51
|
Abstract
The contribution of nerves to the pathogenesis of malignancies has emerged as an important component of the tumour microenvironment. Recent studies have shown that peripheral nerves (sympathetic, parasympathetic and sensory) interact with tumour and stromal cells to promote the initiation and progression of a variety of solid and haematological malignancies. Furthermore, new evidence suggests that cancers may reactivate nerve-dependent developmental and regenerative processes to promote their growth and survival. Here we review emerging concepts and discuss the therapeutic implications of manipulating nerves and neural signalling for the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Ali H Zahalka
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY, USA.
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
52
|
β2-Adrenergic Signalling Promotes Cell Migration by Upregulating Expression of the Metastasis-Associated Molecule LYPD3. BIOLOGY 2020; 9:biology9020039. [PMID: 32098331 PMCID: PMC7168268 DOI: 10.3390/biology9020039] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 12/24/2022]
Abstract
Metastasis is associated with poor prognosis in breast cancer. Although some studies suggest beta-blockers increase survival by delaying metastasis, others have been discordant. This study provides both insights into the anomalous findings and identifies potential biomarkers that may be treatment targets. Cell line models of basal-type and oestrogen receptor-positive breast cancer were profiled for basal levels of adrenoceptor gene/protein expression, and β2-adrenoceptor mediated cell behaviour including migration, invasion, adhesion, and survival in response to adrenoceptor agonist/antagonist treatment. Protein profiling and histology identified biomarkers and drug targets. Baseline levels of adrenoceptor gene expression are higher in basal-type rather than oestrogen receptor-positive cancer cells. Norepinephrine (NE) treatment increased invasive capacity in all cell lines but did not increase proliferation/survival. Protein profiling revealed the upregulation of the pro-metastatic gene Ly6/PLAUR Domain-Containing Protein 3 (LYPD3) in norepinephrine-treated MDA-MB-468 cells. Histology confirmed selective LYPD3 expression in primary and metastatic breast tumour samples. These findings demonstrate that basal-type cancer cells show a more aggressive adrenoceptor-β2-activated phenotype in the resting and stimulated state, which is attenuated by adrenoceptor-β2 inhibition. This study also highlights the first association between ADRβ2 signalling and LYPD3; its knockdown significantly reduced the basal and norepinephrine-induced activity of MCF-7 cells in vitro. The regulation of ADRβ2 signalling by LYPD3 and its metastasis promoting activities, reveal LYPD3 as a promising therapeutic target in the treatment of breast and other cancers.
Collapse
|
53
|
Gandhi S, Pandey M, Ammannagari N, Wang C, Bucsek MJ, Hamad L, Repasky E, Ernstoff MS. Impact of concomitant medication use and immune-related adverse events on response to immune checkpoint inhibitors. Immunotherapy 2020; 12:141-149. [PMID: 32064978 DOI: 10.2217/imt-2019-0064] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Aim: Patients receiving checkpoint inhibitors (CPI) are frequently on other medications for co-morbidities. We explored the impact of concomitant medication use on outcomes. Materials & methods: 210 metastatic cancer patients on CPI were identified and association between concomitant medication use and immune-related adverse events with clinical outcomes was determined. Results: Aspirin, metformin, β-blockers and statins were not shown to have any statistically significant difference on clinical benefit. 26.3% patients with clinical benefit developed rash versus 11.8% without clinical benefit (p < 0.05) on multivariate analysis. Conclusion: Use of common prescription and nonprescription medications in patients with multiple co-morbidities appears safe and does not have an adverse effect on CPI efficacy. The presence of rash predicted for a better response.
Collapse
Affiliation(s)
- Shipra Gandhi
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Manu Pandey
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Nischala Ammannagari
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Chong Wang
- Department of Biostatistics, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Mark J Bucsek
- Department of Immunology & Cell Stress & Biophysical Therapies Program, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Lamya Hamad
- Melanoma Program, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY 14263, USA.,Clinical Pharmacy Service, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Elizabeth Repasky
- Department of Immunology & Cell Stress & Biophysical Therapies Program, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Marc S Ernstoff
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY 14263, USA.,Melanoma Program, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY 14263, USA
| |
Collapse
|
54
|
Knight JM, Rizzo JD, Hari P, Pasquini MC, Giles KE, D'Souza A, Logan BR, Hamadani M, Chhabra S, Dhakal B, Shah N, Sriram D, Horowitz MM, Cole SW. Propranolol inhibits molecular risk markers in HCT recipients: a phase 2 randomized controlled biomarker trial. Blood Adv 2020; 4:467-476. [PMID: 32027744 PMCID: PMC7013267 DOI: 10.1182/bloodadvances.2019000765] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/11/2019] [Indexed: 12/26/2022] Open
Abstract
Preclinical research shows that stress-induced activation of the sympathetic nervous system can promote hematopoietic malignancies via β-adrenoreceptor-mediated molecular pathways. Hematopoietic cell transplant (HCT) recipients exposed to conditions of chronic stress show activation of a conserved transcriptional response to adversity (CTRA) gene expression profile, which in turn is associated with increased relapse and decreased disease-free survival. We conducted a randomized controlled phase 2 biomarker trial testing the impact of the nonselective β-antagonist propranolol on CTRA-related gene expression of 25 individuals receiving an autologous HCT for multiple myeloma. Propranolol was administered for 1 week prior to and 4 weeks following HCT. Blood was collected at baseline, day -2, and day +28. Intention-to-treat analyses controlling for demographic characteristics, high-risk disease (International Myeloma Working Group risk score), and tumor stage tested effects on a 53-gene CTRA indicator profile and measures of CTRA-related cellular processes in peripheral blood mononuclear cells. Twelve participants were randomized to the intervention and 13 to the control. Relative to the control group, propranolol-treated patients showed greater decreases from baseline to HCT day -2 and day +28 for both CTRA gene expression (P = .017) and bioinformatic measures of CD16- classical monocyte activation (P = .005). Propranolol-treated patients also showed relative upregulation of CD34+ cell-associated gene transcripts (P = .011) and relative downregulation of myeloid progenitor-containing CD33+ cell-associated gene transcripts (P = .001). Ancillary analyses identified nonsignificant trends toward accelerated engraftment and reduced posttransplant infections in propranolol-treated patients. Peri-HCT propranolol inhibits cellular and molecular pathways associated with adverse outcomes. Changes in these pathways make propranolol a potential candidate for adjunctive therapy in cancer-related HCT.
Collapse
Affiliation(s)
- Jennifer M Knight
- Department of Psychiatry
- Department of Medicine
- Department of Microbiology & Immunology
- Section of Blood and Marrow Transplantation & Cellular Therapy, Division of Hematology/Oncology, Department of Medicine, and
| | - J Douglas Rizzo
- Section of Blood and Marrow Transplantation & Cellular Therapy, Division of Hematology/Oncology, Department of Medicine, and
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI
| | - Parameswaran Hari
- Section of Blood and Marrow Transplantation & Cellular Therapy, Division of Hematology/Oncology, Department of Medicine, and
| | - Marcelo C Pasquini
- Section of Blood and Marrow Transplantation & Cellular Therapy, Division of Hematology/Oncology, Department of Medicine, and
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI
| | | | - Anita D'Souza
- Section of Blood and Marrow Transplantation & Cellular Therapy, Division of Hematology/Oncology, Department of Medicine, and
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI
| | - Brent R Logan
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI
- Division of Biostatistics, Institute for Health & Society, Medical College of Wisconsin, Milwaukee, WI; and
| | - Mehdi Hamadani
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI
- Division of Biostatistics, Institute for Health & Society, Medical College of Wisconsin, Milwaukee, WI; and
| | - Saurabh Chhabra
- Section of Blood and Marrow Transplantation & Cellular Therapy, Division of Hematology/Oncology, Department of Medicine, and
| | - Binod Dhakal
- Section of Blood and Marrow Transplantation & Cellular Therapy, Division of Hematology/Oncology, Department of Medicine, and
| | - Nirav Shah
- Section of Blood and Marrow Transplantation & Cellular Therapy, Division of Hematology/Oncology, Department of Medicine, and
| | - Deepika Sriram
- Section of Blood and Marrow Transplantation & Cellular Therapy, Division of Hematology/Oncology, Department of Medicine, and
| | - Mary M Horowitz
- Section of Blood and Marrow Transplantation & Cellular Therapy, Division of Hematology/Oncology, Department of Medicine, and
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI
| | - Steve W Cole
- Division of Hematology-Oncology, Department of Medicine, and
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
55
|
Abstract
The link between stress, other psychological factors and response to cancer, or even the cancer incidence and metastasis, is well established. The inhibition of β-Adrenergic receptors (β-AR) using β-blockers was demonstrated to have an inhibitory effect on cancer recurrence. Direct effects on the stress-induced suppression of anti-tumor immune responses were also shown. In a recent issue of Cancer Immunology Research, Daher and colleagues studied the molecular mechanism behind this protective effect in the context of cancer vaccination. They provided evidence that the β-AR signaling affected the priming of naïve CD8 + T cells in their myeloma model, rather than effector CD8 + T cells which downregulated the expression of β-AR after activation and became insensitive to such signaling. Blocking the β-adrenergic signaling during vaccination led to increased expansion and effector functions of antigen-specific CD8 + T cells and reduced tumor growth. This has implications for the clinical use of β-blockers as adjuvants to enhance cancer vaccination and other types of immunotherapy.
