51
|
Hanna MH, Dalla Gassa A, Mayer G, Zaza G, Brophy PD, Gesualdo L, Pesce F. The nephrologist of tomorrow: towards a kidney-omic future. Pediatr Nephrol 2017; 32:393-404. [PMID: 26961492 DOI: 10.1007/s00467-016-3357-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/14/2016] [Accepted: 02/15/2016] [Indexed: 12/19/2022]
Abstract
Omics refers to the collective technologies used to explore the roles and relationships of the various types of molecules that make up the phenotype of an organism. Systems biology is a scientific discipline that endeavours to quantify all of the molecular elements of a biological system. Therefore, it reflects the knowledge acquired by omics in a meaningful manner by providing insights into functional pathways and regulatory networks underlying different diseases. The recent advances in biotechnological platforms and statistical tools to analyse such complex data have enabled scientists to connect the experimentally observed correlations to the underlying biochemical and pathological processes. We discuss in this review the current knowledge of different omics technologies in kidney diseases, specifically in the field of pediatric nephrology, including biomarker discovery, defining as yet unrecognized biologic therapeutic targets and linking omics to relevant standard indices and clinical outcomes. We also provide here a unique perspective on the field, taking advantage of the experience gained by the large-scale European research initiative called "Systems Biology towards Novel Chronic Kidney Disease Diagnosis and Treatment" (SysKid). Based on the integrative framework of Systems biology, SysKid demonstrated how omics are powerful yet complex tools to unravel the consequences of diabetes and hypertension on kidney function.
Collapse
Affiliation(s)
- Mina H Hanna
- Department of Pediatrics, Kentucky Children's Hospital, University of Kentucky, Lexington, KY, USA
| | | | - Gert Mayer
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, Verona University Hospital, Verona, Italy
| | - Patrick D Brophy
- Pediatric Nephrology, University of Iowa Children's Hospital, Iowa City, IA, USA
| | - Loreto Gesualdo
- Dipartimento Emergenza e Trapianti di Organi (D.E.T.O), University of Bari, Bari, Italy
| | - Francesco Pesce
- Dipartimento Emergenza e Trapianti di Organi (D.E.T.O), University of Bari, Bari, Italy. .,Cardiovascular Genetics and Genomics, National Heart and Lung Institute, Royal Brompton Hospital, Imperial College London, London, UK.
| |
Collapse
|
52
|
Nielsen R, Christensen EI, Birn H. Megalin and cubilin in proximal tubule protein reabsorption: from experimental models to human disease. Kidney Int 2017; 89:58-67. [PMID: 26759048 DOI: 10.1016/j.kint.2015.11.007] [Citation(s) in RCA: 313] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 01/19/2023]
Abstract
Proximal tubule protein uptake is mediated by 2 receptors, megalin and cubilin. These receptors rescue a variety of filtered ligands, including biomarkers, essential vitamins, and hormones. Receptor gene knockout animal models have identified important functions of the receptors and have established their essential role in modulating urinary protein excretion. Rare genetic syndromes associated with dysfunction of these receptors have been identified and characterized, providing additional information on the importance of these receptors in humans. Using various disease models in combination with receptor gene knockout, the implications of receptor dysfunction in acute and chronic kidney injury have been explored and have pointed to potential new roles of these receptors. Based on data from animal models, this paper will review current knowledge on proximal tubule endocytic receptor function and regulation, and their role in renal development, protein reabsorption, albumin uptake, and normal renal physiology. These findings have implications for the pathophysiology and diagnosis of proteinuric renal diseases. We will examine the limitations of the different models and compare the findings to phenotypic observations in inherited human disorders associated with receptor dysfunction. Furthermore, evidence from receptor knockout mouse models as well as human observations suggesting a role of protein receptors for renal disease will be discussed in light of conditions such as chronic kidney disease, diabetes, and hypertension.
Collapse
Affiliation(s)
- Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Henrik Birn
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
53
|
Cherqui S, Courtoy PJ. The renal Fanconi syndrome in cystinosis: pathogenic insights and therapeutic perspectives. Nat Rev Nephrol 2016; 13:115-131. [PMID: 27990015 DOI: 10.1038/nrneph.2016.182] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cystinosis is an autosomal recessive metabolic disease that belongs to the family of lysosomal storage disorders. It is caused by a defect in the lysosomal cystine transporter, cystinosin, which results in an accumulation of cystine in all organs. Despite the ubiquitous expression of cystinosin, a renal Fanconi syndrome is often the first manifestation of cystinosis, usually presenting within the first year of life and characterized by the early and severe dysfunction of proximal tubule cells, highlighting the unique vulnerability of this cell type. The current therapy for cystinosis, cysteamine, facilitates lysosomal cystine clearance and greatly delays progression to kidney failure but is unable to correct the Fanconi syndrome. This Review summarizes decades of studies that have fostered a better understanding of the pathogenesis of the renal Fanconi syndrome associated with cystinosis. These studies have unraveled some of the early molecular changes that occur before the onset of tubular atrophy and identified a role for cystinosin beyond cystine transport, in endolysosomal trafficking and proteolysis, lysosomal clearance, autophagy and the regulation of energy balance. These studies have also led to the identification of new potential therapeutic targets and here, we outline the potential role of stem cell therapy for cystinosis and provide insights into the mechanism of haematopoietic stem cell-mediated kidney protection.
Collapse
Affiliation(s)
- Stephanie Cherqui
- Department of Pediatrics, Division of Genetics, University of California San Diego, 9500 Gilman Drive, MC 0734, La Jolla, California 92093-0734, USA
| | - Pierre J Courtoy
- Cell biology, de Duve Institute and Université catholique de Louvain, UCL-Brussels, 75 Avenue Hippocrate, B-1200 Brussels, Belgium
| |
Collapse
|
54
|
Goudarzipour K, Zavvar N, Behnam B, Ahmadi MA. Imerslund-Grasbeck syndrome in a 5-year-old Iranian boy. Indian J Nephrol 2016; 26:455-457. [PMID: 27942180 PMCID: PMC5131387 DOI: 10.4103/0971-4065.175984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Imerslund-Grasbeck syndrome (IGS) is a rare syndrome characterized by clinical symptoms and signs of Vitamin B12 deficiency and proteinuria. Our patient was a 5-year-old boy with pallor, lack of appetite, and low weight gain. Laboratory studies showed severe macrocytic anemia, normal reticulocyte count, negative direct coombs test, normal osmotic fragility, and autohemolysis test. He has had intermittent proteinuria since 3 years ago despite normal creatinine level and absence of hematuria or hypertension. Finally, based on low level of serum B12 vitamin and normal folate level accompanied by asymptomatic proteinuria, the diagnosis of IGS was made. Furthermore, his sister has had laboratory abnormalities without any symptoms. IGS responded to B12 replacement therapy dramatically but intermittent proteinuria persisted even after appropriate therapy.
