51
|
Automatic Detection of Open and Vegetated Water Bodies Using Sentinel 1 to Map African Malaria Vector Mosquito Breeding Habitats. REMOTE SENSING 2019. [DOI: 10.3390/rs11050593] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Providing timely and accurate maps of surface water is valuable for mapping malaria risk and targeting disease control interventions. Radar satellite remote sensing has the potential to provide this information but current approaches are not suitable for mapping African malarial mosquito aquatic habitats that tend to be highly dynamic, often with emergent vegetation. We present a novel approach for mapping both open and vegetated water bodies using serial Sentinel-1 imagery for Western Zambia. This region is dominated by the seasonally inundated Upper Zambezi floodplain that suffers from a number of public health challenges. The approach uses open source segmentation and machine learning (extra trees classifier), applied to training data that are automatically derived using freely available ancillary data. Refinement is implemented through a consensus approach and Otsu thresholding to eliminate false positives due to dry flat sandy areas. The results indicate a high degree of accuracy (mean overall accuracy 92% st dev 3.6) providing a tractable solution for operationally mapping water bodies in similar large river floodplain unforested environments. For the period studied, 70% of the total water extent mapped was attributed to vegetated water, highlighting the importance of mapping both open and vegetated water bodies for surface water mapping.
Collapse
|
52
|
Mukabana WR, Onyango JA, Mweresa CK. Artisanal fishing supports breeding of malaria mosquitoes in Western Kenya. Malar J 2019; 18:77. [PMID: 30866935 PMCID: PMC6417063 DOI: 10.1186/s12936-019-2708-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 03/06/2019] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Everyday hundreds of people, mainly men, set out to take part in a vibrant artisanal capture fishing (ACF) industry on Lake Victoria. It is not known whether actions of artisanal fishers, in their unrelenting quest for existence, surpass ecosystems' sustainability thresholds with potentially negative repercussions on human health with respect to malaria transmission potential. This article sought to fill this information gap. METHODS This study used an ecosystem approach to find out how ACF processes facilitate the breeding of mosquitoes. The observational study adopted a cross-sectional design and was carried out on Mageta Island situated inside Lake Victoria in western Kenya. RESULTS Of the 87 mosquito larval habitats identified 27 (31%) were created through ACF activities. The ACF-related habitats, hereafter collectively referred to as 'fishing habitats', included fishing boats (24), trenches (1) and fish bait mines (2). About half (48%) of Anopheles larvae were recovered from fishing habitats. The mean larval density in the fishing habitats (35.7 ± 1.15) was double that in non-fishing habitats (17.4 ± 0.539). Despite being the most common 'non-fishing habitat' type (N = 32), the mean number of Anopheles larvae present in rock pools (30.81 ± 10.54) was significantly less than those found inside fishing boats (N = 24; 40.08 ± 10.16). Overall, man-made habitats and those used to support livelihoods contained significantly more Anopheles larvae. CONCLUSIONS These data show that artisanal capture fishing is a key driver of malaria epidemiology on Mageta Island. This suggests that larval source management strategies in the global south should pay attention to the heterogeneity in Anopheles breeding habitats created through livelihood activities.
Collapse
Affiliation(s)
- Wolfgang Richard Mukabana
- School of Biological Sciences, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
- Science for Health, P.O. Box 44970-00100, Nairobi, Kenya.
| | - Janet Achieng Onyango
- School of Biological Sciences, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
- Science for Health, P.O. Box 44970-00100, Nairobi, Kenya
| | - Collins Kalwale Mweresa
- Science for Health, P.O. Box 44970-00100, Nairobi, Kenya
- School of Biological and Physical Sciences, Jaramogi Oginga Odinga University of Science and Technology, P.O. Box 210-40601, Bondo, Kenya
| |
Collapse
|
53
|
Collins CM, Bonds JAS, Quinlan MM, Mumford JD. Effects of the removal or reduction in density of the malaria mosquito, Anopheles gambiae s.l., on interacting predators and competitors in local ecosystems. MEDICAL AND VETERINARY ENTOMOLOGY 2019; 33:1-15. [PMID: 30044507 PMCID: PMC6378608 DOI: 10.1111/mve.12327] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/23/2018] [Accepted: 06/15/2018] [Indexed: 05/23/2023]
Abstract
New genetic control methods for mosquitoes may reduce vector species without direct effects on other species or the physical environment common with insecticides or drainage. Effects on predators and competitors could, however, be a concern as Anopheles gambiae s.l. is preyed upon in all life stages. We overview the literature and assess the strength of the ecological interactions identified. Most predators identified consume many other insect species and there is no evidence that any species preys exclusively on any anopheline mosquito. There is one predatory species with a specialisation on blood-fed mosquitoes including An. gambiae s.l.. Evarcha culicivora is a jumping spider, known as the vampire spider, found around Lake Victoria. There is no evidence that these salticids require Anopheles mosquitoes and will readily consume blood-fed Culex. Interspecific competition studies focus on other mosquitoes of larval habitats. Many of these take place in artificial cosms and give contrasting results to semi-field studies. This may limit their extrapolation regarding the potential impact of reduced An. gambiae numbers. Previous mosquito control interventions are informative and identify competitive release and niche opportunism; so while the identity and relative abundance of the species present may change, the biomass available to predators may not.
Collapse
Affiliation(s)
- C. M. Collins
- Centre for Environmental PolicyImperial College LondonLondonU.K.
| | - J. A. S. Bonds
- Bonds Consulting Group LLCPanama City Beach, FloridaU.S.A.
| | - M. M. Quinlan
- Centre for Environmental PolicyImperial College LondonLondonU.K.
| | - J. D. Mumford
- Centre for Environmental PolicyImperial College LondonLondonU.K.
| |
Collapse
|
54
|
Eneh LK, Fillinger U, Borg Karlson AK, Kuttuva Rajarao G, Lindh J. Anopheles arabiensis oviposition site selection in response to habitat persistence and associated physicochemical parameters, bacteria and volatile profiles. MEDICAL AND VETERINARY ENTOMOLOGY 2019; 33:56-67. [PMID: 30168151 PMCID: PMC6359949 DOI: 10.1111/mve.12336] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 05/11/2018] [Accepted: 07/24/2018] [Indexed: 05/16/2023]
Abstract
A better understanding of the oviposition behaviour of malaria vectors might facilitate the development of new vector control tools. However, the factors that guide the aquatic habitat selection of gravid females are poorly understood. The present study explored the relative attractiveness of similar artificial ponds (0.8 m2 ) aged at varying lengths prior to opening in such a way that wild Anopheles arabiensis could choose between ponds that were freshly set up, or were aged 4 or 17 days old, to lay eggs. Physicochemical parameters, bacterial profile and volatile organic compounds emitted from ponds were investigated over three experimental rounds. Fresh ponds contained on average twice as many An. arabiensis instar larvae (mean 50, 95% confidence interval (CI) = 29-85) as the ponds that had aged 4 days (mean = 24, 95% CI = 14-42) and 17 days (mean = 20, 95% CI: 12-34). Fresh ponds were associated with a significantly higher turbidity combined with higher water temperature, higher nitrite levels and a lower pH and chlorophyll level than the older ponds. Round by round analyses suggested that bacteria communities differed between age groups and also that 4-heptanone, 2-ethylhexanal and an isomer of octenal were exclusively detected from the fresh ponds. These characteristics may be useful with respect to developing attract and kill strategies for malaria vector control.
Collapse
Affiliation(s)
- L K Eneh
- Chemical Ecology, Department of Chemistry, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - U Fillinger
- International Centre of Insect Physiology and Ecology, Human Health Theme, Thomas Odhiambo Campus, Mbita, Kenya
| | - A K Borg Karlson
- Chemical Ecology, Department of Chemistry, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - G Kuttuva Rajarao
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, Stockholm, Sweden
| | - J Lindh
- Chemical Ecology, Department of Chemistry, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
55
|
Barreaux AMG, Stone CM, Barreaux P, Koella JC. The relationship between size and longevity of the malaria vector Anopheles gambiae (s.s.) depends on the larval environment. Parasit Vectors 2018; 11:485. [PMID: 30157916 PMCID: PMC6114828 DOI: 10.1186/s13071-018-3058-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/10/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Understanding the variation in vector-borne disease transmission intensity across time and space relies on a thorough understanding of the impact of environmental factors on vectorial capacity traits of mosquito populations. This is driven primarily by variation in larval development and growth, with carryover effects influencing adult traits such as longevity and adult body size. The relationship between body size and longevity strongly affects the evolution of life histories and the epidemiology of vector-borne diseases. This relationship ranges from positive to negative but the reasons for this variability are not clear. Both traits depend on a number of environmental factors, but primarily on temperature as well as availability of nutritional resources. We therefore asked how the larval environment of the mosquito Anopheles gambiae Giles (sensu stricto) (Diptera: Culicidae) affects the relationship between body size and longevity. METHODS We reared the larvae of An. gambiae individually at three temperatures (21, 25 and 29 °C) and two food levels (the standard and 50% of our laboratory diet) and measured adult size and longevity. We estimated the direct and indirect (via adult size) effects of food and temperature on longevity with a piecewise structural equation model (SEM). RESULTS We confirmed the direct effects of food and temperature during larval development on body size, as wing length decreased with increasing temperature and decreasing food levels. While the overall relationship between size and longevity was weak, we measured striking differences among environments. At 25 °C there was no clear relationship between size and longevity; at 29 °C the association was negative with standard food but positive with low food; whereas at 21 °C it was positive with standard food but negative with low food. CONCLUSIONS The larval environment influences the adult's fitness in complex ways with larger mosquitoes living longer in some environments but not in others. This confirmed our hypothesis that the relationship between size and longevity is not limited to a positive correlation. A better understanding of this relationship and its mechanisms may improve the modelling of the transmission of vector borne diseases, the evolution of life history traits, and the influence of vector control.
Collapse
Affiliation(s)
- Antoine M. G. Barreaux
- Center for Infectious Disease Dynamics and Department of Entomology, Pennsylvania State University, University Park, PA 16802 USA
- Laboratory of Ecology and Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Chris M. Stone
- Illinois Natural History Survey, University of Illinois, Champaign, IL 61820 USA
| | - Priscille Barreaux
- Center for Infectious Disease Dynamics and Department of Entomology, Pennsylvania State University, University Park, PA 16802 USA
- Laboratory of Ecology and Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Jacob C. Koella
- Laboratory of Ecology and Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| |
Collapse
|
56
|
Huang J, Miller JR, Walker ED. Cannibalism of Egg and Neonate Larvae by Late Stage Conspecifics of Anopheles gambiae (Diptera: Culicidae): Implications for Ovipositional Studies. JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:801-807. [PMID: 29697815 DOI: 10.1093/jme/tjy059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Indexed: 06/08/2023]
Abstract
Laboratory experiments intended to test the effects of a purported ovipositional deterrent pheromone of Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) led instead to the finding that egg cannibalism by fourth-instar larvae explained the 'deterrent effect' rather than chemical signals from larvae. Virtually no eggs were counted from cups containing fourth-instar larvae, after oviposition. Numbers of eggs from cups containing younger, conspecific larvae, or pupae did not differ significantly from water only control. Video recording of larval behavior revealed that fourth-instar larvae consumed entire eggs in one continuous ingestive bout. Egg output in the presence of fourth-instar larvae with their mouthparts sealed was similar to the larvae-absent treatment, but nearly 100-fold greater than that counted in the presence of fourth-instar larvae that could eat freely. Thus, the huge egg reduction in eggs counted in the presence of fourth-instar larvae was due to egg cannibalism, not because presence of these larvae deterred oviposition as has been reported in previous studies. Third and especially fourth-instar larvae also cannibalized newly hatched first-instar larvae. Artificial food availability did not eliminate but did reduce cannibalism during first several hours of exposure. The rate at which fourth-instar larvae consumed conspecifics rose significantly and linearly with prey density, generating a non-plateauing, type I functional response curve. These results clearly show that care must be taken such that mosquito ovipositional experiments are not confounded by presence of cannibalizing larvae.
Collapse
Affiliation(s)
- Juan Huang
- Department of Entomology, Michigan State University, East Lansing, MI
| | - James R Miller
- Department of Entomology, Michigan State University, East Lansing, MI
| | - Edward D Walker
- Department of Entomology, Michigan State University, East Lansing, MI
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI
| |
Collapse
|
57
|
M’Bra RK, Kone B, Soro DP, N’krumah RTAS, Soro N, Ndione JA, Sy I, Ceccato P, Ebi KL, Utzinger J, Schindler C, Cissé G. Impact of climate variability on the transmission risk of malaria in northern Côte d'Ivoire. PLoS One 2018; 13:e0182304. [PMID: 29897901 PMCID: PMC5999085 DOI: 10.1371/journal.pone.0182304] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/16/2018] [Indexed: 11/19/2022] Open
Abstract
Since the 1970s, the northern part of Côte d'Ivoire has experienced considerable fluctuation in its meteorology including a general decrease of rainfall and increase of temperature from 1970 to 2000, a slight increase of rainfall since 2000, a severe drought in 2004-2005 and flooding in 2006-2007. Such changing climate patterns might affect the transmission of malaria. The purpose of this study was to analyze climate and environmental parameters associated with malaria transmission in Korhogo, a city in northern Côte d'Ivoire. All data were collected over a 10-year period (2004-2013). Rainfall, temperature and Normalized Difference Vegetation Index (NDVI) were the climate and environmental variables considered. Association between these variables and clinical malaria data was determined, using negative binomial regression models. From 2004 to 2013, there was an increase in the annual average precipitation (1100.3-1376.5 mm) and the average temperature (27.2°C-27.5°C). The NDVI decreased from 0.42 to 0.40. We observed a strong seasonality in these climatic variables, which resembled the seasonality in clinical malaria. An incremental increase of 10 mm of monthly precipitation was, on average, associated with a 1% (95% Confidence interval (CI): 0.7 to 1.2%) and a 1.2% (95% CI: 0.9 to 1.5%) increase in the number of clinical malaria episodes one and two months later respectively. A 1°C increase in average monthly temperature was, on average, associated with a decline of a 3.5% (95% CI: 0.1 to 6.7%) in clinical malaria episodes. A 0.1 unit increase in monthly NDVI was associated with a 7.3% (95% CI: 0.8 to 14.1%) increase in the monthly malaria count. There was a similar increase for the preceding-month lag (6.7% (95% CI: 2.3% to 11.2%)). The study results can be used to establish a malaria early warning system in Korhogo to prepare for outbreaks of malaria, which would increase community resilience no matter the magnitude and pattern of climate change.