Collapse
Affiliation(s)
- Else Marit Inderberg
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital , Oslo, Norway
| | - Sébastien Wälchli
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital , Oslo, Norway
| |
Collapse
|
56
|
Barbosa AM, Martel F. Targeting Glucose Transporters for Breast Cancer Therapy: The Effect of Natural and Synthetic Compounds. Cancers (Basel) 2020; 12:cancers12010154. [PMID: 31936350 PMCID: PMC7016663 DOI: 10.3390/cancers12010154] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
Reprogramming of cellular energy metabolism is widely accepted to be a cancer hallmark. The deviant energetic metabolism of cancer cells-known as the Warburg effect-consists in much higher rates of glucose uptake and glycolytic oxidation coupled with the production of lactic acid, even in the presence of oxygen. Consequently, cancer cells have higher glucose needs and thus display a higher sensitivity to glucose deprivation-induced death than normal cells. So, inhibitors of glucose uptake are potential therapeutic targets in cancer. Breast cancer is the most commonly diagnosed cancer and a leading cause of cancer death in women worldwide. Overexpression of facilitative glucose transporters (GLUT), mainly GLUT1, in breast cancer cells is firmly established, and the consequences of GLUT inhibition and/or knockout are under investigation. Herein we review the compounds, both of natural and synthetic origin, found to interfere with uptake of glucose by breast cancer cells, and the consequences of interference with that mechanism on breast cancer cell biology. We will also present data where the interaction with GLUT is exploited in order to increase the efficiency or selectivity of anticancer agents, in breast cancer cells.
Collapse
Affiliation(s)
- Ana M. Barbosa
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4169-007 Porto, Portugal;
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Correspondence: ; Tel.: +351-22-042-6654
| |
Collapse
|
57
|
Blagosklonny MV. Disease or not, aging is easily treatable. Aging (Albany NY) 2019; 10:3067-3078. [PMID: 30448823 PMCID: PMC6286826 DOI: 10.18632/aging.101647] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022]
Abstract
Is aging a disease? It does not matter because aging is already treated using a combination of several clinically-available drugs, including rapamycin. Whether aging is a disease depends on arbitrary definitions of both disease and aging. For treatment purposes, aging is a deadly disease (or more generally, pre-disease), despite being a normal continuation of normal organismal growth. It must and, importantly, can be successfully treated, thereby delaying classic age-related diseases such as cancer, cardiovascular and metabolic diseases, and neurodegeneration.
Collapse
|
58
|
β-Adrenergic Signaling in Lung Cancer: A Potential Role for Beta-Blockers. J Neuroimmune Pharmacol 2019; 15:27-36. [PMID: 31828732 DOI: 10.1007/s11481-019-09891-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/29/2019] [Indexed: 12/28/2022]
Abstract
Lung cancer results in more patient deaths each year than any other cancer type. Additional treatment strategies are needed to improve clinical responses to approved treatment modalities and prevent the emergence of resistant disease. Catecholamines including norepinephrine and epinephrine are elevated as a result of chronic stress and mediate their physiological effects through activation of adrenergic receptors on target tissues. Lung cancer cells express β-adrenergic receptors (β-ARs), and numerous preclinical studies indicate that β2-AR signaling on lung cancer cells facilities cellular programs including proliferation, motility, apoptosis resistance, epithelial-to-mesenchymal transition, metastasis, and the acquisition of an angiogenic and immunosuppressive phenotype. Here, we review the preclinical and clinical evidence supporting a potential role for beta-blockers in improving the clinical outcome of lung cancer patients. Graphical Abstract Catecholamines including norepinephrine and epinephrine act of β-ARs expressed on NSCLC tumor cells and activate pathways regulating tumor progression.
Collapse
|
59
|
Inactivation of Interferon Regulatory Factor 1 Causes Susceptibility to Colitis-Associated Colorectal Cancer. Sci Rep 2019; 9:18897. [PMID: 31827213 PMCID: PMC6906452 DOI: 10.1038/s41598-019-55378-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/23/2019] [Indexed: 12/24/2022] Open
Abstract
The mechanisms linking chronic inflammation of the gut (IBD) and increased colorectal cancer susceptibility are poorly understood. IBD risk is influenced by genetic factors, including the IBD5 locus (human 5q31), that harbors the IRF1 gene. A cause-to-effect relationship between chronic inflammation and colorectal cancer, and a possible role of IRF1 were studied in Irf1-/- mice in a model of colitis-associated colorectal cancer (CA-CRC) induced by azoxymethane and dextran sulfate. Loss of Irf1 causes hyper-susceptibility to CA-CRC, with early onset and increased number of tumors leading to rapid lethality. Transcript profiling (RNA-seq) and immunostaining of colons shows heightened inflammation and enhanced enterocyte proliferation in Irf1−/− mutants, prior to appearance of tumors. Considerable infiltration of leukocytes is seen in Irf1−/− colons at this early stage, and is composed primarily of proinflammatory Gr1+ Cd11b+ myeloid cells and other granulocytes, as well as CD4+ lymphoid cells. Differential susceptibility to CA-CRC of Irf1−/− vs. B6 controls is fully transferable through hematopoietic cells as observed in bone marrow chimera studies. Transcript signatures seen in Irf1−/− mice in response to AOM/DSS are enriched in clinical specimens from patients with IBD and with colorectal cancer. In addition, IRF1 expression in the colon is significantly decreased in late stage colorectal cancer (stages 3, 4) and is associated with poorer prognosis. This suggests that partial or complete loss of IRF1 expression alters the type, number, and function of immune cells in situ during chronic inflammation, possibly via the creation of a tumor-promoting environment.
Collapse
|
60
|
Yamamoto H, Hamasaki T, Onda K, Nojiri T, Aragaki M, Horie N, Sato N, Hida Y. Landiolol, an ultra-short acting beta-1 blocker, for preventing postoperative lung cancer recurrence: study protocol for a phase III, multicenter randomized trial with two parallel groups of patients. Trials 2019; 20:715. [PMID: 31829248 PMCID: PMC6907139 DOI: 10.1186/s13063-019-3904-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/15/2019] [Indexed: 12/25/2022] Open
Abstract
Background Recurrence of cancer after curative surgery is a major problem after most cancer treatments. Increased sympathetic activity during the perioperative period could promote cancer cell invasion to blood vessels and angiogenesis, resulting in cancer metastasis. Recent studies showed that use of beta blockers can be associated with the prolonged survival of patients with cancer. The objective of this study is to evaluate the preventive effects of landiolol hydrochloride, which is an ultra-short-acting beta-1-selective blocker that has been developed in Japan, on reducing recurrence of cancer after curative surgery for patients with lung cancer. Methods The present study is a phase III, multicenter, randomized trial with two parallel groups of patients with lung cancer, comparing surgery alone and surgery with landiolol administration for three days during the perioperative period. A total of 400 patients will be enrolled from 12 Japanese institutions. The primary endpoint is two-year relapse-free survival and overall survival after curative surgery for lung cancer. The secondary endpoints are additional treatment after recurrence of cancer, safety events, and the incidence of postoperative complications. Discussion The principal question addressed in this trial is whether landiolol can reduce recurrence of cancer after curative surgery for lung cancer. Trial registration Japan Registry of Clinical Trials, jRCT2011180004. Registered 17 January 2019.