Collapse
Affiliation(s)
- K Goudarzipour
- Pediatric Congenital Hematologic Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - N Zavvar
- Pediatric Congenital Hematologic Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - B Behnam
- Functional Neurosurgery Research Center, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M A Ahmadi
- Functional Neurosurgery Research Center, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
55
|
Sampson MG, Gillies CE, Robertson CC, Crawford B, Vega-Warner V, Otto EA, Kretzler M, Kang HM. Using Population Genetics to Interrogate the Monogenic Nephrotic Syndrome Diagnosis in a Case Cohort. J Am Soc Nephrol 2016; 27:1970-83. [PMID: 26534921 PMCID: PMC4926977 DOI: 10.1681/asn.2015050504] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/06/2015] [Indexed: 01/02/2023] Open
Abstract
To maximize clinical benefits of genetic screening of patients with nephrotic syndrome (NS) to diagnose monogenic causes, reliably distinguishing NS-causing variants from the background of rare, noncausal variants prevalent in all genomes is vital. To determine the prevalence of monogenic NS in a North American case cohort while accounting for background prevalence of genetic variation, we sequenced 21 implicated monogenic NS genes in 312 participants from the Nephrotic Syndrome Study Network and 61 putative controls from the 1000 Genomes Project (1000G). These analyses were extended to available sequence data from approximately 2500 subjects from the 1000G. A typical pathogenicity filter identified causal variants for NS in 4.2% of patients and 5.8% of subjects from the 1000G. We devised a more stringent pathogenicity filtering strategy, reducing background prevalence of causal variants to 1.5%. When applying this stringent filter to patients, prevalence of monogenic NS was 2.9%; of these patients, 67% were pediatric, and 44% had FSGS on biopsy. The rate of complete remission did not associate with monogenic classification. Thus, we identified factors contributing to inaccurate monogenic classification of NS and developed a more accurate variant filtering strategy. The prevalence and clinical correlates of monogenic NS in this sporadically affected cohort differ substantially from those reported for patients referred for genetic analysis. Particularly in unselected, population-based cases, considering putative causal variants in known NS genes from a probabilistic rather than a deterministic perspective may be more precise. We also introduce GeneVetter, a web tool for monogenic assessment of rare disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Edgar A Otto
- Departments of Pediatrics and Communicable Diseases, and
| | - Matthias Kretzler
- Internal Medicine, Division of Nephrology and Department of Computational Medicine and Bioinformatics, University of Michigan School of Medicine, Ann Arbor, Michigan; and
| | - Hyun Min Kang
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan
| |
Collapse
|
56
|
Vivante A, Hildebrandt F. Exploring the genetic basis of early-onset chronic kidney disease. Nat Rev Nephrol 2016; 12:133-46. [PMID: 26750453 DOI: 10.1038/nrneph.2015.205] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The primary causes of chronic kidney disease (CKD) in children differ from those of CKD in adults. In the USA the most common diagnostic groups of renal disease that manifest before the age of 25 years are congenital anomalies of the kidneys and urinary tract, steroid-resistant nephrotic syndrome, chronic glomerulonephritis and renal cystic ciliopathies, which together encompass >70% of early-onset CKD diagnoses. Findings from the past decade suggest that early-onset CKD is caused by mutations in any one of over 200 different monogenic genes. Developments in high-throughput sequencing in the past few years has rendered identification of causative mutations in this high number of genes feasible. Use of genetic analyses in patients with early onset-CKD will provide patients and their families with a molecular genetic diagnosis, generate new insights into disease mechanisms, facilitate aetiology-based classifications of patient cohorts for clinical studies, and might have consequences for personalized approaches to the prevention and treatment of CKD. In this Review, we discuss the implications of next-generation sequencing in clinical genetic diagnostics and the discovery of novel genes in early-onset CKD. We also delineate the resulting opportunities for deciphering disease mechanisms and the therapeutic implications of these findings.
Collapse
Affiliation(s)
- Asaf Vivante
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA.,Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer 52621, Israel
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
57
|
Lovric S, Ashraf S, Tan W, Hildebrandt F. Genetic testing in steroid-resistant nephrotic syndrome: when and how? Nephrol Dial Transplant 2015; 31:1802-1813. [PMID: 26507970 DOI: 10.1093/ndt/gfv355] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/08/2015] [Indexed: 01/15/2023] Open
Abstract
Steroid-resistant nephrotic syndrome (SRNS) represents the second most frequent cause of chronic kidney disease in the first three decades of life. It manifests histologically as focal segmental glomerulosclerosis (FSGS) and carries a 33% risk of relapse in a renal transplant. No efficient treatment exists. Identification of single-gene (monogenic) causes of SRNS has moved the glomerular epithelial cell (podocyte) to the center of its pathogenesis. Recently, mutations in >30 recessive or dominant genes were identified as causing monogenic forms of SRNS, thereby revealing the encoded proteins as essential for glomerular function. These findings helped define protein interaction complexes and functional pathways that could be targeted for treatment of SRNS. Very recently, it was discovered that in the surprisingly high fraction of ∼30% of all individuals who manifest with SRNS before 25 years of age, a causative mutation can be detected in one of the ∼30 different SRNS-causing genes. These findings revealed that SRNS and FSGS are not single disease entities but rather are part of a spectrum of distinct diseases with an identifiable genetic etiology. Mutation analysis should be offered to all individuals who manifest with SRNS before the age of 25 years, because (i) it will provide the patient and families with an unequivocal cause-based diagnosis, (ii) it may uncover a form of SRNS that is amenable to treatment (e.g. coenzyme Q10), (iii) it may allow avoidance of a renal biopsy procedure, (iv) it will further unravel the puzzle of pathogenic pathways of SRNS and (v) it will permit personalized treatment options for SRNS, based on genetic causation in way of 'precision medicine'.
Collapse
Affiliation(s)
- Svjetlana Lovric
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shazia Ashraf
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Weizhen Tan
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
58
|
Inoue K, Ishibe S. Podocyte endocytosis in the regulation of the glomerular filtration barrier. Am J Physiol Renal Physiol 2015; 309:F398-405. [PMID: 26084928 DOI: 10.1152/ajprenal.00136.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/15/2015] [Indexed: 02/06/2023] Open
Abstract
Severe defects in the glomerular filtration barrier result in nephrotic syndrome, which is characterized by massive proteinuria. The podocyte, a specialized epithelial cell with interdigitating foot processes separated by a slit diaphragm, plays a vital role in regulating the passage of proteins from the capillary lumen to Bowman's space. Recent findings suggest a critical role for endocytosis in podocyte biology as highlighted by genetic mouse models of disease and human genetic mutations that result in the loss of the integrity of the glomerular filtration barrier. In vitro podocyte studies have also unraveled a plethora of constituents that are differentially internalized to maintain homeostasis. These observations provide a framework and impetus for understanding the precise regulation of podocyte endocytic machinery in both health and disease.
Collapse
Affiliation(s)
- Kazunori Inoue
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Shuta Ishibe
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
59
|
Wagner MC, Campos-Bilderback SB, Chowdhury M, Flores B, Lai X, Myslinski J, Pandit S, Sandoval RM, Wean SE, Wei Y, Satlin LM, Wiggins RC, Witzmann FA, Molitoris BA. Proximal Tubules Have the Capacity to Regulate Uptake of Albumin. J Am Soc Nephrol 2015; 27:482-94. [PMID: 26054544 DOI: 10.1681/asn.2014111107] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 05/04/2015] [Indexed: 12/26/2022] Open
Abstract
Evidence from multiple studies supports the concept that both glomerular filtration and proximal tubule (PT) reclamation affect urinary albumin excretion rate. To better understand these roles of glomerular filtration and PT uptake, we investigated these processes in two distinct animal models. In a rat model of acute exogenous albumin overload, we quantified glomerular sieving coefficients (GSC) and PT uptake of Texas Red-labeled rat serum albumin using two-photon intravital microscopy. No change in GSC was observed, but a significant decrease in PT albumin uptake was quantified. In a second model, loss of endogenous albumin was induced in rats by podocyte-specific transgenic expression of diphtheria toxin receptor. In these albumin-deficient rats, exposure to diphtheria toxin induced an increase in albumin GSC and albumin filtration, resulting in increased exposure of the PTs to endogenous albumin. In this case, PT albumin reabsorption was markedly increased. Analysis of known albumin receptors and assessment of cortical protein expression in the albumin overload model, conducted to identify potential proteins and pathways affected by acute protein overload, revealed changes in the expression levels of calreticulin, disabled homolog 2, NRF2, angiopoietin-2, and proteins involved in ATP synthesis. Taken together, these results suggest that a regulated PT cell albumin uptake system can respond rapidly to different physiologic conditions to minimize alterations in serum albumin level.
