly, rLIC11207 delayed apoptosis of PMNs suggesting a possible role of this protein during the infection.
Collapse
|
88
|
Atzingen MV, Vieira ML, Oliveira R, Domingos RF, Mendes RS, Barros AT, Gonçales AP, de Morais ZM, Vasconcellos SA, Nascimento AL. Evaluation of immunoprotective activity of six leptospiral proteins in the hamster model of leptospirosis. Open Microbiol J 2012; 6:79-87. [PMID: 23173023 PMCID: PMC3502890 DOI: 10.2174/1874285801206010079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/23/2012] [Accepted: 07/18/2012] [Indexed: 01/26/2023] Open
Abstract
Leptospirosis is a worldwide zoonosis caused by pathogenic Leptospira. The whole-genome sequence of L. interrogans serovar Copenhageni together with bioinformatics tools represent a great opportunity to search for novel antigen candidates that could be used as subunit vaccine against leptospirosis. We focused on six genes encoding for conserved hypothetical proteins predicted to be exported to the outer membrane. The genes were amplified by PCR from Leptospira interrogans genomic DNA and were cloned and expressed in Escherichia coli. The recombinant proteins tagged with N-terminal hexahistidine were purified by metal-charged chromatography. The immunization of hamsters followed by challenge with lethal dose of virulent strain of Leptospira showed that the recombinant proteins Lsa21, Lsa66 and rLIC11030 elicited partial protection to animals. These proteins could be used combined or in a mixture with novel adjuvants in order to improve their effectiveness.
Collapse
Affiliation(s)
- Marina V Atzingen
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Plasminogen binding proteins and plasmin generation on the surface of Leptospira spp.: the contribution to the bacteria-host interactions. J Biomed Biotechnol 2012; 2012:758513. [PMID: 23118516 PMCID: PMC3481863 DOI: 10.1155/2012/758513] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 06/11/2012] [Accepted: 06/25/2012] [Indexed: 11/23/2022] Open
Abstract
Leptospirosis is considered a neglected infectious disease of human and veterinary concern. Although extensive investigations on host-pathogen interactions have been pursued by several research groups, mechanisms of infection, invasion and persistence of pathogenic Leptospira spp. remain to be elucidated. We have reported the ability of leptospires to bind human plasminogen (PLG) and to generate enzimatically active plasmin (PLA) on the bacteria surface. PLA-coated Leptospira can degrade immobilized ECM molecules, an activity with implications in host tissue penetration. Moreover, we have identified and characterized several proteins that may act as PLG-binding receptors, each of them competent to generate active plasmin. The PLA activity associated to the outer surface of Leptospira could hamper the host immune attack by conferring the bacteria some benefit during infection. The PLA-coated leptospires obstruct complement C3b and IgG depositions on the bacterial surface, most probably through degradation. The decrease of leptospiral opsonization might be an important aspect of the immune evasion strategy. We believe that the presence of PLA on the leptospiral surface may (i) facilitate host tissue penetration, (ii) help the bacteria to evade the immune system and, as a consequence, (iii) permit Leptospira to reach secondary sites of infection.
Collapse
|
90
|
Chou LF, Chen YT, Lu CW, Ko YC, Tang CY, Pan MJ, Tian YC, Chiu CH, Hung CC, Yang CW. Sequence of Leptospira santarosai serovar Shermani genome and prediction of virulence-associated genes. Gene 2012; 511:364-70. [PMID: 23041083 DOI: 10.1016/j.gene.2012.09.074] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 09/10/2012] [Accepted: 09/12/2012] [Indexed: 01/19/2023]
Abstract
Leptospirosis, a widespread zoonosis, is a re-emerging infectious disease caused by pathogenic Leptospira species. In Taiwan, Leptospira santarosai serovar Shermani is the most frequently isolated serovar, causing both renal and systemic infections. This study aimed to generate a L. santarosai serovar Shermani genome sequence and categorize its hypothetical genes, particularly those associated with virulence. The genome sequence consists of 3,936,333 nucleotides and 4033 predicted genes. Additionally, 2244 coding sequences could be placed into clusters of orthologous groups and the number of genes involving cell wall/membrane/envelope biogenesis and defense mechanisms was higher than that of other Leptospira spp. Comparative genetic analysis based on BLASTX data revealed that about 73% and 68.8% of all coding sequences have matches to pathogenic L. interrogans and L. borgpetersenii, respectively, and about 57.6% to saprophyte L. biflexa. Among the hypothetical proteins, 421 have a transmembrane region, 172 have a signal peptide and 17 possess a lipoprotein signature. According to PFAM prediction, 32 hypothetical proteins have properties of toxins and surface proteins mediated bacterial attachment, suggesting they may have roles associated with virulence. The availability of the genome sequence of L. santarosai serovar Shermani and the bioinformatics re-annotation of leptospiral hypothetical proteins will facilitate further functional genomic studies to elucidate the pathogenesis of leptospirosis and develop leptospiral vaccines.
