51
|
Uribarri J, Goldfarb DS, Raphael KL, Rein JL, Asplin JR. Beyond the Urine Anion Gap: In Support of the Direct Measurement of Urinary Ammonium. Am J Kidney Dis 2022; 80:667-676. [PMID: 35810828 DOI: 10.1053/j.ajkd.2022.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/10/2022] [Indexed: 02/02/2023]
Abstract
Ammonium is a major urinary buffer that is necessary for the normal excretion of the daily acid load. Its urinary rate of excretion (UNH4) may be increased several fold in the presence of extrarenal metabolic acidosis. Therefore, measurement of UNH4 can provide important clues about causes of metabolic acidosis. Because UNH4 is not commonly measured in clinical laboratories, the urinary anion gap (UAG) was proposed as its surrogate about 4 decades ago, and it is still frequently used for that purpose. Several published studies strongly suggest that UAG is not a good index of UNH4 and support the concept that direct measurement of UNH4 is an important parameter to define in clinical nephrology. Low UNH4 levels have recently been found to be associated with a higher risk of metabolic acidosis, loss of kidney function, and death in persons with chronic kidney disease, while surrogates like the UAG do not recapitulate this risk. In order to advance the field it is necessary for the medical community to become more familiar with UNH4 levels in a variety of clinical settings. Herein, we review the literature, searching for available data on UNH4 under normal and various pathological conditions, in an attempt to establish reference values to interpret UNH4 results if and when UNH4 measurements become available as a routine clinical test. In addition, we present original data in 2 large populations that provide further evidence that the UAG is not a good predictor of UNH4. Measurement of urine NH4 holds promise to aid clinicians in the care of patients, and we encourage further research to determine its best diagnostic usage.
Collapse
Affiliation(s)
- Jaime Uribarri
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
| | | | - Kalani L Raphael
- Oregon Health & Science University and VA Portland Health Care System, Portland, Oregon
| | - Joshua L Rein
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John R Asplin
- Litholink Corporation, Laboratory Corporation of America Holdings, Chicago, Illinois
| |
Collapse
|
52
|
Lee DY, Kim JY, Ahn E, Hyeon JS, Kim GH, Park KJ, Jung Y, Lee YJ, Son MK, Kim SW, Han SY, Kim JH, Roh GS, Cha DR, Hwang GS, Kim WH. Associations between local acidosis induced by renal LDHA and renal fibrosis and mitochondrial abnormalities in patients with diabetic kidney disease. Transl Res 2022; 249:88-109. [PMID: 35788054 DOI: 10.1016/j.trsl.2022.06.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/23/2022] [Accepted: 06/22/2022] [Indexed: 10/31/2022]
Abstract
During the progression of diabetic kidney disease (DKD), renal lactate metabolism is rewired. The relationship between alterations in renal lactate metabolism and renal fibrosis in patients with diabetes has only been partially established due to a lack of biopsy tissues from patients with DKD and the intricate mechanism of lactate homeostasis. The role of lactate dehydrogenase A (LDHA)-mediated lactate generation in renal fibrosis and dysfunction in human and animal models of DKD was explored in this study. Measures of lactate metabolism (urinary lactate levels and LDHA expression) and measures of DKD progression (estimated glomerular filtration rate and Wilms' tumor-1 expression) were strongly negatively correlated in patients with DKD. Experiments with streptozotocin-induced DKD rat models and the rat renal mesangial cell model confirmed our findings. We found that the pathogenesis of DKD is linked to hypoxia-mediated lactic acidosis, which leads to fibrosis and mitochondrial abnormalities. The pathogenic characteristics of DKD were significantly reduced when aerobic glycolysis or LDHA expression was inhibited. Further studies will aim to investigate whether local acidosis caused by renal LDHA might be exploited as a therapeutic target in patients with DKD.
Collapse
Affiliation(s)
- Dae-Yeon Lee
- Division of Cardiovascular Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea; Department of Anatomy and Convergence Medical Science, Bio Anti-aging Medical Research Center, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Ji-Yeon Kim
- Division of Cardiovascular Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Eunyong Ahn
- Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Jin Seong Hyeon
- Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Gyu-Hee Kim
- Division of Metabolic Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Keon-Jae Park
- Division of Metabolic Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Youngae Jung
- Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Yoo-Jeong Lee
- Division of Metabolic Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Mi Kyoung Son
- Division of Cardiovascular Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Seung Woo Kim
- Division of Cardiovascular Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Sang Youb Han
- Department of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang, Republic of Korea
| | - Jae-Hong Kim
- Division of Life Sciences, College of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, Bio Anti-aging Medical Research Center, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Dae Ryong Cha
- Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea.
| | - Geum-Sook Hwang
- Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea.
| | - Won-Ho Kim
- Division of Cardiovascular Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea.
| |
Collapse
|
53
|
Kaufman JS. Acute Kidney Injury in CKD : Role of Metabolic Acidosis. Kidney Int Rep 2022; 7:2555-2557. [PMID: 36506223 PMCID: PMC9727512 DOI: 10.1016/j.ekir.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- James S. Kaufman
- Nephrology Division, New York University Grossman School of Medicine and VA New York Harbor Healthcare System, New York, New York, USA,Correspondence: James S. Kaufman, Research Office, VA New York Harbor Healthcare System, 423 East 23rd Street, New York, New York 10010, USA.
| |
Collapse
|
54
|
Ettinger S. Diet Strategies for the Patient with Chronic Kidney Disease. PHYSICIAN ASSISTANT CLINICS 2022. [DOI: 10.1016/j.cpha.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
55
|
Gritter M, Wouda RD, Yeung SM, Wieërs ML, Geurts F, de Ridder MA, Ramakers CR, Vogt L, de Borst MH, Rotmans JI, Hoorn EJ. Effects of Short-Term Potassium Chloride Supplementation in Patients with CKD. J Am Soc Nephrol 2022; 33:1779-1789. [PMID: 35609996 PMCID: PMC9529195 DOI: 10.1681/asn.2022020147] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/02/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Observational studies suggest that adequate dietary potassium intake (90-120 mmol/day) may be renoprotective, but the effects of increasing dietary potassium and the risk of hyperkalemia are unknown. METHODS This is a prespecified analysis of the run-in phase of a clinical trial in which 191 patients (age 68±11 years, 74% males, 86% European ancestry, eGFR 31±9 ml/min per 1.73 m2, 83% renin-angiotensin system inhibitors, 38% diabetes) were treated with 40 mmol potassium chloride (KCl) per day for 2 weeks. RESULTS KCl supplementation significantly increased urinary potassium excretion (72±24 to 107±29 mmol/day), plasma potassium (4.3±0.5 to 4.7±0.6 mmol/L), and plasma aldosterone (281 [198-431] to 351 [241-494] ng/L), but had no significant effect on urinary sodium excretion, plasma renin, BP, eGFR, or albuminuria. Furthermore, KCl supplementation increased plasma chloride (104±3 to 105±4 mmol/L) and reduced plasma bicarbonate (24.5±3.4 to 23.7±3.5 mmol/L) and urine pH (all P<0.001), but did not change urinary ammonium excretion. In total, 21 participants (11%) developed hyperkalemia (plasma potassium 5.9±0.4 mmol/L). They were older and had higher baseline plasma potassium. CONCLUSIONS In patients with CKD stage G3b-4, increasing dietary potassium intake to recommended levels with potassium chloride supplementation raises plasma potassium by 0.4 mmol/L. This may result in hyperkalemia in older patients or those with higher baseline plasma potassium. Longer-term studies should address whether cardiorenal protection outweighs the risk of hyperkalemia.Clinical trial number: NCT03253172.
Collapse
Affiliation(s)
- Martin Gritter
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Rosa D. Wouda
- Division of Nephrology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Stanley M.H. Yeung
- Division of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | - Michiel L.A. Wieërs
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Frank Geurts
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Maria A.J. de Ridder
- Department of Medical Informatics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Liffert Vogt
- Division of Nephrology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Martin H. de Borst
- Division of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | - Joris I. Rotmans
- Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ewout J. Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
56
|
Imenez Silva PH, Mohebbi N. Kidney metabolism and acid-base control: back to the basics. Pflugers Arch 2022; 474:919-934. [PMID: 35513635 PMCID: PMC9338915 DOI: 10.1007/s00424-022-02696-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 01/18/2023]
Abstract
Kidneys are central in the regulation of multiple physiological functions, such as removal of metabolic wastes and toxins, maintenance of electrolyte and fluid balance, and control of pH homeostasis. In addition, kidneys participate in systemic gluconeogenesis and in the production or activation of hormones. Acid-base conditions influence all these functions concomitantly. Healthy kidneys properly coordinate a series of physiological responses in the face of acute and chronic acid-base disorders. However, injured kidneys have a reduced capacity to adapt to such challenges. Chronic kidney disease patients are an example of individuals typically exposed to chronic and progressive metabolic acidosis. Their organisms undergo a series of alterations that brake large detrimental changes in the homeostasis of several parameters, but these alterations may also operate as further drivers of kidney damage. Acid-base disorders lead not only to changes in mechanisms involved in acid-base balance maintenance, but they also affect multiple other mechanisms tightly wired to it. In this review article, we explore the basic renal activities involved in the maintenance of acid-base balance and show how they are interconnected to cell energy metabolism and other important intracellular activities. These intertwined relationships have been investigated for more than a century, but a modern conceptual organization of these events is lacking. We propose that pH homeostasis indissociably interacts with central pathways that drive progression of chronic kidney disease, such as inflammation and metabolism, independent of etiology.
Collapse
Affiliation(s)
- Pedro Henrique Imenez Silva
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
- National Center of Competence in Research NCCR Kidney.CH, Zurich, Switzerland.
| | - Nilufar Mohebbi
- National Center of Competence in Research NCCR Kidney.CH, Zurich, Switzerland
- Praxis Und Dialysezentrum Zurich, Zurich, Switzerland
| |
Collapse
|
57
|
Zhu A, Whitlock RH, Ferguson TW, Nour-Mohammadi M, Komenda P, Rigatto C, Collister D, Bohm C, Reaven NL, Funk SE, Tangri N. Metabolic Acidosis is Associated With Acute Kidney Injury in Patients With CKD. Kidney Int Rep 2022; 7:2219-2229. [PMID: 36217527 PMCID: PMC9546743 DOI: 10.1016/j.ekir.2022.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Metabolic acidosis in patients with chronic kidney disease (CKD) results from a loss of kidney function. It has been associated with CKD progression, all-cause mortality, and other adverse outcomes. We aimed to determine whether metabolic acidosis is associated with a higher risk of acute kidney injury (AKI). Methods This was a retrospective cohort study. Using electronic health records and administrative data, we enrolled 2 North American cohorts of patients with CKD Stages G3-G5 as follows: (i) 136,067 patients in the US electronic medical record (EMR) based cohort; and (ii) 34,957 patients in the Manitoba claims-based cohort. The primary exposure was metabolic acidosis (serum bicarbonate between 12 mEq/l and <22 mEq/l). The primary outcome was the development of AKI (defined using ICD-9 and 10 codes at hospital admission or a laboratory-based definition based on Kidney Disease: Improving Global Outcomes guidelines). We applied Cox proportional hazards regression models adjusting for relevant demographic and clinical characteristics. Results In both cohorts, metabolic acidosis was associated with AKI: hazard ratio (HR) 1.57 (95% confidence interval [CI] 1.52-1.61) in the US EMR cohort, and HR 1.65 (95% CI 1.58-1.73) in the Manitoba claims cohort. The association was consistent when serum bicarbonate was treated as a continuous variable, and in multiple subgroups, and sensitivity analyses including those adjusting for albuminuria. Conclusion Metabolic acidosis is associated with a higher risk of AKI in patients with CKD. AKI should be considered as an outcome in studies of treatments for patients with metabolic acidosis.