Collapse
Affiliation(s)
- Mark C Wagner
- Indiana University School of Medicine, The Roudebush Veterans Affair Medical Center, Indiana Center for Biological Microscopy, Indianapolis, Indiana
| | - Silvia B Campos-Bilderback
- Indiana University School of Medicine, The Roudebush Veterans Affair Medical Center, Indiana Center for Biological Microscopy, Indianapolis, Indiana
| | - Mahboob Chowdhury
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Brittany Flores
- Indiana University School of Medicine, The Roudebush Veterans Affair Medical Center, Indiana Center for Biological Microscopy, Indianapolis, Indiana
| | - Xianyin Lai
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Jered Myslinski
- Indiana University School of Medicine, The Roudebush Veterans Affair Medical Center, Indiana Center for Biological Microscopy, Indianapolis, Indiana
| | - Sweekar Pandit
- Indiana University School of Medicine, The Roudebush Veterans Affair Medical Center, Indiana Center for Biological Microscopy, Indianapolis, Indiana
| | - Ruben M Sandoval
- Indiana University School of Medicine, The Roudebush Veterans Affair Medical Center, Indiana Center for Biological Microscopy, Indianapolis, Indiana
| | - Sarah E Wean
- Indiana University School of Medicine, The Roudebush Veterans Affair Medical Center, Indiana Center for Biological Microscopy, Indianapolis, Indiana
| | - Yuan Wei
- Department of Pediatrics, The Icahn School of Medicine at Mount Sinai, New York
| | - Lisa M Satlin
- Department of Pediatrics, The Icahn School of Medicine at Mount Sinai, New York
| | - Roger C Wiggins
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Frank A Witzmann
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Bruce A Molitoris
- Indiana University School of Medicine, The Roudebush Veterans Affair Medical Center, Indiana Center for Biological Microscopy, Indianapolis, Indiana; Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
60
|
Montgomery E, Sayer JA, Baines LA, Hynes AM, Vega-Warner V, Johnson S, Goodship JA, Otto EA. Novel compound heterozygous mutations in AMN cause Imerslund-Gräsbeck syndrome in two half-sisters: a case report. BMC MEDICAL GENETICS 2015; 16:35. [PMID: 26040326 PMCID: PMC4630879 DOI: 10.1186/s12881-015-0181-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/29/2015] [Indexed: 11/25/2022]
Abstract
Background Imerslund-Gräsbeck Syndrome (IGS) is a rare autosomal recessive disease characterized by intestinal vitamin B12 malabsorption. Clinical features include megaloblastic anemia, recurrent infections, failure to thrive, and proteinuria. Recessive mutations in cubilin (CUBN) and in amnionless (AMN) have been shown to cause IGS. To date, there are only about 300 cases described worldwide with only 37 different mutations found in CUBN and 30 different in the AMN gene. Case presentation We collected pedigree structure, clinical data, and DNA samples from 2 Caucasian English half-sisters with IGS. Molecular diagnostics was performed by direct Sanger sequencing of all 62 exons of the CUBN gene and 12 exons of the AMN gene. Because of lack of parental DNA, cloning, and sequencing of multiple plasmid clones was performed to assess the allele of identified mutations. Genetic characterization revealed 2 novel compound heterozygous AMN mutations in both half-sisters with IGS. Trans-configuration of the mutations was confirmed. Conclusion We have identified novel compound heterozygous mutations in AMN in a family from the United Kingdom with clinical features of Imerslund-Gräsbeck Syndrome.
Collapse
Affiliation(s)
- Emma Montgomery
- Renal Services Centre, Freeman Hospital, Newcastle upon Tyne NHS Hospitals Foundation Trust Newcastle upon Tyne, Newcastle upon Tyne, NE7 7DN, UK.
| | - John A Sayer
- Renal Services Centre, Freeman Hospital, Newcastle upon Tyne NHS Hospitals Foundation Trust Newcastle upon Tyne, Newcastle upon Tyne, NE7 7DN, UK. .,Institute of Genetic Medicine, Centre for Life, Newcastle Upon Tyne, UK.
| | - Laura A Baines
- Renal Services Centre, Freeman Hospital, Newcastle upon Tyne NHS Hospitals Foundation Trust Newcastle upon Tyne, Newcastle upon Tyne, NE7 7DN, UK.
| | - Ann Marie Hynes
- Institute of Genetic Medicine, Centre for Life, Newcastle Upon Tyne, UK.
| | | | - Sally Johnson
- Paediatric Nephrology, Royal Victoria Infirmary, Newcastle upon Tyne NHS Hospitals Foundation Trust, Newcastle upon Tyne, N1 4LP, UK.
| | - Judith A Goodship
- Institute of Genetic Medicine, Centre for Life, Newcastle Upon Tyne, UK.
| | - Edgar A Otto
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
61
|
Sadowski CE, Lovric S, Ashraf S, Pabst WL, Gee HY, Kohl S, Engelmann S, Vega-Warner V, Fang H, Halbritter J, Somers MJ, Tan W, Shril S, Fessi I, Lifton RP, Bockenhauer D, El-Desoky S, Kari JA, Zenker M, Kemper MJ, Mueller D, Fathy HM, Soliman NA, Hildebrandt F. A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J Am Soc Nephrol 2015; 26:1279-89. [PMID: 25349199 PMCID: PMC4446877 DOI: 10.1681/asn.2014050489] [Citation(s) in RCA: 437] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/10/2014] [Indexed: 01/15/2023] Open
Abstract
Steroid-resistant nephrotic syndrome (SRNS) is the second most frequent cause of ESRD in the first two decades of life. Effective treatment is lacking. First insights into disease mechanisms came from identification of single-gene causes of SRNS. However, the frequency of single-gene causation and its age distribution in large cohorts are unknown. We performed exon sequencing of NPHS2 and WT1 for 1783 unrelated, international families with SRNS. We then examined all patients by microfluidic multiplex PCR and next-generation sequencing for all 27 genes known to cause SRNS if mutated. We detected a single-gene cause in 29.5% (526 of 1783) of families with SRNS that manifested before 25 years of age. The fraction of families in whom a single-gene cause was identified inversely correlated with age of onset. Within clinically relevant age groups, the fraction of families with detection of the single-gene cause was as follows: onset in the first 3 months of life (69.4%), between 4 and 12 months old (49.7%), between 1 and 6 years old (25.3%), between 7 and 12 years old (17.8%), and between 13 and 18 years old (10.8%). For PLCE1, specific mutations correlated with age of onset. Notably, 1% of individuals carried mutations in genes that function within the coenzyme Q10 biosynthesis pathway, suggesting that SRNS may be treatable in these individuals. Our study results should facilitate molecular genetic diagnostics of SRNS, etiologic classification for therapeutic studies, generation of genotype-phenotype correlations, and the identification of individuals in whom a targeted treatment for SRNS may be available.