Collapse
Affiliation(s)
- Richard K. M’Bra
- Unité de Formation et de Recherche Sciences de la Terre et des Ressources Minières, Université Félix Houphouët Boigny, Abidjan, Côte d’Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail: ,
| | - Brama Kone
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
- Institut de Gestion Agropastorale, Université Péléforo Gon Coulibaly, Korhogo, Côte d’Ivoire
| | - Dramane P. Soro
- Unité de Formation et de Recherche Sciences de la Terre et des Ressources Minières, Université Félix Houphouët Boigny, Abidjan, Côte d’Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | - Raymond T. A. S. N’krumah
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
- Unité de Formation et de Recherche des Sciences Médicales, Université Félix Houphouët-Boigny, Abidjan, Côte d’Ivoire
| | - Nagnin Soro
- Unité de Formation et de Recherche Sciences de la Terre et des Ressources Minières, Université Félix Houphouët Boigny, Abidjan, Côte d’Ivoire
| | | | | | - Pietro Ceccato
- International Research Institute for Climate and Society, Columbia University, New York, New York, United States of America
| | - Kristie L. Ebi
- Department of Global Health School of Public Health University of Washington, Seattle, Washington, United States of America
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Christian Schindler
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Guéladio Cissé
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
58
|
Azrag RS, Mohammed BH. Anopheles arabiensis in Sudan: a noticeable tolerance to urban polluted larval habitats associated with resistance to Temephos. Malar J 2018; 17:204. [PMID: 29776357 PMCID: PMC5960190 DOI: 10.1186/s12936-018-2350-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 05/07/2018] [Indexed: 11/13/2022] Open
Abstract
Background It has been documented that unplanned urbanization leads to the exposure of members of the Anopheles vectors to a range of water pollution in urban settings. Many surveys from African and Asian countries reported the presence of Anopheles larvae in polluted urban habitats. The present study documents an obvious tolerance of the melanic and normal forms of Anopheles arabiensis to urban polluted larval habitats accompanied by resistance to Temephos larvicide. Methods A cross-sectional survey was carried out to inspect apparently polluted An. arabiensis larval habitats during the hot dry season of 2015. Larval specimens were collected from only apparently polluted habitats after visual inspection from 5 localities in Khartoum State. After morphological and molecular identification of random samples of larvae the magnitude of water pollution was determined using nine abiotic factors. The susceptibility status of An. arabiensis larval forms from normal and polluted habitats to Temephos was tested using the WHO standard diagnostic concentration doses. Results Morphological and PCR analysis of anopheline larvae revealed the presence of An. arabiensis, a member of the Anopheles gambiae complex. Seven out of 9 physiochemical parameters showed higher concentrations in polluted larval habitats in comparison to control site. Anopheles arabiensis larvae were found in water bodies characterized by high mean of conductivity (1857.8 ± 443.3 uS/cm), turbidity (189.4 ± 69.1 NTU) and nitrate (19.7 ± 16.7 mg/l). The range of mortality rates of An. arabiensis larvae collected from polluted habitats in comparison to An. arabiensis larvae collected from non-polluted habitats was 6.7–64% (LD50 = 1.682) and 67.6–96% (LD50 = 0.806), respectively. Conclusions The present study reveals that minor populations of An. arabiensis larval forms are adapted to breed in polluted urban habitats, which further influenced susceptibility to Temephos, especially for the melanic larval forms. This could have further implications on the biology of the malaria vector and on the transmission and epidemiology of urban malaria in Sudan.
Collapse
Affiliation(s)
- Rasha S Azrag
- Department of Zoology, Faculty of Science, University of Khartoum, Khartoum, Sudan.
| | - Babiker H Mohammed
- Department of Zoology, Faculty of Science, University of Khartoum, Khartoum, Sudan.,Ministry of Health, Khartoum State, Malaria Control Department, Vector Surviellance Unit, Khartoum, Sudan
| |
Collapse
|
59
|
Tuno N, Kohzu A, Tayasu I, Nakayama T, Githeko A, Yan G. An Algal Diet Accelerates Larval Growth of Anopheles gambiae (Diptera: Culicidae) and Anopheles arabiensis (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:600-608. [PMID: 29365176 DOI: 10.1093/jme/tjx244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Indexed: 06/07/2023]
Abstract
The population sizes of Anopheles gambiae Giles (Diptera: Culicidae) and Anopheles arabiensis Patton (Diptera: Culicidae) increase dramatically with the onset of the rainy season in sub-Saharan Africa, but the ecological mechanisms underlying the increases are not well understood. As a first step toward to understand, we investigated the proliferation of algae, the major food of mosquito larvae, in artificial fresh water bodies exposed to sunlight for a short period, and old water bodies exposed to sunlight for a long period, and the effects thereof on the development of these anopheline larvae. We found that an epizoic green algal species of the genus Rhopalosolen (Chlorophyta: Chlorophyceae) proliferated immediately after water freshly taken from a spring was placed in sunlight. This alga proliferated only briefly (for ~10 d) even if the water was repeatedly exposed to sunlight. However, various algal species were observed in water that remained under sunlight for 40 d or longer (i.e., in old water bodies). The growth performance of larvae was higher in sunlight-exposed (alga-rich) water than in shade-stored (alga-poor) water. Stable isotope analysis suggested that these two anopheline species fed on Rhopalosolen algae in fresh water bodies but hardly at all on other algae occurring in the old water bodies. We concluded that freshly formed ground water pools facilitate high production of anopheline species because of the proliferation of Rhopalosolen algae therein, and the increase in the number of such pools in the rainy season, followed by rapid increases in A. gambiae and A. arabiensis numbers.
Collapse
Affiliation(s)
- N Tuno
- Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa, Japan
| | - A Kohzu
- Center for Regional Environmental Research, The National Institute for Environmental Studies, Ibaraki, Japan
| | - I Tayasu
- Research Institute for Humanity and Nature, Kyoto, Japan
| | - T Nakayama
- Graduate School of Life and Environmental Science, University of Tsukuba, Ibaraki, Japan
| | - A Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - G Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA
| |
Collapse
|
60
|
McCann RS, Gimnig JE, Bayoh MN, Ombok M, Walker ED. Microdam Impoundments Provide Suitable Habitat for Larvae of Malaria Vectors: An Observational Study in Western Kenya. JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:723-730. [PMID: 29462354 PMCID: PMC7296561 DOI: 10.1093/jme/tjy007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Indexed: 06/08/2023]
Abstract
Impoundments formed by microdams in rural areas of Africa are important sources of water for people, but they provide potential larval habitats for Anopheles (Diptera: Culicidae) mosquitoes that are vectors of malaria. To study this association, the perimeters of 31 microdam impoundments in western Kenya were sampled for Anopheles larvae in three zones (patches of floating and emergent vegetation, shorelines of open water, and aggregations of cattle hoofprints) across dry and rainy seasons. Of 3,169 larvae collected, most (86.8%) were collected in the rainy season. Of 2,403 larvae successfully reared to fourth instar or adult, nine species were identified; most (80.2%) were Anopheles arabiensis Patton, sampled from hoofprint zones in the rainy season. Other species collected were Anopheles coustani Laveran, Anopheles gambiae s.s. Giles, Anopheles funestus Giles, and Anopheles rivulorum Leeson, Anopheles pharoensis Theobald, Anopheles squamosus Theobald, Anopheles rufipes (Gough), and Anopheles ardensis (Theobald). Larvae of An. funestus were uncommon (1.5%) in both dry and rainy seasons and were confined to vegetated zones, suggesting that microdam impoundments are not primary habitats for this important vector species, although microdams may provide a dry season refuge habitat for malaria vectors, contributing to population persistence through the dry season. In this study, microdam impoundments clearly provided habitat for the malaria vector An. arabiensis in the rainy season, most of which was within the shallow apron side of the impoundments where people brought cattle for watering, resulting in compacted soil with aggregations of water-filled hoofprints. This observation suggests a potential conflict between public health concerns about malaria and people's need for stable and reliable sources of water.
Collapse
Affiliation(s)
- Robert S. McCann
- Department of Entomology, Michigan State University, East
Lansing, MI
- Current address: Laboratory of Entomology Wageningen,
University and Research Centre, PO Box 8031 6700 EH Wageningen, The
Netherlands
| | - John E. Gimnig
- Division of Parasitic Diseases and Malaria, Centers for
Disease Control and Prevention, Atlanta, Georgia
| | - M. Nabie Bayoh
- Centre for Global Health Research, Kenya Medical Research
Institute/Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Maurice Ombok
- Centre for Global Health Research, Kenya Medical Research
Institute/Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Edward D. Walker
- Department of Entomology, Michigan State University, East
Lansing, MI
- Department of Microbiology and Molecular Genetics, Michigan
State University, East Lansing, MI
| |
Collapse
|
61
|
Lambert B, North A, Burt A, Godfray HCJ. The use of driving endonuclease genes to suppress mosquito vectors of malaria in temporally variable environments. Malar J 2018; 17:154. [PMID: 29618367 PMCID: PMC5885365 DOI: 10.1186/s12936-018-2259-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/08/2018] [Indexed: 12/17/2022] Open
Abstract
Background The use of gene drive systems to manipulate populations of malaria vectors is currently being investigated as a method of malaria control. One potential system uses driving endonuclease genes (DEGs) to spread genes that impose a genetic load. Previously, models have shown that the introduction of DEG-bearing mosquitoes could suppress or even extinguish vector populations in spatially-heterogeneous environments which were constant over time. In this study, a stochastic spatially-explicit model of mosquito ecology is combined with a rainfall model which enables the generation of a variety of daily precipitation patterns. The model is then used to investigate how releases of a DEG that cause a bias in population sex ratios towards males are affected by seasonal or random rainfall patterns. The parameters of the rainfall model are then fitted using data from Bamako, Mali, and Mbita, Kenya, to evaluate release strategies in similar climatic conditions. Results In landscapes with abundant resources and large mosquito populations the spread of a DEG is reliable, irrespective of variability in rainfall. This study thus focuses mainly on landscapes with low density mosquito populations where the spread of a DEG may be sensitive to variation in rainfall. It is found that an introduced DEG will spread into its target population more reliably in wet conditions, yet an established DEG will have more impact in dry conditions. In strongly seasonal environments, it is thus preferable to release DEGs at the onset of a wet season to maximize their spread before the following dry season. If the variability in rainfall has a substantial random component, there is a net increase in the probability that a DEG release will lead to population extinction, due to the increased impact of a DEG which manages to establish in these conditions. For Bamako, where annual rainfall patterns are characterized by a long dry season, it is optimal to release a DEG at the start of the wet season, where the population is growing fastest. By contrast release timing is of lower importance for the less seasonal Mbita. Conclusion This analysis suggests that DEG based methods of malaria vector control can be effective in a wide range of climates. In environments with substantial temporal variation in rainfall, careful timing of releases which accounts for the temporal variation in population density can substantially improve the probability of mosquito suppression or extinction. Electronic supplementary material The online version of this article (10.1186/s12936-018-2259-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ben Lambert
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK. .,Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, St. Mary's Campus, Norfolk Place, London, W2 1PG, UK.
| | - Ace North
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Austin Burt
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berks, SL5 7PY, UK
| | - H Charles J Godfray
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
62
|
Odero J, Gomes B, Fillinger U, Weetman D. Detection and quantification of Anopheles gambiae sensu lato mosquito larvae in experimental aquatic habitats using environmental DNA (eDNA). Wellcome Open Res 2018; 3:26. [PMID: 29911186 PMCID: PMC5981191 DOI: 10.12688/wellcomeopenres.14193.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2018] [Indexed: 11/29/2022] Open
Abstract
Background: Growing insecticide resistance and changes in biting and resting behavior of malaria vectors threaten efficacy of insecticide treated nets and indoor residual spraying. Larval source management (LSM) is a promising approach that can target mosquitoes irrespective of their behavior as adults. However, the use of traditional monitoring methods for immature stages of Anopheles mosquitoes is a major challenge to LSM due to the variability in their breeding habitats. We evaluate the use of an environmental DNA (eDNA) analysis technique in monitoring Anopheles gambiae sensu lato larvae in experimental aquatic habitats. Methods: eDNA was simultaneously sampled and extracted from different volumes of water, number of larvae, and occupation time. Larval presence was detected using PCR and eDNA concentration in samples from 1 L habitats quantified using an IGS and cyt b TaqMan assays. The limit of detection of the two assays was tested and larval density correlated with eDNA positivity. Results: 74% of replicates in the 50 mL habitats were PCR positive with at least 6h required to get a signal from a single larva (0.02 larvae/mL). All 12 replicates where 1 L of water was used were positive with stronger PCR bands than replicates with the same larval density in 50 mL for 24 h. There was a correlation between larval densities and eDNA detection in both assays: IGS, r = 0.503, p = 0.047; and cyt b,r = 0.558, p = 0.025. There was stochasticity in eDNA detection rates, using both PCR and qPCR across all the dilutions. Conclusion: This study has demonstrated the potential use of eDNA analysis for detection and quantification of An. gambiae s.s. mosquito larvae in aquatic habitats. The stochasticity observed in eDNA detection suggest that this technique is best for monitoring aquatic habitats with many larvae at low densities.
Collapse
Affiliation(s)
- Joel Odero
- Malaria Programme, International Centre of Insect Physiology and Ecology, Thomas Odhiambo Campus, P.O. Box 30, Mbita, 40305, Kenya
| | - Bruno Gomes
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Ulrike Fillinger
- Malaria Programme, International Centre of Insect Physiology and Ecology, Thomas Odhiambo Campus, P.O. Box 30, Mbita, 40305, Kenya
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| |
Collapse
|
63
|
Janko MM, Irish SR, Reich BJ, Peterson M, Doctor SM, Mwandagalirwa MK, Likwela JL, Tshefu AK, Meshnick SR, Emch ME. The links between agriculture, Anopheles mosquitoes, and malaria risk in children younger than 5 years in the Democratic Republic of the Congo: a population-based, cross-sectional, spatial study. Lancet Planet Health 2018; 2:e74-e82. [PMID: 29457150 PMCID: PMC5809714 DOI: 10.1016/s2542-5196(18)30009-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
BACKGROUND The relationship between agriculture, Anopheles mosquitoes, and malaria in Africa is not fully understood, but it is important for malaria control as countries consider expanding agricultural projects to address population growth and food demand. Therefore, we aimed to assess the effect of agriculture on Anopheles biting behaviour and malaria risk in children in rural areas of the Democratic Republic of the Congo (DR Congo). METHODS We did a population-based, cross-sectional, spatial study of rural children (<5 years) in the DR Congo. We used information about the presence of malaria parasites in each child, as determined by PCR analysis of dried-blood spots from the 2013-14 DR Congo Demographic and Health Survey (DHS). We also used data from the DHS, a longitudinal entomological study, and available land cover and climate data to evaluate the relationships between agriculture, Anopheles biting behaviour, and malaria prevalence. Satellite imagery was used to measure the percentage of agricultural land cover around DHS villages and Anopheles sites. Anopheles biting behaviour was assessed by Human Landing Catch. We used probit regression to assess the relationship between agriculture and the probability of malaria infection, as well as the relationship between agriculture and the probability that a mosquito was caught biting indoors. FINDINGS Between Aug 13, 2013, and Feb 13, 2014, a total of 9790 dried-blood spots were obtained from the DHS, of which 4612 participants were included in this study. Falciparum malaria infection prevalence in rural children was 38·7% (95% uncertainty interval [UI] 37·3-40·0). Increasing exposure to agriculture was associated with increasing malaria risk with a high posterior probability (estimate 0·07, 95% UI -0·04 to 0·17; posterior probability [estimate >0]=0·89), with the probability of malaria infection increased between 0·2% (95% UI -0·1 to 3·4) and 2·6% (-1·5 to 6·6) given a 15% increase in agricultural cover, depending on other risk factors. The models predicted that large increases in agricultural cover (from 0% to 75%) increase the probability of infection by as much as 13·1% (95% UI -7·3 to 28·9). Increased risk might be due to Anopheles gambiae sensu lato, whose probability of biting indoors increased between 11·3% (95% UI -15·3 to 25·6) and 19·7% (-12·1 to 35·9) with a 15% increase in agriculture. INTERPRETATION Malaria control programmes must consider the possibility of increased risk due to expanding agriculture. Governments considering initiating large-scale agricultural projects should therefore also consider accompanying additional malaria control measures. FUNDING National Institutes of Health, National Science Foundation, Bill & Melinda Gates Foundation, President's Malaria Initiative, and Royster Society of Fellows at the University of North Carolina at Chapel Hill.