Collapse
Affiliation(s)
- Antonia Zhu
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Reid H. Whitlock
- Seven Oaks General Hospital, Chronic Disease Innovation Center, Winnipeg, Manitoba, Canada
| | - Thomas W. Ferguson
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Seven Oaks General Hospital, Chronic Disease Innovation Center, Winnipeg, Manitoba, Canada
| | | | - Paul Komenda
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Seven Oaks General Hospital, Chronic Disease Innovation Center, Winnipeg, Manitoba, Canada
| | - Claudio Rigatto
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Seven Oaks General Hospital, Chronic Disease Innovation Center, Winnipeg, Manitoba, Canada
| | - David Collister
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Seven Oaks General Hospital, Chronic Disease Innovation Center, Winnipeg, Manitoba, Canada
| | - Clara Bohm
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Seven Oaks General Hospital, Chronic Disease Innovation Center, Winnipeg, Manitoba, Canada
| | - Nancy L. Reaven
- Strategic Health Resources, La Cañada Flintridge, California, USA
| | - Susan E. Funk
- Strategic Health Resources, La Cañada Flintridge, California, USA
| | - Navdeep Tangri
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Seven Oaks General Hospital, Chronic Disease Innovation Center, Winnipeg, Manitoba, Canada
- Correspondence: Navdeep Tangri, Seven Oaks General Hospital, 2300 McPhillips Street, 2LB19 Winnipeg, Manitoba R2V 3M3, Canada.
| |
Collapse
|
58
|
Li Y, Qin GQ, Wang WY, Liu X, Gao XQ, Liu JH, Zheng T, Zhang W, Cheng L, Yang K, You X, Wu Y, Fang ZZ. Short chain fatty acids for the risk of diabetic nephropathy in type 2 diabetes patients. Acta Diabetol 2022; 59:901-909. [PMID: 35368224 DOI: 10.1007/s00592-022-01870-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/20/2022] [Indexed: 11/01/2022]
Abstract
AIMS This study aimed to explore relationships short chain fatty acids with diabetic nephropathy (DN) in type 2 diabetes (T2D) patients. METHODS We extracted the clinical and omics data of 100 T2D patients and 100 DN patients from April 2018 to April 2019 from a tertiary hospital. Restricted cubic splines were used to examine full-range associations of short chain fatty acids with DN in T2D.Query Logistic regression was used to obtain odds ratio (OR) and confidence interval (CI). RESULTS Acetate, butyrate and isovalerate were negatively correlated with DN. Isobutyrate was positively correlated with DN. Propionate ≥ 4.4 μg/mL and isobutyrate ≥ 1.4 μg/mL had threshold effects and their increasing levels above the cutoff points were associated with rapid rises in the risk of DN. The additive interaction between high propionate and high isobutyrate in serum significantly increased the risk of DN (OR34.35; 95%CI 7.11 to 166.08). Presence of hypertension further increased the OR of high propionate for DN to 8.27(95%CI 1.82 to 37.57) with a significant additive interaction. The additive interaction of the high isobutyrate and hypertension was not significant. CONCLUSIONS Acetate, butyrate and isovalerate were negatively associated with DN. Isobutyrate was positively associated with DN. Serum high propionate and high isobutyrate worked independently and synergistically to increase the risk of DN in T2D. Presence of hypertension further amplified the effect of copresence of high propionate on DN risk.
Collapse
Affiliation(s)
- Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Guo-Qiang Qin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Wan-Ying Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Xu Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Xiao-Qian Gao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Jun-Hui Liu
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shannxi, People's Republic of China
| | - Tao Zheng
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shannxi, People's Republic of China
| | - Wei Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Lan Cheng
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, People's Republic of China
| | - Kun Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Xin You
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, People's Republic of China
| | - Yue Wu
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shannxi, People's Republic of China.
| | - Zhong-Ze Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, People's Republic of China.
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, People's Republic of China.
| |
Collapse
|
59
|
Ravikumar NPG, Pao AC, Raphael KL. Acid-Mediated Kidney Injury Across the Spectrum of Metabolic Acidosis. Adv Chronic Kidney Dis 2022; 29:406-415. [PMID: 36175078 DOI: 10.1053/j.ackd.2022.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 01/25/2023]
Abstract
Metabolic acidosis affects about 15% of patients with chronic kidney disease. As kidney function declines, the kidneys progressively fail to eliminate acid, primarily reflected by a decrease in ammonium and titratable acid excretion. Several studies have shown that the net acid load remains unchanged in patients with reduced kidney function; the ensuing acid accumulation can precede overt metabolic acidosis, and thus, indicators of urinary acid or potential base excretion, such as ammonium and citrate, may serve as early signals of impending metabolic acidosis. Acid retention, with or without overt metabolic acidosis, initiates compensatory responses that can promote tubulointerstitial fibrosis via intrarenal complement activation and upregulation of endothelin-1, angiotensin II, and aldosterone pathways. The net effect is a cycle between acid accumulation and kidney injury. Results from small- to medium-sized interventional trials suggest that interrupting this cycle through base administration can prevent further kidney injury. While these findings inform current clinical practice guidelines, large-scale clinical trials are still necessary to prove that base therapy can limit chronic kidney disease progression or associated adverse events.
Collapse
Affiliation(s)
- Naveen P G Ravikumar
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University, Portland, OR; Veterans Affairs Portland Health Care System, Portland, OR
| | - Alan C Pao
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, CA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| | - Kalani L Raphael
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University, Portland, OR; Veterans Affairs Portland Health Care System, Portland, OR.
| |
Collapse
|
60
|
Vincent-Johnson A, Scialla JJ. Importance of Metabolic Acidosis as a Health Risk in Chronic Kidney Disease. Adv Chronic Kidney Dis 2022; 29:329-336. [PMID: 36175070 DOI: 10.1053/j.ackd.2022.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/09/2022] [Accepted: 05/25/2022] [Indexed: 01/25/2023]
Abstract
Human kidneys are well adapted to excrete the daily acid load from diet and metabolism in order to maintain homeostasis. In approximately 30% of patients with more advanced stages of CKD, these homeostatic processes are no longer adequate, resulting in metabolic acidosis. Potential deleterious effects of chronic metabolic acidosis in CKD, including muscle wasting, bone demineralization, hyperkalemia, and more rapid progression of CKD, have been well cataloged. Based primarily upon concerns related to nutrition and bone disease, early Kidney Disease Outcomes Quality Initiative guidelines recommended treating metabolic acidosis with alkali therapy targeting a serum bicarbonate ≥22 mEq/L. More recent guidelines have suggested similar targets based upon potential slowing of CKD progression. However, appropriately powered, long-term, randomized controlled trials to study efficacy and safety of alkali therapy for these outcomes are largely lacking. As a result, practice among physicians varies, underscoring the complexity of treatment of chronic metabolic acidosis in real-world CKD practice. Novel treatment approaches and rigorous phase 3 trials may resolve some of this controversy in the coming years. Metabolic acidosis is an important complication of CKD, and where it "falls" in the priority schema of CKD care will depend upon the generation of strong clinical evidence.
Collapse
Affiliation(s)
- Anita Vincent-Johnson
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - Julia J Scialla
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA; Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA.
| |
Collapse
|
61
|
Deng Y, Da J, Yu J, Zhou C, Yuan J, Zha Y. Single-cell RNA sequencing data analysis suggests the cell-cell interaction patterns of the pituitary-kidney axis. Sci Rep 2022; 12:11147. [PMID: 35778423 PMCID: PMC9249760 DOI: 10.1038/s41598-022-14680-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022] Open
Abstract
Kidney functions, including electrolyte and water reabsorption and secretion, could be influenced by circulating hormones. The pituitary gland produces a variety of hormones and cytokines; however, the influence of these factors on the kidney has not been well explained and explored. To provide more in-depth information and insights to support the pituitary–kidney axis connection, we used mouse pituitary and kidney single-cell transcriptomics data from the GEO database for further analysis. Based on a ligand–receptor pair analysis, cell–cell interaction patterns between the pituitary and kidney cell types were described. Key ligand–receptor pairs, such as GH-GHR, PTN-SDC2, PTN-SDC4, and DLK1-NOTCH3, were relatively active in the pituitary–kidney axis. These ligand–receptor pairs mainly target proximal tubule cells, principal cells, the loop of Henle, intercalated cells, pericytes, mesangial cells, and fibroblasts, and these cells are related to physiological processes, such as substance reabsorption, angiogenesis, and tissue repair. Our results suggested that the pituitary gland might directly regulate kidney function by secreting multiple hormones or cytokines and indicated that the above ligand–receptor pairs might represent a new research focus for studies on kidney function or kidney disease.
Collapse
Affiliation(s)
- Yiyao Deng
- Department of Nephrology, Guizhou Provincial People's Hospital, 83, Zhongshan Road, Nanming District, Guiyang, 550002, Guizhou, China
| | - Jingjing Da
- Department of Nephrology, Guizhou Provincial People's Hospital, 83, Zhongshan Road, Nanming District, Guiyang, 550002, Guizhou, China.,School of Medicine, Guizhou University, Guiyang, 550025, Guizhou, China.,NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Jiali Yu
- Department of Nephrology, Guizhou Provincial People's Hospital, 83, Zhongshan Road, Nanming District, Guiyang, 550002, Guizhou, China.,School of Medicine, Guizhou University, Guiyang, 550025, Guizhou, China.,NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Chaomin Zhou
- Department of Nephrology, Guizhou Provincial People's Hospital, 83, Zhongshan Road, Nanming District, Guiyang, 550002, Guizhou, China
| | - Jing Yuan
- Department of Nephrology, Guizhou Provincial People's Hospital, 83, Zhongshan Road, Nanming District, Guiyang, 550002, Guizhou, China.
| | - Yan Zha
- Department of Nephrology, Guizhou Provincial People's Hospital, 83, Zhongshan Road, Nanming District, Guiyang, 550002, Guizhou, China. .,School of Medicine, Guizhou University, Guiyang, 550025, Guizhou, China. .,NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China.
| |
Collapse
|
62
|
Nagami GT, Kraut JA. Regulation of Acid-Base Balance in Patients With Chronic Kidney Disease. Adv Chronic Kidney Dis 2022; 29:337-342. [PMID: 36175071 DOI: 10.1053/j.ackd.2022.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/16/2022] [Accepted: 05/31/2022] [Indexed: 01/25/2023]
Abstract
Normallly the kidneys handle the daily acid load arising from net endogenous acid production from the metabolism of ingested animal protein (acid) and vegetables (base). With chronic kidney disease, reduced acid excretion by the kidneys is primarily due to reduced ammonium excretion such that when acid excertion falls below acid porduction, acid accumulation occurs. With even mild reductions in glomerular filtration rate (60 to 90 ml/min), net acid excretion may fall below net acid production resulting in acid retention which may be initially sequestered in interstitial compartments in the kidneys, bones, and muscles resulting in no fall in measured systemic bicarbonate levels (eubicarbonatemic metabolic acidosis). With greater reductions in kidney function, the greater quantities of acid retained spillover systemically resulting in low pH (overt metabolic acidosis). The evaluation of acid-base balance in patients with CKD is complicated by the heterogeneity of clinical acid-base disorders and by the eubicarbonatemic nature of the early phase of acid retention. If supported by more extensive studies, blood gas analyses to confirm the acid-base disorder and newer ways for assessing the presence of acidosis such as urinary citrate measurements may become routine tools to evaluate and treat acid-base disorders in individuals with CKD.
Collapse
Affiliation(s)
- Glenn T Nagami
- Division of Nephrology, Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA; David Geffen School of Medicine, UCLA, Los Angeles, CA.
| | - Jeffrey A Kraut
- Division of Nephrology, VHAGLA Healthcare System, Los Angeles, CA; UCLA Membrane Biology Laboratory, David Geffen UCLA School of Medicine, Los Angeles, CA
| |
Collapse
|
63
|
Mathur VS, Li E, Wesson DE. Effects of veverimer on serum bicarbonate and physical function in diabetic patients with chronic kidney disease and metabolic acidosis: subgroup analysis from a randomized, controlled trial. Nephrol Dial Transplant 2022; 37:1302-1309. [PMID: 34240198 PMCID: PMC9217650 DOI: 10.1093/ndt/gfab209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Metabolic acidosis is a complication of chronic kidney disease (CKD) that increases risk of CKD progression, and causes bone demineralization and muscle protein catabolism. Patients with diabetes are prone to metabolic acidosis and functional limitations that decrease quality of life. Veverimer, an investigational, non-absorbed polymer that binds and removes gastrointestinal hydrochloric acid, is being developed as treatment for metabolic acidosis. This post hoc subgroup analysis evaluated effects of veverimer on metabolic acidosis and physical function among patients with diabetes. METHODS This was a Phase 3, multicenter, randomized, blinded, placebo-controlled trial in 196 patients with CKD (estimated glomerular filtration rate 20-40 mL/min/1.73 m2) and metabolic acidosis who were treated for up to 1 year with veverimer or placebo. RESULTS At Week 52, veverimer-treated patients with diabetes (n = 70), had a significantly greater increase in mean serum bicarbonate than the placebo group (n = 57) (4.4 versus 2.9 mmol/L, P < 0.05). Patient-reported limitations of physical function on the Kidney Disease and Quality of Life-Physical Function Domain (e.g. walking several blocks and climbing a flight of stairs) improved significantly in the veverimer versus placebo group (+12.5 versus +0.3, respectively, P < 0.001) as did objective physical performance on the repeated chair stand test (P < 0.0001). CONCLUSIONS Few interventions for patients with diabetes and CKD have successfully improved quality of life or physical functioning. Our study demonstrated that veverimer effectively treated metabolic acidosis in patients with diabetes and CKD, and significantly improved how these patients felt and functioned.