Collapse
Affiliation(s)
- Carolin E Sadowski
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Svjetlana Lovric
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shazia Ashraf
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Werner L Pabst
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Heon Yung Gee
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stefan Kohl
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Susanne Engelmann
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Virginia Vega-Warner
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Humphrey Fang
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jan Halbritter
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael J Somers
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Weizhen Tan
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shirlee Shril
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Inès Fessi
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Richard P Lifton
- Department of Genetics and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut
| | - Detlef Bockenhauer
- Institute of Child Health, University College London, London, United Kingdom
| | - Sherif El-Desoky
- Pediatric Nephrology Unit, King Abdulaziz University Hospital, Jeddah, Kingdom of Saudi Arabia
| | - Jameela A Kari
- Pediatric Nephrology Unit, King Abdulaziz University Hospital, Jeddah, Kingdom of Saudi Arabia
| | - Martin Zenker
- Department of Human Genetics, Otto von Guericke University, Magdeburg, Germany
| | - Markus J Kemper
- Department of Pediatrics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Dominik Mueller
- Department of Pediatric Nephrology, Medical Faculty of the Charité, Berlin, Germany
| | - Hanan M Fathy
- The Pediatric Nephrology Unit, Alexandria University, Alexandria, Egypt
| | - Neveen A Soliman
- Department of Pediatrics, Center of Pediatric Nephrology & Transplantation, Kasr Al Ainy School of Medicine, Cairo University, Cairo, Egypt; Egyptian Group for Orphan Renal Diseases, Cairo, Egypt; and
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Howard Hughes Medical Institute, Chevy Chase, Maryland
| |
Collapse
|
62
|
Sinha A, Menon S, Bagga A. Nephrotic Syndrome: State of the Art. CURRENT PEDIATRICS REPORTS 2015. [DOI: 10.1007/s40124-014-0066-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
63
|
Bullich G, Trujillano D, Santín S, Ossowski S, Mendizábal S, Fraga G, Madrid Á, Ariceta G, Ballarín J, Torra R, Estivill X, Ars E. Targeted next-generation sequencing in steroid-resistant nephrotic syndrome: mutations in multiple glomerular genes may influence disease severity. Eur J Hum Genet 2014; 23:1192-9. [PMID: 25407002 PMCID: PMC4538209 DOI: 10.1038/ejhg.2014.252] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 10/14/2014] [Accepted: 10/16/2014] [Indexed: 01/26/2023] Open
Abstract
Genetic diagnosis of steroid-resistant nephrotic syndrome (SRNS) using Sanger sequencing is complicated by the high genetic heterogeneity and phenotypic variability of this disease. We aimed to improve the genetic diagnosis of SRNS by simultaneously sequencing 26 glomerular genes using massive parallel sequencing and to study whether mutations in multiple genes increase disease severity. High-throughput mutation analysis was performed in 50 SRNS and/or focal segmental glomerulosclerosis (FSGS) patients, a validation cohort of 25 patients with known pathogenic mutations, and a discovery cohort of 25 uncharacterized patients with probable genetic etiology. In the validation cohort, we identified the 42 previously known pathogenic mutations across NPHS1, NPHS2, WT1, TRPC6, and INF2 genes. In the discovery cohort, disease-causing mutations in SRNS/FSGS genes were found in nine patients. We detected three patients with mutations in an SRNS/FSGS gene and COL4A3. Two of them were familial cases and presented a more severe phenotype than family members with mutation in only one gene. In conclusion, our results show that massive parallel sequencing is feasible and robust for genetic diagnosis of SRNS/FSGS. Our results indicate that patients carrying mutations in an SRNS/FSGS gene and also in COL4A3 gene have increased disease severity.
Collapse
Affiliation(s)
- Gemma Bullich
- 1] Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, Barcelona, Catalonia, Spain [2] Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, Barcelona, Catalonia, Spain
| | - Daniel Trujillano
- 1] Genomics and Disease Group, Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Catalonia, Spain [2] Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain [3] Hospital del Mar Medical Research Institute (IMIM), Barcelona, Catalonia, Spain [4] CIBER in Epidemiology and Public Health (CIBERESP), Barcelona, Catalonia, Spain
| | - Sheila Santín
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, Barcelona, Catalonia, Spain
| | - Stephan Ossowski
- 1] Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain [2] Genomic and Epigenomic Variation in Disease Group, Centre for Genomic Regulation (CRG), Barcelona, Catalonia, Spain
| | - Santiago Mendizábal
- Pediatric Nephrology Department, Hospital Universitario La Fe, Valencia, Spain
| | - Gloria Fraga
- Pediatric Nephrology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Catalonia, Spain
| | - Álvaro Madrid
- Pediatric Nephrology Department, Hospital Vall d'Hebron, Barcelona, Spain
| | - Gema Ariceta
- Pediatric Nephrology Department, Hospital Vall d'Hebron, Barcelona, Spain
| | - José Ballarín
- Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, Barcelona, Catalonia, Spain
| | - Roser Torra
- Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, Barcelona, Catalonia, Spain
| | - Xavier Estivill
- 1] Genomics and Disease Group, Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Catalonia, Spain [2] Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain [3] Hospital del Mar Medical Research Institute (IMIM), Barcelona, Catalonia, Spain [4] CIBER in Epidemiology and Public Health (CIBERESP), Barcelona, Catalonia, Spain
| | - Elisabet Ars
- 1] Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, Barcelona, Catalonia, Spain [2] Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, Barcelona, Catalonia, Spain
| |
Collapse
|
64
|
Expanding the phenotype of proteinuria in Dent disease. A case series. Pediatr Nephrol 2014; 29:2051-4. [PMID: 24810952 DOI: 10.1007/s00467-014-2824-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/26/2014] [Accepted: 04/04/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Dent disease is an X-linked recessive renal tubular disorder characterized by low molecular weight proteinuria, hypercalciuria, nephrocalcinosis, nephrolithiasis, and progressive renal failure (MIM 300009). A recent case series identified four patients with CLCN5 mutations who presented with nephrotic-range proteinuria, histologic evidence of focal segmental and/or global sclerosis, and low molecular weight proteinuria. CASE-DIAGNOSIS/TREATMENT We characterize the clinical, genetic, and histopathological features of seven unrelated adolescent males with nephrotic-range proteinuria and CLCN5 mutations. Six patients underwent renal biopsy prior to assessing tubular proteinuria. All biopsied patients had either segmental sclerosis (3/6) or segmental increase in mesangial matrix (3/6). Five patients revealed some degree of foot process effacement, but only one patient biopsy revealed >50 % foot process effacement. The attenuated foot process effacement suggests the glomerulosclerosis is not due to a primary podocytopathy. CONCLUSIONS These data suggest that clinicians should consider a diagnostic evaluation for Dent disease in young males presenting with high-grade proteinuria.