Collapse
Affiliation(s)
- Mark M Janko
- Duke Global Health Institute, Duke University, Durham, NC, USA; Department of Geography, Chapel Hill, NC, USA; Department of Biostatistics, Chapel Hill, NC, USA; Carolina Population Center, Chapel Hill, NC, USA.
| | - Seth R Irish
- University of North Carolina, Chapel Hill, NC, USA; President's Malaria Initiative and Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Brian J Reich
- Department of Statistics, North Carolina State University, Raleigh, NC, USA
| | | | | | | | - Joris L Likwela
- Programme National de Lutte contre le Paludisme, Kinshasa, Democratic Republic of the Congo
| | - Antoinette K Tshefu
- Department of Community Health, Ecole de Santé Publique, Faculté de Médecine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | | | - Michael E Emch
- Department of Geography, Chapel Hill, NC, USA; Carolina Population Center, Chapel Hill, NC, USA; Department of Epidemiology, Chapel Hill, NC, USA
| |
Collapse
|
64
|
Spatial distribution and habitat characterization of mosquito species during the dry season along the Mara River and its tributaries, in Kenya and Tanzania. Infect Dis Poverty 2018; 7:2. [PMID: 29343279 PMCID: PMC5772712 DOI: 10.1186/s40249-017-0385-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 12/27/2017] [Indexed: 01/25/2023] Open
Abstract
Background Vector-borne diseases are increasingly becoming a major health problem among communities living along the major rivers of Africa. Although larger water bodies such as lakes and dams have been extensively researched, rivers and their tributaries have largely been ignored. This study sought to establish the spatial distribution of mosquito species during the dry season and further characterize their habitats along the Mara River and its tributaries. Methods In this cross-sectional survey, mosquito larvae were sampled along the Mara River, its two perennial tributaries (Amala and Nyangores), drying streams, and adjacent aquatic habitats (e.g. swamps, puddles that receive direct sunlight [open sunlit puddles], rock pools, hippo and livestock hoof prints, and vegetated pools). Each habitat was dipped 20 times using a standard dipper. Distance between breeding sites and human habitation was determined using global positioning system coordinates. The collected mosquito larvae were identified using standard taxonomic keys. Water physico-chemical parameters were measured in situ using a multiparameter meter. Mean mosquito larvae per habitat type were compared using analysis of variance and chi-square tests, while the relationship between mosquito larvae and physico-chemical parameters was evaluated using a generalized linear mixed model. The Cox-Stuart test was used to detect trends of mosquito larvae distribution. The test allowed for verification of monotonic tendency (rejection of null hypothesis of trend absence) and its variability. Results A total of 4001 mosquito larvae were collected, of which 2712 (67.8%) were collected from river/stream edge habitats and 1289 (32.2%) were sampled from aquatic habitats located in the terrestrial ecosystem about 50 m away from the main river/streams. Anopheles gambiae s.s, An. arabiensis, and An. funestus group, the three most potent vectors of malaria in Sub-Saharan Africa, together with other anopheline mosquitoes, were the most dominant mosquito species (70.3%), followed by Culex quinquefasciatus and Cx. pipiens complex combined (29.5%). Drying streams accounted for the highest number of larvae captured compared to the other habitat types. A stronger relationship between mosquito larvae abundance and dissolved oxygen (Z = 7.37, P ≤ 0.001), temperature (Z = 7.65, P ≤ 0.001), turbidity (Z = −5.25, P ≤ 0.001), and distance to the nearest human habitation (Z = 4.57, P ≤ 0.001), was observed. Conclusions Presence of malaria and non-malaria mosquito larvae within the Mara River basin calls for immediate action to curtail the insurgence of vector-borne diseases within the basin. A vector control program should be conducted during the dry period, targeting drying streams shown to produce the highest number of larval mosquitoes. Electronic supplementary material The online version of this article (10.1186/s40249-017-0385-0) contains supplementary material, which is available to authorized users.
Collapse
|
65
|
Asale A, Duchateau L, Devleesschauwer B, Huisman G, Yewhalaw D. Zooprophylaxis as a control strategy for malaria caused by the vector Anopheles arabiensis (Diptera: Culicidae): a systematic review. Infect Dis Poverty 2017; 6:160. [PMID: 29157310 PMCID: PMC5697156 DOI: 10.1186/s40249-017-0366-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 10/03/2017] [Indexed: 01/21/2023] Open
Abstract
Background Zooprophylaxis is the use of wild or domestic animals, which are not the reservoir host of a given disease, to divert the blood-seeking malaria vectors from human hosts. In this paper, we systematically reviewed zooprophylaxis to assess its efficacy as a malaria control strategy and to evaluate the possible methods of its application. Methods The electronic databases, PubMed Central®, Web of Science, Science direct, and African Journals Online were searched using the key terms: “zooprophylaxis” or “cattle and malaria”, and reports published between January 1995 and March 2016 were considered. Thirty-four reports on zooprophylaxis were retained for the systematic review. Results It was determined that Anopheles arabiensis is an opportunistic feeder. It has a strong preference for cattle odour when compared to human odour, but feeds on both hosts. Its feeding behaviour depends on the available hosts, varying from endophilic and endophagic to exophilic and exophagic. There are three essential factors for zooprophylaxis to be effective in practice: a zoophilic and exophilic vector, habitat separation between human and host animal quarters, and augmenting zooprophylaxis with insecticide treatment of animals or co-intervention of long-lasting insecticide-treated nets and/or indoor residual spraying. Passive zooprophylaxis can be applied only in malaria vector control if cattle and human dwellings are separated in order to avoid the problem of zoopotentiation. Conclusions The outcomes of using zooprophylaxis as a malaria control strategy varied across locations. It is therefore advised to conduct a site-specific evaluation of its effectiveness in vector control before implementing zooprophylaxis as the behaviour of Anopheles arabiensis mosquitoes varies across localities and circumstances. Electronic supplementary material The online version of this article (10.1186/s40249-017-0366-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abebe Asale
- Department of Biology, College of Natural Sciences, Jimma University, Jimma, Ethiopia.
| | - Luc Duchateau
- Department of Animal Physiology and Biometry, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Brecht Devleesschauwer
- Department of Animal Physiology and Biometry, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Gerdien Huisman
- Department of Animal Physiology and Biometry, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Delenasaw Yewhalaw
- Department of Medical Laboratory Sciences and Pathology, College of Health Sciences, Jimma University, Jimma, Ethiopia
| |
Collapse
|
66
|
Nikookar SH, Fazeli-Dinan M, Azari-Hamidian S, Mousavinasab SN, Arabi M, Ziapour SP, Shojaee J, Enayati A. Species composition and abundance of mosquito larvae in relation with their habitat characteristics in Mazandaran Province, northern Iran. BULLETIN OF ENTOMOLOGICAL RESEARCH 2017; 107:598-610. [PMID: 28956526 DOI: 10.1017/s0007485317000074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mosquitoes transmit a variety of diseases to humans. Their abundance and distribution are related to the characteristics of larval habitats. Mosquito larvae were collected from 120 natural and artificial habitats in 30 villages of 16 counties using standard 350 ml dippers and pipette, on a monthly basis from May-December 2014 in Mazandaran Province, northern Iran. Larval habitat characteristics were recorded separately, based on the conditions of the habitats (permanent or temporary, stagnant or running), type of habitats (natural or artificial), vegetation, exposure to sun, type of bed, water condition (clear or turbid), expanse (m), depth (cm, m) and temperature (°C) of habitats. The relationship between larval density and environmental variables was assessed by Chi-square tests. Totally, 19,840 larvae from three genera and 16 species were collected and identified. Anopheles maculipennis s.l. and Culex pipiens were the dominant species and collected with the highest density in plain areas. The highest number of larvae were collected from natural habitats (60.34%), including; river edge, marsh, pit and wetlands; with temporary and stagnant water, expanse of 0-5 m, depth of 1-25 cm, without plant, shadow-sun, muddy floor, turbid water, temperature 20-25°C and in sunny conditions. River edge and rice fields for An. maculipennis s.l and, wetlands and discarded tires for Cx. pipiens were the main larval habitats in the province. Statistical analysis revealed significant relation between occurrence of An. maculipennis s.l., Cx. pipiens, Culex torrentium, Culex mimeticus and Cs. annulata with each of the environmental variables (P < 0.001). These findings are essential in expanding our knowledge of the vectors ecology specially the type of habitat preference and will be beneficial in larval control programs.
Collapse
Affiliation(s)
- S H Nikookar
- Student Research Committee,Department of Medical Entomology and Vector Control,Health Sciences Research Center,School of Public Health, Mazandaran University of Medical Sciences,Sari,Iran
| | - M Fazeli-Dinan
- Department of Medical Entomology and Vector Control,School of Public Health and Health Sciences Research Center,Mazandaran University of Medical Science,Sari,Iran
| | - S Azari-Hamidian
- School of Health, Research Center of Health and Environment, Guilan University of Medical Sciences,Rasht,Iran
| | - S N Mousavinasab
- Department of Biostatistics,Mazandaran University of Medical Sciences,Sari,Iran
| | - M Arabi
- Department of Epidemiology, Faculty of Medicine,Mazandaran University of Medical Sciences,Sari,Iran
| | - S P Ziapour
- Student Research Committee,Department of Medical Entomology and Vector Control,Health Sciences Research Center,School of Public Health, Mazandaran University of Medical Sciences,Sari,Iran
| | - J Shojaee
- Health Sciences Research Center,Students Research Committee,Mazandaran University of Medical Sciences,Sari,Iran
| | - A Enayati
- Head of Medical Entomology Department,School of Public Health and Health Sciences Research Center,Mazandaran University of Medical Sciences,Sari,Iran
| |
Collapse
|
67
|
Alkhaibari AM, Carolino AT, Bull JC, Samuels RI, Butt TM. Differential Pathogenicity of Metarhizium Blastospores and Conidia Against Larvae of Three Mosquito Species. JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:696-704. [PMID: 28399202 DOI: 10.1093/jme/tjw223] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/28/2016] [Indexed: 06/07/2023]
Abstract
Biorational insecticides are being increasingly used in integrated pest management programs. In laboratory bioassays, the pathogenicity of blastospores and conidia of the entomopathogenic fungus Metarhizium brunneum ARSEF 4556 was evaluated against larvae of three mosquito species. Three propagule concentrations (1 × 106, 1 × 107, and 1 × 108 spores ml - 1) were used in the bioassays. Results showed that Aedes aegypti had lower survival rates when exposed to blastospores than when exposed to conidia, whereas the converse was true for Culex quinquefasciatus larvae. Anopheles stephensi larvae survival rates were similar when exposed to blastospores and conidia, except at the higher doses, where blastospores were more virulent. Several assays showed little difference in mortalities when using either 1 × 107 or 1 × 108 spores ml - 1, suggesting a threshold above which no higher control levels or economic benefit would be achieved. When tested at the lowest dose, the LT50 of Cx. quinquefasciatus using blastospores, wet conidia, and dry conidia was 3.2, 1.9, and 4.4 d, respectively. The LT50 of Ae. aegypti using blastospores, wet conidia, and dry conidia was 1.3, 3.3, and 6.2 d, respectively. The LT50 of An. stephensi using blastospores, wet conidia, and dry conidia was 2.0, 1.9, and 2.1 d, respectively. These observations suggest that for optimized control, two different formulations of the fungus may be needed when treating areas where there are mixed populations of Aedes, Anopheles, and Culex.
Collapse
Affiliation(s)
- A M Alkhaibari
- Department of Biosciences College of Science, Swansea University Singleton Park, Swansea SA2 8PP, UK (; ; )
| | - A T Carolino
- Department of Entomology and Plant Pathology, State University of North Fluminense, Campos dos Goytacazes, Rio de Janeiro 28016-602, Brazil (; )
| | - J C Bull
- Department of Biosciences College of Science, Swansea University Singleton Park, Swansea SA2 8PP, UK (; ; )
| | - R I Samuels
- Department of Entomology and Plant Pathology, State University of North Fluminense, Campos dos Goytacazes, Rio de Janeiro 28016-602, Brazil (; )
| | - T M Butt
- Department of Biosciences College of Science, Swansea University Singleton Park, Swansea SA2 8PP, UK (; ; )
| |
Collapse
|
68
|
Beck-Johnson LM, Nelson WA, Paaijmans KP, Read AF, Thomas MB, Bjørnstad ON. The importance of temperature fluctuations in understanding mosquito population dynamics and malaria risk. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160969. [PMID: 28405386 PMCID: PMC5383843 DOI: 10.1098/rsos.160969] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 02/06/2017] [Indexed: 05/16/2023]
Abstract
Temperature is a key environmental driver of Anopheles mosquito population dynamics; understanding its central role is important for these malaria vectors. Mosquito population responses to temperature fluctuations, though important across the life history, are poorly understood at a population level. We used stage-structured, temperature-dependent delay-differential equations to conduct a detailed exploration of the impacts of diurnal and annual temperature fluctuations on mosquito population dynamics. The model allows exploration of temperature-driven temporal changes in adult age structure, giving insights into the population's capacity to vector malaria parasites. Because of temperature-dependent shifts in age structure, the abundance of potentially infectious mosquitoes varies temporally, and does not necessarily mirror the dynamics of the total adult population. In addition to conducting the first comprehensive theoretical exploration of fluctuating temperatures on mosquito population dynamics, we analysed observed temperatures at four locations in Africa covering a range of environmental conditions. We found both temperature and precipitation are needed to explain the observed malaria season in these locations, enhancing our understanding of the drivers of malaria seasonality and how temporal disease risk may shift in response to temperature changes. This approach, tracking both mosquito abundance and age structure, may be a powerful tool for understanding current and future malaria risk.