Collapse
Affiliation(s)
| | | | - Donald E Wesson
- Texas A&M Health Sciences Center College of Medicine, Dallas, TX, USA
- Donald E. Wesson Consulting LLC, Dallas, TX, USA
| |
Collapse
|
64
|
Bollenbecker S, Czaya B, Gutiérrez OM, Krick S. Lung-kidney interactions and their role in chronic kidney disease-associated pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2022; 322:L625-L640. [PMID: 35272496 DOI: 10.1152/ajplung.00152.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/22/2022] Open
Abstract
Chronic illnesses rarely present in a vacuum, devoid of other complications, and chronic kidney disease is hardly an exception. Comorbidities associated with chronic kidney disease lead to faster disease progression, expedited dialysis dependency, and a higher mortality rate. Although chronic kidney disease is most commonly accompanied by cardiovascular diseases and diabetes, there is clear cross talk between the lungs and kidneys pH balance, phosphate metabolism, and immune system regulation. Our present understanding of the exact underlying mechanisms that contribute to chronic kidney disease-related pulmonary disease is poor. This review summarizes the current research on kidney-pulmonary interorgan cross talk in the context of chronic kidney disease, highlighting various acute and chronic pulmonary diseases that lead to further complications in patient care. Treatment options for patients presenting with chronic kidney disease and lung disease are explored by assessing activated molecular pathways and the body's compensatory response mechanisms following homeostatic imbalance. Understanding the link between the lungs and kidneys will potentially improve health outcomes for patients and guide healthcare professionals to better understand how and when to treat each of the pulmonary comorbidities that can present with chronic kidney disease.
Collapse
Affiliation(s)
- Seth Bollenbecker
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Brian Czaya
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Orlando M Gutiérrez
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Stefanie Krick
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
65
|
Schrauben SJ, Apple BJ, Chang AR. Modifiable Lifestyle Behaviors and CKD Progression: A Narrative Review. KIDNEY360 2022; 3:752-778. [PMID: 35721622 PMCID: PMC9136893 DOI: 10.34067/kid.0003122021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 01/07/2022] [Indexed: 12/19/2022]
Abstract
Living a healthy lifestyle is one of the safest and most cost-effective ways to improve one's quality of life and prevent and/or manage chronic disease. As such, current CKD management guidelines recommend that patients adhere to a healthy diet, perform ≥150 minutes per week of physical activity, manage their body weight, abstain from tobacco use, and limit alcohol. However, there are limited studies that investigate the relationship between these lifestyle factors and the progression of CKD among people with established CKD. In this narrative review, we examine the reported frequencies of health lifestyle behavior engagement among individuals with non-dialysis-dependent CKD and the existing literature that examines the influences of diet, physical activity, weight management, alcohol consumption, and tobacco use on the progression of CKD, as measured by decline in GFR, incident ESKD, or elevated proteinuria or albuminuria in individuals with CKD. Many of the available studies are limited by length of follow-up and small sample sizes, and meta-analyses were limited because the studies were sparse and had heterogeneous classifications of behaviors and/or referent groups and of CKD progression. Further research should be done to determine optimal methods to assess behaviors to better understand the levels at which healthy lifestyle behaviors are needed to slow CKD progression, to investigate the effect of combining multiple lifestyle behaviors on important clinical outcomes in CKD, and to develop effective techniques for behavior change. Despite the lack of evidence of efficacy from large trials on the ability of lifestyle behaviors to slow CKD progression, maintaining a healthy lifestyle remains a cornerstone of CKD management given the undisputed benefits of healthy lifestyle behaviors on cardiovascular health, BP control, and survival.
Collapse
Affiliation(s)
- Sarah J. Schrauben
- Renal, Electrolyte-Hypertension Division, Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Alex R. Chang
- Kidney Health Research Institute, Department of Population Health Sciences, Geisinger Health, Danville, Pennsylvania
| |
Collapse
|
66
|
Alkali therapy protects renal function, suppresses inflammation, and improves cellular metabolism in kidney disease. Clin Sci (Lond) 2022; 136:557-577. [PMID: 35389462 DOI: 10.1042/cs20220095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022]
Abstract
Chronic kidney disease (CKD) affects about 10-13 % of the population worldwide and halting its progression is a major clinical challenge. Metabolic acidosis is both a consequence and a possible driver of CKD progression. Alkali therapy counteracts these effects in CKD patients, but underlying mechanisms remain incompletely understood. Here we show that bicarbonate supplementation protected renal function in a murine CKD model induced by an oxalate-rich diet. Alkali therapy had no effect on the aldosterone-endothelin axis but promoted levels of the anti-aging protein klotho; moreover, it suppressed adhesion molecules required for immune cell invasion along with reducing T helper cell and inflammatory monocyte invasion. Comparing transcriptomes from the murine crystallopathy model and from human biopsies of kidney transplant recipients suffering from acidosis with or without alkali therapy unveils parallel transcriptome responses mainly associated with lipid metabolism and oxidoreductase activity. Our data reveal novel pathways associated with acidosis in kidney disease and sensitive to alkali therapy and identifies potential targets through which alkali therapy may act on CKD and that may be amenable for more targeted therapies.
Collapse
|
67
|
Liebman SE, Joshi S. Plant-Based Diets and Peritoneal Dialysis: A Review. Nutrients 2022; 14:1304. [PMID: 35334961 PMCID: PMC8950727 DOI: 10.3390/nu14061304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/05/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023] Open
Abstract
Whole food plant-based diets are gaining popularity as a preventative and therapeutic modality for numerous chronic health conditions, including chronic kidney disease, but their role and safety in end-stage kidney disease patients on peritoneal dialysis (PD) is unclear. Given the general public's increased interest in this dietary pattern, it is likely that clinicians will encounter individuals on PD who are either consuming, considering, or interested in learning more about a diet with more plants. This review explores how increasing plant consumption might affect those on PD, encompassing potential benefits, including some specific to the PD population, and potential concerns.
Collapse
Affiliation(s)
- Scott E Liebman
- Department of Medicine, Division of Nephrology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Shivam Joshi
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Medicine, NYC Health + Hospitals/Bellevue, New York, NY 10016, USA
| |
Collapse
|
68
|
Kaneko S, Usui J, Takahashi K, Oda T, Yamagata K. Increased intrarenal post-glomerular blood flow is a key condition for the development of calcineurin inhibitor-induced renal tubular acidosis in kidney transplant recipients. Clin Transplant 2022; 36:e14648. [PMID: 35293652 DOI: 10.1111/ctr.14648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Hyperchloremic metabolic acidosis (HCMA) from renal tubular acidosis (RTA) is common in kidney transplant (KT) recipients. Calcineurin inhibitors (CNIs) are a potential cause of RTA, and whether HCMA is a determinant of poor graft prognosis is controversial. METHODS The subjects were living-donor KT recipients (LDKTRs, n = 47) and matched donors (n = 43). All cases of rejection, extrarenal causes, and respiratory disorders were excluded. HCMA was defined as having a [Na+] - [Cl-] value of ≤ 34 or starting alkalization. We determined the potential causes of HCMA in LDKTRs at 3 months (m) and 1 year (y) post-KT. We examined renal hemodynamic parameters in 26 LDKTRs at 1 y post-KT: namely, glomerular filtration rate (GFR), renal plasma flow (RPF), filtration fraction (FF; GFR/RPF) and pre-/post-glomerular vascular resistance (pre-/postVR). RESULTS The HCMA incidence in the 3-m post-KT LDKTR group was higher than that of the donors (51.0% vs. 6.9%, p<0.001, adjusted odds ratio: 6.7-15.7). Among adjusted factors, the most dominant HCMA contributor was low hemoglobin concentration (Hb ≤12 g/dL). Compared to non-HCMA cases, HCMA patients had low FF and low post-VR (p = 0.008, 0.003, respectively) suggesting increased intrarenal post-glomerular blood flow. The high pathological score of alternative arteriolar hyalinosis (aah) ≥2 was a significant HCMA risk. The tacrolimus trough level was not high in HCMA but was significantly high in HCMA in the low post-VR setting (p = 0.002). CONCLUSION Among LDKTRs, low hemoglobin level is an important contributor to the manifestation of HCMA in the induction period, and increased intrarenal post-glomerular blood flow is a key condition for the development of CNI-induced RTA. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shuzo Kaneko
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Department of Nephrology, Itabashi Chuo Medical Center, Itabashi, Tokyo, Japan
| | - Joichi Usui
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Kazuhiro Takahashi
- Department of Gastroenterological and Hepatobiliary Surgery and Organ Transplantation, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tatsuya Oda
- Department of Gastroenterological and Hepatobiliary Surgery and Organ Transplantation, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kunihiro Yamagata
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
69
|
Epithelial–Fibroblast Crosstalk Protects against Acidosis-Induced Inflammatory and Fibrotic Alterations. Biomedicines 2022; 10:biomedicines10030681. [PMID: 35327483 PMCID: PMC8945333 DOI: 10.3390/biomedicines10030681] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022] Open
Abstract
Pathogenesis of chronic kidney disease (CKD) is accompanied by extracellular acidosis inflammation, fibrosis and epithelial-to-mesenchymal transition (EMT). The aim of this study was to assess the influence of acidosis on tubule epithelial cells (NRK-52E) and fibroblasts (NRK-49F) in dependence of cellular crosstalk. NRK-52E and NRK-49F were used in mono- and co-cultures, and were treated with acidic media (pH 6.0) for 48 h. The intracellular proteins were measured by Western blot. Secreted proteins were measured by ELISA. Distribution of E-cadherin was assessed by immunofluorescence and epithelial barrier function by FITC-dextran diffusion. Inflammation: Acidosis led to an increase in COX-2 in NRK-52E and TNF in NRK-49F in monoculture. In co-culture, this effect was reversed. EMT: Acidosis led to an increase in vimentin protein in both cell lines, whereas in co-culture, the effect was abolished. In NRK-52E, the E-cadherin expression was unchanged, but subcellular E-cadherin showed a disturbed distribution, and cellular barrier function was decreased. Fibrosis: Monoculture acidosis led to an increased secretion of collagen I and fibronectin in NRK-52E and collagen I in NRK-49F. In co-culture, the total collagen I secretion was unchanged, and fibronectin secretion was decreased. Intercellular crosstalk between epithelial cells and fibroblasts has a protective function regarding the development of acidosis-induced damage.
