51
|
Qi Y, Yan X, Wang C, Cao H, Liu G. Predictive value of PD-L1 expression to the efficacy of immune checkpoint inhibitors in advanced triple-negative breast cancer: A systematic review and meta-analysis. Front Pharmacol 2022; 13:1004821. [PMID: 36532783 PMCID: PMC9755205 DOI: 10.3389/fphar.2022.1004821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/22/2022] [Indexed: 08/08/2023] Open
Abstract
Background: Immune checkpoint inhibitors (ICIs) have been an emerging treatment strategy for advanced triple-negative breast cancer (TNBC). Some studies have shown that high expression of programmed death-ligand 1 (PD-L1) can achieve a better response of clinical efficacy. However, the efficacy of ICIs in advanced TNBC remains controversial. In this meta-analysis, we evaluated the correlation of PD-L1 expression with the efficacy of ICIs in patients with advanced TNBC. Methods: We conducted a systematic search using four databases until March 2022 to obtain eligible randomized controlled trials (RCTs). The quality of the studies was assessed by the Cochrane risk of bias tool. Hazard ratio (HR) was extracted to evaluate the relationship between PD-L1 expression and progression-free survival (PFS) or overall survival (OS) in patients with advanced TNBC. Results: Five randomized controlled clinical trials (RCTs) with 3104 patients were included in this meta-analysis. The results demonstrated that ICIs could significantly improve the OS (HR 0.77, 95% CI 0.60-0.98, p = 0.03) in PD-L1 positive TNBC group. In the subgroup analysis, longer OS was observed (HR: 0.70, 95% CI: 0.60-0.82, p = 0.00001) in PD-L1 positive TNBC patients receiving ICIs alone or ICIs combined with nab-paclitaxel. In terms of PFS, PFS was significantly improved (HR: 0.68, 95% CI: 0.58-0.79, p < 0.00001) in PD-L1 positive patients receiving first-line ICIs and chemotherapy compared to those with ICIs alone. No significant improvement was observed for OS or PFS in PD-L1 negative group. Conclusion: Our study indicated significant improvement for OS in advanced TNBC with ICIs therapy in the PD-L1 positive status, and ICIs alone or ICIs combined with nab-paclitaxel might be a excellent choice in terms of OS. Although PFS has no significant benefit in PD-L1 positive patients, the subgroup analysis showed that ICIs combined with chemotherapy could achieve the PFS benefit in the first-line treatment. However, further clinical studies are needed to validate our conclusions due to limited relevant research.
Collapse
Affiliation(s)
- Yingjie Qi
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Xin Yan
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Chao Wang
- Institute of Drug Control, Liaoning Inspection, Examination and Certification Centre, Shenyang, China
| | - Hui Cao
- Department of Breast Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Guangxuan Liu
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
52
|
Targeting TRAIL Death Receptors in Triple-Negative Breast Cancers: Challenges and Strategies for Cancer Therapy. Cells 2022; 11:cells11233717. [PMID: 36496977 PMCID: PMC9739296 DOI: 10.3390/cells11233717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The tumor necrosis factor (TNF) superfamily member TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in cancer cells via death receptor (DR) activation with little toxicity to normal cells or tissues. The selectivity for activating apoptosis in cancer cells confers an ideal therapeutic characteristic to TRAIL, which has led to the development and clinical testing of many DR agonists. However, TRAIL/DR targeting therapies have been widely ineffective in clinical trials of various malignancies for reasons that remain poorly understood. Triple negative breast cancer (TNBC) has the worst prognosis among breast cancers. Targeting the TRAIL DR pathway has shown notable efficacy in a subset of TNBC in preclinical models but again has not shown appreciable activity in clinical trials. In this review, we will discuss the signaling components and mechanisms governing TRAIL pathway activation and clinical trial findings discussed with a focus on TNBC. Challenges and potential solutions for using DR agonists in the clinic are also discussed, including consideration of the pharmacokinetic and pharmacodynamic properties of DR agonists, patient selection by predictive biomarkers, and potential combination therapies. Moreover, recent findings on the impact of TRAIL treatment on the immune response, as well as novel strategies to address those challenges, are discussed.
Collapse
|
53
|
Chang X, Wu Q, Wu Y, Xi X, Cao J, Chu H, Liu Q, Li Y, Wu W, Fang X, Chen F. Multifunctional Au Modified Ti 3C 2-MXene for Photothermal/Enzyme Dynamic/Immune Synergistic Therapy. NANO LETTERS 2022; 22:8321-8330. [PMID: 36222477 DOI: 10.1021/acs.nanolett.2c03260] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Ti3C2-MXene-based composites provide multifunctional interfaces in diagnosis and treatment of tumors. Herein, we proposed a multifunctional nanoplatform based on Ti3C2-MXene-Au nanocomposites, which combines photothermal properties and peroxidase-like activity, accomplishing synergistic photothermal therapy (PTT) and enzyme dynamic therapy (EDT) accompanied by photoacoustic (PA) and thermal dual-mode imaging in vivo. Furthermore, PTT induces immunogenic cell death, and EDT promotes cell apoptosis, facilitating dendritic cell (DC) maturation and T cell infiltration into the tumor. On this basis, the antibody OX40 (αOX40) was utilized to further contribute immune therapy for reversing the immunosuppressive tumor microenvironment by activating CD4+ and CD8+ T cells. In summary, a triune of PTT/EDT/antitumor immune therapy is achieved by combining Ti3C2-MXene-Au nanocomposites and αOX40, which possesses several strong features of good biocompatibility, NIR-controlled targeting, significant cancer cell killing, and satisfactory biosafety in vitro and in vivo. Our work might highlight the promising application of MXene-based nanoplatforms for cancer therapy.
Collapse
Affiliation(s)
- Xin Chang
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, 130033 Jilin, China
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, 130033 Jilin, China
| | - Qiong Wu
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, 130033 Jilin, China
| | - Yuanyu Wu
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, 130033 Jilin, China
| | - Xi Xi
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, 130033 Jilin, China
| | - Jingrui Cao
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, 130033 Jilin, China
| | - Hongyu Chu
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, 130033 Jilin, China
| | - Qihui Liu
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, 130033 Jilin, China
| | - Yuanyuan Li
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, 130033 Jilin, China
| | - Wen Wu
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, 130033 Jilin, China
| | - Xuedong Fang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, 130033 Jilin, China
| | - Fangfang Chen
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, 130033 Jilin, China
| |
Collapse
|
54
|
Poddar A, Rao SR, Prithviraj P, Kannourakis G, Jayachandran A. Crosstalk between Immune Checkpoint Modulators, Metabolic Reprogramming and Cellular Plasticity in Triple-Negative Breast Cancer. Curr Oncol 2022; 29:6847-6863. [PMID: 36290817 PMCID: PMC9601266 DOI: 10.3390/curroncol29100540] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 01/13/2023] Open
Abstract
Breast cancer is one of the major causes of mortality in women worldwide. Accounting for 15-20% of all breast cancer diagnoses, the triple-negative breast cancer (TNBC) subtype presents with an aggressive clinical course, heightened metastatic potential and the poorest short-term prognosis. TNBC does not respond to hormonal therapy, only partially responds to radio- and chemotherapy, and has limited targeted therapy options, thus underlining the critical need for better therapeutic treatments. Although immunotherapy based on immune checkpoint inhibition is emerging as a promising treatment option for TNBC patients, activation of cellular plasticity programs such as metabolic reprogramming (MR) and epithelial-to-mesenchymal transition (EMT) causes immunotherapy to fail. In this report, we review the role of MR and EMT in immune checkpoint dysregulation in TNBCs and specifically shed light on development of novel combination treatment modalities for this challenging disease. We highlight the clinical relevance of crosstalk between MR, EMT, and immune checkpoints in TNBCs.
Collapse
Affiliation(s)
- Arpita Poddar
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia
- Department of Materials Science and Engineering, Monash University, Melbourne, VIC 3800, Australia
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Sushma R. Rao
- Proteomics, Metabolomics and MS-Imaging Facility, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Prashanth Prithviraj
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia
- School of Science, Psychology and Sports, Federation University Australia, Ballarat, VIC 3350, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia
- School of Science, Psychology and Sports, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Aparna Jayachandran
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia
- School of Science, Psychology and Sports, Federation University Australia, Ballarat, VIC 3350, Australia
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| |
Collapse
|
55
|
So JY, Ohm J, Lipkowitz S, Yang L. Triple negative breast cancer (TNBC): Non-genetic tumor heterogeneity and immune microenvironment: Emerging treatment options. Pharmacol Ther 2022; 237:108253. [PMID: 35872332 PMCID: PMC9378710 DOI: 10.1016/j.pharmthera.2022.108253] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/01/2022] [Accepted: 07/18/2022] [Indexed: 12/17/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype characterized by extensive intra-tumoral heterogeneity, and frequently develops resistance to therapies. Tumor heterogeneity and lack of biomarkers are thought to be some of the most difficult challenges driving therapeutic resistance and relapse. This review will summarize current therapy for TNBC, studies in treatment resistance and relapse, including data from recent single cell sequencing. We will discuss changes in both the transcriptome and epigenome of TNBC, and we will review mechanisms regulating the immune microenvironment. Lastly, we will provide new perspective in patient stratification, and treatment options targeting transcriptome dysregulation and the immune microenvironment of TNBC patients.
Collapse
Affiliation(s)
- Jae Young So
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joyce Ohm
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Stan Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Yang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
56
|
Rugo HS, Tolaney SM, Loirat D, Punie K, Bardia A, Hurvitz SA, O'Shaughnessy J, Cortés J, Diéras V, Carey LA, Gianni L, Piccart MJ, Loibl S, Goldenberg DM, Hong Q, Olivo M, Itri LM, Kalinsky K. Safety analyses from the phase 3 ASCENT trial of sacituzumab govitecan in metastatic triple-negative breast cancer. NPJ Breast Cancer 2022; 8:98. [PMID: 36038616 PMCID: PMC9424318 DOI: 10.1038/s41523-022-00467-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/28/2022] [Indexed: 11/08/2022] Open
Abstract
Sacituzumab govitecan (SG) is an anti-Trop-2 antibody-drug conjugate with an SN-38 payload. In the ASCENT study, patients with metastatic triple-negative breast cancer (mTNBC) relapsed/refractory to ≥2 prior chemotherapy regimens (≥1 in the metastatic setting), received SG or single-agent treatment of physician's choice (eribulin, vinorelbine, capecitabine, or gemcitabine). This ASCENT safety analysis includes the impact of age and UGT1A1 polymorphisms, which hinder SN-38 detoxification. SG demonstrated a manageable safety profile in patients with mTNBC, including those ≥65 years; neutropenia/diarrhea are key adverse events (AE). Patients with UGT1A1 *28/*28 genotype versus those with 1/*28 and *1/*1 genotypes had higher rates of grade ≥3 SG-related neutropenia (59% vs 47% and 53%), febrile neutropenia (18% vs 5% and 3%), anemia (15% vs 6% and 4%), and diarrhea (15% vs 9% and 10%), respectively. Individuals with UGT1A1 *28/*28 genotype should be monitored closely; active monitoring and routine AE management allow optimal therapeutic exposure of SG.
Collapse
Affiliation(s)
- Hope S Rugo
- Department of Medicine, University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA.
| | - Sara M Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Delphine Loirat
- Department of Medical Oncology and D3i, Institut Curie, Paris, France
| | - Kevin Punie
- Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Aditya Bardia
- Department of Hematology/Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Sara A Hurvitz
- Medical Oncology, University of California, Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Joyce O'Shaughnessy
- Baylor University Medical Center, Texas Oncology, US Oncology, Dallas, TX, USA
| | - Javier Cortés
- International Breast Cancer Center (IBCC), Quiron Group, Madrid & Barcelona, Barcelona, Spain
- Vall d´Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Department of Medicine, Madrid, Spain
| | - Véronique Diéras
- Department of Medical Oncology, Centre Eugène Marquis, Rennes, France
| | - Lisa A Carey
- Department of Hematology and Oncology, University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | | | | | - Sibylle Loibl
- Department of Medicine and Research, Hämatologisch-Onkologische Gemeinschaftspraxis am Bethanien-Krankenhaus, Frankfurt, Germany
| | - David M Goldenberg
- Department of Clinical Development, Immunomedics, Inc., Morris Plains, NJ, USA
| | - Quan Hong
- Department of Clinical Development, Immunomedics, Inc., Morris Plains, NJ, USA
| | - Martin Olivo
- Department of Clinical Development, Immunomedics, Inc., Morris Plains, NJ, USA
| | - Loretta M Itri
- Department of Clinical Development, Immunomedics, Inc., Morris Plains, NJ, USA
| | - Kevin Kalinsky
- Columbia University Irving Medical Center, New York, NY, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
57
|
Paiva KLR, Radicchi MA, Báo SN. In Vitro Evaluation of NLS-DTX Activity in Triple-Negative Breast Cancer. Molecules 2022; 27:molecules27154920. [PMID: 35956870 PMCID: PMC9370415 DOI: 10.3390/molecules27154920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is one of the most lethal diseases in the world, and the development and improvement of treatments used in cancer therapies are extremely important for a better quality of life for patients. In view of the current problems in drug administration such as low solubility and adverse effects, the activity of a solid lipid nanoparticle containing docetaxel (SLN-DTX), a drug already used in conventional therapies, was evaluated in a cell line (MDA-MB-231) of one of the most aggressive types of breast cancer with the worst prognosis, triple-negative breast cancer. Viability tests indicated that SLN-DTX has a greater dependence on the treatment dose when compared to the free drug, which indicates a more controlled release of the drug, and both reduced viability by around 50% at a concentration of 1 µg/mL after 72 h. Transmission electron microscopy (TEM) and confocal and light microscopy analyses indicated that after treatment the cells enter a mitotic catastrophe, characteristic of antimitotic drugs that usually make cells progress to death or senescence. Cells treated with both DTX and SLN-DTX showed significant inhibition of mobility, 73.6% and 66.5% when treated with SLN-DTX and DTX, respectively, compared to the 11.4% of the control after 72 h, characteristics that are very relevant in tumor development and progression. SLN-DTX demonstrated its great potential as a nanocarrier by maintaining and improving the drug’s action in the MDA-MB-231 cell line.
Collapse
Affiliation(s)
- Karen L. R. Paiva
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (K.L.R.P.); (M.A.R.)
- Postgraduate Program of Molecular Pathology, School of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil
| | - Marina A. Radicchi
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (K.L.R.P.); (M.A.R.)
- Postgraduate Program of Molecular Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil
| | - Sônia N. Báo
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (K.L.R.P.); (M.A.R.)