Collapse
Affiliation(s)
- Haruko Yamamoto
- National Cerebral and Cardiovascular Center, 6-1, Kishibeshimmachi, Suita, Osaka, 564-8565, Japan.
| | - Toshimitsu Hamasaki
- National Cerebral and Cardiovascular Center, 6-1, Kishibeshimmachi, Suita, Osaka, 564-8565, Japan
| | - Kaori Onda
- National Cerebral and Cardiovascular Center, 6-1, Kishibeshimmachi, Suita, Osaka, 564-8565, Japan
| | - Takashi Nojiri
- Higashiosaka City Medical Center, Higashiosaka, Osaka, Japan
| | | | - Nao Horie
- Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Norihiro Sato
- Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Yasuhiro Hida
- Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| |
Collapse
|
61
|
Hamy AS, Derosa L, Valdelièvre C, Yonekura S, Opolon P, Priour M, Guerin J, Pierga JY, Asselain B, De Croze D, Pinheiro A, Lae M, Talagrand LS, Laas E, Darrigues L, Grandal B, Marangoni E, Montaudon E, Kroemer G, Zitvogel L, Reyal F. Comedications influence immune infiltration and pathological response to neoadjuvant chemotherapy in breast cancer. Oncoimmunology 2019; 9:1677427. [PMID: 32002287 PMCID: PMC6959439 DOI: 10.1080/2162402x.2019.1677427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/18/2019] [Accepted: 10/04/2019] [Indexed: 12/22/2022] Open
Abstract
Immunosurveillance plays an important role in breast cancer (BC) prognosis and progression, and can be geared by immunogenic chemotherapy. In a cohort of 1023 BC patients treated with neoadjuvant chemotherapy (NAC), 40% of the individuals took comedications mostly linked to aging and comorbidities. We systematically analyzed the off-target effects of 1178 concurrent comedications (classified according to the Anatomical Therapeutic Chemical (ATC) Classification System) on the density of tumor-infiltrating lymphocytes (TILs) and pathological complete responses (pCR). At level 1 of the ATC system, the main anatomical classes of drugs were those targeting the nervous system (class N, 39.1%), cardiovascular disorders (class C, 26.6%), alimentary and metabolism (class A, 16.9%), or hormonal preparations (class H, 6.5%). At level 2, the most frequent therapeutic classes were psycholeptics (N05), analgesics (N02), and psychoanaleptics (N06). Pre-NAC TIL density in triple-negative BC (TNBC) was influenced by medications from class H, N, and A, while TIL density in HER2+ BC was associated with the use of class C. Psycholeptics (N05) and agents acting on the renin-angiotensin system (C09) were independently associated with pCR in the whole population of BC or TNBC, and in HER2-positive BC, respectively. Importantly, level 3 hypnotics (N05C) alone were able to reduce tumor growth in BC bearing mice and increased the anti-cancer activity of cyclophosphamide in a T cell-dependent manner. These findings prompt for further exploration of drugs interactions in cancer, and for prospective drug-repositioning strategies to improve the efficacy of NAC in BC.
Collapse
Affiliation(s)
- Anne-Sophie Hamy
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department, U932, Immunity and Cancer, Institut Curie, PSL Research University, Paris, France.,Department of Medical Oncology, Institut Curie, Saint-Cloud, France
| | - Lisa Derosa
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Institut National de la Santé Et de la Recherche Medicale (INSERM), Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.,Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | | | - Satoru Yonekura
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Institut National de la Santé Et de la Recherche Medicale (INSERM), Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.,Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Paule Opolon
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Institut National de la Santé Et de la Recherche Medicale (INSERM), Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.,Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Maël Priour
- Informatics Department, Institut Curie, Paris, France
| | - Julien Guerin
- Informatics Department, Institut Curie, Paris, France
| | - Jean-Yves Pierga
- Department of Medical Oncology, Institut Curie, Saint-Cloud, France
| | | | | | - Alice Pinheiro
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department, U932, Immunity and Cancer, Institut Curie, PSL Research University, Paris, France
| | - Marick Lae
- Tumor Biology, Institut Curie, Paris, France
| | | | - Enora Laas
- Department of Surgery, Institut Curie, Paris, France
| | | | | | - Elisabetta Marangoni
- Preclinical investigation laboratory, Translational Research Department, Institut Curie, PSL Research University, Paris
| | - Elodie Montaudon
- Preclinical investigation laboratory, Translational Research Department, Institut Curie, PSL Research University, Paris
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Cell Biology and Metabolomics platforms, Villejuif, France.,INSERM, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Institut National de la Santé Et de la Recherche Medicale (INSERM), Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.,Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Gustave Roussy and Institut Curie, France
| | - Fabien Reyal
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department, U932, Immunity and Cancer, Institut Curie, PSL Research University, Paris, France.,Department of Surgery, Institut Curie, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| |
Collapse
|
62
|
Hylander BL, Gordon CJ, Repasky EA. Manipulation of Ambient Housing Temperature To Study the Impact of Chronic Stress on Immunity and Cancer in Mice. THE JOURNAL OF IMMUNOLOGY 2019; 202:631-636. [PMID: 30670578 DOI: 10.4049/jimmunol.1800621] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/20/2018] [Indexed: 12/22/2022]
Abstract
Mice are the preeminent research organism in which to model human diseases and study the involvement of the immune response. Rapidly accumulating evidence indicates a significant involvement of stress hormones in cancer progression, resistance to therapies, and suppression of immune responses. As a result, there has been a concerted effort to model human stress in mice. In this article, we discuss recent literature showing how mice in research facilities are chronically stressed at baseline because of environmental factors. Focusing on housing temperature, we suggest that the stress of cool housing temperatures contributes to the impact of other imposed experimental stressors and therefore has a confounding effect on mouse stress models. Furthermore, we propose that manipulation of housing temperature is a useful approach for studying the impact of chronic stress on disease and the immune response and for testing therapeutic methods of reducing the negative effects of chronic stress.
Collapse
Affiliation(s)
- Bonnie L Hylander
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263
| | - Christopher J Gordon
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263
| |
Collapse
|
63
|
Abstract
Metastatic cancers impose significant burdens on patients, affecting quality of life, morbidity, and mortality. Even during remission, microscopic metastases can lurk, but few therapies directly target tumor cell metastasis. Agents that interfere with this process would represent a new paradigm in cancer management, changing the 'waiting game' into a time of active prevention. These therapies could take multiple forms based on the pathways involved in the metastatic process. For example, a phenome-wide association study showed that a single nucleotide polymorphism in the gene TBXA2R is associated with increased metastasis in multiple primary cancers (P = 0.003), suggesting clinical applicability of TBXA2R antagonists. Emerging data related to the role of platelets in metastasis are concordant with our sense that these pathways present significant opportunities for therapeutic development. However, before real progress can be made toward clinical targeting of the metastatic process, foundational work is needed to define informative measures of critical elements such as circulating tumor cells and tumor DNA, and circulatory vs. lymphatic spread. These challenges require an expansion of team science and composition to obtain competitive funding. At our academic medical center, we have implemented a Cancer Metastasis Inhibition (CMI) program investigating this approach across multiple cancers.