Collapse
|
65
|
Pollak MR. Familial FSGS. Adv Chronic Kidney Dis 2014; 21:422-5. [PMID: 25168831 DOI: 10.1053/j.ackd.2014.06.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/31/2014] [Accepted: 06/02/2014] [Indexed: 12/12/2022]
Abstract
Focal segmental glomerulosclerosis (FSGS) and nephrotic syndrome can be caused by rare highly penetrant mutations in number of genes. FSGS can follow both recessive and dominant inheritance patterns. In general, recessive forms present early, whereas the autosomal dominant forms present in adolescence or adulthood. Many of the genes found to be mutated in FSGS and nephrotic syndrome patients encode proteins essential for normal podocyte structure and/or function. An exception appears to be APOL1, which harbors common variants responsible for the high rate of FSGS and other nephropathies in people of recent African ancestry. Familial FSGS should be regarded as part of a spectrum of inherited glomerulopathies where the precise histologic presentation may depend on the age of onset, function of the responsible gene and gene products, and other factors.
Collapse
|
66
|
Lovric S, Fang H, Vega-Warner V, Sadowski CE, Gee HY, Halbritter J, Ashraf S, Saisawat P, Soliman NA, Kari JA, Otto EA, Hildebrandt F. Rapid detection of monogenic causes of childhood-onset steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 2014; 9:1109-16. [PMID: 24742477 DOI: 10.2215/cjn.09010813] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND OBJECTIVES In steroid-resistant nephrotic syndrome (SRNS), >21 single-gene causes are known. However, mutation analysis of all known SRNS genes is time and cost intensive. This report describes a new high-throughput method of mutation analysis using a PCR-based microfluidic technology that allows rapid simultaneous mutation analysis of 21 single-gene causes of SRNS in a large number of individuals. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS This study screened individuals with SRNS; samples were submitted for mutation analysis from international sources between 1996 and 2012. For proof of principle, a pilot cohort of 48 individuals who harbored known mutations in known SRNS genes was evaluated. After improvements to the method, 48 individuals with an unknown cause of SRNS were then examined in a subsequent diagnostic study. The analysis included 16 recessive SRNS genes and 5 dominant SRNS genes. A 10-fold primer multiplexing was applied, allowing PCR-based amplification of 474 amplicons in 21 genes for 48 DNA samples simultaneously. Forty-eight individuals were indexed in a barcode PCR, and high-throughput sequencing was performed. All disease-causing variants were confirmed via Sanger sequencing. RESULTS The pilot study identified the genetic cause of disease in 42 of 48 (87.5%) of the affected individuals. The diagnostic study detected the genetic cause of disease in 16 of 48 (33%) of the affected individuals with a previously unknown cause of SRNS. Seven novel disease-causing mutations in PLCE1 (n=5), NPHS1 (n=1), and LAMB2 (n=1) were identified in <3 weeks. Use of this method could reduce costs to 1/29th of the cost of Sanger sequencing. CONCLUSION This highly parallel approach allows rapid (<3 weeks) mutation analysis of 21 genes known to cause SRNS at a greatly reduced cost (1/29th) compared with traditional mutation analysis techniques. It detects mutations in about 33% of childhood-onset SRNS cases.
Collapse
Affiliation(s)
- Svjetlana Lovric
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Humphrey Fang
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Virginia Vega-Warner
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Carolin E Sadowski
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Heon Yung Gee
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jan Halbritter
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shazia Ashraf
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Pawaree Saisawat
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Neveen A Soliman
- Department of Pediatrics, Center of Pediatric Nephrology & Transplantation, Kasr Al Ainy School of Medicine, Cairo University and Egyptian Group of Orphan Diseases, Cairo, Egypt
| | - Jameela A Kari
- Department of Pediatrics, King Abdulaziz University Hospital, Jeddah, Saudi Arabia; and
| | - Edgar A Otto
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Howard Hughes Medical Institute, Chevy Chase, Maryland
| | | |
Collapse
|
67
|
Brown EJ, Pollak MR, Barua M. Genetic testing for nephrotic syndrome and FSGS in the era of next-generation sequencing. Kidney Int 2014; 85:1030-8. [PMID: 24599252 PMCID: PMC4118212 DOI: 10.1038/ki.2014.48] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 01/07/2014] [Accepted: 01/09/2014] [Indexed: 12/11/2022]
Abstract
The haploid human genome is composed of three billion base pairs, about one percent of which consists of exonic regions, the coding sequence for functional proteins, also now known as the “exome”. The development of next-generation sequencing makes it possible from a technical and economic standpoint to sequence an individual’s exome but at the cost of generating long lists of gene variants that are not straightforward to interpret. Various public consortiums such as the 1000 Genomes Project and the NHLBI Exome Sequencing Project have sequenced the exomes and a subset of entire genomes of over 2500 control individuals with ongoing efforts to further catalogue genetic variation in humans.1 The use of these public databases facilitates the interpretation of these variant lists produced by exome sequencing and, as a result, novel genetic variants linked to disease are being discovered and reported at a record rate. However, the interpretation of these results and their bearing on diagnosis, prognosis, and treatment is becoming ever more complicated. Here, we discuss the application of genetic testing to individuals with focal and segmental glomerulosclerosis (FSGS), taking a historical perspective on gene identification and its clinical implications along with the growing potential of next-generation sequencing.
Collapse
Affiliation(s)
- Elizabeth J Brown
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Martin R Pollak
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Moumita Barua
- 1] Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA [2] Department of Medicine, Toronto General Hospital, Toronto, Ontario, Canada
| |
Collapse
|
68
|
CUBN and NEBL common variants in the chromosome 10p13 linkage region are associated with multibacillary leprosy in Vietnam. Hum Genet 2014; 133:883-93. [PMID: 24563210 DOI: 10.1007/s00439-014-1430-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/08/2014] [Indexed: 01/04/2023]
Abstract
Leprosy is caused by infection with Mycobacterium leprae and is classified clinically into paucibacillary (PB) or multibacillary (MB) subtypes based on the number of skin lesions and the bacillary index detected in skin smears. We previously identified a major PB susceptibility locus on chromosome region 10p13 in Vietnamese families by linkage analysis. In the current study, we conducted high-density association mapping of the 9.5 Mb linkage peak on chromosome region 10p13 covering 39 genes. Using leprosy per se and leprosy subtypes as phenotypes, we employed 294 nuclear families (303 leprosy cases, 63 % MB, 37 % PB) as a discovery sample and 192 nuclear families (192 cases, 55 % MB, 45 % PB) as a replication sample. Replicated significant association signals were revealed in the genes for cubilin (CUBN) and nebulette (NEBL). In the combined sample, the C allele (frequency 0.26) at CUBN SNP rs10904831 showed association [p = 1 × 10(-5); OR 0.52 (0.38-0.7)] with MB leprosy only. Likewise, allele T (frequency 0.42) at NEBL SNP rs11012461 showed association [p = 4.2 × 10(-5); OR 2.51 (1.6-4)] with MB leprosy only. These associations remained valid for the CUBN signal when taking into account the effective number of tests performed (type I error significance threshold = 2.4 × 10(-5)). We used the results of our analyses to propose a new model for the genetic control of polarization of clinical leprosy.