- Correspondence:
| |
Collapse
|
58
|
Yin J, Zhu C, Wang G, Gu J. Treatment for Triple-Negative Breast Cancer: An Umbrella Review of Meta-Analyses. Int J Gen Med 2022; 15:5901-5914. [PMID: 35795302 PMCID: PMC9252584 DOI: 10.2147/ijgm.s370351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose In recent years, many meta-analyses of triple-negative breast cancer (TNBC) treatment have been published; however, these studies still lack systematic summary. Therefore, the aim of this study is to summarize and evaluate the evidence level and efficacy of treatment for TNBC. Materials and Methods Retrospective and prospective studies on treatment of TNBC were searched in the PubMed, Embase, and Cochrane Library databases. The literature search deadline was June 30, 2021. Two investigators independently screened the literature and extracted the data. In addition, the joint World Health Organization–United Nations Food and Agriculture Organization expert consultation was used to evaluate the validity of the evidence. Results A total of 28 meta-analyses were included in this study. The treatment interventions for TNBC mainly included surgery, chemotherapy (CT), radiotherapy, molecular targeted therapy, immunotherapy, zoledronic acid, and gonadotropin-releasing hormone (GnRH) analog. Platinum improves the pathological complete response (PCR) rate of patients treated with neoadjuvant chemotherapy (NACT), the objective remission rate (ORR) and overall survival (OS) in patients with metastatic triple-negative breast cancer. Capecitabine improves disease-free survival (DFS) and OS in patients treated with adjuvant CT. Bevacizumab was added to NACT to improve the PCR rate in patients. Immunotherapy improves the PCR rate in patients treated with NACT. The improvement in PCR rate in patients with high Ki67 expression treated with neoadjuvant therapy is highly suggestive. Other interventions had suggestive or weak evidence. Conclusion Among the strategies for treating TNBC, platinum, bevacizumab, and immunotherapy can lead to better PCR rates as part of a NACT regimen. Capecitabine as adjuvant CT and platinum in the treatment of metastatic TNBC can benefit patients’ survival. However, the effectiveness of other interventions for TNBC is not yet clear. Further research is needed in the future to obtain more reliable clinical evidence.
Collapse
Affiliation(s)
- Jianyun Yin
- Thyroid Breast Surgery, Kunshan Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Kunshan, People's Republic of China
| | - Changtai Zhu
- Department of Transfusion Medicine, Shanghai Sixth Peoples' Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Gaofeng Wang
- Department of Gastroenterology, Kunshan Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Kunshan, People's Republic of China
| | - Jianwei Gu
- Thyroid Breast Surgery, Kunshan Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Kunshan, People's Republic of China
| |
Collapse
|
59
|
Wu Y, Zhao D, Shang J, Huang W, Chen Z. A novel star-shaped trinuclear platinum(II) complex based on a 1,3,5-triazine core displaying potent antiproliferative activity against TNBC by the mitochondrial injury and DNA damage mechanism. Dalton Trans 2022; 51:10930-10942. [PMID: 35731536 DOI: 10.1039/d2dt00895e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polynuclear platinum(II) complexes represent a class of great prospective Pt-based antitumor drugs that may expand the antitumor spectrum and overcome the clinical problems of drug resistance and side effects of platinum-based drugs. Herein, a novel star-shaped trinuclear platinum(II) complex [Pt3(L-3H)Cl3] (1, L = 2,4,6-tris[(2-hydroxybenzyl)(2-pyridylmethyl)amine]-1,3,5-triazine) and its monomer [Pt(L'-H)Cl] (2, L' = (2-hydroxybenzyl)(2-pyridylmethyl)amine) were synthesized and characterized. The in vitro antiproliferative activities of complexes 1 and 2 against a panel of human cancer cell lines including MDA-MB-231 (triple-negative breast cancer, TNBC), MCF-7 (breast), HepG-2 (liver), and A549 (lung) were investigated. The results revealed that 1 exhibited much higher antiproliferative properties than its monomer 2 against the tested cell lines. Importantly, 1 possessed 3.3-fold higher antiproliferative activity as compared with cisplatin against the TNBC cell line MDA-MB-231. Another TNBC cell line MDA-MB-468 is also sensitive to 1. The results indicated that 1 might have the potential to act as a candidate for the treatment of TNBC. Cellular uptake and distribution studies showed that 1 could pass through the membrane of cells and enter into cells and mainly accumulate in the nuclei and mitochondria. 1 could bind to DNA in a cooperative groove-electrostatic-platinating binding mode and induce stronger DNA double-strand breaks (DSBs) and damaging effects on MDA-MB-231 than cisplatin (upregulation of γ-H2AX). Moreover, the DNA damage could not be easily repaired (upregulation of p53), which would exert a much positive influence on the overcoming of drug resistance. Additionally, flow cytometry studies showed that 1 arrested the cell cycle in the G0/G1 phase, induced mitochondrial membrane depolarization, increased ROS generation, and induced cell apoptosis. The results demonstrated that 1 could target simultaneously mitochondria and nuclei that gave rise to mitochondrial injury and DNA damage and ultimately efficiently promote the apoptotic death of tumor cells. Further mechanistic studies showed that 1 induced MDA-MB-231 cell apoptosis via the p53-mediated mitochondrial pathway by upregulating Bax and cytochrome c and downregulating Bcl-2 proteins, leading to the activation of caspase-3 and upregulation of the cleaved-PARP level. Taken together, 1 with such a synergic mechanism has great potential to be an effective anticancer agent that can overcome treatment resistance in TNBC.
Collapse
Affiliation(s)
- Yixuan Wu
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technologies, Jianghan University, Wuhan 430056, P. R. China.
| | - Dandan Zhao
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technologies, Jianghan University, Wuhan 430056, P. R. China.
| | - Jinting Shang
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, P. R. China
| | - Wenxin Huang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technologies, Jianghan University, Wuhan 430056, P. R. China.
| | - Zhanfen Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technologies, Jianghan University, Wuhan 430056, P. R. China. .,Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, P. R. China
| |
Collapse
|
60
|
Luo HY, Shen HY, Perkins RS, Wang YX. Adenosine Kinase on Deoxyribonucleic Acid Methylation: Adenosine Receptor-Independent Pathway in Cancer Therapy. Front Pharmacol 2022; 13:908882. [PMID: 35721189 PMCID: PMC9200284 DOI: 10.3389/fphar.2022.908882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Methylation is an important mechanism contributing to cancer pathology. Methylation of tumor suppressor genes and oncogenes has been closely associated with tumor occurrence and development. New insights regarding the potential role of the adenosine receptor-independent pathway in the epigenetic modulation of DNA methylation offer the possibility of new interventional strategies for cancer therapy. Targeting DNA methylation of cancer-related genes is a promising therapeutic strategy; drugs like 5-Aza-2′-deoxycytidine (5-AZA-CdR, decitabine) effectively reverse DNA methylation and cancer cell growth. However, current anti-methylation (or methylation modifiers) are associated with severe side effects; thus, there is an urgent need for safer and more specific inhibitors of DNA methylation (or DNA methylation modifiers). The adenosine signaling pathway is reported to be involved in cancer pathology and participates in the development of tumors by altering DNA methylation. Most recently, an adenosine metabolic clearance enzyme, adenosine kinase (ADK), has been shown to influence methylation on tumor suppressor genes and tumor development and progression. This review article focuses on recent updates on ADK and its two isoforms, and its actions in adenosine receptor-independent pathways, including methylation modification and epigenetic changes in cancer pathology.
Collapse
Affiliation(s)
- Hao-Yun Luo
- Chongqing Medical University, Chongqing, China.,Department of Gastrointestinal and Anorectal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Hai-Ying Shen
- Department of Neuroscience, Legacy Research Institute, Portland, OR, United States.,Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, United States
| | - R Serene Perkins
- Legacy Tumor Bank, Legacy Research Institute, Portland, OR, United States.,Mid-Columbia Medical Center, The Dalles, OR, United States
| | - Ya-Xu Wang
- Chongqing Medical University, Chongqing, China.,Department of Gastrointestinal and Anorectal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| |
Collapse
|
61
|
Zhang Y, You C, Pei Y, Yang F, Li D, Jiang YZ, Shao Z. Integration of radiogenomic features for early prediction of pathological complete response in patients with triple-negative breast cancer and identification of potential therapeutic targets. Lab Invest 2022; 20:256. [PMID: 35672824 PMCID: PMC9171937 DOI: 10.1186/s12967-022-03452-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/20/2022] [Indexed: 12/28/2022]
Abstract
Background We established a radiogenomic model to predict pathological complete response (pCR) in triple-negative breast cancer (TNBC) and explored the association between high-frequency mutations and drug resistance. Methods From April 2018 to September 2019, 112 patients who had received neoadjuvant chemotherapy were included. We randomly split the study population into training and validation sets (2:1 ratio). Contrast-enhanced magnetic resonance imaging scans were obtained at baseline and after two cycles of treatment and were used to extract quantitative radiomic features and to construct two radiomics-only models using a light gradient boosting machine. By incorporating the variant allele frequency features obtained from baseline core tissues, a radiogenomic model was constructed to predict pCR. Additionally, we explored the association between recurrent mutations and drug resistance. Results The two radiomics-only models showed similar performance with AUCs of 0.71 and 0.73 (p = 0.55). The radiogenomic model had a higher predictive ability than the radiomics-only model in the validation set (p = 0.04), with a corresponding AUC of 0.87 (0.73–0.91). Two highly frequent mutations were selected after comparing the mutation sites of pCR and non-pCR populations. The MED23 mutation p.P394H caused epirubicin resistance in vitro (p < 0.01). The expression levels of γ-H2A.X, p-ATM and p-CHK2 in MED23 p.P394H cells were significantly lower than those in wild type cells (p < 0.01). In the HR repair system, the GFP positivity rate of MED23 p.P394H cells was higher than that in wild-type cells (p < 0.01). Conclusions The proposed radiogenomic model has the potential to accurately predict pCR in TNBC patients. Epirubicin resistance after MED23 p.P394H mutation might be affected by HR repair through regulation of the p-ATM-γ-H2A.X-p-CHK2 pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03452-1.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui District, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Chao You
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Yuchen Pei
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Fan Yang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui District, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Daqiang Li
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui District, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui District, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Zhimin Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui District, Shanghai, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
62
|
The European Medicines Agency review of sacituzumab govitecan for the treatment of triple-negative breast cancer. ESMO Open 2022; 7:100497. [PMID: 35642987 PMCID: PMC9149193 DOI: 10.1016/j.esmoop.2022.100497] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
Sacituzumab govitecan (SG) is an antineoplastic agent which combines a humanized monoclonal antibody binding to trophoblast cell surface antigen-2 (Trop-2)-expressing cancer cells, linked with cytotoxic moiety SN-38 (govitecan) with topoisomerase I inhibitor action. On 22 November 2021, a marketing authorization valid through the European Union (EU) was issued under the European Medicines Agency (EMA)’s accelerated assessment program for SG as monotherapy for the treatment of adult patients with unresectable or metastatic triple-negative breast cancer (mTNBC) who have received two or more prior systemic therapies, including at least one of them for advanced disease. The assessment was based on results from an open-label, randomized, phase III trial to evaluate the safety, tolerability, pharmacokinetics and efficacy of SG versus treatment of physician’s choice (TPC) in patients with mTNBC who received at least two prior treatments including at least one of them for advanced disease. The efficacy results in the overall population, based on mature data, showed a statistically significant improvement of SG over TPC in progression-free survival (PFS) and overall survival (OS). The median PFS was 4.8 months versus 1.7 months [hazard ratio (HR) = 0.43, n = 529; 95% CI 0.35-0.54; P < 0.0001] and the median OS was 11.8 months versus 6.9 months (HR = 0.51, n = 529; 95% CI 0.41-0.62; P < 0.0001). The most common (>30%) side effects of SG were diarrhea, neutropenia, nausea, fatigue, alopecia, anemia, constipation and vomiting. The aim of this manuscript is to summarize the scientific review of the application leading to regulatory approval in the EU. Trodelvy (SG) received a marketing authorization valid throughout the EU on 22 November 2021. SG is indicated for adults with unresectable or metastatic TBNC. SG is an antibody–drug conjugate considered a first-in-class medicine. SG prolonged OS and PFS ∼5 and 3 months, respectively, when compared to TPC. The most common serious side effects are febrile neutropenia and diarrhea.
Collapse
|
63
|
Chimplee S, Smythe C, Tipmanee V, Sukrong S, Kanokwiroon K. Anticancer mechanism of 7-α-hydroxyfrullanolide on microtubules and computational prediction of its target binding in triple-negative breast cancer cells. PeerJ 2022; 10:e13508. [PMID: 35651747 PMCID: PMC9150694 DOI: 10.7717/peerj.13508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/06/2022] [Indexed: 01/17/2023] Open
Abstract
Background Triple-negative breast cancer (TNBC) responds poorly to the available drugs; thus, the mortality rate associated with TNBC remains high. 7-α-Hydroxyfrullanolide (7HF) possesses anticancer properties and arrests cells in the G2/M-phase via modulation of several proteins involved in the G2/M-phase transition, as well as the mitotic checkpoint in MDA-MB-468 (TNBC) cells. Microtubules (MTs) dynamically regulate cell division in the G2/M phase and are related to cancer cell stress response. However, antimitotic drug cytotoxicity to multiple cancer resistance developed in response to drugs are obstacles faced to date. Here, the activity and mechanism via which 7HF controls MTs dynamics was investigated in MDA-MB-468 cells. Methods 7HF uptake by MDA-MB-468 cells was assessed using spectrophotometry. The drug-like properties of 7HF were predicted using the Swiss-absorption, distribution, metabolism, and excretion (ADME) webtool. Then, the effect of 7HF treatment (6, 12, and 24 µM) on the dynamic arrangement of MTs was assessed for 1, 12, and 24 h using indirect immunofluorescence. Polymerization of α- and β-tubulin was assessed using different 7HF concentrations in a cell-free system for 1 h. Cell proliferation assay with bromodeoxyuridine plus propidium iodide staining and flow cytometry was performed at different 7HF concentrations and time points. The mechanism of action was assessed by detecting the expression of proteins, including Bub3, cyclin B1, p-Cdk1 (Tyr15), Rb, p-Rb (Ser780), Chk1, p-Chk1 (Ser345), Chk2, p-Chk2 (Ser516), and p-H2AX (Ser139), using western blotting. Molecular docking was used to predict the molecular interactions between 7HF and tubulins in MTs. Results We observed that 7HF was able to enter the MDA-MB-468 cells. The ADME webtool analysis predicted that it possesses the high passive permeation and gastrointestinal absorption properties of drugs. Various concentrations of 7HF disrupted the dynamic arrangement of spindle MTs by causing radial spindle array shrinkage and expansion of fibrous spindle density and radial array lengths in a time-dependent manner. 7HF reduced polymerization of α-, β-tubulin in dose-dependent manner. 7HF also triggered DNA damage response by inducing G2/M and G1 phase arrests in a concentration and time-dependent manner, which occurred due to the upregulation of Bub3, Chk1, p-Chk1 (Ser345), p-Cdk1 (Tyr15), and cyclin B1. According to molecular docking analysis, 7HF preferred to bind to β-tubulin over α-tubulin. The lactone, ketone, and hydroxyl groups of 7HF supported the 7HF-tubulin interactions. Hydrogen bonding with a hydrocarbon ring and salt bridge attractive forces were responsible for the binding versatility of 7HF. Conclusions This is the first study to investigate the molecular mechanism, MTs interacting sites, and the internalization and drug-like properties of 7HF in TNBC cells. The findings will be useful for developing 7HF-based treatment for patients with TNBC.