Collapse
|
64
|
Rivero EM, Martinez LM, Bruque CD, Gargiulo L, Bruzzone A, Lüthy IA. Prognostic significance of α- and β2-adrenoceptor gene expression in breast cancer patients. Br J Clin Pharmacol 2019; 85:2143-2154. [PMID: 31218733 DOI: 10.1111/bcp.14030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/04/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022] Open
Abstract
AIMS Breast cancer is the most frequently diagnosed and leading cause of cancer death among women worldwide. It was classified within molecular intrinsic subtypes: luminal A, luminal B, human epidermal growth factor receptor 2-enriched and basal-like. Epinephrine and norepinephrine, released during stress, bind to adrenoceptors. α2 -adrenoceptors are encoded by the ADRA2A, ADRA2B and ADRA2C genes and β2 by ADRB2. METHODS We compiled several publicly available Affymetrix gene expression datasets, obtaining a large cohort of 1924 patients with distant metastasis-free survival (DMFS) data and evaluated the association between adrenoceptor expression, clinicopathological markers and outcome. RESULTS ADRA2A high expressing tumours also expressed hormone receptors and presented diminished tumour size, grade and not compromised lymph nodes. ADRB2 high expression was found in smaller, low grade, oestrogen receptor-positive tumours. Both were significantly associated with the absence of metastasis. High expression of ADRA2C was positively associated with increased tumour size and metastatic relapse. We observed a significant increase in DMFS of patients with high ADRA2A (hazard ratio 0.54, 95% CI 0.45-0.65, P < .001) and ADRB2 (0.77, 0.64-0.93, P = .006) expression and a decrease with ADRA2C high expression (1.45, 1.16-1.81, P = .001). For patients with luminal tumours, ADRA2A was the only factor that retained its significance as an independent predictor of DMFS while ADRA2C expression was an independent predictor for worse prognosis in basal-like tumours. CONCLUSIONS We herein provide new insight for a potential role of ADRA2A and ADRA2C in breast cancer. In low- and medium-income countries, their incorporation to routine immunohistochemistry analysis of biopsies or tumour samples, could provide additional low-cost prognostic factors.
Collapse
Affiliation(s)
- Ezequiel Mariano Rivero
- Laboratory of Hormones and Cancer, Instituto de Biología y Medicina Experimental (IBYME) - CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | | | - Carlos David Bruque
- ANLIS, Centro Nacional de Genética Médica, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucia Gargiulo
- Laboratory of Hormones and Cancer, Instituto de Biología y Medicina Experimental (IBYME) - CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ariana Bruzzone
- Instituto de Investigaciones Bioquímicas Bahía Blanca INIBIBB-CONICET, Bahía Blanca, Argentina
| | - Isabel Alicia Lüthy
- Laboratory of Hormones and Cancer, Instituto de Biología y Medicina Experimental (IBYME) - CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
65
|
Overman J, Fontaine F, Wylie-Sears J, Moustaqil M, Huang L, Meurer M, Chiang IK, Lesieur E, Patel J, Zuegg J, Pasquier E, Sierecki E, Gambin Y, Hamdan M, Khosrotehrani K, Andelfinger G, Bischoff J, Francois M. R-propranolol is a small molecule inhibitor of the SOX18 transcription factor in a rare vascular syndrome and hemangioma. eLife 2019; 8:43026. [PMID: 31358114 PMCID: PMC6667216 DOI: 10.7554/elife.43026] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
Propranolol is an approved non-selective β-adrenergic blocker that is first line therapy for infantile hemangioma. Despite the clinical benefit of propranolol therapy in hemangioma, the mechanistic understanding of what drives this outcome is limited. Here, we report successful treatment of pericardial edema with propranolol in a patient with Hypotrichosis-Lymphedema-Telangiectasia and Renal (HLTRS) syndrome, caused by a mutation in SOX18. Using a mouse pre-clinical model of HLTRS, we show that propranolol treatment rescues its corneal neo-vascularisation phenotype. Dissection of the molecular mechanism identified the R(+)-propranolol enantiomer as a small molecule inhibitor of the SOX18 transcription factor, independent of any anti-adrenergic effect. Lastly, in a patient-derived in vitro model of infantile hemangioma and pre-clinical model of HLTRS we demonstrate the therapeutic potential of the R(+) enantiomer. Our work emphasizes the importance of SOX18 etiological role in vascular neoplasms, and suggests R(+)-propranolol repurposing to numerous indications ranging from vascular diseases to metastatic cancer.
Collapse
Affiliation(s)
- Jeroen Overman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Frank Fontaine
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jill Wylie-Sears
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, United States
| | - Mehdi Moustaqil
- Single Molecule Science, Lowy Cancer Research Centre, The University of New South Wales, Sydney, Australia
| | - Lan Huang
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, United States
| | - Marie Meurer
- Centre de Recherche en Cancérologie de Marseille (CRCM Marseille Cancer Research Centre), Inserm UMR1068, CNRS UMR7258, Aix-Marseille University UM105, Marseille, France
| | - Ivy Kim Chiang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Emmanuelle Lesieur
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jatin Patel
- Translational Research Institute, Diamantina Institute, The University of Queensland, Brisbane, Australia
| | - Johannes Zuegg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Eddy Pasquier
- Centre de Recherche en Cancérologie de Marseille (CRCM Marseille Cancer Research Centre), Inserm UMR1068, CNRS UMR7258, Aix-Marseille University UM105, Marseille, France
| | - Emma Sierecki
- Single Molecule Science, Lowy Cancer Research Centre, The University of New South Wales, Sydney, Australia
| | - Yann Gambin
- Single Molecule Science, Lowy Cancer Research Centre, The University of New South Wales, Sydney, Australia
| | | | - Kiarash Khosrotehrani
- Translational Research Institute, Diamantina Institute, The University of Queensland, Brisbane, Australia
| | - Gregor Andelfinger
- Department of Pediatrics, University of Montreal, Ste-Justine University Hospital Centre, Montréal, Canada
| | - Joyce Bischoff
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, United States
| | - Mathias Francois
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| |
Collapse
|
66
|
Montoya A, Varela-Ramirez A, Dickerson E, Pasquier E, Torabi A, Aguilera R, Nahleh Z, Bryan B. The beta adrenergic receptor antagonist propranolol alters mitogenic and apoptotic signaling in late stage breast cancer. Biomed J 2019; 42:155-165. [PMID: 31466709 PMCID: PMC6717753 DOI: 10.1016/j.bj.2019.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 12/21/2018] [Accepted: 02/19/2019] [Indexed: 02/08/2023] Open
Abstract
Background Substantial evidence supports the use of inexpensive β-AR antagonists (beta blockers) against a variety of cancers, and the β-AR antagonist propranolol was recently approved by the European Medicines Agency for the treatment of soft tissue sarcomas. Prospective and retrospective data published by our group and others suggest that non-selective β-AR antagonists are effective at reducing proliferative rates in breast cancers, however the mechanism by which this occurs is largely unknown. Methods In this study, we measured changes in tumor proliferation and apoptosis in a late stage breast cancer patient treated with neoadjuvant propranolol. We expounded upon these clinical findings by employing an in vitro breast cancer model, where we used cell-based assays to evaluate propranolol-mediated molecular alterations related to cell proliferation and apoptosis. Results Neoadjuvant propranolol decreased expression of the pro-proliferative Ki-67 and pro-survival Bcl-2 markers, and increased pro-apoptotic p53 expression in a patient with stage III breast cancer. Molecular analysis revealed that β-AR antagonism disrupted cell cycle progression and steady state levels of cyclins. Furthermore, propranolol treatment of breast cancer cells increased p53 levels, enhanced caspase cleavage, and induced apoptosis. Conclusion Collectively, these data provide support for the incorporation of β-AR antagonists into the clinical management of breast cancer, and elucidate a partial molecular mechanism explaining the efficacy of β-AR antagonists against this disease.