Collapse
|
70
|
Fukasawa H, Kaneko M, Uchiyama Y, Yasuda H, Furuya R. Lower bicarbonate level is associated with CKD progression and all-cause mortality: a propensity score matching analysis. BMC Nephrol 2022; 23:86. [PMID: 35246054 PMCID: PMC8895620 DOI: 10.1186/s12882-022-02712-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/21/2022] [Indexed: 11/23/2022] Open
Abstract
Background Although metabolic acidosis is known as a potential complication of chronic kidney disease (CKD), there is limited information concerning the association between metabolic acidosis and clinical outcomes. Methods Five hundred fifty-two patients referred to renal division of Iwata City Hospital from 2015 to 2017 were included as a retrospective CKD cohort, and finally 178 patients with CKD stage III or IV and 20 to 80 years of age were analyzed. We examined the association between serum bicarbonate (HCO3−) levels and clinical outcomes using Kaplan-Meier methods after the matching of baseline characteristics by propensity scores. Results Of 178 patients with CKD, patients with lower HCO3− levels (N = 94), as compared with patients with higher HCO3− levels (N = 84), were more likely to be male (P < 0.05), had more severe CKD stages (P < 0.05), more frequent use of renin-angiotensin system inhibitor (P < 0.05) or uric acid lowering agent (P < 0.001), heavier body weight (P < 0.001) and lower estimated glomerular filtration rate (P < 0.05). In Kaplan-Meier analysis after propensity score matching, the incidence of composite outcome as the doubling of serum creatinine level from baseline, end-stage kidney disease requiring the initiation of dialysis, or death from any causes was significantly fewer in the higher HCO3− group than the lower HCO3− group (N = 57 each group, P = 0.016). Conclusions Lower HCO3− level is significantly associated with the doubling of serum creatinine level, end-stage kidney disease or all-cause mortality in patients with CKD. Trial registration This study was registered with the Clinical Trial Registry of the University Hospital Medical Information Network (http://www.umin.ac.jp/, study number: UMIN000044861).
Collapse
Affiliation(s)
- Hirotaka Fukasawa
- Renal Division, Department of Internal Medicine, Iwata City Hospital, 512-3 Ohkubo, Iwata, Shizuoka, 438-8550, Japan.
| | - Mai Kaneko
- Renal Division, Department of Internal Medicine, Iwata City Hospital, 512-3 Ohkubo, Iwata, Shizuoka, 438-8550, Japan
| | - Yuri Uchiyama
- Renal Division, Department of Internal Medicine, Iwata City Hospital, 512-3 Ohkubo, Iwata, Shizuoka, 438-8550, Japan
| | - Hideo Yasuda
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Ryuichi Furuya
- Renal Division, Department of Internal Medicine, Iwata City Hospital, 512-3 Ohkubo, Iwata, Shizuoka, 438-8550, Japan
| |
Collapse
|
71
|
Bushinsky DA, Krieger NS. Effects of Acid on Bone. Kidney Int 2022; 101:1160-1170. [DOI: 10.1016/j.kint.2022.02.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022]
|
72
|
Mathur VS, Wesson DE, Tangri N, Li E, Bushinsky DA. Effects of veverimer on serum bicarbonate and physical function in women with chronic kidney disease and metabolic acidosis: a subgroup analysis from a randomised, controlled trial. BMC Nephrol 2022; 23:82. [PMID: 35216581 PMCID: PMC8881824 DOI: 10.1186/s12882-022-02690-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/28/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Globally, the prevalence of chronic kidney disease (CKD) is higher in women than in men; however, women have been historically under-represented in nephrology clinical trials. Metabolic acidosis increases risk of progressive loss of kidney function, causes bone demineralization and muscle protein catabolism, and may be more consequential in women given their lower bone and muscle mass. Veverimer, an investigational, non-absorbed polymer that binds and removes gastrointestinal hydrochloric acid, is being developed as treatment for metabolic acidosis. METHODS This was a Phase 3, multicenter, randomised, blinded, placebo-controlled trial in 196 patients with CKD (eGFR: 20-40 mL/min/1.73 m2) and metabolic acidosis who were treated for up to 1 year with veverimer or placebo. We present the findings from a pre-specified subgroup analysis evaluating the effects of veverimer on metabolic acidosis and physical function among women (N = 77) enrolled in this trial. RESULTS At week 52, women treated with veverimer had a greater increase in mean (± standard error) serum bicarbonate than the placebo group (5.4 [0.5] vs. 2.2 [0.6] mmol/L; P < 0.0001). Physical Function reported by patients on the Kidney Disease and Quality of Life - Physical Function Domain, a measure that includes items related to walking, stair climbing, carrying groceries and other activities improved significantly in women randomized to veverimer vs placebo (+ 13.2 vs. -5.2, respectively, P < 0.0031). Objectively measured performance time on the repeated chair stand test also improved significantly in the veverimer group vs. placebo (P = 0.0002). CONCLUSIONS Veverimer was effective in treating metabolic acidosis in women with CKD, and significantly improved how they felt and functioned. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03390842 . Registered on January 4, 2018.
Collapse
Affiliation(s)
- Vandana S Mathur
- MathurConsulting LLC, 25 Upenuf Road, Suite 100, Woodside, CA, 94062-2633, USA.
| | - Donald E Wesson
- Texas A&M Health Sciences Center College of Medicine, Dallas, TX, USA
- Donald E Wesson Consulting, LLC, Dallas, TX, USA
| | | | | | - David A Bushinsky
- University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
73
|
Artificial Kidney Engineering: The Development of Dialysis Membranes for Blood Purification. MEMBRANES 2022; 12:membranes12020177. [PMID: 35207097 PMCID: PMC8876607 DOI: 10.3390/membranes12020177] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 11/17/2022]
Abstract
The artificial kidney, one of the greatest medical inventions in the 20th century, has saved innumerable lives with end stage renal disease. Designs of artificial kidney evolved dramatically in decades of development. A hollow-fibered membrane with well controlled blood and dialysate flow became the major design of the modern artificial kidney. Although they have been well established to prolong patients’ lives, the modern blood purification system is still imperfect. Patient’s quality of life, complications, and lack of metabolic functions are shortcomings of current blood purification treatment. The direction of future artificial kidneys is toward miniaturization, better biocompatibility, and providing metabolic functions. Studies and trials of silicon nanopore membranes, tissue engineering for renal cell bioreactors, and dialysate regeneration are all under development to overcome the shortcomings of current artificial kidneys. With all these advancements, wearable or implantable artificial kidneys will be achievable.
Collapse
|
74
|
Calabrese V, Cernaro V, Battaglia V, Gembillo G, Longhitano E, Siligato R, Sposito G, Ferlazzo G, Santoro D. Correlation between Hyperkalemia and the Duration of Several Hospitalizations in Patients with Chronic Kidney Disease. J Clin Med 2022; 11:244. [PMID: 35011985 PMCID: PMC8746076 DOI: 10.3390/jcm11010244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: This observational study aimed to verify the association between serum potassium levels and hospitalization days in patients with chronic kidney disease in a follow up of nine months. (2) Methods: Patients with chronic kidney disease were divided into group A (180 patients, potassium ≤ 5.1 mEq/L) and B (90 patients, potassium > 5.1 mEq/L). Student's t-test, Mann-Whitney test, Pearson's Chi-Square test, Pearson/Spearman's correlation test and linear regression test were performed in the entire sample and in stage-G4/5 subsample. (3) Results: Groups A and B differed for estimated glomerular filtration rate (eGFR) (34.89 (IQR, 16.24-57.98) vs. 19.8 (IQR, 10.50-32.50) mL/min/1.73 m2; p < 0.0001), hemoglobin (11.64 ± 2.20 vs. 10.97 ± 2.19 g/dL, p = 0.048), sum of hospitalization days (8 (IQR, 6-10) vs. 11 (IQR, 7-15) days; p < 0.0001) and use of angiotensin II receptor blockers (40.2% vs. 53.3%; p = 0.010). Considering patients with eGFR 6-30 mL/min/1.73 m2, differences in the sum of hospitalization days were confirmed. Multivariable regression analysis showed that hyperkalemia is an independent risk factor of increased hospital length. In stage G4-G5, regression analysis showed that hyperkalemia is the only independent risk factor (β = 2.93, 95% confidence interval, 0.077-5.794, p = 0.044). (4) Conclusions: We observed significantly greater odds of increased length of hospital stay among patients with higher potassium, mostly in stages G4-G5 chronic kidney disease.
Collapse
Affiliation(s)
- Vincenzo Calabrese
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (V.C.); (V.C.); (V.B.); (G.G.); (E.L.); (R.S.)
| | - Valeria Cernaro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (V.C.); (V.C.); (V.B.); (G.G.); (E.L.); (R.S.)
| | - Valeria Battaglia
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (V.C.); (V.C.); (V.B.); (G.G.); (E.L.); (R.S.)
| | - Guido Gembillo
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (V.C.); (V.C.); (V.B.); (G.G.); (E.L.); (R.S.)
| | - Elisa Longhitano
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (V.C.); (V.C.); (V.B.); (G.G.); (E.L.); (R.S.)
| | - Rossella Siligato
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (V.C.); (V.C.); (V.B.); (G.G.); (E.L.); (R.S.)
| | - Giovanna Sposito
- Unit of Clinical Pathology, Department of Human Pathology of Adults and Developmental Age, University of Messina, 98125 Messina, Italy; (G.S.); (G.F.)
| | - Guido Ferlazzo
- Unit of Clinical Pathology, Department of Human Pathology of Adults and Developmental Age, University of Messina, 98125 Messina, Italy; (G.S.); (G.F.)
| | - Domenico Santoro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (V.C.); (V.C.); (V.B.); (G.G.); (E.L.); (R.S.)
| |
Collapse
|
75
|
Saliu TP, Kumrungsee T, Miyata K, Tominaga H, Yazawa N, Hashimoto K, Kamesawa M, Yanaka N. Comparative study on molecular mechanism of diabetic myopathy in two different types of streptozotocin-induced diabetic models. Life Sci 2022; 288:120183. [PMID: 34848193 DOI: 10.1016/j.lfs.2021.120183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/25/2022]
Abstract
AIMS Streptozotocin (STZ)-induced diabetic animal models have been widely used to study diabetic myopathy; however, non-specific cytotoxic effects of high-dose STZ have been discussed. The purpose of this study was to compare diabetic myopathy in a high-STZ model with another well-established STZ model with reduced cytotoxicity (high-fat diet (HFD) and low-dose STZ) and to identify mechanistic insights underlying diabetic myopathy in STZ models that can mimic perturbations observed in human patients with diabetic myopathy. MAIN METHODS Male C57BL6 mice were injected with a single high dose of STZ (180 mg/kg, High-STZ) or were given HFD plus low-dose STZ injection (STZ, 55 mg/kg/day, five consecutive days, HFD/STZ). We characterized diabetic myopathy by histological and immunochemical analyses and conducted gene expression analysis. KEY FINDINGS The high-STZ model showed a significant reduction in tibialis anterior myofiber size along with decreased satellite cell content and downregulation of inflammation response and collagen gene expression. Interestingly, blood corticosteroid levels were significantly increased in the high-STZ model, which was possibly related to lowered inflammation response-related gene expression. Further analyses using the HFD/STZ model showed downregulation of gene expression related to mitochondrial functions accompanied by a significant decrease in ATP levels in the muscles. SIGNIFICANCE The high-STZ model is suitable for studies regarding not only severe diabetic myopathy with excessive blood glucose but also negative impact of glucocorticoids on skeletal muscles. In contrast, the HFD/STZ model is characterized by higher immune responses and lower ATP production, which also reflects the pathologies observed in human diabetic patients.
Collapse
Affiliation(s)
- Tolulope Peter Saliu
- Graduate School of Integrated Sciences for Life, Hiroshima University, 4-4 Kagamiyama 1-chome, Higashi-Hiroshima 739-8528, Japan
| | - Thanutchaporn Kumrungsee
- Graduate School of Integrated Sciences for Life, Hiroshima University, 4-4 Kagamiyama 1-chome, Higashi-Hiroshima 739-8528, Japan.
| | - Kenshu Miyata
- Graduate School of Integrated Sciences for Life, Hiroshima University, 4-4 Kagamiyama 1-chome, Higashi-Hiroshima 739-8528, Japan
| | - Hikaru Tominaga
- Graduate School of Integrated Sciences for Life, Hiroshima University, 4-4 Kagamiyama 1-chome, Higashi-Hiroshima 739-8528, Japan
| | - Nao Yazawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, 4-4 Kagamiyama 1-chome, Higashi-Hiroshima 739-8528, Japan
| | - Kotaro Hashimoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, 4-4 Kagamiyama 1-chome, Higashi-Hiroshima 739-8528, Japan
| | - Mion Kamesawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, 4-4 Kagamiyama 1-chome, Higashi-Hiroshima 739-8528, Japan
| | - Noriyuki Yanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, 4-4 Kagamiyama 1-chome, Higashi-Hiroshima 739-8528, Japan.
| |
Collapse
|
76
|
Guo L, Chen S, Ou L, Li S, Ye ZN, Liu HF. Disrupted Alpha-Ketoglutarate Homeostasis: Understanding Kidney Diseases from the View of Metabolism and Beyond. Diabetes Metab Syndr Obes 2022; 15:1961-1974. [PMID: 35783031 PMCID: PMC9248815 DOI: 10.2147/dmso.s369090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022] Open
Abstract
Alpha-ketoglutarate (AKG) is a key intermediate of various metabolic pathways including tricarboxylic acid (TCA) cycle, anabolic and catabolic reactions of amino acids, and collagen biosynthesis. Meanwhile, AKG also participates in multiple signaling pathways related to cellular redox regulation, epigenetic processes, and inflammation response. Emerging evidence has shown that kidney diseases like diabetic nephropathy and renal ischemia/reperfusion injury are associated with metabolic disorders. In consistence with metabolic role of AKG, further metabolomics study demonstrated a dysregulated AKG level in kidney diseases. Intriguingly, earlier studies during the years of 1980s and 1990s indicated that AKG may benefit wound healing and surgery recovery. Recently, interests on AKG are arising again due to its protective roles on healthy ageing, which may shed light on developing novel therapeutic strategies against age-related diseases including renal diseases. This review will summarize the physiological and pathological properties of AKG, as well as the underlying molecular mechanisms, with a special emphasis on kidney diseases.