Collapse
Affiliation(s)
- Lindsay M. Beck-Johnson
- Department of Biology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- Author for correspondence: Lindsay M. Beck-Johnson e-mail:
| | - William A. Nelson
- Department of Biology, Queen’s University, Kingston, Ontario, Canada
| | - Krijn P. Paaijmans
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - Andrew F. Read
- Department of Biology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- Department of Entomology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Matthew B. Thomas
- Department of Entomology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| | - Ottar N. Bjørnstad
- Department of Biology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- Department of Entomology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
69
|
Asmare Y, Hill SR, Hopkins RJ, Tekie H, Ignell R. The role of grass volatiles on oviposition site selection by Anopheles arabiensis and Anopheles coluzzii. Malar J 2017; 16:65. [PMID: 28173804 PMCID: PMC5297170 DOI: 10.1186/s12936-017-1717-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/31/2017] [Indexed: 11/23/2022] Open
Abstract
Background The reproductive success and population dynamics, of Anopheles malaria mosquitoes is strongly influenced by the oviposition site selection of gravid females. Mosquitoes select oviposition sites at different spatial scales, starting with selecting a habitat in which to search. This study utilizes the association of larval abundance in the field with natural breeding habitats, dominated by various types of wild grasses, as a proxy for oviposition site selection by gravid mosquitoes. Moreover, the role of olfactory cues emanating from these habitats in the attraction and oviposition stimulation of females was analysed. Methods The density of Anopheles larvae in breeding sites associated with Echinochloa pyramidalis, Echinochloa stagnina, Typha latifolia and Cyperus papyrus, was sampled and the larvae identified to species level. Headspace volatile extracts of the grasses were collected and used to assess behavioural attraction and oviposition stimulation of gravid Anopheles arabiensis and Anopheles coluzzii mosquitoes in wind tunnel and two-choice oviposition assays, respectively. The ability of the mosquitoes to differentiate among the grass volatile extracts was tested in multi-choice tent assays. Results Anopheles arabiensis larvae were the most abundant species found in the various grass-associated habitats. The larval densities described a hierarchical distribution, with Poaceae (Echinochloa pyramidalis and Echinochloa stagnina)-associated habitat sites demonstrating higher densities than that of Typha-associated sites, and where larvae were absent from Cyperus-associated sites. This hierarchy was maintained by gravid An. arabiensis and An. coluzzii mosquitoes in attraction, oviposition and multi-choice assays to grass volatile extracts. Conclusions The demonstrated hierarchical preference of gravid An. coluzzii and An. arabiensis for grass volatiles indicates that vegetation cues associated with larval habitats are instrumental in the oviposition site choice of the malaria mosquitoes. Identifying volatile cues from grasses that modulate gravid malaria mosquito behaviours has distinct potential for the development of tools to be used in future monitoring and control methods.
Collapse
Affiliation(s)
- Yelfwagash Asmare
- Department of Zoological Sciences, Addis Ababa University, PO. Box 1176, Addis Ababa, Ethiopia.,Department of Biological Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Sharon R Hill
- Department of Plant Protection Biology, Unit of Chemical Ecology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | | - Habte Tekie
- Department of Zoological Sciences, Addis Ababa University, PO. Box 1176, Addis Ababa, Ethiopia
| | - Rickard Ignell
- Department of Plant Protection Biology, Unit of Chemical Ecology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| |
Collapse
|
70
|
Hardy A, Makame M, Cross D, Majambere S, Msellem M. Using low-cost drones to map malaria vector habitats. Parasit Vectors 2017; 10:29. [PMID: 28088225 PMCID: PMC5237572 DOI: 10.1186/s13071-017-1973-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/05/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is a growing awareness that if we are to achieve the ambitious goal of malaria elimination, we must compliment indoor-based vector control interventions (such as bednets and indoor spraying) with outdoor-based interventions such as larval source management (LSM). The effectiveness of LSM is limited by our capacity to identify and map mosquito aquatic habitats. This study provides a proof of concept for the use of a low-cost (< $1000) drone (DJI Phantom) for mapping water bodies in seven sites across Zanzibar including natural water bodies, irrigated and non-irrigated rice paddies, peri-urban and urban locations. RESULTS With flying times of less than 30 min for each site, high-resolution (7 cm) georeferenced images were successfully generated for each of the seven sites, covering areas up to 30 ha. Water bodies were readily identifiable in the imagery, as well as ancillary information for planning LSM activities (access routes to water bodies by road and foot) and public health management (e.g. identification of drinking water sources, mapping individual households and the nature of their construction). CONCLUSION The drone-based surveys carried out in this study provide a low-cost and flexible solution to mapping water bodies for operational dissemination of LSM initiatives in mosquito vector-borne disease elimination campaigns. Generated orthomosaics can also be used to provide vital information for other public health planning activities.
Collapse
Affiliation(s)
- Andy Hardy
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, UK.
| | - Makame Makame
- Zanzibar Malaria Elimination Programme, Zanzibar Ministry of Health, Stone Town, Zanzibar, United Republic of Tanzania
| | - Dónall Cross
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Silas Majambere
- Innovative Vector Control Consortium, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Mwinyi Msellem
- Zanzibar Malaria Elimination Programme, Zanzibar Ministry of Health, Stone Town, Zanzibar, United Republic of Tanzania
| |
Collapse
|
71
|
Kweka EJ, Kimaro EE, Munga S. Effect of Deforestation and Land Use Changes on Mosquito Productivity and Development in Western Kenya Highlands: Implication for Malaria Risk. Front Public Health 2016; 4:238. [PMID: 27833907 PMCID: PMC5080343 DOI: 10.3389/fpubh.2016.00238] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 10/12/2016] [Indexed: 11/30/2022] Open
Abstract
Background African highlands were known to be free of malaria for the past 50 years. However, the ever growing human population in the highlands of Africa has led to the deforestation and land coverage changes to create space for more land for cultivation, grazing, and house construction materials needs. This has lead to the creation of suitable breeding habitats, which are in open places. Decrease of canopy and forest cover has led to increased temperature both in outdoors and indoors in deforested areas. This increased temperature has resulted in the shortening of developmental stages of aquatic stages of mosquitoes and sporogony development in adult mosquitoes. Method Assessment of the effects of deforestation and land coverage changes (decrease), which leads to temperature changes and subsequently increases survivorship of adults and sporogony development in adult mosquitoes’ body was gathered from previous data collected from 2003 to 2012 using different analysis techniques. Habitats productivity, species dynamics and abundance, mosquitoes feeding rates, and sporogony development are presented in relation to temperature changes. Results The effects of temperature rise due to land cover changes in highlands of western Kenya on larval developmental rates, adult sporogony developments, and malaria risk in human population were derived. Vector species dynamics and abundance in relation to land use changes have been found to change with time. Conclusion This study found that, land cover changes is a key driver for the temperature rise in African highlands and increases the rate of malaria vectors Anopheles gambiae ssp., An. Funestus, and An. arabiensis colonizing the highlands. It has also significantly enhanced sporogony development rate and adult vector survival and therefore the risk of malaria transmission in the highlands.
Collapse
Affiliation(s)
- Eliningaya J Kweka
- Mosquito Section, Division of Livestock and Human Diseases Vector Control, Tropical Pesticides Research Institute, Arusha, Tanzania; Department of Medical Parasitology and Entomology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Epiphania E Kimaro
- Mosquito Section, Division of Livestock and Human Diseases Vector Control, Tropical Pesticides Research Institute , Arusha , Tanzania
| | - Stephen Munga
- Centre for Global Health Research, Kenya Medical Research Institute , Kisumu , Kenya
| |
Collapse
|
72
|
Muema JM, Bargul JL, Nyanjom SG, Mutunga JM, Njeru SN. Potential of Camellia sinensis proanthocyanidins-rich fraction for controlling malaria mosquito populations through disruption of larval development. Parasit Vectors 2016; 9:512. [PMID: 27660043 PMCID: PMC5034625 DOI: 10.1186/s13071-016-1789-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/02/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anopheles arabiensis and A. gambiae (sensu stricto) are the most prolific Afrotropical malaria vectors. Population control efforts of these two vectors have been hampered by extremely diverse larval breeding sites and widespread resistance to currently available insecticides. Control of mosquito larval stages using bioactive compounds of plant origin has the potential to suppress vector populations leading to concomitant reduction in disease transmission rates. In this study, we evaluated the efficacy of Camellia sinensis crude leaf extract and its fraction against the larvae of A. arabiensis and A. gambiae (s.s.). METHODS Late third/early fourth instar larvae (L3/L4) of A. arabiensis and A. gambiae (s.s.) were exposed to increasing doses of C. sinensis leaf extract and its active fraction for 72 h, with mortality rates recorded every 24 h in both control and test groups. Ultra performance liquid chromatography electron spray ionization quadruple time of flight coupled with mass spectrometry (UPLC/ESI-Qtof/MS) was used to determine the main active constituents in the fraction. RESULTS The major bioactive chemical constituents in the C. sinensis leaf extract were identified to be proanthocyanidins. The extract significantly interfered with larval survival and adult emergence in both species (ANOVA, F (5,24) = 1435.92, P < 0.001). Additionally, larval exposure to crude extract at 250 ppm and 500 ppm for 24 h resulted in larval mortality rates of over 90 % in A. gambiae (s.s.) and 75 % in A. arabiensis. A relatively lower concentration of 100 ppm resulted in moderate mortality rates of < 50 % in both species, but induced growth disruption effects evident as abnormal larval-pupal intermediates and disrupted adult emergence. The estimated LC50 concentrations of the crude leaf extract against A. arabiensis and A. gambiae (s.s.) larvae at 24 h were 154.58 ppm (95 % CI: 152.37-158.22) and 117.15 ppm (95 % CI: 112.86-127.04), respectively. The bioactive polar fraction caused 100 % larval mortality in both vector species at 25 ppm. CONCLUSIONS Our findings demonstrate the potential of green tea extract and its active constituents in disrupting mosquito larval development. This could contribute to the control of mosquito populations and improved management of malaria.
Collapse
Affiliation(s)
- Jackson M Muema
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya.
| | - Joel L Bargul
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya.,Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Steven G Nyanjom
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
| | - James M Mutunga
- Malaria Research Programme, International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Sospeter N Njeru
- Present Address: Fritz Lipmann Institute (FLI) - Leibniz Institute for Age Research, D-07745, Jena, Germany
| |
Collapse
|
73
|
Sougoufara S, Harry M, Doucouré S, Sembène PM, Sokhna C. Shift in species composition in the Anopheles gambiae complex after implementation of long-lasting insecticidal nets in Dielmo, Senegal. MEDICAL AND VETERINARY ENTOMOLOGY 2016; 30:365-368. [PMID: 27058993 DOI: 10.1111/mve.12171] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/03/2015] [Accepted: 01/15/2016] [Indexed: 06/05/2023]
Abstract
Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are the cornerstones of malaria vector control. However, the effectiveness of these control tools depends on vector ecology and behaviour, which also largely determine the efficacy of certain Anopheles mosquitoes (Diptera: Culicidae) as vectors. Malaria vectors in sub-Saharan Africa are primarily species of the Anopheles gambiae complex, which present intraspecific differences in behaviour that affect how they respond to vector control tools. The focus of this study is the change in species composition in the An. gambiae complex after the implementation of LLINs in Dielmo, Senegal. The main findings referred to dramatic decreases in the proportions of Anopheles coluzzii and An. gambiae after the introduction of LLINs, and an increase in the proportion of Anopheles arabiensis. Two years after LLINs were first introduced, An. arabiensis remained the most prevalent species and An. gambiae had begun to rebound. This indicated a need to develop additional vector control tools that can target the full range of malaria vectors.
Collapse
Affiliation(s)
- S Sougoufara
- Unité de Recherche sur les Maladies Infectieuses Tropicales Emergentes (URMITE), Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 6236, Institut de Recherche pour le Développement (IRD) 198, Aix Marseille Université, Campus Universitaire IRD de Hann, Dakar, Senegal
- Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Dakar Fann, Senegal
| | - M Harry
- Unité de Formation et de Recherche (UFR) Sciences, Université Paris-Sud, Orsay, France
- UMR Évolution, Génomes, Comportement, Écologie (EGCE), CNRS-IRD Université Paris Sud, Institut Diversité, Écologie et Évolution du Vivant (IDEEV), Université Paris-Saclay, Gif-sur-Yvette, France
| | - S Doucouré
- Unité de Recherche sur les Maladies Infectieuses Tropicales Emergentes (URMITE), Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 6236, Institut de Recherche pour le Développement (IRD) 198, Aix Marseille Université, Campus Universitaire IRD de Hann, Dakar, Senegal
| | - P M Sembène
- Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Dakar Fann, Senegal
| | - C Sokhna
- Unité de Recherche sur les Maladies Infectieuses Tropicales Emergentes (URMITE), Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 6236, Institut de Recherche pour le Développement (IRD) 198, Aix Marseille Université, Campus Universitaire IRD de Hann, Dakar, Senegal
| |
Collapse
|
74
|
Abiodun GJ, Maharaj R, Witbooi P, Okosun KO. Modelling the influence of temperature and rainfall on the population dynamics of Anopheles arabiensis. Malar J 2016; 15:364. [PMID: 27421769 PMCID: PMC4946230 DOI: 10.1186/s12936-016-1411-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/22/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria continues to be one of the most devastating diseases in the world, killing more humans than any other infectious disease. Malaria parasites are entirely dependent on Anopheles mosquitoes for transmission. For this reason, vector population dynamics is a crucial determinant of malaria risk. Consequently, it is important to understand the biology of malaria vector mosquitoes in the study of malaria transmission. Temperature and precipitation also play a significant role in both aquatic and adult stages of the Anopheles. METHODS In this study, a climate-based, ordinary-differential-equation model is developed to analyse how temperature and the availability of water affect mosquito population size. In the model, the influence of ambient temperature on the development and the mortality rate of Anopheles arabiensis is considered over a region in KwaZulu-Natal Province, South Africa. In particular, the model is used to examine the impact of climatic factors on the gonotrophic cycle and the dynamics of mosquito population over the study region. RESULTS The results fairly accurately quantify the seasonality of the population of An. arabiensis over the region and also demonstrate the influence of climatic factors on the vector population dynamics. The model simulates the population dynamics of both immature and adult An. arabiensis. The simulated larval density produces a curve which is similar to observed data obtained from another study. CONCLUSION The model is efficiently developed to predict An. arabiensis population dynamics, and to assess the efficiency of various control strategies. In addition, the model framework is built to accommodate human population dynamics with the ability to predict malaria incidence in future.