Collapse
Affiliation(s)
- Siriphorn Chimplee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Carl Smythe
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Varomyalin Tipmanee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Suchada Sukrong
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kanyanatt Kanokwiroon
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
64
|
Chumsuwan N, Khongkow P, Kaewsuwan S, Kanokwiroon K. Interruptin C, a Radioprotective Agent, Derived from Cyclosorus terminans Protect Normal Breast MCF-10A and Human Keratinocyte HaCaT Cells against Radiation-Induced Damage. Molecules 2022; 27:3298. [PMID: 35630775 PMCID: PMC9142933 DOI: 10.3390/molecules27103298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 01/27/2023] Open
Abstract
Radiotherapy is a common method to treat cancers, with the goal of maximizing the dose to tumors while minimizing the dose to normal tissues. Radioprotectors can reduce the toxicity to normal tissues during radiotherapy. Several plant-derived compounds can function as radioprotectors by scavenging free radicals. We investigated the radioprotective activity of interruptin C from the fern Cyclosorus terminans. The molecular mechanism of interruptin C's activity in X-ray-irradiated cells was evaluated. Superoxide dismutase activity was examined to investigate the antioxidant enzyme activity. Clonogenic cell survival was also investigated following radiation exposure. DNA damage and cell cycle progression were detected using micronuclei formation assays. DNA repair after irradiation was analyzed in a γH2AX assay. The levels of the proteins related to the radioprotective responses were analyzed by Western blotting. Interruptin C increased the antioxidant enzyme activity and significantly decreased the DNA damage by reducing the γH2AX foci and micronucleus formation in irradiated MCF-10A normal breast and HaCaT human keratinocyte cells. The apoptotic protein levels decreased, whereas the antiapoptotic protein levels increased. Interruptin C pretreatment increased the survival rate of irradiated MCF-10A and HaCaT cells. Moreover, the compound did not promote the survival of MDA-MB-231 and Hs578T breast cancer cells. Therefore, interruptin C may exert radioprotective activity without enhancing cancer cell proliferation.
Collapse
Affiliation(s)
- Nipha Chumsuwan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (N.C.); (P.K.)
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Pasarat Khongkow
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (N.C.); (P.K.)
| | - Sireewan Kaewsuwan
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Kanyanatt Kanokwiroon
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (N.C.); (P.K.)
| |
Collapse
|
65
|
Pullan J, Dailey K, Bhallamudi S, Feng L, Alhalhooly L, Froberg J, Osborn J, Sarkar K, Molden T, Sathish V, Choi Y, Brooks A, Mallik S. Modified Bovine Milk Exosomes for Doxorubicin Delivery to Triple-Negative Breast Cancer Cells. ACS APPLIED BIO MATERIALS 2022; 5:2163-2175. [PMID: 35417133 PMCID: PMC9245909 DOI: 10.1021/acsabm.2c00015] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biological nanoparticles, such as exosomes, offer an approach to drug delivery because of their innate ability to transport biomolecules. Exosomes are derived from cells and an integral component of cellular communication. However, the cellular cargo of human exosomes could negatively impact their use as a safe drug carrier. Additionally, exosomes have the intrinsic yet enigmatic, targeting characteristics of complex cellular communication. Hence, harnessing the natural transport abilities of exosomes for drug delivery requires predictably targeting these biological nanoparticles. This manuscript describes the use of two chemical modifications, incorporating a neuropilin receptor agonist peptide (iRGD) and a hypoxia-responsive lipid for targeting and release of an encapsulated drug from bovine milk exosomes to triple-negative breast cancer cells. Triple-negative breast cancer is a very aggressive and deadly form of malignancy with limited treatment options. Incorporation of both the iRGD peptide and hypoxia-responsive lipid into the lipid bilayer of bovine milk exosomes and encapsulation of the anticancer drug, doxorubicin, created the peptide targeted, hypoxia-responsive bovine milk exosomes, iDHRX. Initial studies confirmed the presence of iRGD peptide and the exosomes' ability to target the αvβ3 integrin, overexpressed on triple-negative breast cancer cells' surface. These modified exosomes were stable under normoxic conditions but fragmented in the reducing microenvironment created by 10 mM glutathione. In vitro cellular internalization studies in monolayer and three-dimensional (3D) spheroids of triple-negative breast cancer cells confirmed the cell-killing ability of iDHRX. Cell viability of 50% was reached at 10 μM iDHRX in the 3D spheroid models using four different triple-negative breast cancer cell lines. Overall, the tumor penetrating, hypoxia-responsive exosomes encapsulating doxorubicin would be effective in reducing triple-negative breast cancer cells' survival.
Collapse
Affiliation(s)
- Jessica Pullan
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105 United States
| | - Kaitlin Dailey
- Cell and Molecular Biology Program, North Dakota State University, Fargo, North Dakota 58105 United States
| | - Sangeeta Bhallamudi
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105 United States
| | - Li Feng
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105 United States
| | - Lina Alhalhooly
- Department of Physics, North Dakota State University, Fargo, North Dakota 58105 United States
| | - Jamie Froberg
- Department of Physics, North Dakota State University, Fargo, North Dakota 58105 United States
| | - Jenna Osborn
- Department of Mechanical and Aerospace Engineering, George Washington University, Washington, District of Columbia 20052 United States
| | - Kausik Sarkar
- Department of Mechanical and Aerospace Engineering, George Washington University, Washington, District of Columbia 20052 United States
| | - Todd Molden
- Department of Animal Science, North Dakota State University, Fargo, North Dakota 58105 United States
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105 United States
| | - Yongki Choi
- Department of Physics, North Dakota State University, Fargo, North Dakota 58105 United States
| | - Amanda Brooks
- Office of Research and Scholarly Activity, Rocky Vista University, Ivins, Utah 84738 United States
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105 United States
| |
Collapse
|
66
|
Liu P, Zeng J, Yang G. Expression of yes‑associated protein, β‑catenin and smoothened, and their clinical significance in invasive breast cancer. Exp Ther Med 2022; 23:429. [PMID: 35607374 PMCID: PMC9121206 DOI: 10.3892/etm.2022.11356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/22/2022] [Indexed: 12/05/2022] Open
Abstract
The expression profile and role of yes-associated protein (YAP) in occurrence and development of breast cancer is ambiguous. The present study aimed to explore the relationship among the YAP, β-catenin and smoothened (SMO) signaling pathways to provide a theoretical basis for the clinical diagnosis and treatment of invasive breast cancer. Immunohistochemistry was used to determine the protein expression levels of YAP, β-catenin and SMO in tumor, tumor-adjacent and normal breast tissue. The possible association between the expression levels of these three proteins and the clinicopathological features of patients with breast cancer was then analyzed by the χ2 test. The protein expression of YAP was found to be downregulated, whilst β-catenin and SMO expression were found to be upregulated in tumor tissues as compared with that in normal breast tissues. In addition, the expression of YAP in breast cancer tissues was found to be associated with that of human epidermal growth factor receptor 2 (HER2), progesterone and estrogen receptors. By contrast, the protein expression of β-catenin and SMO in breast cancer tissues was only associated with HER2. There was a negative correlation between the expression of YAP and SMO protein in breast cancer tissues. Compared with that in the changes in each of YAP, β-catenin and SMO protein expression levels individually, their combined changes in expression were demonstrated to associate significantly with the tumor histological grade. To conclude, data from the present study suggest that the combined protein expression of YAP, β-catenin and SMO can be used as a prognostic indicator for the treatment of invasive breast cancer.
Collapse
Affiliation(s)
- Pengju Liu
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Jianfeng Zeng
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Gaohua Yang
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
67
|
Maimaiti Y, Zhang N, Zhang Y, Zhou J, Song H, Wang S. CircFAM64A enhances cellular processes in triple-negative breast cancer by targeting the miR-149-5p/CDT1 axis. ENVIRONMENTAL TOXICOLOGY 2022; 37:1081-1092. [PMID: 35048507 DOI: 10.1002/tox.23466] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 12/06/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Triple-negative breast cancer (TNBC) is a breast cancer subtype without targeted treatment options. Accumulating evidence has demonstrated the roles of circular RNAs in cancer. This study aimed to investigate the expression and function of circFAM64A in TNBC. The GSE101124 dataset from the GEO database was examined to identify the differentially expressed circular RNAs in TNBC. RT-qPCR and western blot analyses were performed to measure gene expression. TNBC cell proliferation, migration, invasion, and cell cycle were assessed using cell counting kit-8, EdU, flow cytometry, wound healing, and transwell invasion experiments. Bioinformatics analysis, RIP, RNA pulldown, and luciferase reporter assays were used to investigate the regulatory mechanism of circFAM64A. In this study, CircFAM64A expression was significantly upregulated in TNBC tissues and cells compared with normal tissues and cells. Overexpression of circFAM64A increased the proliferative, migratory, and invasive capacities of TNBC cells and promoted cell cycle progression. Mechanistically, circFAM64A acted as a molecular sponge for miR-149-5p, and miR-149-5p directly targeted the Cdc10-dependent transcript 1 (CDT1) 3'UTR. Moreover, the high expression of CDT1 is associated with a poor prognosis in patients with breast cancer. Rescue experiments demonstrated that circFAM64A sponged miR-149-5p to increase CDT1 expression, thereby promoting cellular processes in TNBC. Overall, CircFAM64A plays an oncogenic role in TNBC by interacting with miR-149-5p to increase CDT1 expression.
Collapse
Affiliation(s)
- Yusufu Maimaiti
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of General Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang, China
| | - Ning Zhang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yunke Zhang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haiping Song
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuntao Wang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
68
|
Ko H, Lee M, Cha E, Sul J, Park J, Lee J. Eribulin Mesylate Improves Cisplatin-Induced Cytotoxicity of Triple-Negative Breast Cancer by Extracellular Signal-Regulated Kinase 1/2 Activation. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58040547. [PMID: 35454385 PMCID: PMC9025504 DOI: 10.3390/medicina58040547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 11/24/2022]
Abstract
Background and Objectives; Triple-negative breast cancer (TNBC) is associated with poor patient prognosis because of its multiple molecular features. Thus, more effective treatment for TNBC is urgently needed. This study determined the possible involvement of ERK1/2 activation in cisplatin-induced cytotoxicity in TNBC by providing additional eribulin treatment. Materials and Methods; We investigated cell viability and apoptosis caused by eribulin, cisplatin, or co-treatment in HCC38, MDA-MB-231, and SKBR3 human breast cancer cells. Results; Cisplatin significantly lowered cell viability and caused high apoptotic cell death in all breast cancer cell lines. The viability of TNBC cells was significantly lower in the group co-treated with cisplatin and eribulin than in the cisplatin-only treatment group. Additional eribulin treatment significantly enhanced PARP cleavage and caspase-3 activity in cisplatin-treated TNBC cells. Moreover, cisplatin treatment activated ERK1/2 in all breast cancer cell lines. The cisplatin and eribulin combination synergistically activated ERK1/2 in TNBC cells compared with the cisplatin-only treatment. Administration of the ERK1/2 inhibitor PD98059 increased the viability of TNBC cells treated with cisplatin plus eribulin. Conclusions; Eribulin could synergize the cytotoxic and apoptotic activities of cisplatin and increase ERK1/2 activation, thus enhancing anti-cancer effects against TNBC cells.
Collapse
Affiliation(s)
- Hyemi Ko
- Department of Surgery, Chungnam National University Hospital, Jung-gu, Daejeon 35015, Korea; (H.K.); (J.S.); (J.P.)
- Biomedical Research Institute, Chungnam National University Hospital, Jung-gu, Daejeon 35015, Korea; (M.L.); (E.C.)
| | - Myungsun Lee
- Biomedical Research Institute, Chungnam National University Hospital, Jung-gu, Daejeon 35015, Korea; (M.L.); (E.C.)
| | - Eunyoung Cha
- Biomedical Research Institute, Chungnam National University Hospital, Jung-gu, Daejeon 35015, Korea; (M.L.); (E.C.)
| | - Jiyoung Sul
- Department of Surgery, Chungnam National University Hospital, Jung-gu, Daejeon 35015, Korea; (H.K.); (J.S.); (J.P.)
- Department of Surgery and Research Institute for Medicinal Sciences, Chungnam National University College of Medicine, Jung-gu, Daejeon 35015, Korea
| | - Junbeom Park
- Department of Surgery, Chungnam National University Hospital, Jung-gu, Daejeon 35015, Korea; (H.K.); (J.S.); (J.P.)
- Biomedical Research Institute, Chungnam National University Hospital, Jung-gu, Daejeon 35015, Korea; (M.L.); (E.C.)
| | - Jinsun Lee
- Department of Surgery, Chungnam National University Hospital, Jung-gu, Daejeon 35015, Korea; (H.K.); (J.S.); (J.P.)
- Department of Surgery and Research Institute for Medicinal Sciences, Chungnam National University College of Medicine, Jung-gu, Daejeon 35015, Korea
- Correspondence: ; Tel.: +82-010-2047-0808
| |
Collapse
|
69
|
Zhu M, Zhang J, Li G, Liu Z. ELOVL2-AS1 inhibits migration of triple negative breast cancer. PeerJ 2022; 10:e13264. [PMID: 35441059 PMCID: PMC9013481 DOI: 10.7717/peerj.13264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/23/2022] [Indexed: 01/15/2023] Open
Abstract
In this study, we identified a key enhancer RNA (eRNA) region in breast cancer (BRCA) by applying an integrated analysis method. Reported eRNA region and genes affected by them were selected as presumed target pairs. Kaplan-Meier (KM) survival and correlation analyses were performed to screen valuable eRNA region. Based on the KM value and its correlation with the paired target genes, we carefully selected ELOVL2-AS1 as a potential key eRNA region in BRCA. Subsequently, we analyzed the expression of ELOVL2-AS1 and ELOVL2 in four BRCA subtypes and in different BRCA cell lines. The expression of ELOVL2-AS1 and ELOVL2 in triple negative breast cancer (TNBC) was significantly lower than those in Luminal A. After that, we analyzed the function of genes that are positively correlated with ELOVL2-AS1. We found that the co-expression gene mainly related to cilia and cilia characteristics of TNBC is significantly weaker than that of Luminal A. Considering the stronger invasion and metastasis of TNBC (compared with Luminal A) and the close relationship between decreased cilia and metastasis, we overexpressed ELOVL2-AS1 in TNBC and observed its effect on cell migration. The results show that it can inhibit the migration of TNBC. Finally, we analyzed the assay for transposase-accessible chromatin sequencing data, chromatin interaction analysis with paired-end tag sequencing data, and chromatin immunoprecipitation sequencing data and identified the chromatin interaction between ELOVL2-AS1 and ELOVL2, suggesting a direct regulatory interaction.