Collapse
Affiliation(s)
- Alexa Montoya
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA; Department of Biology, University of Texas, El Paso, TX, USA
| | - Armando Varela-Ramirez
- Department of Biology, University of Texas, El Paso, TX, USA; Border Biomedical Research Center, University of Texas, El Paso, TX, USA
| | - Erin Dickerson
- Department of Veterinary Clinical Sciences, University of Minnesota, Saint Paul, Minnesota, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Eddy Pasquier
- CNRS, INSERM, Aix-Marseille University, Institut Paoli-Calmettes, Cancer Research Center of Marseille, Marseille, France
| | - Alireza Torabi
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Renato Aguilera
- Department of Biology, University of Texas, El Paso, TX, USA; Border Biomedical Research Center, University of Texas, El Paso, TX, USA
| | - Zeina Nahleh
- Department of Hematology and Medical Oncology, Cleveland Clinic, Weston, FL, USA
| | - Brad Bryan
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA.
| |
Collapse
|
67
|
Schramm HM. The Epithelial-Myeloid-Transition (EMyeT) of cancer cells as a wrongly perceived primary inflammatory process eventually progressing to a bone remodeling malignancy: the alternative pathway for Epithelial- Mesenchymal-Transition hypothesis (EMT)? J Cancer 2019; 10:3798-3809. [PMID: 31333797 PMCID: PMC6636288 DOI: 10.7150/jca.31364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/10/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer cells express multiple markers expressed by mesenchymal as well as myeloid cells in common and in addition specific markers of the myeloid lineages, especially those of dendritic cells, macrophages and preosteoclasts. It has also been possible to identify monocyte-macrophage gene clusters in cancer cell specimens as well as in cancer cell lines. Accordingly, like myeloid cells cancer cells often express pro-inflammatory cytokines, and consequently the carcinoma may be perceived by the organism as a primary inflammatory process comparable to the immune inflammatory reactions in the eye or in the case of arthritis. This would explain why a carcinoma may induce a certain alarm state in the organism by increasing a fatal sympathetic tone in the patient, supplying the carcinomas with nutrients at the cost of other requirements, inducing tolerance against the cancer cells mistaken as myeloid cells, provoking fibrosis and neoangiogenesis, and increasing inflammatory cells at the carcinoma site. This seemingly inflammatory process of Epithelial-Myeloid-Transition (EMyeT) is superimposed by the progression of part of the myeloid cancer cells to stages comparable to preosteoclasts and osteoclasts, and their development to metastasizing carcinomas often at the site of bone. This concept of carcinogenesis and malignant progression described here challenges the widely accepted EMT-hypotheses and could deliver the rationale for the various peculiar aspects of cancer and the variety of therapeutic antitumoral measures.
Collapse
Affiliation(s)
- Henning M Schramm
- Institute for Integral Cancer Research (IFIK), CH-4144 Arlesheim/Switzerland
| |
Collapse
|
68
|
Hanns P, Paczulla AM, Medinger M, Konantz M, Lengerke C. Stress and catecholamines modulate the bone marrow microenvironment to promote tumorigenesis. Cell Stress 2019; 3:221-235. [PMID: 31338489 PMCID: PMC6612892 DOI: 10.15698/cst2019.07.192] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
High vascularization and locally secreted factors make the bone marrow (BM) microenvironment particularly hospitable for tumor cells and bones to a preferred metastatic site for disseminated cancer cells of different origins. Cancer cell homing and proliferation in the BM are amongst other regulated by complex interactions with BM niche cells (e.g. osteoblasts, endothelial cells and mesenchymal stromal cells (MSCs)), resident hematopoietic stem and progenitor cells (HSPCs) and pro-angiogenic cytokines leading to enhanced BM microvessel densities during malignant progression. Stress and catecholamine neurotransmitters released in response to activation of the sympathetic nervous system (SNS) reportedly modulate various BM cells and may thereby influence cancer progression. Here we review the role of catecholamines during tumorigenesis with particular focus on pro-tumorigenic effects mediated by the BM niche.
Collapse
Affiliation(s)
- Pauline Hanns
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Anna M Paczulla
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Michael Medinger
- Division of Clinical Hematology, University Hospital Basel, Basel, Switzerland
| | - Martina Konantz
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Claudia Lengerke
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland.,Division of Clinical Hematology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
69
|
MacDonald CR, Bucsek MJ, Qiao G, Chen M, Evans L, Greenberg DJ, Uccello TP, Battaglia NG, Hylander BL, Singh AK, Lord EM, Gerber SA, Repasky EA. Adrenergic Receptor Signaling Regulates the Response of Tumors to Ionizing Radiation. Radiat Res 2019; 191:585-589. [PMID: 31021732 PMCID: PMC6774253 DOI: 10.1667/rr15193.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
While ionizing radiation is a major form of cancer therapy, radioresistance remains a therapeutic obstacle. We have previously shown that the mandated housing temperature for laboratory mice (∼22°C) induces mild, but chronic, cold stress resulting in increased circulating norepinephrine, which binds to, and triggers activation of, beta-adrenergic receptors (β-AR) on tumor and immune cells. This adrenergic signaling increases tumor cell intrinsic resistance to chemotherapy and suppression of the anti-tumor immune response. These findings led us to hypothesize that adrenergic stress signaling increases radioresistance in tumor cells in addition to suppressing T-cell-mediated anti-tumor immunity, thus suppressing the overall sensitivity of tumors to radiation. We used three strategies to test the effect of adrenergic signaling on responsiveness to radiation. For one strategy, mice implanted with CT26 murine colon adenocarcinoma were housed at either 22°C or at thermoneutrality (30°C), which reduces physiological adrenergic stress. For a second strategy, we used a β-AR antagonist ("beta blocker") to block adrenergic signaling in mice housed at 22°C. In either case, tumors were then irradiated with a single 6 Gy dose and the response was compared to mice whose adrenergic stress signaling was not reduced. For the third strategy, we used an in vitro approach in which several different tumor cell lines were treated with a β-AR agonist and irradiated, and cell survival was then assessed by clonogenic assay. Overall, we found that adrenergic stress significantly impaired the anti-tumor efficacy of radiation by inducing tumor cell resistance to radiation-induced cell killing and by suppression of anti-tumor immunity. Treatment using beta blockers is a promising strategy for increasing the anti-tumor efficacy of radiotherapy.
Collapse
Affiliation(s)
- Cameron R. MacDonald
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263
| | - Mark J. Bucsek
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263
| | - Guanxi Qiao
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263
| | - Minhui Chen
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263
| | - Lauren Evans
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263
| | - Daniel J. Greenberg
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263
| | - Taylor P. Uccello
- Department of Microbiology/Immunology, University of Rochester Medical Center, Rochester, New York
14642
| | - Nicholas G. Battaglia
- Department of Microbiology/Immunology, University of Rochester Medical Center, Rochester, New York
14642
| | - Bonnie L. Hylander
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263
| | - Anurag K. Singh
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263
| | - Edith M. Lord
- Department of Microbiology/Immunology, University of Rochester Medical Center, Rochester, New York
14642
| | - Scott A. Gerber
- Department of Microbiology/Immunology, University of Rochester Medical Center, Rochester, New York
14642
- Department of Surgery, University of Rochester Medical Center, Rochester, New York 14642
| | - Elizabeth A. Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263
| |
Collapse
|
70
|
González-Rodríguez B, Villar Gómez de Las Heras K, Aguirre DT, Rodríguez-Padial L, Albiñana V, Recio-Poveda L, Cuesta AM, Botella LM, Jiménez-Escribano RM. Evaluation of the safety and effectiveness of oral propranolol in patients with von Hippel-Lindau disease and retinal hemangioblastomas: phase III clinical trial. BMJ Open Ophthalmol 2019; 4:e000203. [PMID: 31245608 PMCID: PMC6557078 DOI: 10.1136/bmjophth-2018-000203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background von Hippel-Lindau disease (VHL) is a multisystem cancer syndrome caused by mutations in the VHL gene. Retinal hemangioblastoma is one of the most common tumours, and when it appears near the optic nerve, its treatment is challenging and risky. To date, no treatment has proven effective in changing the course of the disease. This study was designed to evaluate the safety and effectiveness of propranolol in controlling these tumours. Methods Seven patients were included. All patients took a daily dose of 120 mg of propranolol for 1 year. Clinical variables were assessed at baseline, and at 1, 3, 6, 9 and 12 months. The primary endpoint of the study was the number and size of retinal hemangioblastomas. On every visit, retinal outcomes and blood biomarkers (such as vascular endothelial growth factor (VEGF) and miR210) were analysed. Results Number and size of retinal hemangioblastomas remained stable in all patients. All of them had initially increased levels of VEGF and miR210. There was a gradual reabsorption of retinal exudation in two patients, correlating with a progressive decrease of both biomarkers. The only adverse effect reported was hypotension in one patient. Conclusions Propranolol could be used to treat retinal hemangioblastomas in VHL patients, although more studies are needed to determine the ideal dose and long-term effect. VEGF and miR210 should be explored as biomarkers of disease activity. As far as we know, these are the first biomarkers proposed to monitor the VHL disease activity. Trial registration number 2014-003671-30.