Collapse
Affiliation(s)
- Lijing Guo
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Shihua Chen
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Liping Ou
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Shangmei Li
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Zhen-Nan Ye
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Correspondence: Zhen-Nan Ye; Hua-Feng Liu, Email ;
| | - Hua-Feng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| |
Collapse
|
77
|
Chen R, Xu L, Zhang X, Sun G, Zeng W, Sun X. Protective effect and mechanism of Shenkang injection on adenine-induced chronic renal failure in rats. Acta Cir Bras 2022; 37:e370304. [PMID: 35674582 PMCID: PMC9161622 DOI: 10.1590/acb370304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/11/2022] [Indexed: 12/13/2022] Open
Abstract
Purpose: To investigate the protective effects of Shenkang injection (SKI) on adenine-induced chronic renal failure (CRF) in rat. Methods: Sprague Dawley rats were randomly divided into five groups: control, model, and SKI groups (5, 10, 20 mL/kg). Rats in model and SKI groups were treated with adenine i.g. at a dose of 150 mg/kg every day for 12 weeks to induce CRF. Twelve weeks later, SKI was administered to the rat i.p. for four weeks. The effects of SKI on kidney injury and fibrosis were detected. Results: SKI inhibited the elevation of the urine level of N-acetyl-b-D-glucosaminidase, kidney injury molecule-1, beta-2-microglobulin, urea protein in CRF rats. The serum levels of uric acid and serum creatinine increased and albumin decreased in the model group, which was prevented by SKI. SKI inhibited the release of inflammatory cytokines and increasing the activities of antioxidant enzymes in serum. SKI inhibited the expression of transforming growth factor-β1, vascular cell adhesion molecule 1, intercellular adhesion molecule 1, collagen I, collagen III, endothelin-1, laminin in kidney of CRF rats. Conclusions: SKI protected against adenine-induced kidney injury and fibrosis and exerted anti-inflammatory, and antioxidant effects in CRF rats.
Collapse
Affiliation(s)
| | - Lijiao Xu
- Institute of Medicinal Plant Development, China
| | - Xu Zhang
- Institute of Medicinal Plant Development, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, China
| | | | - Xiaobo Sun
- Institute of Medicinal Plant Development, China
| |
Collapse
|
78
|
Dietary Acid Load and Relationship with Albuminuria and Glomerular Filtration Rate in Individuals with Chronic Kidney Disease at Predialysis State. Nutrients 2021; 14:nu14010170. [PMID: 35011042 PMCID: PMC8746801 DOI: 10.3390/nu14010170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022] Open
Abstract
The Western diet, characterized by excessive consumption of animal protein and reduced intake of vegetables and fruits, is also rich in sulfur, chlorine, and organic acids, which are the main sources of dietary acid load. A relationship between dietary acid load, renal function, and progression of chronic kidney disease has been demonstrated. Dietary modifications seem to contribute to a reduction in dietary acid load, and are associated with improved outcomes in individuals with chronic kidney disease (CKD). The aim of this paper was to review the existing evidence concerning the association between dietary acid load and renal function in nondialyzed individuals with CKD. A systematic review was conducted by gathering articles in electronic databases (MEDLINE/PubMed, Scopus, and Web of Science) from January 2018 to May 2021. Dietary acid load and GFR and/or albuminuria were analyzed. A total of 1078 articles were extracted, of which 5 met the inclusion criteria. Only one study found no statistically significant associations between the study variables. The remaining showed a negative association between dietary acid load and renal function. This systematic review confirmed the existence of an association between dietary acid load and renal function, with a high dietary acid load contributing to a decreased renal function.
Collapse
|
79
|
Cheng F, Li Q, Wang J, Wang Z, Zeng F, Zhang Y. The Effects of Oral Sodium Bicarbonate on Renal Function and Cardiovascular Risk in Patients with Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Ther Clin Risk Manag 2021; 17:1321-1331. [PMID: 34908841 PMCID: PMC8665881 DOI: 10.2147/tcrm.s344592] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Oral sodium bicarbonate is often used to correct acid-base disturbance in patients with chronic kidney disease (CKD). However, there is little evidence on patient-level benign outcomes to support the practice. METHODS We conducted a systematic review and meta-analysis to examine the efficacy and safety of oral sodium bicarbonate in CKD patients. A total of 1853 patients with chronic metabolic acidosis or those with low-normal serum bicarbonate (22-24 mEq/L) were performed to compare the efficacy and safety of oral sodium bicarbonate in patients with CKD. RESULTS There was a significant increase in serum bicarbonate level (MD 2.37 mEq/L; 95% CI, 1.03 to 3.72) and slowed the decline in estimated glomerular filtration rate (eGFR) (MD -4.44 mL/min per 1.73 m2, 95% CI, -4.92 to -3.96) compared with the control groups. The sodium bicarbonate lowered T50-time, an indicator of vascular calcification (MD -20.74 min; 95% CI, -49.55 to 8.08); however, there was no significant difference between the two groups. In addition, oral sodium bicarbonate dramatically reduced systolic blood pressure (MD -2.97 mmHg; 95% CI, -5.04 to -0.90) and diastolic blood pressure (MD -1.26 mmHg; 95% CI, -2.33 to -0.19). There were no statistically significant body weight, urine pH and mean mid-arm muscle circumference. CONCLUSION Treatment of metabolic acidosis with sodium bicarbonate may slow the decline rate of kidney function and potentially significantly improve vascular endothelial function in patients with CKD. PROSPERO REGISTRATION NUMBER CRD42020207185.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, People’s Republic of China
| | - Qiang Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, People’s Republic of China
| | - Jinglin Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, People’s Republic of China
| | - Zhendi Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Fang Zeng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, People’s Republic of China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, People’s Republic of China
| |
Collapse
|
80
|
Blijdorp CJ, Severs D, Musterd-Bhaggoe UM, Gansevoort RT, Zietse R, Hoorn EJ. Serum bicarbonate is associated with kidney outcomes in autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 2021; 36:2248-2255. [PMID: 33377160 PMCID: PMC8643593 DOI: 10.1093/ndt/gfaa283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Metabolic acidosis accelerates progression of chronic kidney disease, but whether this is also true for autosomal dominant polycystic kidney disease (ADPKD) is unknown. METHODS Patients with ADPKD from the DIPAK (Developing Interventions to halt Progression of ADPKD) trial were included [n = 296, estimated glomerular filtration rate (eGFR) 50 ± 11 mL/min/1.73 m2, 2.5 years follow-up]. Outcomes were worsening kidney function (30% decrease in eGFR or kidney failure), annual eGFR change and height-adjusted total kidney and liver volumes (htTKV and htTLV). Cox and linear regressions were adjusted for prognostic markers for ADPKD [Mayo image class and predicting renal outcomes in ADPKD (PROPKD) scores] and acid-base parameters (urinary ammonium excretion). RESULTS Patients in the lowest tertile of baseline serum bicarbonate (23.1 ± 1.6 mmol/L) had a significantly greater risk of worsening kidney function [hazard ratio = 2.95, 95% confidence interval (CI) 1.21-7.19] compared with patients in the highest tertile (serum bicarbonate 29.0 ± 1.3 mmol/L). Each mmol/L decrease in serum bicarbonate increased the risk of worsening kidney function by 21% in the fully adjusted model (hazard ratio = 1.21, 95% CI 1.06-1.37). Each mmol/L decrease of serum bicarbonate was also associated with further eGFR decline (-0.12 mL/min/1.73 m2/year, 95% CI -0.20 to -0.03). Serum bicarbonate was not associated with changes in htTKV or htTLV growth. CONCLUSIONS In patients with ADPKD, a lower serum bicarbonate within the normal range predicts worse kidney outcomes independent of established prognostic factors for ADPKD and independent of urine ammonium excretion. Serum bicarbonate may add to prognostic models and should be explored as a treatment target in ADPKD.
Collapse
Affiliation(s)
- Charles J Blijdorp
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - David Severs
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Usha M Musterd-Bhaggoe
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ronald T Gansevoort
- Department of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert Zietse
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ewout J Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
81
|
Kim HJ. Metabolic Acidosis in Chronic Kidney Disease: Pathogenesis, Clinical Consequences, and Treatment. Electrolyte Blood Press 2021; 19:29-37. [PMID: 35003283 PMCID: PMC8715222 DOI: 10.5049/ebp.2021.19.2.29] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
The kidneys play an important role in regulating the acid-base balance. Metabolic acidosis is common in chronic kidney disease (CKD) patients and can lead to poor outcomes, such as bone demineralization, muscle mass loss, and worsening of renal function. Metabolic acidosis is usually approached with evaluating the serum bicarbonate levels but should be assessed by counting blood pH. Current guidelines recommend oral bicarbonate supplementation to maintain the serum bicarbonate levels within the normal range. However, a slow decline in the glomerular filtration rate might occur, even though the serum bicarbonate levels were in the normal range. Because the serum bicarbonate levels decrease when metabolic acidosis advances, other biomarkers are necessary to indicate acid retention for early diagnosis of metabolic acidosis. For this, urine citrate and ammonium excretion may be used to follow the course of CKD patients. Metabolic acidosis can be treated with an increased fruit and vegetable intake and oral alkali supplementation. Previous studies have suggested that administration of oral sodium bicarbonate may preserve kidney function without significant increases in blood pressure and body weight. Veverimer, a non-absorbed, counterion-free, polymeric drug, is emerging to treat metabolic acidosis, but further researches are awaited. Further studies are also needed to clarify the target therapeutic range of serum bicarbonate and the drugs used for metabolic acidosis.
Collapse
Affiliation(s)
- Hyo Jin Kim
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Republic of Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| |
Collapse
|
82
|
Choi JS, Yun D, Kim DK, Oh KH, Joo KW, Kim YS, Na KY, Han SS. Hyperchloremia is associated with poor renal outcome after coronary artery bypass grafting. BMC Nephrol 2021; 22:343. [PMID: 34657614 PMCID: PMC8522137 DOI: 10.1186/s12882-021-02554-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 10/08/2021] [Indexed: 11/10/2022] Open
Abstract
Background Hyperchloremia is associated with the risks of several morbidities and mortality. However, its relationship with acute kidney injury (AKI) and end-stage renal disease (ESRD) in patients undergoing coronary artery bypass grafting (CABG) remains unresolved. Methods A total of 2977 patients undergoing CABG between 2003 and 2015 were retrospectively reviewed from two tertiary hospitals. Patients were categorized by serum chloride levels into normochloremia (95–105 mmol/L), mild hyperchloremia (106–110 mmol/L), and severe hyperchloremia (> 110 mmol/L). The odds ratios (ORs) for AKI and hazard ratios (HRs) for ESRD were calculated after adjustment for multiple covariates. The death-adjusted risk of ESRD was additionally evaluated. Results Postoperative AKI occurred in 798 patients (26.5%). The hyperchloremia group had a higher risk of AKI than the normochloremia group, wherein the risk was incremental depending on the severity of hyperchloremia, as follows: ORs were 1.26 (1.06–1.51) and 1.95 (1.52–2.51) in the mild and severe hyperchloremia groups, respectively. During a median period of 7 years (maximum 15 years), 70 patients (2.3%) had ESRD. The severe hyperchloremia group was at an elevated risk of ESRD compared with the normochloremia group, with an HR of 2.43 (1.28–4.63). Even after adjusting for the competing risk of death, hyperchloremia was associated with the risk of ESRD. Conclusions Preoperative hyperchloremia is associated with poor renal outcomes such as AKI and ESRD after CABG. Accordingly, serum chloride should be monitored in patients undergoing CABG.