Collapse
Affiliation(s)
- Mingda Zhu
- Department of Breast, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Jingyang Zhang
- Department of Breast, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Guangyu Li
- Department of Breast, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Zhenzhen Liu
- Department of Breast, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
70
|
PGM5P3-AS1 regulates MAP1LC3C to promote cell ferroptosis and thus inhibiting the malignant progression of triple-negative breast cancer. Breast Cancer Res Treat 2022; 193:305-318. [PMID: 35325342 DOI: 10.1007/s10549-021-06501-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 12/28/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) represents an aggressive subtype of breast cancer characteristic of high recurrence rate and poor prognosis. According to previous studies and bioinformatics prediction, PGM5P3-AS1 has been found to be significantly down-regulated in TNBC cells. In addition, cell ferroptosis has become a hotspot in breast cancer research and TNBC has been reported to be more sensitive to ferroptosis than receptor positive breast cancer. Hence, we aim at exploring the molecular mechanism of PGM5P3-AS1 in TNBC cells and further explore whether PGM5P3-AS1 can inhibit TNBC progression via promoting cell ferroptosis. METHODS The expression of genes in TNBC cells was verified by RT-qPCR assay. Functional assays were taken to evaluate the impact PGM5P3-AS1 may exert on TNBC progression. The regulatory pattern of PGM5P3-AS1 on cell ferroptosis in TNBC was validated through mechanism assays. RESULTS PGM5P3-AS1 was proved to be down-regulated in TNBC cells and suppressed TNBC cell proliferation as well as migration. PGM5P3-AS1 promoted cell ferroptosis in TNBC by recruiting RNA-binding protein (RBP) NOP58 to stabilize MAP1LC3C mRNA, and thus inhibiting TNBC progression. CONCLUSION PGM5P3-AS1 regulated MAP1LC3C to promote cell ferroptosis and thus inhibiting the malignant progression of TNBC.
Collapse
|
71
|
Banerjee DK, Seijo Lebrón A, Baksi K. Glycotherapy: A New Paradigm in Breast Cancer Research. Biomolecules 2022; 12:biom12040487. [PMID: 35454076 PMCID: PMC9026886 DOI: 10.3390/biom12040487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is an ancient disease recognized first by the Egyptians as early as 1600 BC. The first cancer-causing gene in a chicken tumor virus was found in 1970. The United States signed the National Cancer Act in 1971, authorizing federal funding for cancer research. Irrespective of multi-disciplinary approaches, diverting a great deal of public and private resources, breast cancer remains at the forefront of human diseases, affecting as many as one in eight women during their lifetime. Because of overarching challenges and changes in the breast cancer landscape, five-year disease-free survival is no longer considered adequate. The absence of a cure, and the presence of drug resistance, severe side effects, and destruction of the patient’s quality of life, as well as the fact that therapy is often expensive, making it unaffordable to many, have created anxiety among patients, families, and friends. One of the reasons for the failure of cancer therapeutics is that the approaches do not consider cancer holistically. Characteristically, all breast cancer cells and their microenvironmental capillary endothelial cells express asparagine-linked (N-linked) glycoproteins with diverse structures. We tested a small biological molecule, Tunicamycin, that blocks a specific step of the protein N-glycosylation pathway in the endoplasmic reticulum (ER), i.e., the catalytic activity of N-acetylglusosaminyl 1-phosphate transferase (GPT). The outcome was overwhelmingly exciting. Tunicamycin quantitatively inhibits angiogenesis in vitro and in vivo, and inhibits the breast tumor progression of multiple subtypes in pre-clinical mouse models with “zero” toxicity. Mechanistic details support ER stress-induced unfolded protein response (upr) signaling as the cause for the apoptotic death of both cancer and the microvascular endothelial cells. Additionally, it interferes with Wnt signaling. We therefore conclude that Tunicamycin can be expected to supersede the current therapeutics to become a glycotherapy for treating breast cancer of all subtypes.
Collapse
Affiliation(s)
- Dipak K. Banerjee
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936-5067, USA;
- Correspondence:
| | - Arelis Seijo Lebrón
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936-5067, USA;
| | - Krishna Baksi
- Department of Anatomy and Cell Biology, School of Medicine, Universidad Central del Caribe, Bayamon, PR 00960-3001, USA;
| |
Collapse
|
72
|
Proleón A, Torrejón D, Urra FA, Lazo F, López-Torres C, Fuentes-Retamal S, Quispe E, Bautista L, Agurto A, Gavilan RG, Sandoval GA, Rodríguez E, Sánchez EF, Yarlequé A, Vivas-Ruiz DE. Functional, immunological characterization, and anticancer activity of BaMtx: A new Lys49- PLA 2 homologue isolated from the venom of Peruvian Bothrops atrox snake (Serpentes: Viperidae). Int J Biol Macromol 2022; 206:990-1002. [PMID: 35321814 DOI: 10.1016/j.ijbiomac.2022.03.111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/17/2022] [Indexed: 12/13/2022]
Abstract
Bothorps atrox is responsible for most of the ophidism cases in Perú. As part of the envenoming, myotoxicity is one of the most recurrent and destructive effects. In this study, a myotoxin, named BaMtx, was purified from B. atrox venom to elucidate its biological, immunological, and molecular characteristics. BaMtx was purified using CM-Sephadex-C-25 ion-exchange resin and SDS-PAGE analysis showed a unique protein band of 13 kDa or 24 kDa under reducing or non-reducing conditions, respectively. cDNA sequence codified a 122-aa mature protein with high homology with other Lys49-PLA2s; modeled structure showed a N-terminal helix, a β-wing region, and a C-terminal random coil. This protein has a poor phospholipase A2 enzymatic activity. BaMtx has myotoxic (DMM = 12.30 ± 0.95 μg) and edema-forming (DEM = 26.00 ± 1.15 μg) activities. Rabbit immunization with purified enzyme produced anti-BaMtx antibodies that reduced 50.28 ± 10.15% of myotoxic activity and showed significant cross-reactivity against B. brazili and B pictus venoms. On the other hand, BaMtx exhibits mild anti-proliferative and anti-migratory effects on breast cancer cells, affecting the ROS and NADH levels, which may reduce mitochondrial respiration. These results contribute to the understanding of B. atrox Lys49-PLA2 effects and establish the anticancer potential de BaMtx.
Collapse
Affiliation(s)
- Alex Proleón
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú
| | - Daniel Torrejón
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú
| | - Felix A Urra
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Clínica y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Fanny Lazo
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú
| | - Camila López-Torres
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Clínica y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Sebastián Fuentes-Retamal
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Clínica y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Edwin Quispe
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú
| | - Lorgio Bautista
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú
| | - Andrés Agurto
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú
| | - Ronnie G Gavilan
- Centro Nacional de Salud Pública, Instituto Nacional de Salud-Perú, Jesús María, Lima, Peru; Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru
| | - Gustavo A Sandoval
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú
| | - Edith Rodríguez
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú
| | - Eladio F Sánchez
- Research and Development Center, Ezequiel Dias Foundation, 30510-010 Belo Horizonte, MG, Brazil
| | - Armando Yarlequé
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú
| | - Dan E Vivas-Ruiz
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú.
| |
Collapse
|
73
|
Jaggupilli A, Ly S, Nguyen K, Anand V, Yuan B, El-Dana F, Yan Y, Arvanitis Z, Piyarathna DWB, Putluri N, Piwnica-Worms H, Manning HC, Andreeff M, Battula VL. Metabolic stress induces GD2 + cancer stem cell-like phenotype in triple-negative breast cancer. Br J Cancer 2022; 126:615-627. [PMID: 34811508 PMCID: PMC8854435 DOI: 10.1038/s41416-021-01636-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/25/2021] [Accepted: 11/09/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Metabolic stress resulting from nutrient deficiency is one of the hallmarks of a growing tumour. Here, we tested the hypothesis that metabolic stress induces breast cancer stem-like cell (BCSC) phenotype in triple-negative breast cancer (TNBC). METHODS Flow cytometry for GD2 expression, mass spectrometry and Ingenuity Pathway Analysis for metabolomics, bioinformatics, in vitro tumorigenesis and in vivo models were used. RESULTS Serum/glucose deprivation not only increased stress markers but also enhanced GD2+ BCSC phenotype and function in TNBC cells. Global metabolomics profiling identified upregulation of glutathione biosynthesis in GD2high cells, suggesting a role of glutamine in the BCSC phenotype. Cueing from the upregulation of the glutamine transporters in primary breast tumours, inhibition of glutamine uptake using small-molecule inhibitor V9302 reduced GD2+ cells by 70-80% and BCSC characteristics in TNBC cells. Mechanistic studies revealed inhibition of the mTOR pathway and induction of ferroptosis by V9302 in TNBC cells. Finally, inhibition of glutamine uptake significantly reduced in vivo tumour growth in a TNBC patient-derived xenograft model using NSG (non-obese diabetic/severe combined immunodeficiency with a complete null allele of the IL-2 receptor common gamma chain) mice. CONCLUSION Here, we show metabolic stress results in GD2+ BCSC phenotype in TNBC and glutamine contributes to GD2+ phenotype, and targeting the glutamine transporters could complement conventional chemotherapy in TNBC.
Collapse
Affiliation(s)
- Appalaraju Jaggupilli
- grid.240145.60000 0001 2291 4776Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Stanley Ly
- grid.240145.60000 0001 2291 4776Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Khoa Nguyen
- grid.240145.60000 0001 2291 4776Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Vivek Anand
- grid.240145.60000 0001 2291 4776Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Bin Yuan
- grid.240145.60000 0001 2291 4776Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Fouad El-Dana
- grid.240145.60000 0001 2291 4776Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Yuanqing Yan
- grid.468222.8Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center, Houston, TX USA
| | - Zoe Arvanitis
- grid.240145.60000 0001 2291 4776Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | | | - Nagireddy Putluri
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX USA
| | - Helen Piwnica-Worms
- grid.240145.60000 0001 2291 4776Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Henry Charles Manning
- grid.152326.10000 0001 2264 7217Center for Molecular Probes, Vanderbilt University Institute of Imaging Science, Nashville, TN USA
| | - Michael Andreeff
- grid.240145.60000 0001 2291 4776Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - V. Lokesh Battula
- grid.240145.60000 0001 2291 4776Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| |
Collapse
|
74
|
Li J, Xu X, Peng X. NDC80 Enhances Cisplatin-resistance in Triple-negative Breast Cancer. Arch Med Res 2022; 53:378-387. [PMID: 35346500 DOI: 10.1016/j.arcmed.2022.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/28/2021] [Accepted: 03/04/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUNDS Chemotherapy is a standard systemic treatment option for triple-negative breast cancer (TNBC). Cisplatin has been used to treat TNBC, but frequently leads to cisplatin resistance in patients. The aim of our study was to investigate cisplatin-resistant mechanism in TNBC. MATERIALS AND METHODS To identify the potential genes and pathways relative to cisplatin resistance, GSE103115 data were analyzed by the Limma package and Gene set enrichment analysis (GSEA). TNBC data from TCGA, GSE76250 and GSE115275 datasets were used to calculate NDC80 expression. Immunohistochemistry detected NDC80 protein expression in TNBC tissues from patients before and after cisplatin treatment. After expose to cisplatin treatment, the viability and proliferation of TNBC cells were measured by CCK-8 and colony formation assays, respectively. RESULTS NDC80 was regarded as a cisplatin-resistant gene because after cisplatin treatment NDC80 was downregulated in cisplatin-sensitive cells but was upregulated in cisplatin-resistant cells. NDC80 was over-expressed in TNBC tissues compared to normal tissues. Furthermore, NDC80 expression in TNBC patients was increased after cisplatin treatment. Cisplatin-sensitive TNBC patients showed lower NDC80 expression than cisplatin-resistant patients. Additionally, NDC80 expression was correlated with clinical stages, tumor size and chemotherapy of TNBC patients. Moreover, NDC80 overexpression promoted the viability and proliferation of TNBC cells and enhanced the cells resistance to cisplatin. The potential pathways relative to cisplatin resistance were obtained, such as p53 signaling pathway and Oxidative phosphorylation. CONCLUSION These findings provide new insights for understanding the mechanism of cisplatin resistance in TNBC, and NDC80 may be a potential therapeutic target for TNBC treatment.
Collapse
|
75
|
KCTD15 Is Overexpressed in her2+ Positive Breast Cancer Patients and Its Silencing Attenuates Proliferation in SKBR3 CELL LINE. Diagnostics (Basel) 2022; 12:diagnostics12030591. [PMID: 35328144 PMCID: PMC8947324 DOI: 10.3390/diagnostics12030591] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 12/10/2022] Open
Abstract
Studies carried out in the last decade have demonstrated that the members of the KCTD protein family play active roles in carcinogenesis. Very recently, it has been reported that KCTD15, a protein typically associated with other physio-pathological processes, is involved in medulloblastoma and leukemia. Starting with some preliminary indications that emerged from the analysis of online databases that suggested a possible overexpression of KCTD15 in breast cancer, in this study, we evaluated the expression levels of the protein in breast cancer cell lines and in patients and the effects of its silencing in the HER2+ cell model. The analysis of the KCTD15 levels indicates a significant overexpression of the protein in Luminal A and Luminal B breast cancer patients as well as in the related cell lines. The greatest level of over-expression of the protein was found in HER2+ patients and in the related SKBR3 cell line model system. The effects of KCTD15 silencing in terms of cell proliferation, cell cycle, and sensitivity to doxorubicin were evaluated in the SKBR3 cell line. Notably, the KCTD15 silencing in SKBR3 cells by CRISPR/CAS9 technology significantly attenuates their proliferation and cell cycle progression. Finally, we demonstrated that KCT15 silencing also sensitized SKBR3 cells to the cytotoxic agent doxorubicin, suggesting a possible role of the protein in anti HER2+ therapeutic strategies. Our results highlight a new possible player in HER2 breast cancer carcinogenesis, paving the way for its use in breast cancer diagnosis and therapy.