Collapse
Affiliation(s)
- Beatriz González-Rodríguez
- Ophthalmology, Retina Service, Complejo Hospitalario de Toledo, Servicio de Salud de Castilla-La Mancha, Toledo, Spain
| | - Karina Villar Gómez de Las Heras
- DG Asistencia Sanitaria, Servicio de Salud de Castilla-La Mancha, Toledo, Spain.,Alianza VHL, Alianza de Familias de von Hippel-Lindau, Toledo, Spain
| | - Daniel T Aguirre
- Neurosurgery, Familial Neuro-Oncology Unit, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Luis Rodríguez-Padial
- Cardiology, Complejo Hospitalario de Toledo, Servicio de Salud de Castilla-La Mancha, Toledo, Spain
| | - Virginia Albiñana
- Centro de Investigaciones Biológicas-CIB, Centro Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Lucía Recio-Poveda
- Centro de Investigaciones Biológicas-CIB, Centro Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Angel M Cuesta
- Centro de Investigaciones Biológicas-CIB, Centro Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Luisa Mª Botella
- Centro de Investigaciones Biológicas-CIB, Centro Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Rosa María Jiménez-Escribano
- Ophthalmology, Retina Service, Complejo Hospitalario de Toledo, Servicio de Salud de Castilla-La Mancha, Toledo, Spain
| |
Collapse
|
71
|
Bowles EJA, Yu O, Ziebell R, Chen L, Boudreau DM, Ritzwoller DP, Hubbard RA, Boggs JM, Burnett-Hartman AN, Sterrett A, Fujii M, Chubak J. Cardiovascular medication use and risks of colon cancer recurrences and additional cancer events: a cohort study. BMC Cancer 2019; 19:270. [PMID: 30917783 PMCID: PMC6437861 DOI: 10.1186/s12885-019-5493-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
Background Cardiovascular medications may be associated with cancer development, but little is known about their association with cancer recurrence. Medications such as statins and antihypertensives may be commonly used among colon cancer survivors, who are, on average, diagnosed in their mid-60s. We described the associations between statins and antihypertensive medications and colon cancer recurrence in a large, population-based study. Methods We conducted a cohort study among adults with stage I-IIIA colon cancer diagnosed in 1995–2014 in two Kaiser Permanente regions, Colorado and Washington. Statin and antihypertensive use were obtained from electronic pharmacy dispensing data. People were classified as medication users on the date of their first dispensing after cohort entry, which started 90 days after completing cancer treatment, continuing through the earliest of death, health plan disenrollment, or chart abstraction. We collected outcome information from medical record abstraction and tumor registries on colon cancer recurrences and second primary cancers. Using Cox proportional hazards multivariable models, we estimated hazard ratios (HRs) with 95% confidence intervals (CIs) for colon cancer recurrences and any cancer event (recurrences and new primaries at any anatomic site) comparing medication users to non-users. Results Among 2039 people, 937 (46%) used statins and 1425 (70%) used antihypertensives at any point during a median of 4.9 years of follow-up; 460 people had any additional cancer event, including 152 with a colon cancer recurrence. Statin use was not associated with colon cancer recurrence (HR = 1.09, 95%CI = 0.65–1.85) or any cancer event (HR = 1.12, 95%CI = 0.85–1.47), nor was antihypertensive use associated with recurrence (HR = 0.73, 95%CI = 0.44–1.21) or any cancer event (HR = 0.93, 95%CI = 0.70–1.24). Conclusions Our results suggest no association between cardiovascular medication use and the risk of recurrence or any additional cancer, and may provide reassurance to colon cancer survivors.
Collapse
Affiliation(s)
- Erin J A Bowles
- Kaiser Permanente Washington Health Research Institute, 1730 Minor Avenue, Suite 1600, Seattle, WA, 98101, USA.
| | - Onchee Yu
- Kaiser Permanente Washington Health Research Institute, 1730 Minor Avenue, Suite 1600, Seattle, WA, 98101, USA
| | - Rebecca Ziebell
- Kaiser Permanente Washington Health Research Institute, 1730 Minor Avenue, Suite 1600, Seattle, WA, 98101, USA
| | - Lu Chen
- Kaiser Permanente Washington Health Research Institute, 1730 Minor Avenue, Suite 1600, Seattle, WA, 98101, USA
| | - Denise M Boudreau
- Kaiser Permanente Washington Health Research Institute, 1730 Minor Avenue, Suite 1600, Seattle, WA, 98101, USA.,School of Pharmacy, University of Washington, Seattle, Washington, 98195, USA.,Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Debra P Ritzwoller
- Kaiser Permanente Colorado Institute for Health Research, 2550 S Parker Rd Suite 200, Aurora, Colorado, 80014, USA
| | - Rebecca A Hubbard
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 604 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - Jennifer M Boggs
- Kaiser Permanente Colorado Institute for Health Research, 2550 S Parker Rd Suite 200, Aurora, Colorado, 80014, USA
| | - Andrea N Burnett-Hartman
- Kaiser Permanente Colorado Institute for Health Research, 2550 S Parker Rd Suite 200, Aurora, Colorado, 80014, USA
| | - Andrew Sterrett
- Kaiser Permanente Colorado Institute for Health Research, 2550 S Parker Rd Suite 200, Aurora, Colorado, 80014, USA
| | - Monica Fujii
- Kaiser Permanente Washington Health Research Institute, 1730 Minor Avenue, Suite 1600, Seattle, WA, 98101, USA
| | - Jessica Chubak
- Kaiser Permanente Washington Health Research Institute, 1730 Minor Avenue, Suite 1600, Seattle, WA, 98101, USA.,Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
72
|
Perioperative Administration of an Intravenous Beta-Blocker Landiolol Hydrochloride in Patients with Lung Cancer: A Japanese Retrospective Exploratory Clinical Study. Sci Rep 2019; 9:5217. [PMID: 30914694 PMCID: PMC6435747 DOI: 10.1038/s41598-019-41520-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
Beta-blockers have been reported to improve prognosis for various cancers, but the usefulness of perioperative administration remains unclear. To assess the efficacy of perioperative administration of landiolol hydrochloride, an intravenous beta-blocker, for lung cancer, we conducted a single-center, retrospective study. This study included patients who participated in a research conducted by Nippon Medical School Hospital from August 2012 to November 2013. The main selection criteria were males and females younger than 85 years old who have undergone anatomic lung resection for lung malignancies. Fifty-seven patients, 28 in the landiolol group and 29 in the control group, were included. The postoperative relapse-free survival rate at 2 years was 0.89 (95% CI, 0.78–1.01) in the landiolol group and 0.76 (95% CI, 0.60–0.91) in the control group (Chi-squared test; P = 0.1828). The relapse-free survival rate tended to be higher in the landiolol group than in the control. Hazard ratio for relapse-free survival in the landiolol group compared to the control was 0.41 (95% CI, 0.13–1.34), demonstrating that relapse free survival was prolonged in the landiolol group (log-rank test; P = 0.1294). It was suggested that relapse-free survival was prolonged when landiolol hydrochloride was administered from the induction to completion of anesthesia. Further studies are needed to confirm our findings.