Collapse
|
69
|
Jayakumar C, Nauta FL, Bakker SJL, Bilo H, Gansevoort RT, Johnson MH, Ramesh G. Netrin-1, a urinary proximal tubular injury marker, is elevated early in the time course of human diabetes. J Nephrol 2014; 27:151-7. [PMID: 24510764 DOI: 10.1007/s40620-014-0055-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 11/06/2013] [Indexed: 01/13/2023]
Abstract
BACKGROUND Netrin-1 was recently identified as an early diagnostic biomarker of chronic kidney disease (CKD) in an experimental animal model. However, its usefulness for early diagnosis of CKD in humans is unknown. The current study evaluated whether netrin-1 is increased in urine from human diabetic patients. METHODS Spot urine samples from healthy volunteers, diabetes without microalbuminuria, diabetes with microalbuminuria and diabetes with macroalbuminuria were collected after receiving consent. Netrin-1 in urine was quantified by enzyme-linked immunosorbent assay and the data analyzed to determine whether urinary netrin-1 significantly correlates with disease progression. RESULTS Urinary netrin-1 levels were significantly increased in normoalbuminuric diabetic patients compared to healthy controls, and still further elevated in patients with microalbuminuria and overt nephropathy. Urinary netrin-1 was significantly associated with albuminuria and estimated glomerular filtration rate, independently of age and sex. CONCLUSION Netrin-1 is detectable in urine from diabetic patients and may serve as a useful early diagnostic biomarker predicting the development of CKD in diabetes.
Collapse
Affiliation(s)
- Calpurnia Jayakumar
- Vascular Biology Center, CB-3702, Georgia Regents University, 1459 Laney-Walker Blvd, Augusta, GA, 30912, USA
| | | | | | | | | | | | | |
Collapse
|
70
|
Dickson LE, Wagner MC, Sandoval RM, Molitoris BA. The proximal tubule and albuminuria: really! J Am Soc Nephrol 2014; 25:443-53. [PMID: 24408874 DOI: 10.1681/asn.2013090950] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent data highlight the role of the proximal tubule (PT) in reabsorbing, processing, and transcytosing urinary albumin from the glomerular filtrate. Innovative techniques and approaches have provided exciting insights into these processes, and numerous investigators have shown that selective PT cell defects lead to significant albuminuria, even reaching nephrotic range in animal models. Thus, the mechanisms of albumin reabsorption and transcytosis are undergoing intense study. Working in concert with megalin and cubilin, a nonselective multireceptor complex that predominantly directs proteins for lysosomal degradation, the neonatal Fc receptor (FcRn) located at the brush border of the apical membrane has been implicated as the "receptor" mediating albumin transcytosis. The FcRn pathway facilitates reabsorption and mediates transcytosis by its pH-dependent binding affinity in endosomal compartments. This also allows for selective albumin sorting within the PT cell. This reclamation pathway minimizes urinary losses and catabolism of albumin, thus prolonging its serum half-life. It may also serve as a molecular sorter to preserve and reclaim normal albumin while allowing "altered" albumin to be catabolized via lysosomal pathways. Here, we critically review the data supporting this novel mechanism.
Collapse
Affiliation(s)
- Landon E Dickson
- Indiana University School of Medicine, The Roudebush Veterans Affairs Medical Center, Indiana Center for Biological Microscopy, Indianapolis, Indiana
| | | | | | | |
Collapse
|
71
|
White JJ, Mohamed R, Jayakumar C, Ramesh G. Tubular injury marker netrin-1 is elevated early in experimental diabetes. J Nephrol 2013; 26:1055-64. [PMID: 24052471 PMCID: PMC4001783 DOI: 10.5301/jn.5000303] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2013] [Indexed: 01/13/2023]
Abstract
BACKGROUND Netrin-1 was recently identified as an early diagnostic biomarker of acute kidney injury. However, its usefulness for early diagnosis of chronic kidney disease (CKD) is unknown. The current study evaluated whether these proteins are increased in urine from experimental animals with diabetes. METHODS The current study evaluated whether netrin-1 is increased in urine from diabetic rats and mice, and whether netrin-1 correlated with development of nephropathy. RESULTS In rats, urinary netrin-1 excretion was significantly (p<0.001) higher in the diabetic group at 4 and 10 weeks after induction of diabetes as compared with the control group. Similarly, netrin-1 was increased significantly (p<0.001) in urine from hypertensive rats at 4 weeks as compared with controls. Likewise, urinary albumin excretion rates were increased in diabetic rats at 4 and 10 weeks as compared with controls and were increased in hypertensive rats at 4 weeks. Consistent with the diabetic model in rats, netrin-1 excretion was also increased early in diabetic mice's urine, and peak levels correlated with disease severity. CONCLUSION Netrin-1 can be detected in urine from diabetic and hypertensive rats and may serve as a useful early diagnostic biomarker for development of CKD.
Collapse
Affiliation(s)
- John J White
- Department of Medicine, Georgia Regents University Augusta, GA 30912
| | - Riyaz Mohamed
- Vascular Biology Center, Georgia Regents University Augusta, GA 30912
| | | | - Ganesan Ramesh
- Department of Medicine, Georgia Regents University Augusta, GA 30912
- Vascular Biology Center, Georgia Regents University Augusta, GA 30912
| |
Collapse
|
72
|
Storm T, Zeitz C, Cases O, Amsellem S, Verroust PJ, Madsen M, Benoist JF, Passemard S, Lebon S, Jønsson IM, Emma F, Koldsø H, Hertz JM, Nielsen R, Christensen EI, Kozyraki R. Detailed investigations of proximal tubular function in Imerslund-Gräsbeck syndrome. BMC MEDICAL GENETICS 2013; 14:111. [PMID: 24156255 PMCID: PMC3826550 DOI: 10.1186/1471-2350-14-111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/18/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Imerslund-Gräsbeck Syndrome (IGS) is a rare genetic disorder characterised by juvenile megaloblastic anaemia. IGS is caused by mutations in either of the genes encoding the intestinal intrinsic factor-vitamin B12 receptor complex, cubam. The cubam receptor proteins cubilin and amnionless are both expressed in the small intestine as well as the proximal tubules of the kidney and exhibit an interdependent relationship for post-translational processing and trafficking. In the proximal tubules cubilin is involved in the reabsorption of several filtered plasma proteins including vitamin carriers and lipoproteins. Consistent with this, low-molecular-weight proteinuria has been observed in most patients with IGS. The aim of this study was to characterise novel disease-causing mutations and correlate novel and previously reported mutations with the presence of low-molecular-weight proteinuria. METHODS Genetic screening was performed by direct sequencing of the CUBN and AMN genes and novel identified mutations were characterised by in silico and/or in vitro investigations. Urinary protein excretion was analysed by immunoblotting and high-resolution gel electrophoresis of collected urines from patients and healthy controls to determine renal phenotype. RESULTS Genetic characterisation of nine IGS patients identified two novel AMN frameshift mutations alongside a frequently reported AMN splice site mutation and two CUBN missense mutations; one novel and one previously reported in Finnish patients. The novel AMN mutations were predicted to result in functionally null AMN alleles with no cell-surface expression of cubilin. Also, the novel CUBN missense mutation was predicted to affect structural integrity of the IF-B12 binding site of cubilin and hereby most likely cubilin cell-surface expression. Analysis of urinary protein excretion in the patients and 20 healthy controls revealed increased urinary excretion of cubilin ligands including apolipoprotein A-I, transferrin, vitamin D-binding protein, and albumin. This was, however, only observed in patients where plasma membrane expression of cubilin was predicted to be perturbed. CONCLUSIONS In the present study, mutational characterisation of nine IGS patients coupled with analyses of urinary protein excretion provide additional evidence for a correlation between mutation type and presence of the characteristic low-molecular-weight proteinuria.