Collapse
|
76
|
Anders CK, Woodcock MG, Van Swearingen AED, Moore DT, Sambade MJ, Laurie S, Robeson A, Kolupaev O, Cuaboy LA, Garrett AL, McKinnon K, Cowens K, Bortone D, Calhoun BC, Wilkinson AD, Carey L, Jolly T, Muss H, Reeder-Hayes K, Kaltman R, Jankowitz R, Gudena V, Olajide O, Perou C, Dees EC, Vincent BG, Serody JS. Evaluating the efficacy of a priming dose of cyclophosphamide prior to pembrolizumab to treat metastatic triple negative breast cancer. J Immunother Cancer 2022; 10:jitc-2021-003427. [PMID: 35121644 PMCID: PMC8819787 DOI: 10.1136/jitc-2021-003427] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Triple negative breast cancer (TNBC) is characterized by the presence of immune cells in the tumor microenvironment, however, the response to single-agent immune checkpoint inhibitor (ICI) therapy is modest. Preclinical models have demonstrated that intratumoral regulatory T cells (Tregs) dampen the antitumor response to ICI. We performed a single-arm phase II trial to evaluate the efficacy of a single low dose of cyclophosphamide (Cy) to deplete Tregs administered before initiating pembrolizumab. PATIENTS AND METHODS 40 patients with pretreated metastatic TNBC were enrolled. The primary endpoints were progression-free survival (PFS) and change in peripheral blood Tregs after Cy. Secondary endpoints included overall response rate (ORR), duration of response, overall survival, treatment-related adverse events (AEs), and correlative evaluations. RESULTS Median PFS was 1.8 months, and the ORR was 21%. Tregs were not significantly decreased after Cy prior to ICI (-3.3%, p=0.19), and increased significantly after the first cycle of therapy (+21% between cycles 1 and 2, p=0.005). Immune-related AEs were similar to historical pembrolizumab monotherapy, and were associated with response to therapy (p=0.02). Patients with pretreatment tumors harboring increased expression of B cell metagene signatures and increased circulating B cell receptor repertoire diversity were associated with clinical response and immune-related toxicity (IRT). CONCLUSIONS Among patients with heavily pretreated TNBC, Cy prior to pembrolizumab did not significantly deplete Tregs, and in those with decreased numbers there was rapid recovery following therapy. Increased B cell gene expression in baseline samples was associated with clinical response and IRT.
Collapse
Affiliation(s)
| | - Mark G Woodcock
- Division of Medical Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | | | - Dominic T Moore
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Maria J Sambade
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Sonia Laurie
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Alexander Robeson
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Oleg Kolupaev
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Luz A Cuaboy
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Amy L Garrett
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Karen McKinnon
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Division of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Kristen Cowens
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Dante Bortone
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Benjamin C Calhoun
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Alec D Wilkinson
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Lisa Carey
- Division of Medical Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Trevor Jolly
- Division of Medical Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Hyman Muss
- Division of Medical Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Katherine Reeder-Hayes
- Division of Medical Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Rebecca Kaltman
- Department of Hematology and Oncology, George Washington Cancer Center, Washington, District of Columbia, USA
| | - Rachel Jankowitz
- Division of Hematology/Oncology, University of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Vinay Gudena
- Division of Hematology/Oncology, Cone Health Cancer Center, Greensboro, North Carolina, USA
| | - Oludamilola Olajide
- Rex Hematology Oncology Associates, Rex Cancer Care, Raleigh, North Carolina, USA
| | - Charles Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - E Claire Dees
- Division of Medical Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Benjamin G Vincent
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Division of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Division of Hematology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Jonathan S Serody
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA .,Division of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Division of Hematology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
77
|
Baranova A, Krasnoselskyi M, Starikov V, Kartashov S, Zhulkevych I, Vlasenko V, Oleshko K, Bilodid O, Sadchikova M, Vinnyk Y. Triple-negative breast cancer: current treatment strategies and factors of negative prognosis. J Med Life 2022; 15:153-161. [PMID: 35419095 PMCID: PMC8999097 DOI: 10.25122/jml-2021-0108] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/28/2021] [Indexed: 12/26/2022] Open
Abstract
Breast cancer is the most common cancer in women and the most common cause of death in working-age women. According to the results of immunohistochemical studies, 10-20% of cases revealed a triple-negative type of breast cancer. This subtype is characterized by significant proliferative activity and growth rate, aggressive clinical course, and early metastasis. This leads to a suspicious prognosis and, accordingly, encourages an increase of surgical treatment radicalism and aggressive systemic treatment. This review briefly analyzes existing treatment strategies for triple-negative breast cancer with a focus on surgical treatment. Surgical treatment is an integral part of complex therapy. Currently, the attention of researchers is focused not only on the radicalism of the operation, ensuring long-term survival, but also on achieving a good cosmetic result that determines the quality of life of patients. In this aspect, organ-preserving and prosthetic methods of operations are promising, the feasibility and effectiveness of which are being discussed. The relevance of choosing the optimal method of operation is evidenced by the lack of generally accepted approaches based on informative markers for the prognosis of the course of the disease. Therefore, the choice of the optimal method of surgical treatment taking into account the individual characteristics of the patient and the tumor, indications for chemotherapy, and radiation therapy remains an unresolved issue and requires further research.
Collapse
Affiliation(s)
- Anna Baranova
- Department of Radiology and Oncology, Grigoriev Institute for Medical Radiology NAMS of Ukraine, Kharkiv, Ukraine.,Department of Oncology, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Mykola Krasnoselskyi
- Department of Radiology and Oncology, Grigoriev Institute for Medical Radiology NAMS of Ukraine, Kharkiv, Ukraine.,Department of Oncology, Radiology and Radiation Medicine V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Volodymyr Starikov
- Department of Oncology, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Sergii Kartashov
- Department of Obstetrics, Gynecology and Oncogynecology, Kharkiv Medical Academy of Postgraduate Education, Kharkiv, Ukraine
| | - Igor Zhulkevych
- Department of Oncology, Radiology Diagnostics and Therapy and Radiation Medicine, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Vadym Vlasenko
- Department of Cancer Surgery, Medical Center Molecule, Kharkiv, Ukraine
| | - Kateryna Oleshko
- Department of Obstetrics, Gynecology and Oncogynecology, Kharkiv Medical Academy of Postgraduate Education, Kharkiv, Ukraine
| | - Olga Bilodid
- Department of Obstetrics, Gynecology and Oncogynecology, Kharkiv Medical Academy of Postgraduate Education, Kharkiv, Ukraine
| | - Marina Sadchikova
- Department of Cancer Surgery, Radiation Therapy and Palliative Care, Kharkiv Medical Academy of Postgraduate Education, Kharkiv, Ukraine
| | - Yurii Vinnyk
- Department of Cancer Surgery, Radiation Therapy and Palliative Care, Kharkiv Medical Academy of Postgraduate Education, Kharkiv, Ukraine
| |
Collapse
|
78
|
Chimplee S, Roytrakul S, Sukrong S, Srisawat T, Graidist P, Kanokwiroon K. Anticancer Effects and Molecular Action of 7-α-Hydroxyfrullanolide in G2/M-Phase Arrest and Apoptosis in Triple Negative Breast Cancer Cells. Molecules 2022; 27:407. [PMID: 35056723 PMCID: PMC8779136 DOI: 10.3390/molecules27020407] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 02/07/2023] Open
Abstract
Triple negative breast cancer (TNBC) is a breast cancer subtype characterized by the absence of estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 expression. TNBC cells respond poorly to targeted chemotherapies currently in use and the mortality rate of TNBC remains high. Therefore, it is necessary to identify new chemotherapeutic agents for TNBC. In this study, the anti-cancer effects of 7-α-hydroxyfrullanolide (7HF), derived from Grangea maderaspatana, on MCF-7, MDA-MB-231 and MDA-MB-468 breast cancer cells were assessed using MTT assay. The mode of action of 7HF in TNBC cells treated with 6, 12 and 24 µM of 7HF was determined by flow cytometry and propidium iodide (PI) staining for cell cycle analysis and annexin V/fluorescein isothiocyanate + PI staining for detecting apoptosis. The molecular mechanism of action of 7HF in TNBC cells was investigated by evaluating protein expression using proteomic techniques and western blotting. Subsequently, 7HF exhibited the strongest anti-TNBC activity toward MDA-MB-468 cells and a concomitantly weak toxicity toward normal breast cells. The molecular mechanism of action of low-dose 7HF in TNBC cells primarily involved G2/M-phase arrest through upregulation of the expression of Bub3, cyclin B1, phosphorylated Cdk1 (Tyr 15) and p53-independent p21. Contrastingly, the upregulation of PP2A-A subunit expression may have modulated the suppression of various cell survival proteins such as p-Akt (Ser 473), FoxO3a and β-catenin. The concurrent apoptotic effect of 7HF on the treated cells was mediated via both intrinsic and extrinsic modes through the upregulation of Bax and active cleaved caspase-7-9 expression and downregulation of Bcl-2 and full-length caspase-7-9 expression. Notably, the proteomic approach revealed the upregulation of the expression of pivotal protein clusters associated with G1/S-phase arrest, G2/M-phase transition and apoptosis. Thus, 7HF exhibits promising anti-TNBC activity and at a low dose, it modulates signal transduction associated with G2/M-phase arrest and apoptosis.
Collapse
Affiliation(s)
- Siriphorn Chimplee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (S.C.); (P.G.)
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand;
| | - Suchada Sukrong
- Research Unit of DNA Barcoding of Thai Medicinal Plants, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Theera Srisawat
- Faculty of Science and Industrial Technology, Surat Thani Campus, Prince of Songkla University, Surat Thani 84000, Thailand;
- Faculty of Innovative Agriculture and Fisheries, Surat Thani Campus, Prince of Songkla University, Surat Thani 84000, Thailand
| | - Potchanapond Graidist
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (S.C.); (P.G.)
| | - Kanyanatt Kanokwiroon
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (S.C.); (P.G.)
| |
Collapse
|
79
|
Zhu L, Liu J, Chen J, Zhou Q. The developing landscape of combinatorial therapies of immune checkpoint blockade with DNA damage repair inhibitors for the treatment of breast and ovarian cancers. J Hematol Oncol 2021; 14:206. [PMID: 34930377 PMCID: PMC8686226 DOI: 10.1186/s13045-021-01218-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/05/2021] [Indexed: 02/07/2023] Open
Abstract
The use of immune checkpoint blockade (ICB) using antibodies against programmed death receptor (PD)-1, PD ligand (PD-L)-1, and cytotoxic T-lymphocyte antigen 4 (CTLA-4) has redefined the therapeutic landscape in solid tumors, including skin, lung, bladder, liver, renal, and breast tumors. However, overall response rates to ICB therapy remain limited in PD-L1-negative patients. Thus, rational and effective combination therapies will be needed to address ICB treatment resistance in these patients, as well as in PD-L1-positive patients who have progressed under ICB treatment. DNA damage repair inhibitors (DDRis) may activate T-cell responses and trigger inflammatory cytokines release and eventually immunogenic cancer cell death by amplifying DNA damage and generating immunogenic neoantigens, especially in DDR-defective tumors. DDRi may also lead to adaptive PD-L1 upregulation, providing a rationale for PD-L1/PD-1 blockade. Thus, based on preclinical evidence of efficacy and no significant overlapping toxicity, some ICB/DDRi combinations have rapidly progressed to clinical testing in breast and ovarian cancers. Here, we summarize the available clinical data on the combination of ICB with DDRi agents for treating breast and ovarian cancers and discuss the mechanisms of action and other lessons learned from translational studies conducted to date. We also review potential biomarkers to select patients most likely to respond to ICB/DDRi combination therapy.
Collapse
Affiliation(s)
- Lingling Zhu
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jiewei Liu
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jiang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, Zhejiang Province, China.
| | - Qinghua Zhou
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
80
|
Su P, Peng Z, Xu B, Yang B, Jin F. Establishment and validation of an individualized macrophage-related gene signature to predict overall survival in patients with triple negative breast cancer. PeerJ 2021; 9:e12383. [PMID: 34900411 PMCID: PMC8621725 DOI: 10.7717/peerj.12383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/04/2021] [Indexed: 12/31/2022] Open
Abstract
Background Recently, researchers have classified highly heterogeneous triple negative breast cancer (TNBC) into different subtypes from different perspectives and investigated the characteristics of different subtypes to pursue individualized treatment. With the increase of immunotherapy and its preliminary application in TNBC treatment, the value of immune-related strategies in the treatment of TNBC has been initially reflected. Based thereon, this study plans to classify and further explore TNBC from the perspective of immune cell infiltration. Method The fractions of immune cells of TNBC patients were assessed by six immune component analysis methods in The Cancer Genome Atlas (TCGA) database. Hub genes significantly related to poor prognosis were verified by weighted gene co-expression network analysis (WGCNA) analysis, Lasso analysis, and univariate KM analysis. Two cohorts of TNBC patients with complete prognosis information were collected for validation analysis. Finally, the Genomics of Drug Sensitivity in Cancer (GDSC) database was adopted to ascertain the sensitivity differences of different populations based on hub-gene grouping to different chemotherapy drugs. Results Five hub genes (CD79A, CXCL13, IGLL5, LHFPL2, and PLEKHF1) of the key co-expression gene module could divide TNBC patients into two groups (Cluster A and Cluster B) based on consistency cluster analysis. The patients with Cluster A were responsible for significantly worse prognosis than the patients with Cluster B (P = 0.023). In addition, another classification method, PCoA, and two other datasets (GSE103091 and GSE76124), were used to obtain consistent results with previous findings, which verified the stability of the classification method and dataset in this study. The grouping criteria based on the previous results were developed and the accuracy of the cut-off values was validated. A prognosis model of TNBC patients was then constructed based on the grouping results of five hub genes and N staging as prognostic factors. The results of ROC and decision curve analyses showed that this model had high prediction accuracy and patients could benefit therefrom. Finally, GDSC database analysis proved that patients in Cluster A were more sensitive to Vinorelbine. Separate analysis of the sensitivity of patients in Cluster A to Gemcitabine and Vinorelbine showed that the patients in Cluster A exhibited higher sensitivity to Vinorelbine. We hypothesized that these five genes were related to gemcitabine resistance and they could serve as biomarkers for clinical drug decision-making after anthracene resistance and taxane resistance in patients with advanced TNBC. Conclusion This study found five hub prognostic genes associated with macrophages, and a prognostic model was established to predict the survival of TNBC patients. Finally, these five genes were related to gemcitabine resistance in TNBC patients.
Collapse
Affiliation(s)
- Peng Su
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ziqi Peng
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Boyang Xu
- Gastroenterology Department, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bowen Yang
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
81
|
Zhang Y, Ma X, Li H, Zhuang J, Feng F, Liu L, Liu C, Sun C. Identifying the Effect of Ursolic Acid Against Triple-Negative Breast Cancer: Coupling Network Pharmacology With Experiments Verification. Front Pharmacol 2021; 12:685773. [PMID: 34858165 PMCID: PMC8631906 DOI: 10.3389/fphar.2021.685773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a subtype of breast cancer with complex heterogeneity, high invasiveness, and long-term poor prognosis. With the development of molecular pathology and molecular genetics, the gene map of TNBC with distinctive biological characteristics has been outlined more clearly. Natural plant extracts such as paclitaxel, vinblastine, colchicine etc., have occupied an important position in the treatment of hormone-independent breast cancer. Ursolic acid (UA), a triterpenoid acid compound derived from apple, pear, loquat leaves, etc., has been reported to be effective in a variety of cancer treatments, but there are few reports on the treatment of TNBC. This study performed comprehensive bioinformatics analysis and in vitro experiments to identify the effect of UA on TNBC treatment and its potential molecular mechanism. Our results showed that UA could not only reduce the proliferation, migration, and invasion in MDA-MB-231 and MDA-MB-468 cell lines with a dose-dependent manner but also induce cell cycle arrest and apoptosis. Meanwhile, we collected the gene expression data GSE45827 and GSE65194 from GEO for comparison between TNBC and normal cell type and obtained 724 DEGs. Subsequently, PLK1 and CCNB1 related to TNBC were screened as the key targets via topological analysis and molecular docking, and gene set enrichment analysis identified the key pathway as the p53 signaling pathway. In addition, quantitative real-time PCR and western blot verified the key genes were PLK1 and CCNB1. In vivo and in vitro experiments showed that UA could inhibit the growth of TNBC cells, and down-regulate the protein expression levels of PLK1 and CCNB1 by mediating p53 signaling pathway. These findings provide strong evidence for UA intervention in TNBC via multi-target therapy.