Collapse
Affiliation(s)
- Li-Fang Chou
- Kidney Research Center, Chang Gung Memorial Hospital, Linkou, and College of Medicine, Chang Gung University, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Detection of Virulence Factors and Molecular Typing of Pathogenic Leptospira from Capybara (Hydrochaeris hydrochaeris). Curr Microbiol 2012; 65:461-4. [DOI: 10.1007/s00284-012-0169-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/01/2012] [Indexed: 11/25/2022]
|
92
|
Cesar KR, Romero EC, de Bragança AC, Blanco RM, Abreu PAE, Magaldi AJ. Renal involvement in leptospirosis: the effect of glycolipoprotein on renal water absorption. PLoS One 2012; 7:e37625. [PMID: 22701573 PMCID: PMC3368910 DOI: 10.1371/journal.pone.0037625] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/22/2012] [Indexed: 11/28/2022] Open
Abstract
Background Leptospirotic renal lesions frequently produce a polyuric form of acute kidney injury with a urinary concentration defect. Our study investigated a possible effect of the glycolipoprotein, (GLPc) extracted from L. interrogans, on vasopressin (Vp) action in the guinea pig inner medullary collecting duct (IMCD). Methods The osmotic water permeability (Pf µm/s) was measured by the microperfusion in vitro technique. AQP2 protein abundance was determined by Western Blot. Three groups were established for study as follows: Group I, IMCD from normal (ngp, n = 5) and from leptospirotic guinea-pigs (lgp-infected with L. interrogans serovar Copenhageni, GLPc, n = 5); Group II, IMCD from normal guinea-pigs in the presence of GLPc (GLPc group, n = 54); Group III, IMCD from injected animals with GLPc ip (n = 8). Results In Group I, Pfs were: ngp- 61.8±22.1 and lgp- 8.8±12.4, p<0.01 and the urinary osmolalities were: lgp-735±64 mOsm/Kg and ngp- 1,632±120 mOsm/Kg. The lgp BUN was higher (176±36 mg%) than the ngp (56±9 mg%). In Group II, the Pf was measured under GLPc (250 µg/ml) applied directly to the bath solution of the microperfused normal guinea-pig IMCDs. GLPc blocked Vp (200 pg/ml,n = 5) action, did not block cAMP (10−4 M,) and Forskolin (Fors- 10−9 M) action, but partially blocked Cholera Toxin (ChT- 10−9 M) action. GLP from L.biflexa serovar patoc (GLPp, non pathogenic, 250 µg) did not alter Vp action. In Group III, GLPc (250 µg) injected intraperitoneally produced a decrease of about 20% in IMCD Aquaporin 2 expression. Conclusion The IMCD Pf decrease caused by GLP is evidence, at least in part, towards explaining the urinary concentrating incapacity observed in infected guinea-pigs.