Collapse
Affiliation(s)
- Gbenga J Abiodun
- Department of Mathematics and Applied Mathematics, University of the Western Cape, Private Bag X17, Bellville, 7535, Republic of South Africa
| | - Rajendra Maharaj
- Office of Malaria Research, South African Medical Research Council, Durban, Republic of South Africa.
| | - Peter Witbooi
- Department of Mathematics and Applied Mathematics, University of the Western Cape, Private Bag X17, Bellville, 7535, Republic of South Africa
| | - Kazeem O Okosun
- Department of Mathematics, Vaal University of Technology, Private Bag X021, Andries Potgieter Blvrd, Vanderbijlpark, 1900, Republic of South Africa
| |
Collapse
|
75
|
Davies C, Coetzee M, Lyons CL. Effect of stable and fluctuating temperatures on the life history traits of Anopheles arabiensis and An. quadriannulatus under conditions of inter- and intra-specific competition. Parasit Vectors 2016; 9:342. [PMID: 27301875 PMCID: PMC4908796 DOI: 10.1186/s13071-016-1630-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 06/07/2016] [Indexed: 11/13/2022] Open
Abstract
Background Constant and fluctuating temperatures influence important life-history parameters of malaria vectors which has implications for community organization and the malaria disease burden. The effects of environmental temperature on the hatch rate, survivorship and development rate of Anopheles arabiensis and An. quadriannulatus under conditions of inter- and intra-specific competition are studied. Methods The eggs and larvae of laboratory established colonies were reared under controlled conditions at one constant (25 °C) and two fluctuating (20–30 °C and 18–35 °C) temperature treatments at a ratio of 1:0 or 1:1 (An. arabiensis: An. quadriannulatus). Monitoring of hatch rate, development rate and survival was done at three intervals, 6 to 8 h apart depending on developmental stage. Parametric ANOVAs were used where assumptions of equal variances and normality were met, and a Welch ANOVA where equal variance was violated (α = 0.05). Results Temperature significantly influenced the measured life-history traits and importantly, this was evident when these species co-occurred. A constant temperature resulted in a higher hatch rate in single species, larval treatments (P < 0.05). The treatment 18–35 °C generally reduced survivorship except for An. arabiensis in mixed, larval species treatments where it was similar to values reported for 25 °C. Survivorship of both species at 20–30 °C was not significantly impacted and the adult production was high across species treatments. The development rates at 25 °C and 20–30 °C were significantly different between species when reared alone and in mixed species from larvae and from eggs. The effect of temperature was more pronounced at 18–35 °C with An. arabiensis developing faster under both competitive scenarios and An. quadriannulatus slower, notably when in the presence of its competitor (P < 0.05). Conclusions The influence of temperature treatment on the development rate and survival from egg/larvae to adult differed across species treatments. Fluctuating temperatures incorporating the extremes influence the key life-history parameters measured here with An. arabiensis outcompeting An. quadriannulatus under these conditions. The quantification of the response variables measured here improve our knowledge of the link between temperature and species interactions and provide valuable information for modelling of vector population dynamics.
Collapse
Affiliation(s)
- Craig Davies
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Vector Control Reference Laboratory, Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, Sandringham, Johannesburg, South Africa.
| | - Maureen Coetzee
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Vector Control Reference Laboratory, Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, Sandringham, Johannesburg, South Africa
| | - Candice L Lyons
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Vector Control Reference Laboratory, Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, Sandringham, Johannesburg, South Africa.,Present address: Plant Protection Research (PPR), Agricultural Research Council, Vredenburg, Stellenbosch, South Africa
| |
Collapse
|
76
|
Eneh LK, Okal MN, Borg-Karlson AK, Fillinger U, Lindh JM. Gravid Anopheles gambiae sensu stricto avoid ovipositing in Bermuda grass hay infusion and it's volatiles in two choice egg-count bioassays. Malar J 2016; 15:276. [PMID: 27177033 PMCID: PMC4866018 DOI: 10.1186/s12936-016-1330-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/05/2016] [Indexed: 11/23/2022] Open
Abstract
Background A number of mosquito species in the Culex and Aedes genera prefer to lay eggs in Bermuda grass (Cynodon dactylon) hay infusions compared to water alone. These mosquitoes are attracted to volatile compounds from the hay infusions making the infusions effective baits in gravid traps used for monitoring vectors of arboviral and filarial pathogens. Since Bermuda grass is abundant and widespread, it is plausible to explore infusions made from it as a potential low cost bait for outdoor monitoring of the elusive malaria vector Anopheles gambiae s.s. Methods This study investigated preferential egg laying of individual An. gambiae s.s. in hay infusion or in tap water treated with volatiles detected in hay infusion headspace compared to tap water alone, using two-choice egg-count bioassays. Infusions were prepared by mixing 90 g of dried Bermuda grass (hay) with 24 L of unchlorinated tap water in a bucket, and leaving it for 3 days at ambient temperature and humidity. The volatiles in the headspace of the hay infusion were sampled with Tenax TA traps for 20 h and analysed using gas chromatography coupled to mass spectrometry. Results In total, 18 volatiles were detected in the infusion headspace. Nine of the detected compounds and nonanal were selected for bioassays. Eight of the selected compounds have previously been suggested to attract/stimulate egg laying in An. gambiaes.s. Gravid females were significantly (p < 0.05) less likely to lay eggs in hay infusion dilutions of 25, 50 and 100 % and in tap water containing any of six compounds (3-methylbutanol, phenol, 4-methylphenol, nonanal, indole, and 3-methylindole) compared to tap water alone. The oviposition response to 10 % hay infusion or any one of the remaining four volatiles (4-hepten-1-ol, phenylmethanol, 2-phenylethanol, or 4-ethylphenol) did not differ from that in tap water. Conclusions Anopheles gambiae s.s. prefers to lay eggs in tap water rather than Bermuda grass hay infusion. This avoidance of the hay infusion appears to be mediated by volatile organic compounds from the infusion. It is, therefore, unlikely that Bermuda grass hay infusion as formulated and used in gravid traps for Culex and Aedes mosquitoes will be suitable baits for monitoring gravid An. gambiae s.s.
Collapse
Affiliation(s)
- Lynda K Eneh
- Chemical Ecology, Department of Chemistry, School of Chemical Science and Engineering, Royal Institute of Technology, Stockholm, Sweden
| | - Michael N Okal
- International Centre of Insect Physiology and Ecology, Thomas Odhiambo Campus, Mbita, Kenya. .,Disease Control Department, London School of Hygiene & Tropical Medicine, London, UK.
| | - Anna-Karin Borg-Karlson
- Chemical Ecology, Department of Chemistry, School of Chemical Science and Engineering, Royal Institute of Technology, Stockholm, Sweden
| | - Ulrike Fillinger
- International Centre of Insect Physiology and Ecology, Thomas Odhiambo Campus, Mbita, Kenya.,Disease Control Department, London School of Hygiene & Tropical Medicine, London, UK
| | - Jenny M Lindh
- Chemical Ecology, Department of Chemistry, School of Chemical Science and Engineering, Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
77
|
Dugassa S, Lindh JM, Lindsay SW, Fillinger U. Field evaluation of two novel sampling devices for collecting wild oviposition site seeking malaria vector mosquitoes: OviART gravid traps and squares of electrocuting nets. Parasit Vectors 2016; 9:272. [PMID: 27165292 PMCID: PMC4863355 DOI: 10.1186/s13071-016-1557-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 04/29/2016] [Indexed: 12/04/2022] Open
Abstract
Background New sampling tools are needed for collecting exophilic malaria mosquitoes in sub-Saharan Africa to monitor the impact of vector control interventions. The OviART gravid trap and squares of electrocuting nets (e-nets) were recently developed under semi-field conditions for collecting oviposition site seeking Anopheles gambiae (sensu stricto) (s.s.). This study was designed to evaluate the efficacy of these traps for sampling malaria vectors under field conditions. Methods Prior to field testing, two modifications to the prototype OviART gravid trap were evaluated by (i) increasing the surface area and volume of water in the artificial pond which forms part of the trap, and (ii) increasing the strength of the suction fan. Six sampling tools targeting gravid females (Box gravid trap, detergent-treated ponds, e-nets insect glue-treated ponds, sticky boards and sticky floating-acetate sheets) were compared under field conditions to evaluate their relative catching performance and to select a method for comparison with the OviART gravid trap. Finally, the trapping efficacy of the OviART gravid trap and the square of e-nets were compared with a Box gravid trap during the long rainy season in three household clusters in western Kenya. Results The OviART gravid trap prototype’s catch size was doubled by increasing the pond size [rate ratio (RR) 1.9; 95 % confidence interval (CI) 1.1–3.4] but a stronger fan did not improve the catch. The square of e-nets performed better than the other devices, collecting three times more gravid Anopheles spp. than the Box gravid trap (RR 3.3; 95 % CI 1.4–7.6). The OviART gravid trap collections were comparable to those from the e-nets and 3.3 (95 % CI 1.5–7.0) times higher than the number of An. gambiae senso lato (s.l.) collected by the Box gravid trap. Conclusion Both OviART gravid trap and squares of e-nets collected wild gravid Anopheles gambiae (s.l.) where natural habitats were within 200–400 m of the trap. Whilst the e-nets are difficult to handle and might therefore only be useful as a research device, the OviART gravid trap presents a promising new surveillance tool. Further field testing is needed in different eco-epidemiological settings to provide recommendations for its use.
Collapse
Affiliation(s)
- Sisay Dugassa
- International Centre of Insect Physiology and Ecology, Thomas Odhiambo Campus, Mbita, Kenya. .,School of Biological Sciences, University of Nairobi, Nairobi, Kenya. .,Department of Zoological Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
| | | | - Steven W Lindsay
- School of Biological and Biomedical Sciences, Durham University, Durham, UK
| | - Ulrike Fillinger
- International Centre of Insect Physiology and Ecology, Thomas Odhiambo Campus, Mbita, Kenya.,Disease Control Department, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
78
|
A Regional Model for Malaria Vector Developmental Habitats Evaluated Using Explicit, Pond-Resolving Surface Hydrology Simulations. PLoS One 2016; 11:e0150626. [PMID: 27003834 PMCID: PMC4803214 DOI: 10.1371/journal.pone.0150626] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 02/17/2016] [Indexed: 11/26/2022] Open
Abstract
Dynamical malaria models can relate precipitation to the availability of vector breeding sites using simple models of surface hydrology. Here, a revised scheme is developed for the VECTRI malaria model, which is evaluated alongside the default scheme using a two year simulation by HYDREMATS, a 10 metre resolution, village-scale model that explicitly simulates individual ponds. Despite the simplicity of the two VECTRI surface hydrology parametrization schemes, they can reproduce the sub-seasonal evolution of fractional water coverage. Calibration of the model parameters is required to simulate the mean pond fraction correctly. The default VECTRI model tended to overestimate water fraction in periods subject to light rainfall events and underestimate it during periods of intense rainfall. This systematic error was improved in the revised scheme by including the a parametrization for surface run-off, such that light rainfall below the initial abstraction threshold does not contribute to ponds. After calibration of the pond model, the VECTRI model was able to simulate vector densities that compared well to the detailed agent based model contained in HYDREMATS without further parameter adjustment. Substituting local rain-gauge data with satellite-retrieved precipitation gave a reasonable approximation, raising the prospects for regional malaria simulations even in data sparse regions. However, further improvements could be made if a method can be derived to calibrate the key hydrology parameters of the pond model in each grid cell location, possibly also incorporating slope and soil texture.
Collapse
|
79
|
Bashar K, Rahman MS, Nodi IJ, Howlader AJ. Species composition and habitat characterization of mosquito (Diptera: Culicidae) larvae in semi-urban areas of Dhaka, Bangladesh. Pathog Glob Health 2016; 110:48-61. [PMID: 27241953 PMCID: PMC4894266 DOI: 10.1080/20477724.2016.1179862] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Mosquito larvae are purely aquatic and develop in water bodies, the type of which is more or less specific to each species. Therefore, a study was carried out to identify the habitat characters of different mosquito species along with their species composition in semi-urban area of Dhaka in Bangladesh during the month of May and June 2012. A total of 6088 mosquito larvae belonging to 12 species (Aedes aegypti, Aedes albopictus, Anopheles barbirostris, Anopheles peditaeniatus, Anopheles vagus, Culex gelidus, Culex hutchinsoni, Culex quinquefasciatus, Culex tritaeniorhynchus, Mansonia annulifera, Mansonia uniformis, and Toxorhynchites splendens) under 5 genera were collected from 14 different types of habitats. Culex quinquefsciatus was the dominant (21.7/500 ml) species followed by Cx. tritaeniorhynchus (10.53/500 ml). Dissolved oxygen and chlorophyll a were the preeminent predictors for the abundance of all collected mosquito larvae except Ae. aegypti. Water temperature was positively associated with the breeding of An. vagus (r = 0.421, p = <0.001), An. barbirostris (r = 0.489, p = <0.001) and An. peditaeniatus (r = 0.375, p = <0.001). Water depth, distance from nearest house, emergent plant coverage, and alkalinity were found as the basis of larval abundance. Every Culex species and Tx. splendens (r = 0.359, p = 0.001) were found positively associated with chemical oxygen demand, while Mn. annulifera showed negative association (r = -0.115, p = 0.0297). This study also highlighted that various physicochemical factors affect the presence or abundance of mosquito larvae.
Collapse
Affiliation(s)
- Kabirul Bashar
- Laboratory of Entomology, Department of Zoology, Jahangirnagar University, Dhaka, Bangladesh
| | | | | | | |
Collapse
|
80
|
Mamai W, Simard F, Couret D, Ouedraogo GA, Renault D, Dabiré KR, Mouline K. Monitoring Dry Season Persistence of Anopheles gambiae s.l. Populations in a Contained Semi-Field System in Southwestern Burkina Faso, West Africa. JOURNAL OF MEDICAL ENTOMOLOGY 2016; 53:130-138. [PMID: 26576935 DOI: 10.1093/jme/tjv174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To gain insight into the dry season survival strategies of Anopheles gambiae s.l., a new contained semi-field system was developed and used for the first time in Burkina Faso, West Africa. The system consisted of a screened greenhouse within which the local environment was reproduced, including all ecological requirements for mosquito development cycle completion. The system was seeded with the progenies of female Anopheles gambiae, Anopheles coluzzii, and Anopheles arabiensis collected in the vicinity of the greenhouse during the rainy season. After successful establishment in the semi-field system, mosquito populations were monitored over a 1-yr period by regular surveys of larval and adult specimens. We provided evidence for the persistence of adult mosquitoes throughout the dry season, in the absence of any suitable larval development site. During the hot and dry periods, adult insects were observed in artificial shelters (clay pots, building blocks, and dark corners). The mosquito population rapidly built up with the return of the rainy season in the area, when artificial breeding sites were refilled in the enclosure. However, only An. coluzzii and, later, An. arabiensis were detected in the subsequent rainy season, whereas no An. gambiae specimen was found. Our findings suggest that An. coluzzii and An. arabiensis may be able to aestivate throughout the dry season in Southwestern Burkina Faso, whereas An. gambiae might adopt a different dry-season survival strategy, such as long-distance re-colonization from distant locations. These results may have important implications for malaria control through targeted vector control interventions.