Collapse
Affiliation(s)
- Yubao Zhang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaoran Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huayao Li
- College of Basic Medical, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Fubin Feng
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Cun Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|
82
|
Sueta A, Fujiki Y, Goto-Yamaguchi L, Tomiguchi M, Yamamoto-Ibusuki M, Iwase H, Yamamoto Y. Exosomal miRNA profiles of triple-negative breast cancer in neoadjuvant treatment. Oncol Lett 2021; 22:819. [PMID: 34671433 PMCID: PMC8503811 DOI: 10.3892/ol.2021.13080] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by aggressive clinicopathological features and is associated with a poor prognosis. Identifying patients that are non-responsive to chemotherapy remains a critical goal for effective personalized therapies. In the present study, the predictive value of exosomal microRNAs (miRNAs) was investigated in patients with TNBC. Exosomes were isolated from patients with TNBC undergoing neoadjuvant chemotherapy. Microarray-based miRNA profiles were compared between patients with pathological complete response (pCR; n=12) and non-pCR (n=12). Furthermore, the miRNA profiles of non-pCR patients with breast cancer recurrence were compared with those with no recurrence. A total of 16 differentially expressed exosomal miRNAs were identified between the patients with pCR and non-pCR by microarray analysis. Of these, a combined signature of four miRNAs (miR-4448, miR-2392, miR-2467-3p and miR-4800-3p) could be used to discriminate between pCR and non-pCR patients with TNBC with an area under the curve value of 0.7652. Furthermore, this study found 43 differentially expressed miRNAs between the patients with non-pCR and recurrence and non-pCR patients without recurrence. In network analysis, 'pathway in cancer', 'focal adhesion' and 'cell cycle' were identified as the crucial pathways in patients with non-pCR who also developed recurrence. Several exosomal miRNAs may be useful biomarkers to predict treatment efficacy for TNBC. The present study identified patients who were resistant to standard chemotherapy and therefore more likely to develop breast cancer recurrence.
Collapse
Affiliation(s)
- Aiko Sueta
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Yoshitaka Fujiki
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Lisa Goto-Yamaguchi
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Mai Tomiguchi
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Mutsuko Yamamoto-Ibusuki
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Hirotaka Iwase
- Department of Breast Surgery, Kumamoto City Hospital, Kumamoto 862-8505, Japan
| | - Yutaka Yamamoto
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| |
Collapse
|
83
|
Barchiesi G, Roberto M, Verrico M, Vici P, Tomao S, Tomao F. Emerging Role of PARP Inhibitors in Metastatic Triple Negative Breast Cancer. Current Scenario and Future Perspectives. Front Oncol 2021; 11:769280. [PMID: 34900718 PMCID: PMC8655309 DOI: 10.3389/fonc.2021.769280] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/05/2021] [Indexed: 12/31/2022] Open
Abstract
Triple negative tumors represent 15% of breast cancer and are characterized by the lack of estrogen receptors, progesterone receptor, and HER2 amplification or overexpression. Approximately 25% of patients diagnosed with triple negative breast cancer carry a germline BRCA1 or BRCA2 mutation. They have an aggressive biology, and chemotherapy has been the mainstay of treatment for a long time. Despite intensive therapies, prognosis is still poor, and many patients will eventually relapse or die due to cancer. Therefore, novel targeted agents that can increase the treatment options for this disease are urgently needed. Recently, a new class of molecules has emerged as a standard of care for patients with triple negative breast cancer and germline BRCA1 or BRCA2 mutation: poly (ADP-ribose) (PARP) inhibitors. In the first part of the review, we summarize and discuss evidence supporting the use of PARP inhibitors. Currently, two PARP inhibitors have been approved for triple negative metastatic breast cancer-olaparib and talazoparib-based on two phase III trials, which showed a progression-free survival benefit when compared to chemotherapy. Safety profile was manageable with supportive therapies and dose reductions/interruptions. In addition, other PARP inhibitors are currently under investigation, such as talazoparib, rucaparib, and veliparib. Subsequently, we will discuss the potential role of PARP inhibitors in the future. Clinical research areas are investigating PARP inhibitors in combination with other agents and are including patients without germline BRCA mutations: ongoing phase II/III studies are combining PARP inhibitors with immunotherapy, while phases I and II trials are combining PARP inhibitors with other targeted agents such as ATM and PIK3CA inhibitors. Moreover, several clinical trials are enrolling patients with somatic BRCA mutation or patients carrying mutations in genes, other than BRCA1/2, involved in the homologous recombination repair pathway (e.g., CHECK2, PALB2, RAD51, etc.).
Collapse
Affiliation(s)
- Giacomo Barchiesi
- Dipartimento di Scienze Radiologiche, Oncologiche ed Anatomo Patologiche, Università di Roma Sapienza, Rome, Italy
| | - Michela Roberto
- Dipartimento di Scienze Radiologiche, Oncologiche ed Anatomo Patologiche, Università di Roma Sapienza, Rome, Italy
| | - Monica Verrico
- Dipartimento di Scienze Radiologiche, Oncologiche ed Anatomo Patologiche, Università di Roma Sapienza, Rome, Italy
| | - Patrizia Vici
- UOSD Sperimentazioni Di Fase IV, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Silverio Tomao
- Dipartimento di Scienze Radiologiche, Oncologiche ed Anatomo Patologiche, Università di Roma Sapienza, Rome, Italy
| | - Federica Tomao
- Gynecologic Oncology Program, European Institute of Oncology, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- Maternal and Child Department, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
84
|
Yi J, Shuang Z, Zhong W, Wu H, Feng J, Zouxu X, Huang X, Li S, Wang X. Identification of Immune-Related Risk Characteristics and Prognostic Value of Immunophenotyping in TNBC. Front Genet 2021; 12:730442. [PMID: 34777466 PMCID: PMC8586457 DOI: 10.3389/fgene.2021.730442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/23/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Triple-negative breast cancer (TNBC) is not sensitive to targeted therapy with HER-2 monoclonal antibody and endocrine therapy due to lack of ER, PR, and HER-2 receptors. TNBC is a breast cancer subtype with the worst prognosis and the highest mortality rate compared with other subtypes. Materials and Methods: Breast cancer-related data were retrieved from The Cancer Genome Atlas (TCGA) database, and 116 cases of triple-negative breast cancer were identified from the data. GSE31519 dataset was retrieved from Gene Expression Omnibus (GEO) database, comprising a total of 68 cases with TNBC. Survival analysis was performed based on immune score, infiltration score and mutation score to explore differences in prognosis of different immune types. Analysis of differentially expressed genes was conducted and GSEA analysis based on these genes was conducted to explore the potential mechanism. Results: The findings showed that comprehensive immune typing is highly effective and accurate in assessing prognosis of TNBC patients. Analysis showed that MMP9, CXCL9, CXCL10, CXCL11 and CD7 are key genes that may affect immune typing of TNBC patients and play an important role in prediction of prognosis in TNBC patients. Conclusion: The current study presents an evaluation system based on immunophenotyping, which provides a more accurate prognostic evaluation tool for TNBC patients. Differentially expressed genes can be targeted to improve treatment of TNBC.
Collapse
Affiliation(s)
- Jiarong Yi
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zeyu Shuang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wenjing Zhong
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Haoming Wu
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jikun Feng
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xiazi Zouxu
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xinjian Huang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Siqi Li
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xi Wang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
85
|
Bando Y, Kobayashi T, Miyakami Y, Sumida S, Kakimoto T, Saijo Y, Uehara H. Triple-negative breast cancer and basal-like subtype : Pathology and targeted therapy. THE JOURNAL OF MEDICAL INVESTIGATION 2021; 68:213-219. [PMID: 34759133 DOI: 10.2152/jmi.68.213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Triple-negative breast cancer (TNBC) is a heterogenous disease. For personalized medicine, it is essential to identify and classify tumor subtypes to develop effective therapeutic strategies. Although gene expression profiling has identified several TNBC subtypes, classification of these tumors remains complex. Most TNBCs exhibit an aggressive phenotype, but some rare types have a favorable clinical course. In this review, we summarize the classification and characteristics related to the various TNBC subtypes, including the rare types. Therapeutic methods that are suitable for each subtype are also discussed. Of the intrinsic breast cancer subtypes identified by gene expression analysis, the basal-like subtype specifically displayed decreased expression of an estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2) cluster. We also present results that characterize the TNBC and basal-like phenotypes. TNBC may be categorized into four major classes : basal-like, immune-enriched, mesenchymal, and luminal androgen receptor. Therapeutic strategies for each subtype have been proposed along with newly approved targeted therapies for TNBC, such as immune checkpoint inhibitors. Understanding the classification of TNBC based on gene expression profiling in association with clinicopathological factors will facilitate accurate pathological diagnosis and effective treatment selection. J. Med. Invest. 68 : 213-219, August, 2021.
Collapse
Affiliation(s)
- Yoshimi Bando
- Division of Pathology, Tokushima University Hospital, Tokushima, Japan
| | - Tomoko Kobayashi
- Division of Pathology, Tokushima University Hospital, Tokushima, Japan
| | - Yuko Miyakami
- Division of Pathology, Tokushima University Hospital, Tokushima, Japan
| | - Satoshi Sumida
- Division of Pathology, Tokushima University Hospital, Tokushima, Japan
| | - Takumi Kakimoto
- Division of Pathology, Tokushima University Hospital, Tokushima, Japan
| | - Yasuyo Saijo
- Department of Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hisanor Uehara
- Division of Pathology, Tokushima University Hospital, Tokushima, Japan
| |
Collapse
|
86
|
Yang Y, Wu H, Fan S, Bi Y, Hao M, Shang J. Cancer‑associated fibroblast‑derived LRRC15 promotes the migration and invasion of triple‑negative breast cancer cells via Wnt/β‑catenin signalling pathway regulation. Mol Med Rep 2021; 25:2. [PMID: 34726255 PMCID: PMC8600416 DOI: 10.3892/mmr.2021.12518] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/27/2021] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive tumour subtype associated with poor prognosis. The function of leucine-rich repeat-containing protein 15 (LRRC15), a member of the leucine-rich repeat superfamily, in TNBC has not yet been elucidated. The aim of this study was to identify the combined role of LRRC15 and Wnt/β-catenin signalling pathway in the development of TNBC. The expression of LRRC15 in TNBC tissues was analysed using data from The Cancer Genome Atlas. Cell migration and invasion assays were conducted to study the function of LRRC15 in TNBC. The expression of Wnt/β-catenin signalling proteins was analysed via western blotting. The effect of LRRC15 on β-catenin nuclear localisation was measured by performing western blotting and luciferase assays. It was found that high LRRC15 expression was associated with poor prognosis in patients with TNBC. High expression of LRRC15 in cancer-associated fibroblasts (CAFs) promoted cell migration and invasion in TNBC cells. In addition, TNBC cells with LRRC15 overexpression in CAFs showed an aberrant increase in β-catenin activity concomitant with nuclear localisation of β-catenin, which inhibited its degradation. These results showed that LRRC15 promoted tumour migration and invasion in TNBC cells by regulating the Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Yang Yang
- Department of Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Haiying Wu
- Department of Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Shaoxia Fan
- Department of Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Yanqing Bi
- Department of Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Min Hao
- Department of Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Jian Shang
- Department of Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| |
Collapse
|
87
|
Elia SG, Al-Karmalawy AA, Nasr MY, Elshal MF. Loperamide potentiates doxorubicin sensitivity in triple-negative breast cancer cells by targeting MDR1 and JNK and suppressing mTOR and Bcl-2: In vitro and molecular docking study. J Biochem Mol Toxicol 2021; 36:e22938. [PMID: 34719826 DOI: 10.1002/jbt.22938] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 08/09/2021] [Accepted: 10/18/2021] [Indexed: 02/05/2023]
Abstract
Multidrug resistance (MDR) is the leading cause of treatment failure in triple-negative breast cancer (TNBC) patients treated with doxorubicin (DXR). We aimed to investigate the potential of the antidiarrheal drug Loperamide (LPR) in sensitizing TNBC cells to DXR and elucidate the underlying molecular mechanisms. Therefore, we examined the effects of DXR alone or in combination with LPR on MDA-MD-231 cells viability using MTT assay, cell cycle, and apoptosis by flow cytometry, and the expression of the MDR-related genes (MDR1 and JNK1) and cell cycle/survival genes (p21, mTOR, and Bcl-2) by quantitative reverse transcription polymerase chain reaction. Results showed that adding LPR to DXR potentiated its antiproliferation effect and reduced its IC50 by twofolds compared with DXR alone. The value of the combination index of LPR/DXR was <1 indicating a synergistic effect. Combined DXR/LPR treatment also caused G1 arrest and potentiated apoptosis more than DXR-single treatment. At the molecular levels, LPR/DXR treatment downregulated the mRNA of MDR1 (1.35-folds), JNK1 (2.5-folds), mTOR (6.6-folds), Bcl-2 (9.5-folds); while upregulated p21 gene (8-folds) compared with DXR alone. Molecular docking analyses found LPR antagonizes MDR1 and JNK1 proteins, and hence supports the in vitro studies. In conclusion, the results confirmed the potential of LPR in sensitizing TNBCs to DXR by targeting MDR1 and JNK1 and suppressing Bcl-2 and mTOR genes, while upregulating the cell cycle inhibitor gene p21. Additionally, LPR could be repurposed to reduce the therapeutic doses of DXR as indicated by the dose reduction index (DRI) and subsequently decrease its side effects.
Collapse
Affiliation(s)
- Shenouda G Elia
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Mohamed Y Nasr
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Mohamed F Elshal
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
88
|
Ding L, Xie Z. CircWHSC1 regulates malignancy and glycolysis by the miR-212-5p/AKT3 pathway in triple-negative breast cancer. Exp Mol Pathol 2021; 123:104704. [PMID: 34624276 DOI: 10.1016/j.yexmp.2021.104704] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 06/25/2021] [Accepted: 10/02/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most aggressive malignant tumor in breast cancer (BC). Circular RNA circWHSC1 (circWHSC1) is connected with the progression of tumors. However, the role and regulatory mechanism of circWHSC1 in TNBC are unclear. METHODS The expression of circWHSC1, microRNA (miR)-212-5p, and protein kinase B-3 (AKT3) mRNA in BC tissues and/or cells was examined by quantitative real-time polymerase chain reaction (qRT-PCR). The viability, colony formation, migration, invasion, and apoptosis of TNBC cells were determined by cell counting kit-8 (CCK-8), colony formation, transwell, or flow cytometry assays. The levels of glucose consumption and lactate production were assessed with commercial kits. The levels of hexokinase II (HK2) and AKT3 protein were detected by western blotting. The role of circWHSC1 in vivo was verified by tumor xenograft assay. The relationship between miR-212-5p and circWHSC1 or AKT3 was verified via dual-luciferase reporter and RNA pull-down assays. RESULTS CircWHSC1 was upregulated in BC tissues and cells. Also, circWHSC1 could discriminate BC tissues and paracancerous normal tissues. TNBC patients with high circWHSC1 possessed a poor prognosis. CircWHSC1 silencing reduced TNBC cell growth in vivo and repressed proliferation, migration, invasion, glycolysis, and induced apoptosis of TNBC cells in vitro. CircWHSC1 regulated AKT3 expression by sponging miR-212-5p. Silencing of miR-212-5p overturned circWHSC1 knockdown-mediated impacts on malignancy and glycolysis of TNBC cells. AKT3 overexpression reversed the inhibitory effect of miR-212-5p mimic on malignancy and glycolysis of TNBC cells. CONCLUSIONS CircWHSC1 accelerated malignancy and glycolysis of TNBC cells by the miR-212-5p/AKT3 axis. The research provided a potential prognostic biomarker and therapeutic target for TNBC.