Collapse
Affiliation(s)
- Katia Regina Cesar
- Basic Research Lab-LIM 12, Nephrology-HCFMUSP, São Paulo, São Paulo, Brazil
| | | | | | | | | | - Antonio José Magaldi
- Basic Research Lab-LIM 12, Nephrology-HCFMUSP, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
93
|
Andrade GI, Brown PD. A comparative analysis of the attachment of Leptospira interrogans and L. borgpetersenii to mammalian cells. ACTA ACUST UNITED AC 2012; 65:105-15. [PMID: 22409511 DOI: 10.1111/j.1574-695x.2012.00953.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/15/2012] [Accepted: 03/02/2012] [Indexed: 11/28/2022]
Abstract
Leptospirosis, the world's most ubiquitous zoonosis, is caused by pathogenic Leptospira. As microbe-host interactions are specific in pathogenesis, it is likely that there are several molecules mediating the attachment of the Leptospira to mammalian cells. In this study, we analysed the attachment of Leptospira interrogans serovar Portlandvere and Leptospira borgpetersenii serovar Jules to untreated HEp-2 cells or HEp-2 cells treated with the various enzymes, lectins or sugars and to integrins αVβ3 and α5β1, relative to control wells. We found that both serovars bound equally well to HEp-2 cells; however, serovar Jules showed a higher level of attachment to integrins. Both serovars showed an increase in attachment to HEp-2 cells coated with lectins peanut agglutinin, Ulex europaeus agglutinin, soybean agglutinin and Erythrina cristagalli agglutinin (p < 0.05); in the case of Concanavalin A, Jules showed an increase, while Portlandvere showed a significant decrease in attachment. Trypsinizing monolayers resulted in a decrease in attachment for both serovars, while when chondroitinase, neuraminidase and heparinase were used an increase in attachment was recorded. Leptospires coated with sugars showed a decrease in attachment. These results show that serovar Jules' general greater affinity for the mediators examined may suggest a greater potential for virulence over serovar Portlandvere.
Collapse
Affiliation(s)
- Gabrielle I Andrade
- Basic Medical Sciences Department, Faculty of Medical Sciences, University of the West Indies, Kingston, Jamaica
| | | |
Collapse
|
94
|
Computer aided subunit vaccine design against pathogenic Leptospira serovars. Interdiscip Sci 2012; 4:38-45. [DOI: 10.1007/s12539-012-0118-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 04/27/2011] [Accepted: 05/17/2011] [Indexed: 10/28/2022]
|
95
|
Leptospire genomic diversity revealed by microarray-based comparative genomic hybridization. Appl Environ Microbiol 2012; 78:3045-50. [PMID: 22344655 DOI: 10.1128/aem.07465-11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comparative genomic hybridization was used to compare genetic diversity of five strains of Leptospira (Leptospira interrogans serovars Bratislava, Canicola, and Hebdomadis and Leptospira kirschneri serovars Cynopteri and Grippotyphosa). The array was designed based on two available sequenced Leptospira reference genomes, those of L. interrogans serovar Copenhageni and L. interrogans serovar Lai. A comparison of genetic contents showed that L. interrogans serovar Bratislava was closest to the reference genomes while L. kirschneri serovar Grippotyphosa had the least similarity to the reference genomes. Cluster analysis indicated that L. interrogans serovars Bratislava and Hebdomadis clustered together first, followed by L. interrogans serovar Canicola, before the two L. kirschneri strains. Confirmed/potential virulence factors identified in previous research were also detected in the tested strains.
Collapse
|
96
|
Truong KN, Coburn J. The emergence of severe pulmonary hemorrhagic leptospirosis: questions to consider. Front Cell Infect Microbiol 2012; 1:24. [PMID: 22919589 PMCID: PMC3417368 DOI: 10.3389/fcimb.2011.00024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 12/19/2011] [Indexed: 12/14/2022] Open
Abstract
Since the 1980s, the incidence of severe pulmonary hemorrhage caused by Leptospira spp. infection has increased. The mild, non-specific symptoms or the more classical form of severe disease with hepatorenal manifestations, Weil's syndrome, predominate world-wide. However, several regions of the world have seen increases in numbers of patients with pulmonary hemorrhage attributed to leptospirosis. The reasons behind the emergence of this syndrome, which carries a high mortality rate, are not known. Several avenues for future research may shed light on the mechanisms involved in development of pulmonary hemorrhage, and inform targeted therapeutics to improve outcomes. Possibilities to consider include: (1) emergence of new bacterial strains, (2) acquisition of virulence traits by strains in the endemic regions, (3) changes in underlying health of the affected human populations, and (4) increased recognition of the syndrome and better record keeping by the medical and veterinary communities. Determining the causes of emerging clinical manifestations presents challenges and opportunities for potentially life-saving research into the pathogenesis of a number of infectious diseases, including leptospirosis.