Collapse
Affiliation(s)
- Jae Shin Choi
- Department of Internal Medicine, Pyeongtaek St. Mary's Hospital, Gyeonggi-do, Korea
| | - Donghwan Yun
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehakro, Jongno-gu, Seoul, 03080, Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehakro, Jongno-gu, Seoul, 03080, Korea
| | - Kwon Wook Joo
- Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehakro, Jongno-gu, Seoul, 03080, Korea
| | - Yon Su Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehakro, Jongno-gu, Seoul, 03080, Korea
| | - Ki Young Na
- Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehakro, Jongno-gu, Seoul, 03080, Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, Korea
| | - Seung Seok Han
- Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehakro, Jongno-gu, Seoul, 03080, Korea.
| |
Collapse
|
83
|
Abstract
Small-scale trials in patients with chronic kidney disease (CKD) 3-5 have shown that hypobicarbonatemic metabolic acidosis promotes progression of CKD. Accordingly, the 2012 KDIGO (Kidney Disease: Improving Global Outcomes) guideline suggests base administration to patients with CKD when serum bicarbonate concentration ([HCO3ˉ]) is <22 mEq/L (~15% of non–dialysis-dependent patients with CKD). However, individuals with milder CKD largely maintain serum [HCO3ˉ] within the normal range (eubicarbonatemia) and yet can manifest hydrogen ion (H+) retention. Limited data in eubicarbonatemic patients with CKD 2 suggest that base administration ameliorates CKD progression. Furthermore, most patients with moderate and advanced CKD maintain a normal serum [HCO3ˉ], and of those, the vast majority most likely harbor masked H+ retention. The present review probes this expanded concept of metabolic acidosis of CKD: the eubicarbonatemic H+ retention or subclinical metabolic acidosis of CKD. It focuses on the high prevalence of the entity, its pathophysiologic features, its clinical course, and recent work on potential biomarkers of the condition. Further, it puts forward the urgent task of investigating definitively whether treatment with alkali of eubicarbonatemic H+ retention delays CKD progression. If proven true, such knowledge would trigger a paradigm shift in the indication for alkali therapy in CKD.
Collapse
Affiliation(s)
- Nicolaos E Madias
- Department of Medicine, Tufts University School of Medicine and Division of Nephrology, Department of Medicine, St. Elizabeth's Medical Center, Boston, MA
| |
Collapse
|
84
|
Shiizaki K, Tsubouchi A, Miura Y, Seo K, Kuchimaru T, Hayashi H, Iwazu Y, Miura M, Battulga B, Ohno N, Hara T, Kunishige R, Masutani M, Negishi K, Kario K, Kotani K, Yamada T, Nagata D, Komuro I, Itoh H, Kurosu H, Murata M, Kuro-o M. Calcium phosphate microcrystals in the renal tubular fluid accelerate chronic kidney disease progression. J Clin Invest 2021; 131:145693. [PMID: 34185705 PMCID: PMC8363285 DOI: 10.1172/jci145693] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 06/25/2021] [Indexed: 12/19/2022] Open
Abstract
The Western pattern diet is rich not only in fat and calories but also in phosphate. The negative effects of excessive fat and calorie intake on health are widely known, but the potential harms of excessive phosphate intake are poorly recognized. Here, we show the mechanism by which dietary phosphate damages the kidney. When phosphate intake was excessive relative to the number of functioning nephrons, circulating levels of FGF23, a hormone that increases the excretion of phosphate per nephron, were increased to maintain phosphate homeostasis. FGF23 suppressed phosphate reabsorption in renal tubules and thus raised the phosphate concentration in the tubule fluid. Once it exceeded a threshold, microscopic particles containing calcium phosphate crystals appeared in the tubule lumen, which damaged tubule cells through binding to the TLR4 expressed on them. Persistent tubule damage induced interstitial fibrosis, reduced the number of nephrons, and further boosted FGF23 to trigger a deterioration spiral leading to progressive nephron loss. In humans, the progression of chronic kidney disease (CKD) ensued when serum FGF23 levels exceeded 53 pg/mL. The present study identified calcium phosphate particles in the renal tubular fluid as an effective therapeutic target to decelerate nephron loss during the course of aging and CKD progression.
Collapse
Affiliation(s)
- Kazuhiro Shiizaki
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
- Yurina Medical Park, Shimotsuga, Japan
| | - Asako Tsubouchi
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Yutaka Miura
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Kinya Seo
- Division of Cell and Molecular Medicine
| | | | - Hirosaka Hayashi
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Yoshitaka Iwazu
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
- Division of Nephrology, Department of Internal Medicine
- Department of Clinical Laboratory Medicine, and
| | - Marina Miura
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
- Division of Nephrology, Department of Internal Medicine
| | - Batpurev Battulga
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University, Shimotsuke, Japan
| | - Nobuhiko Ohno
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University, Shimotsuke, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan
| | - Toru Hara
- Electron Microscopy Analysis Station, Research Network and Facility Service Division, National Institute for Materials Science, Tsukuba, Japan
| | - Rina Kunishige
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Mamiko Masutani
- Healthcare Business Unit, Nikon Corporation, Yokohama, Japan
| | - Keita Negishi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Kazuomi Kario
- Division of Cardiovascular Medicine, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Japan
| | | | | | | | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hiroshi Itoh
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Kurosu
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Masayuki Murata
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Makoto Kuro-o
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
85
|
Noce A, Marrone G, Wilson Jones G, Di Lauro M, Pietroboni Zaitseva A, Ramadori L, Celotto R, Mitterhofer AP, Di Daniele N. Nutritional Approaches for the Management of Metabolic Acidosis in Chronic Kidney Disease. Nutrients 2021; 13:2534. [PMID: 34444694 PMCID: PMC8401674 DOI: 10.3390/nu13082534] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolic acidosis is a severe complication of chronic kidney disease (CKD) which is associated with nefarious impairments such as bone demineralization, muscle wasting, and hormonal alterations, for example, insulin resistance. Whilst it is possible to control this condition with alkali treatment, consisting in the oral administration of sodium citrate or sodium bicarbonate, this type of intervention is not free from side effects. On the contrary, opting for the implementation of a targeted dietetic-nutritional treatment for the control of CKD metabolic acidosis also comes with a range of additional benefits such as lipid profile control, increased vitamins, and antioxidants intake. In our review, we evaluated the main dietary-nutritional regimens useful to counteract metabolic acidosis, such as the Mediterranean diet, the alkaline diet, the low-protein diet, and the vegan low-protein diet, analyzing the potentialities and limits of every dietary-nutritional treatment. Literature data suggest that the Mediterranean and alkaline diets represent a valid nutritional approach in the prevention and correction of metabolic acidosis in CKD early stages, while the low-protein diet and the vegan low-protein diet are more effective in CKD advanced stages. In conclusion, we propose that tailored nutritional approaches should represent a valid therapeutic alternative to counteract metabolic acidosis.
Collapse
Affiliation(s)
- Annalisa Noce
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (M.D.L.); (A.P.Z.); (L.R.); (A.P.M.); (N.D.D.)
| | - Giulia Marrone
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (M.D.L.); (A.P.Z.); (L.R.); (A.P.M.); (N.D.D.)
| | - Georgia Wilson Jones
- Center of Research of Immunopathology and Rare Diseases—Nephrology and Dialysis Coordinating Center of Piemonte and Aosta Valley Network for Rare Diseases, S. Giovanni Bosco Hospital, Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy;
| | - Manuela Di Lauro
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (M.D.L.); (A.P.Z.); (L.R.); (A.P.M.); (N.D.D.)
| | - Anna Pietroboni Zaitseva
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (M.D.L.); (A.P.Z.); (L.R.); (A.P.M.); (N.D.D.)
| | - Linda Ramadori
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (M.D.L.); (A.P.Z.); (L.R.); (A.P.M.); (N.D.D.)
- School of Specialization in Geriatrics, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Roberto Celotto
- Department of Cardiovascular Disease, Tor Vergata University of Rome, 00133 Rome, Italy;
| | - Anna Paola Mitterhofer
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (M.D.L.); (A.P.Z.); (L.R.); (A.P.M.); (N.D.D.)
| | - Nicola Di Daniele
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (M.D.L.); (A.P.Z.); (L.R.); (A.P.M.); (N.D.D.)
| |
Collapse
|
86
|
Silva PHI, Wiegand A, Daryadel A, Russo G, Ritter A, Gaspert A, Wüthrich RP, Wagner CA, Mohebbi N. Acidosis and alkali therapy in patients with kidney transplant is associated with transcriptional changes and altered abundance of genes involved in cell metabolism and acid-base balance. Nephrol Dial Transplant 2021; 36:1806-1820. [PMID: 34240183 DOI: 10.1093/ndt/gfab210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Metabolic acidosis occurs frequently in patients with kidney transplant and is associated with higher risk for and accelerated loss of graft function. To date, it is not known whether alkali therapy in these patients improves kidney function and whether acidosis and its therapy is associated with altered expression of proteins involved in renal acid-base metabolism. METHODS We collected retrospectively kidney biopsies from 22 patients. Of these patients, 9 had no acidosis, 9 had metabolic acidosis (plasma HCO3- < 22 mmol/l), and 4 had acidosis and received alkali therapy. We performed transcriptome analysis and immunohistochemistry for proteins involved in renal acid-base handling. RESULTS We found the expression of 40 transcripts significantly changed between kidneys from non-acidotic and acidotic patients. These genes are mostly involved in proximal tubule amino acid and lipid metabolism and energy homeostasis. Three transcripts were fully recovered by alkali therapy: the Kir4.2 K+-channel, an important regulator of proximal tubule HCO3--metabolism and transport, ACADSB and SHMT1, genes involved in beta-oxidation and methionine metabolism. Immunohistochemistry showed reduced staining for the proximal tubule NBCe1 HCO3- transporter in kidneys from acidotic patients that recovered with alkali therapy. In addition, the HCO3-exchanger pendrin was affected by acidosis and alkali therapy. CONCLUSIONS Metabolic acidosis in kidney transplant recipients is associated with alterations in the renal transcriptome that are partly restored by alkali therapy. Acid-base transport proteins mostly from proximal tubule were also affected by acidosis and alkali therapy suggesting that the downregulation of critical players contributes to metabolic acidosis in these patients.