Collapse
Affiliation(s)
- Li Ding
- Department of Pediatric breast surgery, The First People's Hospital of Huaihua City, Hunan, China.
| | - Zhibing Xie
- Department of Infectious Disease Center, The First People's Hospital of Huaihua City, Hunan, China
| |
Collapse
|
89
|
Yu F, Hang J, Deng J, Yang B, Wang J, Ye X, Liu Y. Radiomics features on ultrasound imaging for the prediction of disease-free survival in triple negative breast cancer: a multi-institutional study. Br J Radiol 2021; 94:20210188. [PMID: 34478336 DOI: 10.1259/bjr.20210188] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES To explore the predictive value of radiomics nomogram using pretreatment ultrasound for disease-free survival (DFS) after resection of triple negative breast cancer (TNBC). METHODS AND MATERIALS A total of 486 TNBC patients from 3 different institutions were consecutively recruited for this study. They were categorized into the primary cohort (n = 216), as well as the internal validation cohort (n = 108) and external validation cohort (n = 162). In primary cohort, least absolute shrinkage and selection operator logistic regression algorithm was used to select recurrence-related radiomics features extracted from the breast tumor and peritumor regions, and a radiomics signature was constructed derived from the grayscale ultrasound images. A radiomic nomogram integrating independent clinicopathological variables and radiomic signature was established with uni- and multivariate cox regressions. The predictive nomogram was validated using an internal cohort and an independent external cohort regarding abilities of discrimination, calibration and clinical usefulness. RESULTS The patients with higher Rad-score had a worse prognostic outcome than those with lower Rad-score in primary cohort and two validation cohorts (All p < 0.05).The radiomics nomogram indicated more effective prognostic performance compared with the clinicopathological model and tumor node metastasis staging system (p < 0.01), with a training C-index of 0.75 (95% confidence interval (CI), 0.71-0.80), an internal validation C-index of 0.73 (95% CI, 0.69-0.78) and an external validation 0.71 (95% CI,0.66-0.76). Moreover, the calibration curves revealed a good consistency for survival prediction of the radiomics model. CONCLUSIONS The ultrasound-based radiomics signature was a promising biomarker for risk stratification for TNBC patients. Furthermore, the proposed radiomics modal integrating the optimal radiomics features and clinical data provided individual relapse risk accurately. ADVANCES IN KNOWLEDGE The radiomics model integrating radiomic signature and independent clinicopathological variables could improve individual prognostic evaluation and facilitate therapeutic decision-making, which demonstrated the incremental value of the radiomics signature for prognostic prediction in TNBC.
Collapse
Affiliation(s)
- Feihong Yu
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Hang
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Deng
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bin Yang
- Department of Ultrasound, Jinling Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Jianxiang Wang
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinhua Ye
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Liu
- Department of Information, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
90
|
Tian Y, Wu J, Zeng L, Zhou L, Hu Y, Pan Q, Liu W, Yan Y, Wu Z, Wang Z, Zeng Z, Tang P, Jiang J, Wang M. Huaier polysaccharides suppress triple-negative breast cancer metastasis and epithelial-mesenchymal transition by inducing autophagic degradation of Snail. Cell Biosci 2021; 11:170. [PMID: 34481526 PMCID: PMC8417980 DOI: 10.1186/s13578-021-00682-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
Background Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, and the targeted therapies are lacking for this type of cancer. We previously demonstrated that Huaier effectively improve 5-year OS and DFS in stage III TNBC patients, and the polysaccharides of Huaier (PS-T) have been identified as the major components of Huaier. However, the mechanisms of anti-tumor action of PS-T is unclear. This study aimed to investigate the effect of PS-T on TNBC cell invasion and migration. Results This study showed that PS-T inhibited cell invasion and migration both in vitro and in vivo by inducing autophagy to suppress epithelial-mesenchymal transition (EMT). Autophagy inhibitor LY294002 or knockdown of ATG5 suppressed the inhibitory effects of PS-T. In addition, as a key transcription factor controlling EMT initiation, Snail was found to be degraded by PS-T induced autophagy. In addition, overexpression of Snail reversed the inhibitory effects of PS-T. Furthermore, it was confirmed that the expression of Snail was inversely correlated with LC3 and associated with poor prognosis using immunohistochemistry and TCGA database analysis, respectively. Conclusions This study demonstrated that PS-T could inhibit EMT in breast cancer cells by inducing autophagy to degrade Snail protein, thus improving the prognosis of TNBC, offering potential treatment alternatives for TNBC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00682-6.
Collapse
Affiliation(s)
- Yuan Tian
- Breast Disease Center, Southwest Hospital, Army Medical University, 30# Gaotanyan street, Chongqing, 400038, China.,Department of General Surgery, Linyi People's Hospital, Linyi, 276000, China
| | - Jin Wu
- Breast Disease Center, Southwest Hospital, Army Medical University, 30# Gaotanyan street, Chongqing, 400038, China
| | - Lingjuan Zeng
- Breast Disease Center, Southwest Hospital, Army Medical University, 30# Gaotanyan street, Chongqing, 400038, China
| | - Linxi Zhou
- Breast Disease Center, Southwest Hospital, Army Medical University, 30# Gaotanyan street, Chongqing, 400038, China
| | - Ying Hu
- Breast Disease Center, Southwest Hospital, Army Medical University, 30# Gaotanyan street, Chongqing, 400038, China
| | - Qinwen Pan
- Breast Disease Center, Southwest Hospital, Army Medical University, 30# Gaotanyan street, Chongqing, 400038, China
| | - Wei Liu
- Breast Disease Center, Southwest Hospital, Army Medical University, 30# Gaotanyan street, Chongqing, 400038, China
| | - Yuzhao Yan
- Breast Disease Center, Southwest Hospital, Army Medical University, 30# Gaotanyan street, Chongqing, 400038, China
| | - Ziwei Wu
- Breast Disease Center, Southwest Hospital, Army Medical University, 30# Gaotanyan street, Chongqing, 400038, China
| | - Zhaoyu Wang
- Breast Disease Center, Southwest Hospital, Army Medical University, 30# Gaotanyan street, Chongqing, 400038, China
| | - Zhen Zeng
- Breast Disease Center, Southwest Hospital, Army Medical University, 30# Gaotanyan street, Chongqing, 400038, China
| | - Peng Tang
- Breast Disease Center, Southwest Hospital, Army Medical University, 30# Gaotanyan street, Chongqing, 400038, China.
| | - Jun Jiang
- Breast Disease Center, Southwest Hospital, Army Medical University, 30# Gaotanyan street, Chongqing, 400038, China.
| | - Minghao Wang
- Breast Disease Center, Southwest Hospital, Army Medical University, 30# Gaotanyan street, Chongqing, 400038, China.
| |
Collapse
|
91
|
Martin E, Agazie YM. SHP2 potentiates the oncogenic activity of beta-catenin to promote triple-negative breast cancer. Mol Cancer Res 2021; 19:1946-1956. [PMID: 34389690 DOI: 10.1158/1541-7786.mcr-21-0060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/03/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022]
Abstract
Previous studies have reported dysregulated cytoplasmic and nuclear expression of the β-catenin protein in triple-negative breast cancer (TNBC) in the absence of Wnt signaling pathway dysregulation. However, the mechanism that sustains β-catenin protein dysregulation independent of Wnt signaling is not understood. In this study, we show that SHP2 is essential for β-catenin protein stability and for sustaining the cytoplasmic and nuclear pools in TNBC cells. The first evidence for this possibility came from immunofluorescence (IF) and immunoblotting (IB) studies that showed that inhibition of SHP2 induces E-cadherin expression and depletion of cytoplasmic and nuclear β-catenin, which in turn confers adherence junction mediated cell-cell adhesion. We further show that SHP2 promotes β-catenin protein stability by mediating the inactivation of GSK3β through its positive effect on Akt and ERK1/2 activation, which was confirmed by direct pharmacological inhibition of the PI3K-Akt and the MEK-ERK signaling pathway. Finally, we show that SHP2-stabilized β-catenin contributes to TNBC cell growth, transformation, CSC properties, and tumorigenesis and metastasis. Overall, the findings in this report show that SHP2 mediates β-catenin protein stability to promote TNBC. Implications: Data presented in this article demonstrates that SHP2 positively regulates β-catenin protein stability, which in turn promotes triple-negative breast cancer cell transformation, tumorigenesis, and metastasis.
Collapse
Affiliation(s)
| | - Yehenew M Agazie
- Department of Biochemistry and WVU Cancer Institute, West Virginia University
| |
Collapse
|
92
|
Immunotherapy Treatment for Triple Negative Breast Cancer. Pharmaceuticals (Basel) 2021; 14:ph14080763. [PMID: 34451860 PMCID: PMC8401402 DOI: 10.3390/ph14080763] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/17/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is considered one of the highest-risk subtypes of breast cancer and has dismal prognosis. Local recurrence rate after standard therapy in the early breast cancer setting can be upwards to 72% in 5 years, and in the metastatic setting, the 5-year overall survival is 12%. Due to the lack of receptor expression, there has been a paucity of targeted therapeutics available, with chemotherapy being the primary option for systemic treatment in both the neoadjuvant and metastatic setting. More recently, immunotherapy has revolutionized the landscape of cancer treatment, particularly immune checkpoint inhibitor (ICI) therapy, with FDA approval in over 20 types of cancer since 2011. Compared to other cancer types, breast cancer has been traditionally thought of as being immunologically cold; however, TNBC has demonstrated the most promise with immunotherapy use, a timely discovery due to its lack of targeted therapy options. In this review, we summarize the trials using checkpoint therapy in early and metastatic TNBC, as well as the development of biomarkers and the importance of immune related adverse events (IRAEs), in this disease process.
Collapse
|
93
|
Xiao C, Han J, Bai J, Xia Y, Wang S. Trojan-Like Peptide Drug Conjugate Design and Construction for Application in Treatment of Triple-Negative Breast Cancer. J Biomed Nanotechnol 2021; 17:1554-1563. [PMID: 34544533 DOI: 10.1166/jbn.2021.3104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Clinical treatment of triple negative breast cancer (TNBC) is very poor for lack of effective treatment combination selection. Protein C receptor (PROCR) is a novel cancer stem marker in TNBC patients tumor tissues. Developed based on peptide BP10 with affinity to PROCR as a targeting element, constructing a peptide drug conjugate of BP10 covalently coupling doxorubicin with disulfide bonds. This study demonstrated that the constructed BP10-DOX can selectively target Triplenegative breast cancer cells expressing PROCR and controlled release of DOX in response to the GSH environment. Moreover, BP10-DOX improves the therapeutic efficiency on MDA-MB-231 cells in vitro. Further evidence obtained from in vivo xenograft experiments revealed that administration of BP10-DOX enhanced the antitumor efficacy. This study developed a promising chemotherapy strategy for TNBC.
Collapse
Affiliation(s)
- Chuanguang Xiao
- Department of Breast and Thyroid Surgery, Zibo Central Hospital, Zibo, Shandong, 255036, P. R. China
| | - Jieru Han
- Departments of the Golden Chamber, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, P. R. China
| | - Jixiang Bai
- Department of Urinary Surgery, Mudanjiang Medical University Affiliated Hongqi Hospital, Mudanjiang, Heilongjiang Province, 157000, P. R. China
| | - Yanjie Xia
- Department of Laboratory, Mudanjiang Medical University Affiliated Hongqi Hospital, Mudanjiang, Heilongjiang Province, 157000, P. R. China
| | - Shuhui Wang
- Department of Integrative Medicine & Geratology, Mudanjiang Medical University Affiliated Hongqi Hospital, Mudanjiang, Heilongjiang Province, 157000, P. R. China
| |
Collapse
|
94
|
Mir MA, Qayoom H, Mehraj U, Nisar S, Bhat B, Wani NA. Targeting Different Pathways Using Novel Combination Therapy in Triple Negative Breast Cancer. Curr Cancer Drug Targets 2021; 20:586-602. [PMID: 32418525 DOI: 10.2174/1570163817666200518081955] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
Triple negative breast cancer (TNBC) is one of the most aggressive subtypes of breast cancer accounting for 15-20% of cases and is defined by the lack of hormonal receptors viz., estrogen receptor (ER), progesterone receptor (PR) and expression of human epidermal growth receptor 2 (HER2). Treatment of TNBC is more challenging than other subtypes of breast cancer due to the lack of markers for the molecularly targeted therapies (ER, PR, and HER-2/ Neu), the conventional chemotherapeutic agents are still the mainstay of the therapeutic protocols of its patients. Despite, TNBC being more chemo-responsive than other subtypes, unfortunately, the initial good response to the chemotherapy eventually turns into a refractory drug-resistance. Using a monotherapy for the treatment of cancer, especially high-grade tumors like TNBC, is mostly worthless due to the inherent genetic instability of tumor cells to develop intrinsic and acquired resistance. Thus, a cocktail of two or more drugs with different mechanisms of action is more effective and could successfully control the disease. Furthermore, combination therapy reveals more, or at least the same, effectiveness with lower doses of every single agent and decreases the likelihood of chemoresistance. Herein, we shed light on the novel combinatorial approaches targeting PARP, EGFR, PI3K pathway, AR, and wnt signaling, HDAC, MEK pathway for efficient treatment of high-grade tumors like TNBC and decreasing the onset of resistance.