Collapse
|
97
|
Boonsilp S, Thaipadungpanit J, Amornchai P, Wuthiekanun V, Chierakul W, Limmathurotsakul D, Day NP, Peacock SJ. Molecular detection and speciation of pathogenic Leptospira spp. in blood from patients with culture-negative leptospirosis. BMC Infect Dis 2011; 11:338. [PMID: 22151687 PMCID: PMC3297668 DOI: 10.1186/1471-2334-11-338] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 12/13/2011] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Pathogenic Leptospira spp. present in the blood of patients with leptospirosis during the first week of symptoms can be detected using culture or PCR. A proportion of patients who are positive by PCR are negative by culture. Leptospira spp. are fastidious bacteria, and we hypothesized that a false-negative culture result may represent infection with a distinct bacterial subset that fail to grow in standard culture medium. METHODS We evaluated our hypothesis during a prospective study of 418 consecutive patients presenting to a hospital in northeast Thailand with an acute febrile illness. Admission blood samples were taken for Leptospira culture and PCR. A single tube nested PCR that amplified a region of the rrs gene was developed and applied, amplicons sequenced and a phylogenetic tree reconstructed. RESULTS 39/418 (9%) patients were culture-positive for Leptospira spp., and 81/418 (19%) patients were culture-negative but rrs PCR-positive. The species associated with culture-positive leptospirosis (37 L. interrogans and 2 L. borgpetersenii) were comparable to those associated with culture-negative, PCR-positive leptospirosis (76 L. interrogans, 4 L. borgpetersenii, 1 unidentified, possibly new species). CONCLUSION Molecular speciation failed to identify a unique bacterial subset in patients with culture-negative, PCR-positive leptospirosis. The rate of false-negative culture was high, and we speculate that antibiotic pre-treatment is the most likely explanation for this.
Collapse
Affiliation(s)
- Siriphan Boonsilp
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
98
|
The novel leptospiral surface adhesin Lsa20 binds laminin and human plasminogen and is probably expressed during infection. Infect Immun 2011; 79:4657-67. [PMID: 21844229 DOI: 10.1128/iai.05583-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leptospirosis is an emerging infectious disease caused by pathogenic species of Leptospira. In this work, we report the cloning, expression, purification, and characterization of two predicted leptospiral outer membrane proteins, LIC11469 and LIC11030. The LIC11469 protein is well conserved among leptospiral strains, while LIC11030 was identified only in Leptospira interrogans. We confirmed by surface proteolysis of intact leptospires with proteinase K that these proteins are most likely new surface leptospiral proteins. The recombinant proteins were evaluated for their capacity to attach to extracellular matrix (ECM) components and to plasminogen. The leptospiral protein encoded by LIC11469, named Lsa20 (leptospiral surface adhesin of 20 kDa), binds to laminin and to plasminogen. The binding with both components was not detected when Lsa20 was previously denatured or blocked with anti-Lsa20 antibodies. Moreover, Lsa20 binding to laminin was also confirmed by surface plasmon resonance (SPR). Laminin competes with plasminogen for binding to Lsa20, suggesting the same ligand-binding site. Lsa20-bound plasminogen could be converted to enzymatically active plasmin, capable of cleaving plasmin substrate d-valyl-leucyl-lysine-p-nitroanilide dihydrochloride. Lsa20 was recognized by antibodies in confirmed-leptospirosis serum samples, suggesting that this protein is expressed during infection. Taken together, our results indicate that Lsa20 is a novel leptospiral adhesin that in concert with the host-derived plasmin may help the bacteria to adhere and to spread through the hosts.