Collapse
|
73
|
Cavalla D. Using human experience to identify drug repurposing opportunities: theory and practice. Br J Clin Pharmacol 2019; 85:680-689. [PMID: 30648285 DOI: 10.1111/bcp.13851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/07/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022] Open
Abstract
Retrospective evidence drawn from real-world experience of a medicine's use outside its labelled indication is one of a number of techniques used in drug repurposing (DRP). Relying as it does on large numbers of real incidences of human experience, rather than individual case reports with limited statistical support, preclinical experiments with poor translatability or in silico associations, which are early-stage hypotheses, it represents the best validated form of DRP. Cancer is the most frequent of such DRP examples (e.g. aspirin in pancreatic cancer, hazard ratio = 0.25). This approach can be combined with pathway analysis to provide first-in-class treatments for complex diseases. Alternatively, it can be combined with prospective preclinical studies to uncover a validated mechanism for a new indication, after which a repurposed molecule is chemically optimized.
Collapse
|
74
|
Abstract
It is from the discovery of leptin and the central nervous system as a regulator of bone remodeling that the presence of autonomic nerves within the skeleton transitioned from a mere histological observation to the mechanism whereby neurons of the central nervous system communicate with cells of the bone microenvironment and regulate bone homeostasis. This shift in paradigm sparked new preclinical and clinical investigations aimed at defining the contribution of sympathetic, parasympathetic, and sensory nerves to the process of bone development, bone mass accrual, bone remodeling, and cancer metastasis. The aim of this article is to review the data that led to the current understanding of the interactions between the autonomic and skeletal systems and to present a critical appraisal of the literature, bringing forth a schema that can put into physiological and clinical context the main genetic and pharmacological observations pointing to the existence of an autonomic control of skeletal homeostasis. The different types of nerves found in the skeleton, their functional interactions with bone cells, their impact on bone development, bone mass accrual and remodeling, and the possible clinical or pathophysiological relevance of these findings are discussed.
Collapse
Affiliation(s)
- Florent Elefteriou
- Department of Molecular and Human Genetics and Orthopedic Surgery, Center for Skeletal Medicine and Biology, Baylor College of Medicine , Houston, Texas
| |
Collapse
|
75
|
Propranolol Promotes Glucose Dependence and Synergizes with Dichloroacetate for Anti-Cancer Activity in HNSCC. Cancers (Basel) 2018; 10:cancers10120476. [PMID: 30513596 PMCID: PMC6316475 DOI: 10.3390/cancers10120476] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 01/14/2023] Open
Abstract
Tumor cell metabolism differs from that of normal cells, conferring tumors with metabolic advantages but affording opportunities for therapeutic intervention. Accordingly, metabolism-targeting therapies have shown promise. However, drugs targeting singular metabolic pathways display limited efficacy, in part due to the tumor’s ability to compensate by using other metabolic pathways to meet energy and growth demands. Thus, it is critical to identify novel combinations of metabolism-targeting drugs to improve therapeutic efficacy in the face of compensatory cellular response mechanisms. Our lab has previously identified that the anti-cancer activity of propranolol, a non-selective beta-blocker, is associated with inhibition of mitochondrial metabolism in head and neck squamous cell carcinoma (HNSCC). In response to propranolol, however, HNSCC exhibits heightened glycolytic activity, which may limit the effectiveness of propranolol as a single agent. Thus, we hypothesized that propranolol’s metabolic effects promote a state of enhanced glucose dependence, and that propranolol together with glycolytic inhibition would provide a highly effective therapeutic combination in HNSCC. Here, we show that glucose deprivation synergizes with propranolol for anti-cancer activity, and that the rational combination of propranolol and dichloroacetate (DCA), a clinically available glycolytic inhibitor, dramatically attenuates tumor cell metabolism and mTOR signaling, inhibits proliferation and colony formation, and induces apoptosis. This therapeutic combination displays efficacy in both human papillomavirus-positive (HPV(+)) and HPV(−) HNSCC cell lines, as well as a recurrent/metastatic model, while leaving normal tonsil epithelial cells relatively unaffected. Importantly, the combination significantly delays tumor growth in vivo with no evidence of toxicity. Additionally, the combination of propranolol and DCA enhances the effects of chemoradiation and sensitizes resistant cells to cisplatin and radiation. This novel therapeutic combination represents a promising treatment strategy which may overcome some of the limitations of targeting individual metabolic pathways in cancer.
Collapse
|
76
|
Long-term Consequences of the Acute Neural-Inflammatory Stress Response in the Cancer Surgical Patient: New Findings and Perspectives. Int Anesthesiol Clin 2018; 54:58-71. [PMID: 27648891 DOI: 10.1097/aia.0000000000000111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
77
|
Lucido CT, Callejas-Valera JL, Colbert PL, Vermeer DW, Miskimins WK, Spanos WC, Vermeer PD. β 2-Adrenergic receptor modulates mitochondrial metabolism and disease progression in recurrent/metastatic HPV(+) HNSCC. Oncogenesis 2018; 7:81. [PMID: 30297705 PMCID: PMC6175933 DOI: 10.1038/s41389-018-0090-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/03/2018] [Accepted: 09/04/2018] [Indexed: 12/23/2022] Open
Abstract
The incidence of human papillomavirus-associated head and neck squamous cell carcinoma (HPV[ + ] HNSCC) is rapidly increasing. Although clinical management of primary HPV( + ) HNSCC is relatively successful, disease progression, including recurrence and metastasis, is often fatal. Moreover, patients with progressive disease face limited treatment options and significant treatment-associated morbidity. These clinical data highlight the need to identify targetable mechanisms that drive disease progression in HPV( + ) HNSCC to prevent and/or treat progressive disease. Interestingly, β-adrenergic signaling has recently been associated with pro-tumor processes in several disease types. Here we show that an aggressive murine model of recurrent/metastatic HPV( + ) HNSCC upregulates β2-adrenergic receptor (β2AR) expression, concordant with significantly heightened mitochondrial metabolism, as compared with the parental model from which it spontaneously derived. β-Adrenergic blockade effectively inhibits in vitro proliferation and migratory capacity in this model, effects associated with an attenuation of hyperactive mitochondrial respiration. Importantly, propranolol, a clinically available nonselective β-blocker, significantly slows primary tumor growth, inhibits metastatic development, and shows additive benefit alongside standard-of-care modalities in vivo. Further, via CRISPR/Cas9 technology, we show that the hyperactive mitochondrial metabolic profile and aggressive in vivo phenotype of this recurrent/metastatic model are dependent on β2AR expression. These data implicate β2AR as a modulator of mitochondrial metabolism and disease progression in HPV( + ) HNSCC, and warrant further investigation into the use of β-blockers as low cost, relatively tolerable, complementary treatment options in the clinical management of this disease.