Collapse
|
81
|
Ojuka P, Boum Y, Denoeud-Ndam L, Nabasumba C, Muller Y, Okia M, Mwanga-Amumpaire J, De Beaudrap P, Protopopoff N, Etard JF. Early biting and insecticide resistance in the malaria vector Anopheles might compromise the effectiveness of vector control intervention in Southwestern Uganda. Malar J 2015; 14:148. [PMID: 25879539 PMCID: PMC4416237 DOI: 10.1186/s12936-015-0653-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/10/2015] [Indexed: 11/30/2022] Open
Abstract
Background Southwestern Uganda has high malaria heterogeneity despite moderate vector control and other interventions. Moreover, the early biting transmission and increased resistance to insecticides might compromise strategies relying on vector control. Consequently, monitoring of vector behaviour and insecticide efficacy is needed to assess the effectiveness of strategies aiming at malaria control. This eventually led to an entomological survey in two villages with high malaria prevalence in this region. Methods During rainy, 2011 and dry season 2012, mosquitoes were collected in Engari and Kigorogoro, Kazo subcounty, using human landing collection, morning indoor resting collection, pyrethrum spray collection and larval collection. Circumsporozoite protein of Plasmodium falciparum sporozoites in female Anopheles mosquitoes was detected using ELISA assay. Bioassays to monitor Anopheles resistance to insecticides were performed. Results Of the 1,021 female Anopheles species captured, 62% (632) were Anopheles funestus and 36% (371) were Anopheles gambiae s.l. The most common species were Anopheles gambiae s.l. in Engari (75%) and A. funestus in Kigorogoro (83%). Overall, P. falciparum prevalence was 2.9% by ELISA. The daily entomological inoculation rates were estimated at 0.17 and 0.58 infected bites/person/night during rainy and dry season respectively in Engari, and 0.81 infected bites/person/night in Kigorogoro during dry season. In both areas and seasons, an unusually early evening biting peak was observed between 6 - 8 p.m. In Engari, insecticide bioassays showed 85%, 34% and 12% resistance to DDT during the rainy season, dry season and to deltamethrin during the dry season, respectively. In Kigorogoro, 13% resistance to DDT and to deltamethrin was recorded. There was no resistance observed to bendiocarb and pirimiphos methyl. Conclusions The heterogeneity of mosquito distribution, entomological indicators and resistance to insecticides in villages with high malaria prevalence highlight the need for a long-term vector control programme and monitoring of insecticide resistance in Uganda. The early evening biting habits of Anopheles combined with resistance to DDT and deltamethrin observed in this study suggest that use of impregnated bed nets alone is insufficient as a malaria control strategy, urging the need for additional interventions in this area of high transmission.
Collapse
Affiliation(s)
| | - Yap Boum
- Epicentre Mbarara Research Centre, Mbarara, Uganda. .,Mbarara University of Science and Technology, Mbarara, Uganda.
| | | | | | | | - Michael Okia
- National Malaria Control Programme Ministry of Health, Kampala, Uganda.
| | - Juliet Mwanga-Amumpaire
- Epicentre Mbarara Research Centre, Mbarara, Uganda. .,Mbarara University of Science and Technology, Mbarara, Uganda.
| | - Pierre De Beaudrap
- TransVIHMI IRD UMI 233-INSERM U 1175-Montpellier University, Montpellier, France.
| | - Natacha Protopopoff
- Department of Disease Control, London School of Tropical Medicine and Hygiene, Keppel Street, London, UK.
| | - Jean-François Etard
- Epicentre, Paris, France. .,TransVIHMI IRD UMI 233-INSERM U 1175-Montpellier University, Montpellier, France.
| |
Collapse
|
82
|
Entomological investigations on malaria vectors in some war-torn areas in the trincomalee district of sri lanka after settlement of 30-year civil disturbance. Malar Res Treat 2015; 2015:367635. [PMID: 25789195 PMCID: PMC4350625 DOI: 10.1155/2015/367635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/19/2015] [Accepted: 01/19/2015] [Indexed: 11/18/2022] Open
Abstract
Background. Malaria was an endemic problem in Trincomalee District, Eastern Province of Sri Lanka. Very few recent data concerning Anopheles are available which transmit malaria. Therefore, the aim of this study is to identify various Anopheles species and the dynamics of anophelines including malaria vectors in Trincomalee District for effective vector control under the current malaria elimination program embarked in the country. Method. Entomological surveys were conducted on a monthly basis, using five entomological techniques, namely, indoor hand collection (HC), window trap collection (WTC), cattle-baited net collection (CBNC), and cattle-baited hut collection (CBHC) from June 2010 to June 2012 in 32 study areas under five entomological sentinel sites. Results. Seventeen anopheline species were encountered, of which Anopheles subpictus was the predominant species in all sampling methods. It is noted that A. culicifacies and A. subpictus have adapted to breed in polluted water in urban settings which may cause serious implications on the epidemiology of malaria in the country. Conclusions. It is important to determine the abundance, biology, distribution, and relationship with climatic factors of main and secondary malaria vectors in Sri Lanka in order to initiate evidence based controlling programs under the current malaria elimination program in Sri Lanka.
Collapse
|
83
|
Ngom EHM, Faye ND, Talla C, Ndiaye EH, Ndione JA, Faye O, Ba Y, Diallo M, Dia I. Anopheles arabiensis seasonal densities and infection rates in relation to landscape classes and climatic parameters in a Sahelian area of Senegal. BMC Infect Dis 2014; 14:711. [PMID: 25526645 PMCID: PMC4279681 DOI: 10.1186/s12879-014-0711-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The influence of environmental and climatic factors on malaria vector bionomics and transmission is an important topic in the context of climatic change particularly at macro-geographical level. Sahelian areas could be particularly affected due to heterogeneous features including high inter-annual variability in rainfall and others associated parameters. Therefore, baseline information on the impact of environmental and climatic factors on malaria transmission at micro-geographical level is required for vector risk management and implementation of control strategies. METHODS Malaria vectors were collected indoors by pyrethrum spray catches in 14 villages belonging to 4 different landscape classes (wooded savanna, shrubby savanna, bare soils and steppe) in the sylvo-pastoral area of Senegal. Plasmodium falciparum infection rates were determined using an indirect enzyme-linked immunosorbent assay (ELISA). RESULTS An. arabiensis was the predominant species in all landscape classes and was the only species collected at the end of the rainy season excepted in villages located in bare soils where it cohabited with An. coluzzii. Mean temperature and relative humidity showed similar variations in all the landscape classes covered whereas rainfall was more heterogeneous in terms of pattern, frequency and amount. The mean densities of An. arabiensis displayed high seasonal differences with peaks observed in August or September. A positive non-significant correlation was observed between An. arabiensis densities for rainfall and humidity whereas a negative non-significant correlation was reported for temperature. Plasmodium falciparum-infected mosquitoes were detected only in wooded savanna and bare soils villages. CONCLUSIONS These observations suggest key roles played by landscape classes and rainfall in malaria vector densities, infection rates and malaria transmission that could be more pronounced in villages situated in wooded savanna and bare soils. Due to the close relationship between environmental and meteorological parameters in this Sahelian region, additional studies on the impact of these parameters are required to further ascertain their association with entomological parameters involved in malaria transmission. From the public health point of view, such information could be useful for human population settlements as well as for monitoring and modelling purposes giving early warning system for implementation of interventions in these unstable transmission zones.
Collapse
Affiliation(s)
- El Hadji Malick Ngom
- Unité d'entomologie médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal.
- Université Cheikh Anta Diop de Dakar, Dakar, Sénégal.
| | | | - Cheikh Talla
- Unité d'entomologie médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal.
- Université Gaston Berger, Saint-Louis, Sénégal.
| | - El Hadji Ndiaye
- Unité d'entomologie médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal.
- Université Cheikh Anta Diop de Dakar, Dakar, Sénégal.
| | | | - Ousmane Faye
- Université Cheikh Anta Diop de Dakar, Dakar, Sénégal.
| | - Yamar Ba
- Unité d'entomologie médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal.
| | - Mawlouth Diallo
- Unité d'entomologie médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal.
| | - Ibrahima Dia
- Unité d'entomologie médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal.
| |
Collapse
|
84
|
Midekisa A, Senay GB, Wimberly MC. Multisensor earth observations to characterize wetlands and malaria epidemiology in Ethiopia. WATER RESOURCES RESEARCH 2014; 50:8791-8806. [PMID: 25653462 PMCID: PMC4303930 DOI: 10.1002/2014wr015634] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 10/08/2014] [Indexed: 05/14/2023]
Abstract
Malaria is a major global public health problem, particularly in Sub-Saharan Africa. The spatial heterogeneity of malaria can be affected by factors such as hydrological processes, physiography, and land cover patterns. Tropical wetlands, for example, are important hydrological features that can serve as mosquito breeding habitats. Mapping and monitoring of wetlands using satellite remote sensing can thus help to target interventions aimed at reducing malaria transmission. The objective of this study was to map wetlands and other major land cover types in the Amhara region of Ethiopia and to analyze district-level associations of malaria and wetlands across the region. We evaluated three random forests classification models using remotely sensed topographic and spectral data based on Shuttle Radar Topographic Mission (SRTM) and Landsat TM/ETM+ imagery, respectively. The model that integrated data from both sensors yielded more accurate land cover classification than single-sensor models. The resulting map of wetlands and other major land cover classes had an overall accuracy of 93.5%. Topographic indices and subpixel level fractional cover indices contributed most strongly to the land cover classification. Further, we found strong spatial associations of percent area of wetlands with malaria cases at the district level across the dry, wet, and fall seasons. Overall, our study provided the most extensive map of wetlands for the Amhara region and documented spatiotemporal associations of wetlands and malaria risk at a broad regional level. These findings can assist public health personnel in developing strategies to effectively control and eliminate malaria in the region. KEY POINTS Remote sensing produced an accurate wetland map for the Ethiopian highlandsWetlands were associated with spatial variability in malaria riskMapping and monitoring wetlands can improve malaria spatial decision support.
Collapse
Affiliation(s)
- Alemayehu Midekisa
- Geospatial Sciences Center of Excellence, South Dakota State University Brookings, South Dakota, USA
| | - Gabriel B Senay
- U.S. Geological Survey Earth Resources Observation and Science Center Sioux Falls, South Dakota, USA
| | - Michael C Wimberly
- Geospatial Sciences Center of Excellence, South Dakota State University Brookings, South Dakota, USA
| |
Collapse
|
85
|
Geographically weighted regression of land cover determinants of Plasmodium falciparum transmission in the Ashanti Region of Ghana. Int J Health Geogr 2014; 13:35. [PMID: 25270342 PMCID: PMC4192530 DOI: 10.1186/1476-072x-13-35] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/03/2014] [Indexed: 11/10/2022] Open
Abstract
Background Malaria is a mosquito-borne parasitic disease that causes severe mortality and morbidity, particularly in Sub-Saharan Africa. As the vectors predominantly bite between dusk and dawn, risk of infection is determined by the abundance of P. falciparum infected mosquitoes in the surroundings of the households. Remote sensing is commonly employed to detect associations between land use/land cover (LULC) and mosquito-borne diseases. Due to challenges in LULC identification and the fact that LULC merely functions as a proxy for mosquito abundance, assuming spatially homogenous relationships may lead to overgeneralized conclusions. Methods Data on incidence of P. falciparum parasitaemia were recorded by active and passive follow-up over two years. Nine LULC types were identified through remote sensing and ground-truthing. Spatial associations of LULC and P. falciparum parasitaemia rate were described in a semi-parametric geographically weighted Poisson regression model. Results Complete data were available for 878 individuals, with an annual P. falciparum rate of 3.2 infections per person-year at risk. The influences of built-up areas (median incidence rate ratio (IRR): 0.94, IQR: 0.46), forest (median IRR: 0.9, IQR: 0.51), swampy areas (median IRR: 1.15, IQR: 0.88), as well as banana (median IRR: 1.02, IQR: 0.25), cacao (median IRR: 1.33, IQR: 0.97) and orange plantations (median IRR: 1.11, IQR: 0.68) on P. falciparum rate show strong spatial variations within the study area. Incorporating spatial variability of LULC variables increased model performance compared to the spatially homogenous model. Conclusions The observed spatial variability of LULC influence in parasitaemia would have been masked by traditional Poisson regression analysis assuming a spatially constant influence of all variables. We conclude that the spatially varying effects of LULC on P. falciparum parasitaemia may in fact be associated with co-factors not captured by remote sensing, and suggest that future studies assess small-scale spatial variation of vegetation to circumvent generalised assumptions on ecological associations that may in fact be artificial. Electronic supplementary material The online version of this article (doi:10.1186/1476-072X-13-35) contains supplementary material, which is available to authorized users.
Collapse
|
86
|
Vanlalruia K, Senthilkumar N, Gurusubramanian G. Diversity and abundance of mosquito species in relation to their larval habitats in Mizoram, North Eastern Himalayan region. Acta Trop 2014; 137:1-18. [PMID: 24795213 DOI: 10.1016/j.actatropica.2014.04.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 04/16/2014] [Accepted: 04/22/2014] [Indexed: 11/17/2022]
Abstract
The abundance, richness and diversity of anopheline and culicid mosquitoes associated with their habitats, season, and physico-chemical quality of water were surveyed along six districts of Mizoram, North Eastern Himalayan region. The productivity of permanent and temporary habitat types was quantified by carrying out weekly larval sampling using a standard dipping method for a period of three years. Diversity was estimated using the Shannon index (H'), Evenness index (Heve), similarity measures cluster analysis and MANOVA. In total, 5 genera and 20 species of mosquitoes were identified: Culex quinquefasciatus, Anopheles barbirostris and Anopheles vagus were the most abundant and widely-distributed species, representing 39.71%, 29.39% and 14.52% of total mosquito individuals sampled, respectively. Anopheles sp. diversity was lowest in Lunglei district (H'=0.48) and highest in Aizawl (H'=2.03), whereas Culex sp. diversity was lowest in Lawngtlai (H'=0.38), and highest in Aizawl (H'=2.99) and Kolasib (H'=2.13). This represents the first update on the diversity and geographic distribution of the mosquitoes of Mizoram. Mosquito larvae were present in both temporary and permanent habitats suitable for breeding with monthly variations dependent on rainfall intensity, temperature, humidity and location. Early instars were more abundant significantly (P<0.0001) than late instars among the habitat types in all study sites. The productivity of mosquito larvae was significantly (P<0.0001) higher in ponds especially in permanent than semi-permanent and temporary. Weekly rainfall intensity led to an increase or decrease in anopheline and culicid larval abundance depending on the location. Mosquito diversity was highest in monsoon season (July-September) and lowest in January-March. A. barbirostris, A. vagus and C. quinquefasciatus appear the most likely habitat generalist as it demonstrates both widespread distribution. Abundance and diversity of culicine and anopheline larvae were strongly associated (MANOVA) with pH, temperature, dissolved oxygen, alkalinity, phosphates and chlorides concentration of water. This information will be essential for designing and implementing mosquito larval control programs.