Collapse
|
99
|
Oliveira R, de Morais ZM, Gonçales AP, Romero EC, Vasconcellos SA, Nascimento ALTO. Characterization of novel OmpA-like protein of Leptospira interrogans that binds extracellular matrix molecules and plasminogen. PLoS One 2011; 6:e21962. [PMID: 21755014 PMCID: PMC3130794 DOI: 10.1371/journal.pone.0021962] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 06/15/2011] [Indexed: 11/30/2022] Open
Abstract
Leptospira interrogans is the etiological agent of leptospirosis, a zoonotic disease of human and veterinary concern. The identification of novel proteins that mediate host-pathogen interactions is important for understanding the bacterial pathogenesis as well as to identify protective antigens that would help fight the disease. We describe in this work the cloning, expression, purification and characterization of three predicted leptospiral membrane proteins, LIC10258, LIC12880 (Lp30) and LIC12238. We have employed Escherichia coli BL21 (SI) strain as a host expression system. Recently, we have identified LIC12238 as a plasminogen (PLG)-binding receptor. We show now that Lp30 and rLIC10258 are also PLG-receptors of Leptospira, both exhibiting dose-dependent and saturating binding (K(D), 68.8±25.2 nM and 167.39±60.1 nM, for rLIC10258 and rLIC12880, respectively). In addition, LIC10258, which is a novel OmpA-like protein, binds laminin and plasma fibronectin ECM molecules and hence, it was named Lsa66 (Leptospiral surface adhesin of 66 kDa). Binding of Lsa66 to ECM components was determined to be specific, dose-dependent and saturable, with a K(D) of 55.4±15.9 nM to laminin and of 290.8±11.8 nM to plasma fibronectin. Binding of the recombinant proteins to PLG or ECM components was assessed by using antibodies against each of the recombinant proteins obtained in mice and confirmed by monoclonal anti-polyhistidine antibodies. Lsa66 caused partial inhibition on leptospiral adherence to immobilized ECM and PLG. Moreover, this adhesin and rLIC12238 are recognized by antibodies in serum samples of confirmed leptospirosis cases. Thus, Lsa66 is a novel OmpA-like protein with dual activity that may promote the attachment of Leptospira to host tissues and may contribute to the leptospiral invasion. To our knowledge, this is the first leptospiral protein with ECM and PLG binding properties reported to date.
Collapse
Affiliation(s)
- Rosane Oliveira
- Centro de Biotecnologia, Instituto Butantan, São Paulo, Brazil
- Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Zenaide Maria de Morais
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Amane Paldes Gonçales
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | | | - Silvio Arruda Vasconcellos
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Ana L. T. O. Nascimento
- Centro de Biotecnologia, Instituto Butantan, São Paulo, Brazil
- Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
100
|
Fraga TR, Barbosa AS, Isaac L. Leptospirosis: aspects of innate immunity, immunopathogenesis and immune evasion from the complement system. Scand J Immunol 2011; 73:408-19. [PMID: 21204903 DOI: 10.1111/j.1365-3083.2010.02505.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Leptospirosis is a neglected infectious disease caused by spirochetes from the genus Leptospira. It constitutes a major public health problem in developing countries, with outcomes ranging from subclinical infections to fatal pulmonary haemorrhage and Weil's syndrome. To successfully establish an infection, leptospires bind to extracellular matrix compounds and host cells. The interaction of leptospires with pathogen recognition receptors is a fundamental issue in leptospiral immunity as well as in immunophatology. Pathogenic but not saprophytic leptospires are able to evade the host complement system, circulate in the blood and spread into tissues. The target organs in human leptospirosis include the kidneys and the lungs. The association of an autoimmune process with these pathologies has been explored and diverse mechanisms that permit leptospires to survive in the kidneys of reservoir animals have been proposed. However, despite the intense research aimed at the development of a leptospirosis vaccine supported by the genome sequencing of Leptospira strains, there have been relatively few studies focused on leptospiral immunity. The knowledge of evasion strategies employed by pathogenic leptospires to subvert the immune system is of extreme importance as they may represent targets for the development of new treatments and prophylactic approaches in leptospirosis.
Collapse
Affiliation(s)
- T R Fraga
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | |
Collapse
|