Collapse
Affiliation(s)
- Pedro H Imenez Silva
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research NCCR Kidney.CH, Switzerland
| | - Anna Wiegand
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Arezoo Daryadel
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research NCCR Kidney.CH, Switzerland
| | - Giancarlo Russo
- Functional Genomics Center Zürich, University of Zürich and ETH Zürich, Zürich, Switzerland
| | - Alexander Ritter
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Ariana Gaspert
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Rudolf P Wüthrich
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research NCCR Kidney.CH, Switzerland
| | - Nilufar Mohebbi
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
87
|
Yeung SMH, Gomes-Neto AW, Osté MCJ, van den Berg E, Kootstra-Ros JE, Sanders JSF, Berger SP, Carrero JJ, De Borst MH, Navis GJ, Bakker SJL. Net Endogenous Acid Excretion and Kidney Allograft Outcomes. Clin J Am Soc Nephrol 2021; 16:1398-1406. [PMID: 34135022 PMCID: PMC8729579 DOI: 10.2215/cjn.00780121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/07/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES High dietary acid load may accelerate a decline in kidney function. We prospectively investigated whether dietary acid load is associated with graft outcomes in kidney transplant recipients, and whether venous bicarbonate mediates this association. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We used data from 642 kidney transplant recipients with a functioning graft ≥1 year after transplantation. Net endogenous acid production was estimated using food frequency questionnaires and, alternatively, 24-hour urinary urea and potassium excretion to estimate net endogenous acid production. We defined the composite kidney end point as a doubling of plasma creatinine or graft failure. Multivariable Cox regression analyses, adjusted for potential confounders, were used to study the associations of dietary acid load with the kidney end point. We evaluated potential mediation effects of venous bicarbonate, urinary bicarbonate excretion, urinary ammonium excretion, titratable acid excretion, and net acid excretion on the association between net endogenous acid production and the kidney end point. RESULTS The median net endogenous acid production using food frequency questionnaires and net endogenous acid production using urinary excretion were 40 (interquartile range, 35-45) and 54 (interquartile range, 44-66) mEq/day, respectively. During a median follow-up of 5.3 years (interquartile range, 4.1-6.0), 121 (19%) participants reached the kidney end point. After multivariable adjustment, net endogenous acid production using food frequency questionnaires and net endogenous acid production using urinary excretion (per SD higher) were independently associated with higher risk for kidney end point (hazard ratio, 1.33; 95% confidence interval, 1.12 to 1.57, P=0.001 and hazard ratio, 1.44; 95% confidence interval, 1.24 to 1.69, P<0.001, respectively). Baseline venous bicarbonate mediated 20% of the association between net endogenous acid production using food frequency questionnaires and the kidney end point. Baseline venous bicarbonate, urinary ammonium excretion, and net acid excretion mediated 25%, -14%, and -18%, respectively, of the association between net endogenous acid production using urinary excretion and the kidney end point. CONCLUSIONS Higher dietary acid load was associated with a higher risk of doubling of plasma creatinine or graft failure, and this association was partly mediated by venous bicarbonate, urinary ammonium, and net acid excretion.
Collapse
Affiliation(s)
- Stanley M H Yeung
- Department of Internal Medicine, University Medical Centre Groningen, Groningen, The Netherlands
| | - Antonio W Gomes-Neto
- Department of Internal Medicine, University Medical Centre Groningen, Groningen, The Netherlands
| | - Maryse C J Osté
- Department of Internal Medicine, University Medical Centre Groningen, Groningen, The Netherlands
| | - Else van den Berg
- Department of Internal Medicine, University Medical Centre Groningen, Groningen, The Netherlands
| | - Jenny E Kootstra-Ros
- Department of Laboratory Medicine, University Medical Centre Groningen, Groningen, The Netherlands
| | - Jan Stephan F Sanders
- Department of Internal Medicine, University Medical Centre Groningen, Groningen, The Netherlands
| | - Stefan P Berger
- Department of Internal Medicine, University Medical Centre Groningen, Groningen, The Netherlands
| | - Juan Jesus Carrero
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Martin H De Borst
- Department of Internal Medicine, University Medical Centre Groningen, Groningen, The Netherlands
| | - Gerjan J Navis
- Department of Internal Medicine, University Medical Centre Groningen, Groningen, The Netherlands
| | - Stephan J L Bakker
- Department of Internal Medicine, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
88
|
Giusti S, Lin Y, Sogbetun F, Nakhoul N, Liu S, Shi L, Batuman V. The Effect of Proton Pump Inhibitor Use on the Course of Kidney Function in Patients with Chronic Kidney Disease Stages G3a to G4. Am J Med Sci 2021; 362:453-461. [PMID: 34033809 DOI: 10.1016/j.amjms.2021.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/07/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Proton pump inhibitors (PPI) are widely used and implicated in the progression of chronic kidney disease (CKD). We evaluated the relation between chronic PPI use in veterans with CKD G3a to G4 and the rate of decline in renal function. METHODS We accessed the Veteran Affairs Informatics and Computing Infrastructure national database to evaluate the relation between chronic PPI use and rate of decline in renal function in veterans with CKD (eGFR <60 ml/min1.73 m2). We applied Propensity Score Matching to match the PPI group and the no-PPI control group on age, sex, race, and Charlson Comorbidity Index. The final sample included 1406 patients (age: 62.07±7.82, 62.02% Caucasian) in the PPI cohort with a median 4.7 years follow-up and 1425 patients (age: 65.45±6.58, 71.16% Caucasian) in the control cohort with a median 3.9 years follow-up. Kaplan-Meier curve and Cox regression were performed to analyze the associations of PPI use with dialysis, all-cause mortality, metabolic acidosis, and CKD progression. RESULTS The PPI group had a significantly increased risk of CKD progression, dialysis and all-cause mortality (aHR, 1.83; 95% CI, 1.53 to 2.19; aHR, 1.84; 95% CI, 1.26 to 2.67; and aHR, 1.34; 95% CI, 1.08 to 1.65, respectively). The PPI cohort also had a trend for development of metabolic acidosis (aHR, 1.34; 95% CI, 0.998 to 1.80), although the difference was not statistically significant. CONCLUSIONS The data suggest that chronic PPI use accelerates progression of kidney disease and is associated with increased mortality in CKD patients.
Collapse
Affiliation(s)
- Sixto Giusti
- Tulane University School of Medicine, Deming Department of Medicine, Section of Nephrology, New Orleans, Louisiana; Southeast Louisiana Veterans Health Care System, Medicine Service, Section of Nephrology, New Orleans, Louisiana.
| | - Yilu Lin
- Tulane University School of Public Health Department of Global Health Management and Policy (GHMP) Tulane University School of Public Health and Tropical Medicine (TUSPHTM), New Orleans, Louisiana
| | - Folarin Sogbetun
- Tulane University School of Medicine, Deming Department of Medicine, Section of Nephrology, New Orleans, Louisiana
| | - Nazih Nakhoul
- Tulane University School of Medicine, Deming Department of Medicine, Section of Nephrology, New Orleans, Louisiana
| | - Shuqian Liu
- Tulane University School of Public Health Department of Global Health Management and Policy (GHMP) Tulane University School of Public Health and Tropical Medicine (TUSPHTM), New Orleans, Louisiana
| | - Lizheng Shi
- Tulane University School of Public Health Department of Global Health Management and Policy (GHMP) Tulane University School of Public Health and Tropical Medicine (TUSPHTM), New Orleans, Louisiana
| | - Vecihi Batuman
- Tulane University School of Medicine, Deming Department of Medicine, Section of Nephrology, New Orleans, Louisiana; Southeast Louisiana Veterans Health Care System, Medicine Service, Section of Nephrology, New Orleans, Louisiana
| |
Collapse
|
89
|
Recent evidence on the effect of treatment of metabolic acid on the progression of kidney disease. Curr Opin Nephrol Hypertens 2021; 30:467-473. [PMID: 34009141 DOI: 10.1097/mnh.0000000000000728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Preclinical and epidemiological studies have shown an association between acidosis and progression of chronic kidney disease (CKD) and kidney fibrosis. This review discusses the recent trials evaluating the effect of treatment of metabolic acidosis on kidney outcomes. RECENT FINDINGS The emerging evidence suggests that bicarbonate treatment may slow the progression of CKD and reduce the risk of kidney failure. However, high-certainty evidence on the efficacy and safety of alkali therapy is still lacking. Ongoing studies are evaluating the effect of veverimer, a novel nonabsorbable polymer, on clinical kidney outcomes. SUMMARY Recent studies indicate a potential benefit from reduction in acid load in patients with CKD. Whilst it is reasonable that clinicians institute acid-lowering interventions in CKD patients with acidosis, adequately powered trials are required to evaluate the benefit of correction of metabolic acidosis to delay kidney disease progression.
Collapse
|
90
|
Tan Y, Chen M, Chen H, Wu J, Liu J. Enhanced Ultrasound Contrast of Renal-Clearable Luminescent Gold Nanoparticles. Angew Chem Int Ed Engl 2021; 60:11713-11717. [PMID: 33665956 DOI: 10.1002/anie.202017273] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/14/2021] [Indexed: 12/31/2022]
Abstract
Renal-clearable nanoparticles are typically fast eliminated through the free glomerular filtration, which show weak interaction with the renal compartments and negligible ultrasound signals, raising challenges in direct imaging of kidney diseases. Here, we report the ultrasmall renal-clearable luminescent gold nanoparticles (AuNPs) with both pH-induced charge reversal and aggregation properties, and discover that enhanced ultrasound contrast could be facilely acquired through the increased tubular reabsorption and in situ aggregation of AuNPs in renal tubule cells in injured kidneys. The tuning elimination pathway of the renal-clearable luminescent AuNPs is further demonstrated to provide a synergistical fluorescence and ultrasound imaging strategy for diagnosing early kidney injury with precise anatomical information.
Collapse
Affiliation(s)
- Yue Tan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Miaona Chen
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Huarui Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Juefei Wu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
91
|
Park S, Lee S, Kim Y, Lee Y, Kang MW, Kim K, Kim YC, Han SS, Lee H, Lee JP, Joo KW, Lim CS, Kim YS, Kim DK. Observational or Genetically Predicted Higher Vegetable Intake and Kidney Function Impairment: An Integrated Population-Scale Cross-Sectional Analysis and Mendelian Randomization Study. J Nutr 2021; 151:1167-1174. [PMID: 33693791 DOI: 10.1093/jn/nxaa452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/09/2020] [Accepted: 12/24/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Further exploration of the possible effects of vegetable intake on kidney function is warranted. OBJECTIVE We aimed to study the causality of the association between vegetable intake and kidney function by implementing Mendelian randomization (MR) analysis. METHODS This study comprised a cross-sectional dietary investigation using UK Biobank data and MR analysis. For the cross-sectional investigation, 432,732 participants aged 40-69 y from the UK Biobank cohort were included. Self-reported vegetable intake was the exposure, and the outcomes were the estimated glomerular filtration rate (eGFR) and chronic kidney disease (CKD). Next, we included 337,138 participants of white British ancestry in the UK Biobank, and a genome-wide association study (GWAS) was performed to generate a genetic instrument. For MR, we first performed polygenic score (PGS)-based 1-sample MR. In addition, 2-sample MR was performed with CKDGen GWAS for kidney function traits, and the inverse variance weighted method was the main MR method. RESULTS Higher vegetable intake was cross-sectionally associated with a higher eGFR (per heaped tablespoon increase; β: 0.154; 95% CI: 0.144, 0.165) and lower odds of CKD (OR: 0.975; 95% CI: 0.968, 0.982). A PGS for vegetable intake was significantly associated with a higher eGFR [per ordinal category increase (0, 1-3, 4-6, ≥7 tablespoons per day); β: 4.435; 95% CI: 2.337, 6.533], but the association with CKD remained nonsignificant (OR: 0.468; 95% CI: 0.143, 1.535). In the 2-sample MR, the causal estimates indicated that a higher genetically predicted vegetable intake was associated with a higher eGFR (percent change; β: 3.071; 95% CI: 0.602, 0.560) but nonsignificantly associated with the risk of CKD (OR: 0.560; 95% CI: 0.289, 1.083) in the European ancestry data from the CKDGen. CONCLUSIONS This study suggests that higher vegetable intake may have a causal effect on higher eGFRs in the European population.