Collapse
|
87
|
Mbare O, Lindsay SW, Fillinger U. Pyriproxyfen for mosquito control: female sterilization or horizontal transfer to oviposition substrates by Anopheles gambiae sensu stricto and Culex quinquefasciatus. Parasit Vectors 2014; 7:280. [PMID: 24954695 PMCID: PMC4082483 DOI: 10.1186/1756-3305-7-280] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/16/2014] [Indexed: 11/10/2022] Open
Abstract
Background The use of gravid mosquitoes as vehicles to auto-disseminate larvicides was recently demonstrated for the transfer of pyriproxyfen (PPF) by container-breeding Aedes mosquitoes and presents an appealing idea to explore for other disease vectors. The success of this approach depends on the female’s behaviour, the time of exposure and the amount of PPF that can be carried by an individual. We explore the effect of PPF exposure at seven time points around blood feeding on individual Anopheles gambiae sensu stricto and Culex quinquefasciatus fecundity and ability to transfer in laboratory assays. Method Mosquitoes were exposed to 2.6 mg PPF per m2 at 48, 24 and 0.5 hours before and after a blood meal and on the day of egg-laying. The proportion of exposed females (N = 80-100) laying eggs, the number of eggs laid and hatched was studied. Transfer of PPF to oviposition cups was assessed by introducing 10 late instar insectary-reared An. gambiae s.s. larvae into all the cups and monitored for adult emergence inhibition. Results Exposure to PPF between 24 hours before and after a blood meal had significant sterilizing effects: females of both species were 6 times less likely (Odds ratio (OR) 0.16, 95% confidence interval (CI) 0.10-0.26) to lay eggs than unexposed females. Of the few eggs laid, the odds of an egg hatching was reduced 17 times (OR 0.06, 95% CI 0.04-0.08) in Anopheles but only 1.2 times (OR 0.82, 95% CI 0.73-0.93) in Culex. Adult emergence inhibition from larvae introduced in the oviposition cups was observed only from cups in which eggs were laid. When females were exposed to PPF close to egg laying they transferred enough PPF to reduce emergence by 65-71% (95% CI 62-74%). Conclusion PPF exposure within a day before and after blood feeding affects egg-development in An. gambiae s.s. and Cx. quinquefasciatus and presents a promising opportunity for integrated control of vectors and nuisance mosquitoes. However, sterilized females are unlikely to visit an oviposition site and therefore do not transfer lethal concentrations of PPF to aquatic habitats. This suggests that for successful auto-dissemination the optimum contamination time is close to oviposition.
Collapse
Affiliation(s)
| | | | - Ulrike Fillinger
- International Centre of Insect Physiology and Ecology (icipe), Thomas Odhiambo Campus, 40305 Mbita, Kenya.
| |
Collapse
|
88
|
McCann RS, Messina JP, MacFarlane DW, Bayoh MN, Vulule JM, Gimnig JE, Walker ED. Modeling larval malaria vector habitat locations using landscape features and cumulative precipitation measures. Int J Health Geogr 2014; 13:17. [PMID: 24903736 PMCID: PMC4070353 DOI: 10.1186/1476-072x-13-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/29/2014] [Indexed: 11/23/2022] Open
Abstract
Background Predictive models of malaria vector larval habitat locations may provide a basis for understanding the spatial determinants of malaria transmission. Methods We used four landscape variables (topographic wetness index [TWI], soil type, land use-land cover, and distance to stream) and accumulated precipitation to model larval habitat locations in a region of western Kenya through two methods: logistic regression and random forest. Additionally, we used two separate data sets to account for variation in habitat locations across space and over time. Results Larval habitats were more likely to be present in locations with a lower slope to contributing area ratio (i.e. TWI), closer to streams, with agricultural land use relative to nonagricultural land use, and in friable clay/sandy clay loam soil and firm, silty clay/clay soil relative to friable clay soil. The probability of larval habitat presence increased with increasing accumulated precipitation. The random forest models were more accurate than the logistic regression models, especially when accumulated precipitation was included to account for seasonal differences in precipitation. The most accurate models for the two data sets had area under the curve (AUC) values of 0.864 and 0.871, respectively. TWI, distance to the nearest stream, and precipitation had the greatest mean decrease in Gini impurity criteria in these models. Conclusions This study demonstrates the usefulness of random forest models for larval malaria vector habitat modeling. TWI and distance to the nearest stream were the two most important landscape variables in these models. Including accumulated precipitation in our models improved the accuracy of larval habitat location predictions by accounting for seasonal variation in the precipitation. Finally, the sampling strategy employed here for model parameterization could serve as a framework for creating predictive larval habitat models to assist in larval control efforts.
Collapse
Affiliation(s)
- Robert S McCann
- Department of Entomology, Michigan State University, East Lansing, MI, USA.
| | | | | | | | | | | | | |
Collapse
|
89
|
Herrera-Varela M, Lindh J, Lindsay SW, Fillinger U. Habitat discrimination by gravid Anopheles gambiae sensu lato--a push-pull system. Malar J 2014; 13:133. [PMID: 24693951 PMCID: PMC3975139 DOI: 10.1186/1475-2875-13-133] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/27/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The non-random distribution of anopheline larvae in natural habitats suggests that gravid females discriminate between habitats of different quality. Whilst physical and chemical cues used by Culex and Aedes vector mosquitoes for selecting an oviposition site have been extensively studied, those for Anopheles remain poorly explored. Here the habitat selection by Anopheles gambiae sensu lato (s.l.), the principal African malaria vector, was investigated when presented with a choice of two infusions made from rabbit food pellets, or soil. METHODS Natural colonization and larval survival was evaluated in artificial ponds filled randomly with either infusion. Dual-choice, egg-count bioassays evaluated the responses of caged gravid females to (1) two- to six-day old infusions versus lake water; (2) autoclaved versus non-autoclaved soil infusions; and assessed (3) the olfactory memory of gravid females conditioned in pellet infusion as larvae. RESULTS Wild Anopheles exclusively colonized ponds with soil infusion and avoided those with pellet infusion. When the individual infusions were tested in comparison with lake water, caged An. gambiae sensu stricto (s.s.) showed a dose response: females increasingly avoided the pellet infusion with increasing infusion age (six-day versus lake water: odds ratio (OR) 0.22; 95% confidence interval (CI) 0.1-0.5) and showed increasing preference to lay eggs as soil infusion age increased (six-day versus lake water: OR 2.1; 95% CI 1.4-3.3). Larvae survived in soil infusions equally well as in lake water but died in pellet infusions. Anopheles gambiae s.s. preferred to lay eggs in the non-autoclaved soil (OR 2.6; 95% CI 1.8-3.7) compared with autoclaved soil. There was no change in the avoidance of pellet infusion by individuals reared in the infusion compared with those reared in lake water. CONCLUSION Wild and caged An. gambiae s.l. females discriminate between potential aquatic habitats for oviposition. These choices benefit the survival of the offspring. Although the study was not designed to distinguish between stimuli that acted over a distance or on contact, it could be demonstrated that the choice of habitat is mediated by chemical cues based on both preference and avoidance. These cues, if identified, might be developed for 'push-pull' strategies to improve malaria vector monitoring and control.
Collapse
Affiliation(s)
- Manuela Herrera-Varela
- Department of Diseases Control, London School of Hygiene and Tropical Medicine, London, UK
- International Centre for Insect Physiology and Ecology (icipe)-Thomas Odhiambo Campus, Mbita, Kenya
| | - Jenny Lindh
- Royal Institute of Technology, Stockholm, Sweden
| | - Steven W Lindsay
- School of Biological and Biomedical Sciences, Durham University, Durham, UK
| | - Ulrike Fillinger
- Department of Diseases Control, London School of Hygiene and Tropical Medicine, London, UK
- International Centre for Insect Physiology and Ecology (icipe)-Thomas Odhiambo Campus, Mbita, Kenya
| |
Collapse
|
90
|
Moiroux N, Djènontin A, Bio-Bangana AS, Chandre F, Corbel V, Guis H. Spatio-temporal analysis of abundances of three malaria vector species in southern Benin using zero-truncated models. Parasit Vectors 2014; 7:103. [PMID: 24620714 PMCID: PMC4008307 DOI: 10.1186/1756-3305-7-103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 03/03/2014] [Indexed: 11/23/2022] Open
Abstract
Background A better understanding of the ecology and spatial-temporal distribution of malaria vectors is essential to design more effective and sustainable strategies for malaria control and elimination. In a previous study, we analyzed presence-absence data of An. funestus, An. coluzzii, and An. gambiae s.s. in an area of southern Benin with high coverage of vector control measures. Here, we further extend the work by analysing the positive values of the dataset to assess the determinants of the abundance of these three vectors and to produce predictive maps of vector abundance. Methods Positive counts of the three vectors were assessed using negative-binomial zero-truncated (NBZT) mixed-effect models according to vector control measures and environmental covariates derived from field and remote sensing data. After 8-fold cross-validation of the models, predictive maps of abundance of the sympatric An. funestus, An. coluzzii, and An. gambiae s.s. were produced. Results Cross-validation of the NBZT models showed a satisfactory predictive accuracy. Almost all changes in abundance between two surveys in the same village were well predicted by the models but abundances for An. gambiae s.s. were slightly underestimated. During the dry season, predictive maps showed that abundance greater than 1 bite per person per night were observed only for An. funestus and An. coluzzii. During the rainy season, we observed both increase and decrease in abundance of An. funestus, which are dependent on the ecological setting. Abundances of both An. coluzzii and An. gambiae s.s. increased during the rainy season but not in the same areas. Conclusions Our models helped characterize the ecological preferences of three major African malaria vectors. This works highlighted the importance to study independently the binomial and the zero-truncated count processes when evaluating vector control strategies. The study of the bio-ecology of malaria vector species in time and space is critical for the implementation of timely and efficient vector control strategies.
Collapse
Affiliation(s)
- Nicolas Moiroux
- MIVEGEC (IRD 224-CNRS 5290-UM1-UM2), Institut de Recherche pour le Développement (IRD), BP64501, 34394 Montpellier, France.
| | | | | | | | | | | |
Collapse
|
91
|
Futami K, Dida GO, Sonye GO, Lutiali PA, Mwania MS, Wagalla S, Lumumba J, Kongere JO, Njenga SM, Minakawa N. Impacts of insecticide treated bed nets on Anopheles gambiae s.l. populations in Mbita district and Suba district, Western Kenya. Parasit Vectors 2014; 7:63. [PMID: 24517160 PMCID: PMC3925958 DOI: 10.1186/1756-3305-7-63] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/09/2014] [Indexed: 12/29/2022] Open
Abstract
Background Abundance and species composition of sympatric malaria vector species are the important factors governing transmission intensity. A widespread insecticidal bed net coverage may replace endophagic species with exophagic species. However, unique local environments also influence a vector population. This study examined the impacts of insecticidal bed nets on An. gambiae s.l populations in Mbita District and Suba District. Methods The species compositions of An. gambiae s.l. larvae were compared between 1997, 2009 and 2010 and between geographical areas. The abundance and species composition of An. gambiae s.l. females resting indoors were compared between 1999, 2008 and 2010 and between geographical areas. Bed net coverage was also examined temporally and spatially, and its relationships with vector abundance and species composition were examined. Results The relative abundance of An. gambiae s.s. larvae was 31.4% in 1997, decreasing to 7.5% in 2008 and 0.3% in 2010. The density of indoor resting An. gambiae s.l. females decreased by nearly 95%, and the relative abundance of An. gambiae s.s. females decreased from 90.6% to 60.7% and 72.4% in 2008 and 2010, respectively. However, the species composition of indoor resting An. gambiae s.l. females changed little in the island villages, and An. gambiae s.s. remained dominant in the western part of the study area. The density of house resting females was negatively associated with the number of bed nets in a retrospective analysis, but the effect of bed nets on species composition was not significant in both retrospective and cross-sectional analyses. Conclusion An increase in bed net coverage does not necessarily replace endophilic species with exophilic species. The effect of bed nets on An. gambiae s.l. populations varies spatially, and locally unique environments are likely to influence the species composition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Noboru Minakawa
- Department of Vector Ecology and Environment, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
92
|
Iwashita H, Dida GO, Sonye GO, Sunahara T, Futami K, Njenga SM, Chaves LF, Minakawa N. Push by a net, pull by a cow: can zooprophylaxis enhance the impact of insecticide treated bed nets on malaria control? Parasit Vectors 2014; 7:52. [PMID: 24472517 PMCID: PMC3917899 DOI: 10.1186/1756-3305-7-52] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/27/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Mass insecticide treated bed net (ITN) deployment, and its associated coverage of populations at risk, had "pushed" a decline in malaria transmission. However, it is unknown whether malaria control is being enhanced by zooprophylaxis, i.e., mosquitoes diverted to feed on hosts different from humans, a phenomenon that could further reduce malaria entomological transmission risk in areas where livestock herding is common. METHODS Between May and July 2009, we collected mosquitoes in 104 houses from three neighboring villages with high ITN coverage (over 80%), along Lake Victoria. We also performed a census of livestock in the area and georeferenced tethering points for all herds, as well as, mosquito larval habitats. Bloodmeal contents from sampled mosquitoes were analyzed, and each mosquito was individually tested for malaria sporozoite infections. We then evaluated the association of human density, ITN use, livestock abundance and larval habitats with mosquito abundance, bloodfeeding on humans and malaria sporozoite rate using generalized linear mixed effects models. RESULTS We collected a total of 8123 mosquitoes, of which 1664 were Anopheles spp. malaria vectors over 295 household spray catches. We found that vector household abundance was mainly driven by the number of householders (P < 0.05), goats/sheep tethered around the house (P < 0.05) and ITNs, which halved mosquito abundance (P < 0.05). In general, similar patterns were observed for Anopheles arabiensis, but not An. gambiae s.s. and An. funestus s.s., whose density did not increase with the presence of livestock animals. Feeding on humans significantly increased in all species with the number of householders (P < 0.05), and only significantly decreased for An. arabiensis in the presence of cattle (P < 0.05). Only 26 Anopheles spp. vectors had malaria sporozoites with the sporozoite rate significantly decreasing as the proportion of cattle feeding mosquitoes increased (P < 0.05). CONCLUSION Our data suggest that cattle, in settings with large ITN coverage, have the potential to drive an unexpected "push-pull" malaria control system, where An. arabiensis mosquitoes "pushed" out of human contact by ITNs are likely being further "pulled" by cattle.