Collapse
|
73
|
McMahon GM, O'Seaghdha CM, Hwang SJ, Meigs JB, Fox CS. The association of a single-nucleotide polymorphism in CUBN and the risk of albuminuria and cardiovascular disease. Nephrol Dial Transplant 2013; 29:342-7. [PMID: 24052458 DOI: 10.1093/ndt/gft386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Albuminuria is an important risk factor for cardiovascular disease (CVD). We have previously identified a missense single-nucleotide polymorphism (rs1801239) in the CUBN gene that is associated with albuminuria. Whether albuminuria is associated with CVD in the presence of the CUBN mutation is unknown. METHODS We analyzed participants from the Framingham Heart Study (n=6399, mean age 47 years, 53.4% women) who underwent genotyping of rs1801239. Cox proportional hazards models were used to test the association between microalbuminuria [UACR≥17 mg/g (men) and ≥25 mg/g (women)] and incident CVD stratified by the presence or absence of the CUBN risk allele. We tested whether the association between microalbuminuria and CVD was altered by the presence of the risk allele with interaction testing. RESULTS Overall, 21.1% of participants carried the risk allele. As expected, carriers of the risk (C) allele had a higher prevalence of microalbuminuria (10.7 versus 8.9%, P=0.04). During a mean follow-up of 10.4 years, 5.6% (n=346) of participants experienced a CVD event. Microalbuminuria was associated with an increased risk of CVD [hazards ratio (HR) 1.46, 95% confidence interval (CI) 1.14-1.88]. When stratified by risk allele carrier status, the HR for CVD was 1.95 (95% CI 1.15-3.29) among those with compared to 1.33 (95% CI 1.00-1.76) among those without the risk allele. There was no interaction between microalbuminuria and rs1801239 on CVD (Pinteraction=0.49). CONCLUSIONS MA is associated with CVD irrespective of the presence of the CUBN risk allele. These results challenge the concept that albuminuria in the setting of this mutation is benign.
Collapse
Affiliation(s)
- Gearoid M McMahon
- National Heart, Lung and Blood Institute's Framingham Heart Study and the Center for Population Studies, Framingham, MA, USA
| | | | | | | | | |
Collapse
|
74
|
Fyfe JC, Hemker SL, Venta PJ, Fitzgerald CA, Outerbridge CA, Myers SL, Giger U. An exon 53 frameshift mutation in CUBN abrogates cubam function and causes Imerslund-Gräsbeck syndrome in dogs. Mol Genet Metab 2013; 109:390-6. [PMID: 23746554 PMCID: PMC3729882 DOI: 10.1016/j.ymgme.2013.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/13/2013] [Accepted: 05/13/2013] [Indexed: 12/18/2022]
Abstract
Cobalamin malabsorption accompanied by selective proteinuria is an autosomal recessive disorder known as Imerslund-Gräsbeck syndrome in humans and was previously described in dogs due to amnionless (AMN) mutations. The resultant vitamin B12 deficiency causes dyshematopoiesis, lethargy, failure to thrive, and life-threatening metabolic disruption in the juvenile period. We studied 3 kindreds of border collies with cobalamin malabsorption and mapped the disease locus in affected dogs to a 2.9Mb region of homozygosity on canine chromosome 2. The region included CUBN, the locus encoding cubilin, a peripheral membrane protein that in concert with AMN forms the functional intrinsic factor-cobalamin receptor expressed in ileum and a multi-ligand receptor in renal proximal tubules. Cobalamin malabsorption and proteinuria comprising CUBN ligands were demonstrated by radiolabeled cobalamin uptake studies and SDS-PAGE, respectively. CUBN mRNA and protein expression were reduced ~10 fold and ~20 fold, respectively, in both ileum and kidney of affected dogs. DNA sequencing demonstrated a single base deletion in exon 53 predicting a translational frameshift and early termination codon likely triggering nonsense mediated mRNA decay. The mutant allele segregated with the disease in the border collie kindred. The border collie disorder indicates that a CUBN mutation far C-terminal from the intrinsic factor-cobalamin binding site can abrogate receptor expression and cause Imerslund-Gräsbeck syndrome.
Collapse
Affiliation(s)
- John C Fyfe
- Laboratory of Comparative Medical Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | | | | | | | |
Collapse
|
75
|
Gräsbeck R. Hooked to vitamin B12 since 1955: A historical perspective. Biochimie 2013; 95:970-5. [DOI: 10.1016/j.biochi.2012.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 12/11/2012] [Indexed: 11/28/2022]
|
76
|
Christensen EI, Nielsen R, Birn H. From bowel to kidneys: the role of cubilin in physiology and disease. Nephrol Dial Transplant 2013; 28:274-81. [DOI: 10.1093/ndt/gfs565] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
77
|
Baardman ME, Kerstjens-Frederikse WS, Berger RM, Bakker MK, Hofstra RM, Plösch T. The Role of Maternal-Fetal Cholesterol Transport in Early Fetal Life: Current Insights1. Biol Reprod 2013; 88:24. [DOI: 10.1095/biolreprod.112.102442] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
78
|
Kidney proximal tubular epithelial-specific overexpression of netrin-1 suppresses inflammation and albuminuria through suppression of COX-2-mediated PGE2 production in streptozotocin-induced diabetic mice. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1991-2002. [PMID: 23041393 DOI: 10.1016/j.ajpath.2012.08.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 07/25/2012] [Accepted: 08/15/2012] [Indexed: 01/15/2023]
Abstract
Inflammation plays a key role in the development and progression of diabetic kidney disease; however, the role of the anti-inflammatory molecule netrin-1 in diabetic kidney disease is unknown. We examined the role of netrin-1 in diabetes-induced kidney inflammation and injury using tubule-specific netrin-1 transgenic mice. Diabetes was induced using streptozotocin in wild-type and netrin-1 transgenic animals. Kidney function, fibrosis, glucose excretion, albuminuria, and inflammation were evaluated. The mechanism of netrin-1-induced suppression of inflammation was studied in vitro using a proximal tubular epithelial cell line. Diabetes was associated with increased infiltration of neutrophils and macrophages, chemokine expression, and tubular epithelial cell apoptosis in kidney. These changes were minimal in kidney of netrin-1 transgenic mice. In addition, diabetes induced a large increase in the excretion of prostaglandin E2 (PGE2) in urine, which was suppressed in netrin-1 transgenic mice. Netrin-1-induced suppression of PGE2 production was mediated through suppression of NFκB-mediated cyclooxygenase-2 (COX-2) in renal tubular epithelial cells. Furthermore, netrin-1 also increased albumin uptake by proximal tubular epithelial cells through the PI3K and ERK pathways without increasing glucose uptake. These findings suggest that netrin-1 is a major regulator of inflammation and apoptosis in diabetic nephropathy and may be a useful therapeutic molecule for treating chronic kidney diseases such as diabetic nephropathy.