Collapse
Affiliation(s)
- Manzoor A Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Hina Qayoom
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Umar Mehraj
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Safura Nisar
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Basharat Bhat
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Nissar A Wani
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
95
|
Hossain F, Majumder S, David J, Miele L. Precision Medicine and Triple-Negative Breast Cancer: Current Landscape and Future Directions. Cancers (Basel) 2021; 13:cancers13153739. [PMID: 34359640 PMCID: PMC8345034 DOI: 10.3390/cancers13153739] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The implementation of precision medicine will revolutionize cancer treatment paradigms. Notably, this goal is not far from reality: genetically similar cancers can be treated similarly. The heterogeneous nature of triple-negative breast cancer (TNBC) made it a suitable candidate to practice precision medicine. Using TNBC molecular subtyping and genomic profiling, a precision medicine-based clinical trial is ongoing. This review summarizes the current landscape and future directions of precision medicine and TNBC. Abstract Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous subtype of breast cancer associated with a high recurrence and metastasis rate that affects African-American women disproportionately. The recent approval of targeted therapies for small subgroups of TNBC patients by the US ‘Food and Drug Administration’ is a promising development. The advancement of next-generation sequencing, particularly somatic exome panels, has raised hopes for more individualized treatment plans. However, the use of precision medicine for TNBC is a work in progress. This review will discuss the potential benefits and challenges of precision medicine for TNBC. A recent clinical trial designed to target TNBC patients based on their subtype-specific classification shows promise. Yet, tumor heterogeneity and sub-clonal evolution in primary and metastatic TNBC remain a challenge for oncologists to design adaptive precision medicine-based treatment plans.
Collapse
Affiliation(s)
- Fokhrul Hossain
- Department of Genetics, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA; (S.M.); (L.M.)
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA
- Correspondence:
| | - Samarpan Majumder
- Department of Genetics, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA; (S.M.); (L.M.)
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA
| | - Justin David
- School of Medicine, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA;
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA; (S.M.); (L.M.)
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA
- School of Medicine, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA;
| |
Collapse
|
96
|
Guglielmi C, Scarpitta R, Gambino G, Conti E, Bellè F, Tancredi M, Cervelli T, Falaschi E, Cosini C, Aretini P, Congregati C, Marino M, Patruno M, Pilato B, Spina F, Balestrino L, Tenedini E, Carnevali I, Cortesi L, Tagliafico E, Tibiletti MG, Tommasi S, Ghilli M, Vivanet C, Galli A, Caligo MA. Detection of Germline Variants in 450 Breast/Ovarian Cancer Families with a Multi-Gene Panel Including Coding and Regulatory Regions. Int J Mol Sci 2021; 22:ijms22147693. [PMID: 34299313 PMCID: PMC8305371 DOI: 10.3390/ijms22147693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022] Open
Abstract
With the progress of sequencing technologies, an ever-increasing number of variants of unknown functional and clinical significance (VUS) have been identified in both coding and non-coding regions of the main Breast Cancer (BC) predisposition genes. The aim of this study is to identify a mutational profile of coding and intron-exon junction regions of 12 moderate penetrance genes (ATM, BRIP1, CDH1, CHEK2, NBN, PALB2, PTEN, RAD50, RAD51C, RAD51D, STK11, TP53) in a cohort of 450 Italian patients with Hereditary Breast/Ovarian Cancer Syndrome, wild type for germline mutation in BRCA1/2 genes. The analysis was extended to 5′UTR and 3′UTR of all the genes listed above and to the BRCA1 and BRCA2 known regulatory regions in a subset of 120 patients. The screening was performed through NGS target resequencing on the Illumina platform MiSeq. 8.7% of the patients analyzed is carriers of class 5/4 coding variants in the ATM (3.6%), BRIP1 (1.6%), CHEK2 (1.8%), PALB2 (0.7%), RAD51C (0.4%), RAD51D (0.4%), and TP53 (0.2%) genes, while variants of uncertain pathological significance (VUSs)/class 3 were identified in 9.1% of the samples. In intron-exon junctions and in regulatory regions, variants were detected respectively in 5.1% and in 32.5% of the cases analyzed. The average age of disease onset of 44.4 in non-coding variant carriers is absolutely similar to the average age of disease onset in coding variant carriers for each proband’s group with the same cancer type. Furthermore, there is not a statistically significant difference in the proportion of cases with a tumor onset under age of 40 between the two groups, but the presence of multiple non-coding variants in the same patient may affect the aggressiveness of the tumor and it is worth underlining that 25% of patients with an aggressive tumor are carriers of a PTEN 3′UTR-variant. This data provides initial information on how important it might be to extend mutational screening to the regulatory regions in clinical practice.
Collapse
Affiliation(s)
- Chiara Guglielmi
- SOD Molecular Genetics, University Hospital of Pisa, 56126 Pisa, Italy; (C.G.); (E.C.); (M.T.); (E.F.); (C.C.)
| | - Rosa Scarpitta
- Division of Pathology, University of Pisa, 56126 Pisa, Italy;
| | - Gaetana Gambino
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Eleonora Conti
- SOD Molecular Genetics, University Hospital of Pisa, 56126 Pisa, Italy; (C.G.); (E.C.); (M.T.); (E.F.); (C.C.)
| | - Francesca Bellè
- Functional Genetics and Genomics Laboratory, Institute of Clinical Physiology, IFC-CNR, 56127 Pisa, Italy; (F.B.); (T.C.)
| | - Mariella Tancredi
- SOD Molecular Genetics, University Hospital of Pisa, 56126 Pisa, Italy; (C.G.); (E.C.); (M.T.); (E.F.); (C.C.)
| | - Tiziana Cervelli
- Functional Genetics and Genomics Laboratory, Institute of Clinical Physiology, IFC-CNR, 56127 Pisa, Italy; (F.B.); (T.C.)
| | - Elisabetta Falaschi
- SOD Molecular Genetics, University Hospital of Pisa, 56126 Pisa, Italy; (C.G.); (E.C.); (M.T.); (E.F.); (C.C.)
| | - Cinzia Cosini
- SOD Molecular Genetics, University Hospital of Pisa, 56126 Pisa, Italy; (C.G.); (E.C.); (M.T.); (E.F.); (C.C.)
| | - Paolo Aretini
- Section of Oncological Genomics, Fondazione Pisana per la Scienza, 56017 Pisa, Italy;
| | - Caterina Congregati
- Division of Internal Medicine, University Hospital of Pisa, 56126 Pisa, Italy;
| | - Marco Marino
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.M.); (E.T.); (E.T.)
| | - Margherita Patruno
- IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (M.P.); (B.P.); (S.T.)
| | - Brunella Pilato
- IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (M.P.); (B.P.); (S.T.)
| | - Francesca Spina
- SC Medical Genetics, ASSL Cagliari, 09126 Cagliari, Italy; (F.S.); (L.B.); (C.V.)
| | - Luisa Balestrino
- SC Medical Genetics, ASSL Cagliari, 09126 Cagliari, Italy; (F.S.); (L.B.); (C.V.)
| | - Elena Tenedini
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.M.); (E.T.); (E.T.)
| | - Ileana Carnevali
- Ospedale di Circolo ASST Settelaghi, 21100 Varese, Italy; (I.C.); (M.G.T.)
| | - Laura Cortesi
- Department of Oncology, Haematology and Respiratory Diseases, University Hospital of Modena, 41124 Modena, Italy;
| | - Enrico Tagliafico
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.M.); (E.T.); (E.T.)
| | | | - Stefania Tommasi
- IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (M.P.); (B.P.); (S.T.)
| | - Matteo Ghilli
- Breast Cancer Center, University Hospital, 56126 Pisa, Italy;
| | - Caterina Vivanet
- SC Medical Genetics, ASSL Cagliari, 09126 Cagliari, Italy; (F.S.); (L.B.); (C.V.)
| | - Alvaro Galli
- Functional Genetics and Genomics Laboratory, Institute of Clinical Physiology, IFC-CNR, 56127 Pisa, Italy; (F.B.); (T.C.)
- Correspondence: (A.G.); (M.A.C.)
| | - Maria Adelaide Caligo
- SOD Molecular Genetics, University Hospital of Pisa, 56126 Pisa, Italy; (C.G.); (E.C.); (M.T.); (E.F.); (C.C.)
- Correspondence: (A.G.); (M.A.C.)
| |
Collapse
|
97
|
He Q, Peng Y, Sun J, Liu J. Platinum-Based Chemotherapy and Immunotherapy in Early Triple-Negative Breast Cancer: A Meta-Analysis and Indirect Treatment Comparison. Front Oncol 2021; 11:693542. [PMID: 34277438 PMCID: PMC8281677 DOI: 10.3389/fonc.2021.693542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/11/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) comprises 15% of invasive breast cancers. Platinum-based chemotherapy and immune checkpoint inhibitors (ICIs) have been extensively researched in recent years as promising treatments in the neoadjuvant setting. However, clinical data is lacking in direct comparisons of these two treating regimens. METHODS We conducted an online search on PubMed, Embase, Cochrane Online Library and key oncological meetings for available randomized controlled trials (RCTs) investigating ICIs or platinum drugs versus anthracyclines and taxane-based neoadjuvant chemotherapy (AT-based NACT). Conventional meta-analyses were conducted separately, and then indirect comparisons for clinical efficacy and safety profile were performed between ICIs and platinum drugs using AT-based NACT as a common comparator. RESULTS Seven random controlled trials (RCTs) with 1,647 patients were included in the meta-analysis. The indirect comparison demonstrated that ICIs plus chemotherapy significantly improved pathological complete response (pCR) rate (p = 0.00445, OR, 1.78; 95%CI, 0.70-4.53), and decreased the adverse effect (AE) related discontinuance versus platinum-based chemotherapy (P = 0.00015; OR 0.46; 95%CI, 0.26-0.82). CONCLUSION ICIs plus chemotherapy showed increased pCR rate and decreased adverse effects compared with platinum-based chemotherapy in early TNBC. However, subgroup analysis and survival data to explore the proper patients for each treatment remains scarce. Therefore, further studies with powered direct comparisons of these two treating regimens are required.
Collapse
Affiliation(s)
| | | | - Jie Sun
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianxia Liu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
98
|
Costa REARD, Oliveira FTRD, Araújo ALN, Vieira SC. Prognostic factors in triple-negative breast cancer: a retrospective cohort. Rev Assoc Med Bras (1992) 2021; 67:950-957. [DOI: 10.1590/1806-9282.20210249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 08/30/2023] Open
|
99
|
Wang MY, Huang M, Wang CY, Tang XY, Wang JG, Yang YD, Xiong X, Gao CW. Transcriptome Analysis Reveals MFGE8-HAPLN3 Fusion as a Novel Biomarker in Triple-Negative Breast Cancer. Front Oncol 2021; 11:682021. [PMID: 34211850 PMCID: PMC8239224 DOI: 10.3389/fonc.2021.682021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/24/2021] [Indexed: 12/27/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is a highly aggressive cancer with poor prognosis. The lack of effective targeted therapies for TNBC remains a profound clinical challenge. Fusion transcripts play critical roles in carcinogenesis and serve as valuable diagnostic and therapeutic targets in cancer. The present study aimed to identify novel fusion transcripts in TNBC. Methods We analyzed the RNA sequencing data of 360 TNBC samples to identify and filter fusion candidates through SOAPfuse and ChimeraScan analysis. The characteristics, including recurrence, fusion type, chromosomal localization, TNBC subgroup distribution, and clinicopathological correlations, were analyzed in all candidates. Furthermore, we selected the promising fusion transcript and predicted its fusion type and protein coding capacity. Results Using the RNA sequencing data, we identified 189 fusion transcripts in TNBC, among which 22 were recurrent fusions. Compared to para-tumor tissues, TNBC tumor tissues accumulated more fusion events, especially in high-grade tumors. Interestingly, these events were enriched at specific chromosomal loci, and the distribution pattern varied in different TNBC subtypes. The vast majority of fusion partners were discovered on chromosomes 1p, 11q, 19p, and 19q. Besides, fusion events mainly clustered on chromosome 11 in the immunomodulatory subtype and chromosome 19 in the luminal androgen receptor subtype of TNBC. Considering the tumor specificity and frameshift mutation, we selected MFGE8-HAPLN3 as a novel biomarker and further validated it in TNBC samples using PCR and Sanger sequencing. Further, we successfully identified three types of MFGE8-HAPLN3 (E6-E2, E5-E3, and E6-E3) and predicted the ORF of E6-E2, which could encode a protein of 712 amino acids, suggesting its critical role in TNBC. Conclusions Improved bioinformatic stratification and comprehensive analysis identified the fusion transcript MFGE8-HAPLN3 as a novel biomarker with promising clinical application in the future.
Collapse
Affiliation(s)
- Meng-Yuan Wang
- Department of Breast Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Man Huang
- Department of Breast Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Chao-Yi Wang
- Department of Breast Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Xiao-Ying Tang
- Department of Breast Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Jian-Gen Wang
- Department of Breast Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yong-De Yang
- Department of Breast Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Xin Xiong
- Department of Breast Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Chao-Wei Gao
- Department of Breast Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| |
Collapse
|
100
|
Biomarker analyses in the phase III ASCENT study of sacituzumab govitecan versus chemotherapy in patients with metastatic triple-negative breast cancer. Ann Oncol 2021; 32:1148-1156. [PMID: 34116144 DOI: 10.1016/j.annonc.2021.06.002] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/20/2021] [Accepted: 06/02/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The pivotal phase III ASCENT trial demonstrated improved survival outcomes associated with sacituzumab govitecan (SG), an anti-trophoblast cell-surface antigen 2 (anti-Trop-2) antibody-drug conjugate linked with the topoisomerase-inhibitor SN-38, over single-agent chemotherapy treatment of physician's choice (TPC) in previously treated metastatic triple-negative breast cancer (mTNBC). This prespecified, exploratory biomarker analysis from the ASCENT trial evaluates the association between tumor Trop-2 expression and germline BRCA1/2 mutation status with clinical outcomes. PATIENTS AND METHODS Patients with mTNBC refractory to or progressing after two or more prior chemotherapies, with one or more in the metastatic setting, were randomized to receive SG (10 mg/kg intravenously days 1 and 8, every 21 days) or TPC (capecitabine, eribulin, vinorelbine, or gemcitabine) until disease progression/unacceptable toxicity. Biopsy or surgical specimens were collected at study entry to determine Trop-2 expression level using a validated immunohistochemistry assay and histochemical scoring. Germline BRCA1/2 mutation status was collected at baseline. RESULTS Of 468 assessable patients, 290 had Trop-2 expression data [64% (n = 151 SG) versus 60% (n = 139 TPC)] and 292 had known BRCA1/2 mutation status [63% (n = 149 SG) versus 61% (n = 143 TPC)]. Median progression-free survival in SG- versus TPC-treated patients was 6.9, 5.6, and 2.7 months versus 2.5, 2.2, and 1.6 months for high, medium, and low Trop-2 expression, respectively. Median overall survival (14.2, 14.9, and 9.3 months versus 6.9, 6.9, and 7.6 months) and objective response rates (44%, 38%, and 22% versus 1%, 11%, and 6%) were numerically higher with SG versus TPC in patients with high, medium, and low Trop-2 expression, respectively. Efficacy outcomes were numerically higher with SG versus TPC in patients with and without germline BRCA1/2 mutations. CONCLUSIONS SG benefits patients with previously treated mTNBC expressing high/medium Trop-2 compared with standard-of-care chemotherapy and regardless of germline BRCA1/2 mutation status. The small number of patients with low Trop-2 expression precludes definitive conclusions on the benefit of SG in this subgroup.
Collapse
|