Collapse
Affiliation(s)
- Hanako Iwashita
- Department of Vector Ecology and Environment, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Gabriel O Dida
- Department of Vector Ecology and Environment, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | | | - Toshihiko Sunahara
- Department of Vector Ecology and Environment, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Kyoko Futami
- Department of Vector Ecology and Environment, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Sammy M Njenga
- Eastern and Southern Africa Centre of International Parasite Control, Nairobi, Kenya
| | - Luis F Chaves
- Department of Vector Ecology and Environment, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Noboru Minakawa
- Department of Vector Ecology and Environment, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| |
Collapse
|
93
|
Gilbreath TM, Kweka EJ, Afrane YA, Githeko AK, Yan G. Evaluating larval mosquito resource partitioning in western Kenya using stable isotopes of carbon and nitrogen. Parasit Vectors 2013; 6:353. [PMID: 24330747 PMCID: PMC3866463 DOI: 10.1186/1756-3305-6-353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 12/02/2013] [Indexed: 11/23/2022] Open
Abstract
Background In sub-Saharan Africa, malaria, transmitted by the Anopheles mosquito, remains one of the foremost public health concerns. Anopheles gambiae, the primary malaria vector in sub-Saharan Africa, is typically associated with ephemeral, sunlit habitats; however, An. gambiae larvae often share these habitats with other anophelines along with other disease-transmitting and benign mosquito species. Resource limitations within habitats can constrain larval density and development, and this drives competitive interactions among and between species. Methods We used naturally occurring stable isotope ratios of carbon and nitrogen to identify resource partitioning among co-occurring larval species in microcosms and natural habitats in western Kenya. We used two and three source mixing models to estimate resource utilization (i.e. bacteria, algae, organic matter) by larvae. Results Laboratory experiments revealed larval δ13C and δ15N composition to reflect the food sources they were reared on. Resource partitioning was demonstrated between An. gambiae and Culex quinquefasciatus larvae sharing the same microcosms. Differences in larval δ13C and δ15N content was also evident in natural habitats, and Anopheles species were consistently more enriched in δ13C when compared to culicine larvae. Conclusions These observations demonstrate inter-specific resource partitioning between Cx. quinquefasciatus and An. gambiae larvae in natural habitats in western Kenya. This information may be translated into opportunities for targeted larval control efforts by limiting specific larval food resources, or through bio-control utilizing competitors at the same trophic level.
Collapse
Affiliation(s)
| | | | | | | | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
94
|
Hardy AJ, Gamarra JGP, Cross DE, Macklin MG, Smith MW, Kihonda J, Killeen GF, Ling’ala GN, Thomas CJ. Habitat hydrology and geomorphology control the distribution of malaria vector larvae in rural Africa. PLoS One 2013; 8:e81931. [PMID: 24312606 PMCID: PMC3849348 DOI: 10.1371/journal.pone.0081931] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/18/2013] [Indexed: 11/24/2022] Open
Abstract
Background Larval source management is a promising component of integrated malaria control and elimination. This requires development of a framework to target productive locations through process-based understanding of habitat hydrology and geomorphology. Methods We conducted the first catchment scale study of fine resolution spatial and temporal variation in Anopheles habitat and productivity in relation to rainfall, hydrology and geomorphology for a high malaria transmission area of Tanzania. Results Monthly aggregates of rainfall, river stage and water table were not significantly related to the abundance of vector larvae. However, these metrics showed strong explanatory power to predict mosquito larval abundances after stratification by water body type, with a clear seasonal trend for each, defined on the basis of its geomorphological setting and origin. Conclusion Hydrological and geomorphological processes governing the availability and productivity of Anopheles breeding habitat need to be understood at the local scale for which larval source management is implemented in order to effectively target larval source interventions. Mapping and monitoring these processes is a well-established practice providing a tractable way forward for developing important malaria management tools.
Collapse
Affiliation(s)
- Andrew J. Hardy
- Institute of Geography & Earth Sciences, Aberystwyth University, Aberystwyth, United Kingdom
- Biomedical and Environmental Sciences Thematic Group, Ifakara Health Institute, Ifakara, Tanzania
| | - Javier G. P. Gamarra
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Dónall E. Cross
- Biomedical and Environmental Sciences Thematic Group, Ifakara Health Institute, Ifakara, Tanzania
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Mark G. Macklin
- Institute of Geography & Earth Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Mark W. Smith
- School of Geography, University of Leeds, Leeds, United Kingdom
| | - Japhet Kihonda
- Biomedical and Environmental Sciences Thematic Group, Ifakara Health Institute, Ifakara, Tanzania
| | - Gerry F. Killeen
- Biomedical and Environmental Sciences Thematic Group, Ifakara Health Institute, Ifakara, Tanzania
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - George N. Ling’ala
- Biomedical and Environmental Sciences Thematic Group, Ifakara Health Institute, Ifakara, Tanzania
| | - Chris J. Thomas
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
- * E-mail:
| |
Collapse
|
95
|
Phelan C, Roitberg BD. Effects of food, water depth, and temperature on diving activity of larval Anopheles gambiae sensu stricto: evidence for diving to forage. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2013; 38:301-306. [PMID: 24581359 DOI: 10.1111/j.1948-7134.2013.12044.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 06/11/2013] [Indexed: 06/03/2023]
Abstract
Anopheles gambiae larvae have frequently been observed to dive, but the ecology of this behavior has not been extensively examined. We manipulated food level, water depth, and temperature for individually-reared larvae and observed diving activity. Larvae dived more often under low food, which suggests that they dive to forage. There was only weak evidence for effects of water depth or temperature on diving. Experimental results are discussed in the context of energy budgets. Understanding larval ecology of this species is important for predicting how it will respond to environmental change. Further study is needed to assess the role that larval diving plays in both feeding ecology and thermal regulation of this and other medically important species.
Collapse
Affiliation(s)
- Conan Phelan
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, U.S.A..
| | | |
Collapse
|
96
|
Chemical Cues for Malaria Vectors Oviposition Site Selection: Challenges and Opportunities. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/685182] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
97
|
Temporal and micro-spatial heterogeneity in the distribution of Anopheles vectors of malaria along the Kenyan coast. Parasit Vectors 2013; 6:311. [PMID: 24330615 PMCID: PMC3843567 DOI: 10.1186/1756-3305-6-311] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/04/2013] [Indexed: 11/10/2022] Open
Abstract
Background The distribution of anopheline mosquitoes is determined by temporally dynamic environmental and human-associated variables, operating over a range of spatial scales. Macro-spatial short-term trends are driven predominantly by prior (lagged) seasonal changes in climate, which regulate the abundance of suitable aquatic larval habitats. Micro-spatial distribution is determined by the location of these habitats, proximity and abundance of available human bloodmeals and prevailing micro-climatic conditions. The challenge of analysing—in a single coherent statistical framework—the lagged and distributed effect of seasonal climate changes simultaneously with the effects of an underlying hierarchy of spatial factors has hitherto not been addressed. Methods Data on Anopheles gambiae sensu stricto and A. funestus collected from households in Kilifi district, Kenya, were analysed using polynomial distributed lag generalized linear mixed models (PDL GLMMs). Results Anopheline density was positively and significantly associated with amount of rainfall between 4 to 47 days, negatively and significantly associated with maximum daily temperature between 5 and 35 days, and positively and significantly associated with maximum daily temperature between 29 and 48 days in the past (depending on Anopheles species). Multiple-occupancy households harboured greater mosquito numbers than single-occupancy households. A significant degree of mosquito clustering within households was identified. Conclusions The PDL GLMMs developed here represent a generalizable framework for analysing hierarchically-structured data in combination with explanatory variables which elicit lagged effects. The framework is a valuable tool for facilitating detailed understanding of determinants of the spatio-temporal distribution of Anopheles. Such understanding facilitates delivery of targeted, cost-effective and, in certain circumstances, preventative antivectorial interventions against malaria.
Collapse
|
98
|
Oluwagbemi OO, Fornadel CM, Adebiyi EF, Norris DE, Rasgon JL. ANOSPEX: a stochastic, spatially explicit model for studying Anopheles metapopulation dynamics. PLoS One 2013; 8:e68040. [PMID: 23861847 PMCID: PMC3704604 DOI: 10.1371/journal.pone.0068040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 05/29/2013] [Indexed: 01/23/2023] Open
Abstract
Anopheles mosquitoes transmit malaria, a major public health problem among many African countries. One of the most effective methods to control malaria is by controlling the Anopheles mosquito vectors that transmit the parasites. Mathematical models have both predictive and explorative utility to investigate the pros and cons of different malaria control strategies. We have developed a C++ based, stochastic spatially explicit model (ANOSPEX; Ano pheles Spatially-Explicit) to simulate Anopheles metapopulation dynamics. The model is biologically rich, parameterized by field data, and driven by field-collected weather data from Macha, Zambia. To preliminarily validate ANOSPEX, simulation results were compared to field mosquito collection data from Macha; simulated and observed dynamics were similar. The ANOSPEX model will be useful in a predictive and exploratory manner to develop, evaluate and implement traditional and novel strategies to control malaria, and for understanding the environmental forces driving Anopheles population dynamics.
Collapse
Affiliation(s)
- Olugbenga O. Oluwagbemi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Computer and Information Sciences, College of Science and Technology, School of Natural and Applied Sciences, Covenant University, Ota, Ogun State, Nigeria
| | - Christen M. Fornadel
- W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Ezekiel F. Adebiyi
- Department of Computer and Information Sciences, College of Science and Technology, School of Natural and Applied Sciences, Covenant University, Ota, Ogun State, Nigeria
| | - Douglas E. Norris
- W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Jason L. Rasgon
- The Department of Entomology, Center for Infectious Disease Dynamics and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
99
|
Dugassa S, Lindh JM, Oyieke F, Mukabana WR, Lindsay SW, Fillinger U. Development of a gravid trap for collecting live malaria vectors Anopheles gambiae s.l. PLoS One 2013; 8:e68948. [PMID: 23861952 PMCID: PMC3702603 DOI: 10.1371/journal.pone.0068948] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/05/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Effective malaria vector control targeting indoor host-seeking mosquitoes has resulted in fewer vectors entering houses in many areas of sub-Saharan Africa, with the proportion of vectors outdoors becoming more important in the transmission of this disease. This study aimed to develop a gravid trap for the outdoor collection of the malaria vector Anopheles gambiae s.l. based on evaluation and modification of commercially available gravid traps. METHODS Experiments were implemented in an 80 m(2) semi-field system where 200 gravid Anopheles gambiae s.s. were released nightly. The efficacy of the Box, CDC and Frommer updraft gravid traps was compared. The Box gravid trap was tested to determine if the presence of the trap over water and the trap's sound affected catch size. Mosquitoes approaching the treatment were evaluated using electrocuting nets or detergents added to the water in the trap. Based on the results, a new gravid trap (OviART trap) that provided an open, unobstructed oviposition site was developed and evaluated. RESULTS Box and CDC gravid traps collected similar numbers (relative rate (RR) 0.8, 95% confidence interval (CI) 0.6-1.2; p = 0.284), whereas the Frommer trap caught 70% fewer mosquitoes (RR 0.3, 95% CI 0.2-0.5; p < 0.001). The number of mosquitoes approaching the Box trap was significantly reduced when the trap was positioned over a water-filled basin compared to an open pond (RR 0.7 95% CI 0.6-0.7; p < 0.001). This effect was not due to the sound of the trap. Catch size increased by 60% (RR 1.6, 1.2-2.2; p = 0.001) with the new OviART trap. CONCLUSION Gravid An. Gambiae s.s. females were visually deterred by the presence of the trapping device directly over the oviposition medium. Based on these investigations, an effective gravid trap was developed that provides open landing space for egg-laying Anopheles.
Collapse
Affiliation(s)
- Sisay Dugassa
- International Centre of Insect Physiology and Ecology (icipe)-Thomas Odhiambo Campus, Mbita, Kenya
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | | | - Florence Oyieke
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Wolfgang R. Mukabana
- International Centre of Insect Physiology and Ecology (icipe)-Thomas Odhiambo Campus, Mbita, Kenya
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Steven W. Lindsay
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | - Ulrike Fillinger
- International Centre of Insect Physiology and Ecology (icipe)-Thomas Odhiambo Campus, Mbita, Kenya
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
100
|
Garros C, Ngugi N, Githeko AE, Tuno N, Yan G. Gut content identification of larvae of the Anopheles gambiae complex in western Kenya using a barcoding approach. Mol Ecol Resour 2013; 8:512-8. [PMID: 21585828 DOI: 10.1111/j.1471-8286.2007.02013.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although larvae feeding and food source are vital to the development, survival and population regulation of African malaria vectors, the prey organisms of Anopheles gambiae larvae in the natural environment have not been well studied. This study used a molecular barcoding approach to investigate the natural diets of Anopheles gambiae s.l. larvae in western Kenya. Gut contents from third- and fourth-instar larvae from natural habitats were dissected and DNA was extracted. The 18S ribosomal DNA gene was amplified, the resulting clones were screened using a restriction fragment length polymorphism method and nonmosquito clones were sequenced. Homology search and phylogenetic analyses were then conducted using the sequences of non-mosquito clones to identify the putative microorganisms ingested. The phylogenetic analyses clustered ingested microorganisms in four clades, including two clades of green algae (Chlorophyta, Chlorophyceae Class, Chlamydomonadales and Chlorococcales families), one fungal clade, and one unknown eukaryote clade. In parallel, using the same approach, an analysis of the biodiversity present in the larval habitats was carried out. This present study demonstrated the feasibility of the barcoding approach to infer the natural diets of Anopheles gambiae larvae. Our analysis suggests that despite the wide range of microorganisms available in natural habitats, mosquito larvae fed on specific groups of algae. The novel tools developed from this study can be used to improve our understanding of the larval ecology of African malaria vectors and to facilitate the development of new mosquito control tools.
Collapse
Affiliation(s)
- C Garros
- Program in Public Health, College of Health Sciences, University of California, Irvine, 3501 Hewitt Hall, Irvine, CA 92697-4050, USA, Climate and Human Health Research Unit, Centre for Vector Biology and Control Research, Kenya Medical Research Institute, Kisumu 40100, Kenya, Laboratory of Ecology, School of Science, Kanazawa University, Room 1B218, Kakuma, Kanazawa City, Ishikawa 920-1192, Japan
| | | | | | | | | |
Collapse
|