Collapse
|
79
|
Tanner SM, Sturm AC, Baack EC, Liyanarachchi S, de la Chapelle A. Inherited cobalamin malabsorption. Mutations in three genes reveal functional and ethnic patterns. Orphanet J Rare Dis 2012; 7:56. [PMID: 22929189 PMCID: PMC3462684 DOI: 10.1186/1750-1172-7-56] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/23/2012] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Inherited malabsorption of cobalamin (Cbl) causes hematological and neurological abnormalities that can be fatal. Three genes have been implicated in Cbl malabsorption; yet, only about 10% of ~400-500 reported cases have been molecularly studied to date. Recessive mutations in CUBN or AMN cause Imerslund-Gräsbeck Syndrome (IGS), while recessive mutations in GIF cause Intrinsic Factor Deficiency (IFD). IGS and IFD differ in that IGS usually presents with proteinuria, which is not observed in IFD. The genetic heterogeneity and numerous differential diagnoses make clinical assessment difficult. METHODS We present a large genetic screening study of 154 families or patients with suspected hereditary Cbl malabsorption. Patients and their families have been accrued over a period spanning >12 years. Systematic genetic testing of the three genes CUBN, AMN, and GIF was accomplished using a combination of single strand conformation polymorphism and DNA and RNA sequencing. In addition, six genes that were contenders for a role in inherited Cbl malabsorption were studied in a subset of these patients. RESULTS Our results revealed population-specific mutations, mutational hotspots, and functionally distinct regions in the three causal genes. We identified mutations in 126/154 unrelated cases (82%). Fifty-three of 126 cases (42%) were mutated in CUBN, 45/126 (36%) were mutated in AMN, and 28/126 (22%) had mutations in GIF. We found 26 undescribed mutations in CUBN, 19 in AMN, and 7 in GIF for a total of 52 novel defects described herein. We excluded six other candidate genes as culprits and concluded that additional genes might be involved. CONCLUSIONS Cbl malabsorption is found worldwide and genetically complex. However, our results indicate that population-specific founder mutations are quite common. Consequently, targeted genetic testing has become feasible if ethnic ancestry is considered. These results will facilitate clinical and molecular genetic testing of Cbl malabsorption. Early diagnosis improves the lifelong care required by these patients and prevents potential neurological long-term complications. This study provides the first comprehensive overview of the genetics that underlies the inherited Cbl malabsorption phenotype.
Collapse
Affiliation(s)
- Stephan M Tanner
- Human Cancer Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
80
|
Christensen EI, Birn H, Storm T, Weyer K, Nielsen R. Endocytic Receptors in the Renal Proximal Tubule. Physiology (Bethesda) 2012; 27:223-36. [DOI: 10.1152/physiol.00022.2012] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Protein reabsorption is a predominant feature of the renal proximal tubule. Animal studies show that the ability to rescue plasma proteins relies on the endocytic receptors megalin and cubilin. Recently, studies of patients with syndromes caused by dysfunctional receptors have supported the importance of these for protein clearance of human ultrafiltrate. This review focuses on the molecular biology and physiology of the receptors and their involvement in renal pathological conditions.
Collapse
Affiliation(s)
- Erik I. Christensen
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Henrik Birn
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Tina Storm
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Kathrin Weyer
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Rikke Nielsen
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| |
Collapse
|
81
|
Reznichenko A, Snieder H, van den Born J, de Borst MH, Damman J, van Dijk MCRF, van Goor H, Hepkema BG, Hillebrands JL, Leuvenink HGD, Niesing J, Bakker SJL, Seelen M, Navis G. CUBN as a novel locus for end-stage renal disease: insights from renal transplantation. PLoS One 2012; 7:e36512. [PMID: 22574174 PMCID: PMC3344899 DOI: 10.1371/journal.pone.0036512] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 04/02/2012] [Indexed: 11/19/2022] Open
Abstract
Chronic kidney disease (CKD) is a complex disorder. As genome-wide association studies identified cubilin gene CUBN as a locus for albuminuria, and urinary protein loss is a risk factor for progressive CKD, we tested the hypothesis that common genetic variants in CUBN are associated with end-stage renal disease (ESRD) and proteinuria. First, a total of 1142 patients with ESRD, admitted for renal transplantation, and 1186 donors were genotyped for SNPs rs7918972 and rs1801239 (case-control study). The rs7918972 minor allele frequency (MAF) was higher in ESRD patients comparing to kidney donors, implicating an increased risk for ESRD (OR 1.39, p = 0.0004) in native kidneys. Second, after transplantation recipients were followed for 5.8 [3.8–9.2] years (longitudinal study) documenting ESRD in transplanted kidneys – graft failure (GF). During post-transplant follow-up 92 (9.6%) cases of death-censored GF occurred. Donor rs7918972 MAF, representing genotype of the transplanted kidney, was 16.3% in GF vs 10.7% in cases with functioning graft. Consistently, a multivariate Cox regression analysis showed that donor rs7918972 is a predictor of GF, although statistical significance was not reached (HR 1.53, p = 0.055). There was no association of recipient rs7918972 with GF. Rs1801239 was not associated with ESRD or GF. In line with an association with the outcome, donor rs7918972 was associated with elevated proteinuria levels cross-sectionally at 1 year after transplantation. Thus, we identified CUBN rs7918972 as a novel risk variant for renal function loss in two independent settings: ESRD in native kidneys and GF in transplanted kidneys.
Collapse
Affiliation(s)
- Anna Reznichenko
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Hryciw DH, Jenkin KA, Simcocks AC, Grinfeld E, McAinch AJ, Poronnik P. The interaction between megalin and ClC-5 is scaffolded by the Na⁺-H⁺ exchanger regulatory factor 2 (NHERF2) in proximal tubule cells. Int J Biochem Cell Biol 2012; 44:815-23. [PMID: 22349218 DOI: 10.1016/j.biocel.2012.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/22/2012] [Accepted: 02/05/2012] [Indexed: 11/25/2022]
Abstract
Albumin endocytosis in the proximal tubule is mediated by a number of proteins, including the scavenger receptor megalin/cubilin and the PSD-95/Dlg/ZO-1 (PDZ) scaffolds NHERF1 and NHERF2. In addition, in a number of in vitro and in vivo models, the loss of ClC-5 results in a decreased cell surface expression and whole cell level of megalin, suggesting an interaction between these two proteins in vivo. We investigated if ClC-5 and megalin interact directly, and as ClC-5 binds to NHERF2, we investigated if this PDZ scaffold was required for a megalin/ClC-5 complex. GST-pulldown and immunoprecipitation experiments using rat kidney lysate demonstrated an interaction between ClC-5 and megalin, which was mediated by their C-termini. As this interaction may be controlled by a scaffold protein, we characterised any interaction between megalin and NHERF2. Immunoprecipitation experiments indicated that megalin interacts with NHERF2 in vivo, and that this interaction was via an internal NHERF binding domain in the C-terminus of megalin and PDZ2 and the C-terminus of NHERF2. Silencing NHERF2 had no effect on megalin protein levels in the whole cell or plasma membrane. Using siRNA against NHERF2, we demonstrated that NHERF2 was required to facilitate the interaction between megalin and ClC-5. Using fusion proteins, we characterised a protein complex containing ClC-5 and megalin, which is scaffolded by NHERF2, in the absence of any other proteins. Importantly, these observations are the first to describe an interaction between megalin and ClC-5, which is scaffolded by NHERF2 in proximal tubule cells.
Collapse
Affiliation(s)
- D H Hryciw
- Biomedical and Lifestyle Diseases Unit, School of Biomedical and Health Sciences, Victoria University, St Albans, VIC 3021, Australia.
| | | | | | | | | | | |
Collapse
|