Collapse
Affiliation(s)
- Sehoon Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Armed Forces Capital Hospital, Gyeonggi-do, Korea
| | - Soojin Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yaerim Kim
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Yeonhee Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Min Woo Kang
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kwangsoo Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Yong Chul Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Seung Seok Han
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.,Kidney Research Institute, Seoul National University, Seoul, Korea
| | - Hajeong Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.,Kidney Research Institute, Seoul National University, Seoul, Korea.,Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Kwon Wook Joo
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Kidney Research Institute, Seoul National University, Seoul, Korea
| | - Chun Soo Lim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.,Kidney Research Institute, Seoul National University, Seoul, Korea.,Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Yon Su Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Kidney Research Institute, Seoul National University, Seoul, Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Kidney Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
92
|
Wesson DE. Sodium zirconium cyclosilicate for hyperkalemia: a collateral acid-base benefit? Nephrol Dial Transplant 2021; 36:756-760. [PMID: 33179742 DOI: 10.1093/ndt/gfaa241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/25/2020] [Indexed: 11/14/2022] Open
Affiliation(s)
- Donald E Wesson
- Department of Internal Medicine, Texas A&M College of Medicine, Dallas, TX, USA
| |
Collapse
|
93
|
Tan Y, Chen M, Chen H, Wu J, Liu J. Enhanced Ultrasound Contrast of Renal‐Clearable Luminescent Gold Nanoparticles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yue Tan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Miaona Chen
- Department of Cardiology Nanfang Hospital Southern Medical University Guangzhou 510515 China
| | - Huarui Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Juefei Wu
- Department of Cardiology Nanfang Hospital Southern Medical University Guangzhou 510515 China
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| |
Collapse
|
94
|
Lu TY, Chiang CY, Fan YJ, Jheng PR, Quiñones ED, Liu KT, Kuo SH, Hsieh HY, Tseng CL, Yu J, Chuang EY. Dual-Targeting Glycol Chitosan/Heparin-Decorated Polypyrrole Nanoparticle for Augmented Photothermal Thrombolytic Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10287-10300. [PMID: 33615773 DOI: 10.1021/acsami.0c20940] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Near-infrared (NIR)-light-modulated photothermal thrombolysis has been investigated to overcome the hemorrhage danger posed by clinical clot-busting substances. A long-standing issue in thrombosis fibrinolytics is the lack of lesion-specific therapy, which should not be ignored. Herein, a novel thrombolysis therapy using photothermal disintegration of a fibrin clot was explored through dual-targeting glycol chitosan/heparin-decorated polypyrrole nanoparticles (GCS-PPY-H NPs) to enhance thrombus delivery and thrombolytic therapeutic efficacy. GCS-PPY-H NPs can target acidic/P-selectin high-expression inflammatory endothelial cells/thrombus sites for initiating lesion-site-specific thrombolysis by hyperthermia using NIR irradiation. A significant fibrin clot-clearance rate was achieved with thrombolysis using dual-targeting/modality photothermal clot disintegration in vivo. The molecular level mechanisms of the developed nanoformulations and interface properties were determined using multiple surface specific analytical techniques, such as particle size distribution, zeta potential, electron microscopy, Fourier-transform infrared spectroscopy (FTIR), wavelength absorbance, photothermal, immunofluorescence, and histology. Owing to the augmented thrombus delivery of GCS-PPY-H NPs and swift treatment time, dual-targeting photothermal clot disintegration as a systematic treatment using GCS-PPY-H NPs can be effectively applied in thrombolysis. This novel approach possesses a promising future for thrombolytic treatment.
Collapse
Affiliation(s)
- Ting-Yu Lu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Yu Chiang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Jui Fan
- School of Biomedical Engineering; and International Ph. D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering; and International Ph. D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Edgar Daniel Quiñones
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Kuan-Ting Liu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Shuo-Hsiu Kuo
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Han Yun Hsieh
- School of Biomedical Engineering; and International Ph. D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering; and International Ph. D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering; and International Ph. D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
95
|
Abstract
Metabolic acidosis is fairly common in patients with chronic kidney disease (CKD). The prevalence of metabolic acidosis increases with worsening kidney function and is observed in ∼40% of those with stage 4 CKD. For the past 2 decades, clinical practice guidelines have suggested treatment of metabolic acidosis to counterbalance adverse effects of metabolic acidosis on bone and muscle. Studies in animal models of CKD also demonstrated that metabolic acidosis causes kidney fibrosis. During the past decade, results from observational studies identified associations between metabolic acidosis and adverse kidney outcomes, and results from interventional studies support the hypothesis that treating metabolic acidosis with sodium bicarbonate preserves kidney function. However, convincing data from large-scale, double-blinded, placebo-controlled, randomized trials have been lacking. This review discusses findings from recent interventional trials of alkali therapy in CKD and new findings linking metabolic acidosis with cardiovascular disease in adults and CKD progression in children. Finally, a novel agent that treats metabolic acidosis in patients with CKD by binding hydrochloric acid in the gastrointestinal tract is discussed.
Collapse
Affiliation(s)
- Michal L Melamed
- Department of Medicine, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY
| | - Kalani L Raphael
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University and Portland VA Medical Center, Portland, OR
| |
Collapse
|
96
|
Joshi S, McMacken M, Kalantar-Zadeh K. Plant-Based Diets for Kidney Disease: A Guide for Clinicians. Am J Kidney Dis 2021; 77:287-296. [DOI: 10.1053/j.ajkd.2020.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022]
|
97
|
Bugarski M, Ghazi S, Polesel M, Martins JR, Hall AM. Changes in NAD and Lipid Metabolism Drive Acidosis-Induced Acute Kidney Injury. J Am Soc Nephrol 2021; 32:342-356. [PMID: 33478973 PMCID: PMC8054907 DOI: 10.1681/asn.2020071003] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/30/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The kidney plays an important role in maintaining normal blood pH. Metabolic acidosis (MA) upregulates the pathway that mitochondria in the proximal tubule (PT) use to produce ammonia and bicarbonate from glutamine, and is associated with AKI. However, the extent to which MA causes AKI, and thus whether treating MA would be beneficial, is unclear. METHODS Gavage with ammonium chloride induced acute MA. Multiphoton imaging of mitochondria (NADH/membrane potential) and transport function (dextran/albumin uptake), oxygen consumption rate (OCR) measurements in isolated tubules, histologic analysis, and electron microscopy in fixed tissue, and urinary biomarkers (KIM-1/clara cell 16) assessed tubular cell structure and function in mouse kidney cortex. RESULTS MA induces an acute change in NAD redox state (toward oxidation) in PT mitochondria, without changing the mitochondrial energization state. This change is associated with a switch toward complex I activity and decreased maximal OCR, and a major alteration in normal lipid metabolism, resulting in marked lipid accumulation in PTs and the formation of large multilamellar bodies. These changes, in turn, lead to acute tubular damage and a severe defect in solute uptake. Increasing blood pH with intravenous bicarbonate substantially improves tubular function, whereas preinjection with the NAD precursor nicotinamide (NAM) is highly protective. CONCLUSIONS MA induces AKI via changes in PT NAD and lipid metabolism, which can be reversed or prevented by treatment strategies that are viable in humans. These findings might also help to explain why MA accelerates decline in function in CKD.
Collapse
Affiliation(s)
- Milica Bugarski
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Susan Ghazi
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | | | - Joana R. Martins
- Institute of Anatomy, University of Zurich, Zurich, Switzerland,Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Andrew M. Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland,Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
98
|
Shimamura Y, Watanabe S, Maeda T, Abe K, Ogawa Y, Takizawa H. Incidence and risk factors of acute kidney injury, and its effect on mortality among Japanese patients receiving immune check point inhibitors: a single-center observational study. Clin Exp Nephrol 2021; 25:479-487. [PMID: 33471239 DOI: 10.1007/s10157-020-02008-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICPis) are associated with multi-organ immune-related adverse effects. Here, we examined the incidence rate, recovery rate, and risk factors of acute kidney injury complicated with ICPis (ICPi-AKI) and evaluted the association between ICPi-AKI and mortality in Japanese patients. METHODS We analyzed 152 consecutive patients receiving ICPis between 2015 and 2019. A logistic regression analysis was performed to identify risk factors for ICPi-AKI incidence and Cox regression analysis was performed to evaluate the association between ICPi-AKI and mortality. RESULTS The mean patient age was 67 ± 10 years, with the median baseline serum creatinine level of 0.78 mg/dL. Twenty-seven patients (18%) developed ICPi-AKI, and 19 (73%) of them recovered. Pembrolizumab use and liver diseases were significant risk factors for the ICPi-AKI incidence. During the follow-up, 85 patients (59%) died, 17 patients (63%) with ICPi-AKI and 68 (54%) patients without ICPi-AKI, respectively. The ICPi-AKI incidence was not independently associated with mortality (adjusted hazard ratio, 0.85; 95% confidence intervals, 0.46-1.61). CONCLUSIONS Our finding suggest that pembrolizumab use and liver diseases are associated with a higher risk of ICPi-AKI development, but ICPi-AKI did not affect mortality. Future multi-center studies are needed to develop optimal management and prevention strategies for this complication in patients receiving ICPis.
Collapse
Affiliation(s)
- Yoshinosuke Shimamura
- Department of Nephrology, Teine Keijinkai Medical Center, Sapporo, Hokkaido, 0068555, Japan.
| | - Shota Watanabe
- Department of Nephrology, Teine Keijinkai Medical Center, Sapporo, Hokkaido, 0068555, Japan
| | - Takuto Maeda
- Department of Nephrology, Teine Keijinkai Medical Center, Sapporo, Hokkaido, 0068555, Japan
| | - Koki Abe
- Department of Nephrology, Teine Keijinkai Medical Center, Sapporo, Hokkaido, 0068555, Japan
| | - Yayoi Ogawa
- Hokkaido Renal Pathology Center, Sapporo, Hokkaido, Japan
| | - Hideki Takizawa
- Department of Nephrology, Teine Keijinkai Medical Center, Sapporo, Hokkaido, 0068555, Japan
| |
Collapse
|
99
|
Quade BN, Parker MD, Occhipinti R. The therapeutic importance of acid-base balance. Biochem Pharmacol 2021; 183:114278. [PMID: 33039418 PMCID: PMC7544731 DOI: 10.1016/j.bcp.2020.114278] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Baking soda and vinegar have been used as home remedies for generations and today we are only a mouse-click away from claims that baking soda, lemon juice, and apple cider vinegar are miracles cures for everything from cancer to COVID-19. Despite these specious claims, the therapeutic value of controlling acid-base balance is indisputable and is the basis of Food and Drug Administration-approved treatments for constipation, epilepsy, metabolic acidosis, and peptic ulcers. In this narrative review, we present evidence in support of the current and potential therapeutic value of countering local and systemic acid-base imbalances, several of which do in fact involve the administration of baking soda (sodium bicarbonate). Furthermore, we discuss the side effects of pharmaceuticals on acid-base balance as well as the influence of acid-base status on the pharmacokinetic properties of drugs. Our review considers all major organ systems as well as information relevant to several clinical specialties such as anesthesiology, infectious disease, oncology, dentistry, and surgery.
Collapse
Affiliation(s)
- Bianca N Quade
- Department of Physiology and Biophysics, The State University of New York, The University at Buffalo, Buffalo, NY 14203, USA
| | - Mark D Parker
- Department of Physiology and Biophysics, The State University of New York, The University at Buffalo, Buffalo, NY 14203, USA; Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; State University of New York Eye Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Rossana Occhipinti
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
100
|
Meléndez-Flores JD, Estrada-Bellmann I. Linking chronic kidney disease and Parkinson's disease: a literature review. Metab Brain Dis 2021; 36:1-12. [PMID: 32990929 DOI: 10.1007/s11011-020-00623-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/22/2020] [Indexed: 10/23/2022]
Abstract
Chronic kidney disease (CKD) has been typically implicated in cardiovascular risk, considering the function the kidney has related to blood pressure, vitamin D, red blood cell metabolism, and electrolyte and acid-base regulation. However, neurological consequences are also attributed to this disease. Among these, recent large epidemiological studies have demonstrated an increased risk for Parkinson's disease (PD) in patients with CKD. Multiple studies have evaluated individually the association of blood pressure, vitamin D, and red blood cell dysmetabolism with PD, however, no study has reviewed the potential mechanisms related to these components in context of CKD and PD. In this review, we explored the association of CKD and PD and linked the components of the former to propose potential pathways explaining a future increased risk for PD, where renin-angiotensin system, oxidative stress, and inflammation have a main role. Potential preventive and therapeutic interventions based on these associations are also explored. More preclinical studies are needed to confirm the potential link of CKD conditions and future PD risk, whereas more interventional studies targeting this association are warranted to confirm their potential benefit in PD.
Collapse
Affiliation(s)
- Jesús D Meléndez-Flores
- Neurology Division, Internal Medicine Department, University Hospital "Dr. José E. González", Universidad Autónoma de Nuevo León, Madero y Gonzalitos S/N, 64700, Monterrey, NL, Mexico
- Faculty of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Ingrid Estrada-Bellmann
- Neurology Division, Internal Medicine Department, University Hospital "Dr. José E. González", Universidad Autónoma de Nuevo León, Madero y Gonzalitos S/N, 64700, Monterrey, NL, Mexico.
- Movement Disorders Clinic, Neurology Division, Internal Medicine Department, University Hospital "Dr. José E. González", Universidad Autónoma de Nuevo León, Monterrey, Mexico.
| |
Collapse
|