Collapse
Affiliation(s)
- Christopher T Lucido
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St North, Sioux Falls, SD, 57104, USA
| | - Juan L Callejas-Valera
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St North, Sioux Falls, SD, 57104, USA
| | - Paul L Colbert
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St North, Sioux Falls, SD, 57104, USA
| | - Daniel W Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St North, Sioux Falls, SD, 57104, USA
| | - W Keith Miskimins
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St North, Sioux Falls, SD, 57104, USA
| | - William C Spanos
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St North, Sioux Falls, SD, 57104, USA
| | - Paola D Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St North, Sioux Falls, SD, 57104, USA.
| |
Collapse
|
78
|
β2ARs stimulation in osteoblasts promotes breast cancer cell adhesion to bone marrow endothelial cells in an IL-1β and selectin-dependent manner. J Bone Oncol 2018; 13:1-10. [PMID: 30245970 PMCID: PMC6146568 DOI: 10.1016/j.jbo.2018.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 12/18/2022] Open
Abstract
Progression and recurrence of breast cancer, as well as reduced survival of patients with breast cancer, are associated with chronic stress, a condition known to impact the hypothalamic-pituitary axis and the autonomic nervous system. Preclinical and clinical evidence support the involvement of the sympathetic nervous system in the control of bone remodeling and in pathologies of the skeleton, including bone metastasis. In experimental mouse models of skeletal metastasis, administration of the βAR agonist isoproterenol (ISO), used as a surrogate of norepinephrine, the main neurotransmitter of sympathetic neurons, was shown to favor bone colonization of metastatic breast cancer cells via an increase bone marrow vascularity. However, successful extravasation of cancer cells into a distant organ is known to be favored by an activated endothelium, itself stimulated by inflammatory signals. Based on the known association between high sympathetic outflow, the expression of inflammatory cytokines and bone metastasis, we thus asked whether βAR stimulation in osteoblasts may alter the vascular endothelium to favor cancer cell engraftment within the skeleton. To address this question, we used conditioned medium (CM) from PBS or ISO-treated bone marrow stromal cells (BMSCs) in adhesion assays with bone marrow endothelial cells (BMECs) or the endothelial cell line C166. We found that ISO treatment in differentiated BMSCs led to a robust induction of the pro-inflammatory cytokines interleukin-1 beta (IL-1β) and interleukin-6 (IL-6). The CM from ISO-treated BMSCs increased the expression of E- and P-selectin in BMECs and the adhesion of human MDA-MB-231 breast cancer cells to these cells in short-term static and dynamic adhesion assays, and a blocking antibody against IL-1β, but not IL-6, reduced this effect. Direct IL-1β treatment of BMECs had a similar effect, whereas the impact of IL-6 treatment on the expression of adhesion molecules by BMECs and on the adhesion of cancer cells to BMECs was negligible. Collectively, these in vitro results suggest that in the context of the multicellular and dynamic bone marrow environment, sympathetic activation and subsequent βAR stimulation in osteoblasts may profoundly remodel the density but also the activation status of bone marrow vessels to favor the skeletal engraftment of circulating breast cancer cells. β2AR activation in osteoblasts increases the expression of pro-inflammatory cytokines IL-1β and IL-6. IL-1β promotes the adhesion of breast cancer cells to endothelium via an endothelial increase in E- and P-selectin expression. IL-1β blockade and selectin inhibition inhibits breast cancer cell adhesion to endothelial cells.
Collapse
|
79
|
Wagner MJ, Cranmer LD, Loggers ET, Pollack SM. Propranolol for the treatment of vascular sarcomas. J Exp Pharmacol 2018; 10:51-58. [PMID: 30233257 PMCID: PMC6130307 DOI: 10.2147/jep.s146211] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vascular sarcomas are abnormal proliferations of endothelial cells. They range from benign hemangioma to aggressive angiosarcoma, and are characterized by dysregulated angiogenic signaling. Propranolol is a β-adrenergic receptor inhibitor that has demonstrated clinical efficacy in benign infantile hemangioma, and is now being used experimentally for more aggressive vascular sarcomas and other cancers. In this review, we discuss the use of propranolol in targeting these receptors in vascular tumors and other cancers.
Collapse
Affiliation(s)
- Michael J Wagner
- Division of Medical Oncology, .,Clinical Research Division University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA, USA,
| | - Lee D Cranmer
- Division of Medical Oncology, .,Clinical Research Division University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA, USA,
| | - Elizabeth T Loggers
- Division of Medical Oncology, .,Clinical Research Division University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA, USA,
| | - Seth M Pollack
- Division of Medical Oncology, .,Clinical Research Division University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA, USA,
| |
Collapse
|
80
|
Knight JM, Kerswill SA, Hari P, Cole SW, Logan BR, D’Souza A, Shah NN, Horowitz MM, Stolley MR, Sloan EK, Giles KE, Costanzo ES, Hamadani M, Chhabra S, Dhakal B, Rizzo JD. Repurposing existing medications as cancer therapy: design and feasibility of a randomized pilot investigating propranolol administration in patients receiving hematopoietic cell transplantation. BMC Cancer 2018; 18:593. [PMID: 29793446 PMCID: PMC5968588 DOI: 10.1186/s12885-018-4509-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/15/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Repurposing existing medications for antineoplastic purposes can provide a safe, cost-effective, and efficacious means to further augment available cancer care. Clinical and preclinical studies suggest a role for the ß-adrenergic antagonist (ß-blocker) propranolol in reducing rates of tumor progression in both solid and hematologic malignancies. In patients undergoing hematopoietic cell transplantation (HCT), the peri-transplant period is a time of increased activity of the ß-adrenergically-mediated stress response. METHODS We conducted a proof-of-concept randomized controlled pilot study assessing the feasibility of propranolol administration to patients between ages 18-75 who received an autologous HCT for multiple myeloma. Feasibility was assessed by enrollment rate, tolerability, adherence, and retention. RESULTS One hundred fifty-four patients underwent screening; 31 (20%) enrolled in other oncology trials that precluded dual trial enrollment and 9 (6%) declined to enroll in the current trial. Eighty-nine (58%) did not meet eligibility requirements and 25 (16%) were eligible; of the remaining eligible patients, all were successfully enrolled and randomized. The most common reasons for ineligibility were current ß-blocker use, age, logistics, and medical contraindications. 92% of treatment arm patients tolerated and remained on propranolol for the study duration; 1 patient discontinued due to hypotension. Adherence rate in assessable patients (n = 10) was 94%. Study retention was 100%. CONCLUSIONS Findings show that it is feasible to recruit and treat multiple myeloma patients with propranolol during HCT, with the greatest obstacle being other competing oncology trials. These data support further studies examining propranolol and other potentially repurposed drugs in oncology populations. TRIAL REGISTRATION This randomized controlled trial was registered at clinicaltrials.gov with the identifier NCT02420223 on April 17, 2015.
Collapse
Affiliation(s)
- Jennifer M. Knight
- Departments of Psychiatry, Medicine, and Microbiology & Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
| | | | - Parameswaran Hari
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
| | - Steve W. Cole
- Department of Medicine, Division of Hematology-Oncology, and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA USA
| | - Brent R. Logan
- Center for International Blood and Marrow Transplant Research; Medical College of Wisconsin, Milwaukee, WI USA
- Division of Biostatistics, Institute for Health & Society, Medical College of Wisconsin, Milwaukee, USA
| | - Anita D’Souza
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
- Center for International Blood and Marrow Transplant Research; Medical College of Wisconsin, Milwaukee, WI USA
| | - Nirav N. Shah
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
| | - Mary M. Horowitz
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
- Center for International Blood and Marrow Transplant Research; Medical College of Wisconsin, Milwaukee, WI USA
| | | | - Erica K. Sloan
- Monash Institute of Pharmaceutical Sciences, Monash University, Clayton, VIC Australia
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, Jonsson Comprehensive Cancer Center, and UCLA AIDS Institute, UCLA, Los Angeles, CA USA
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Melbourne, VIC Australia
| | | | - Erin S. Costanzo
- Carbone Cancer Center and Department of Psychiatry, University of Wisconsin-Madison, Madison, WI USA
| | - Mehdi Hamadani
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
- Center for International Blood and Marrow Transplant Research; Medical College of Wisconsin, Milwaukee, WI USA
| | - Saurabh Chhabra
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
| | - Binod Dhakal
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
| | - J. Douglas Rizzo
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
- Center for International Blood and Marrow Transplant Research; Medical College of Wisconsin, Milwaukee, WI USA
| |
Collapse
|
81
|
Amaya CN, Perkins M, Belmont A, Herrera C, Nasrazadani A, Vargas A, Khayou T, Montoya A, Ballou Y, Galvan D, Rivas A, Rains S, Patel L, Ortega V, Lopez C, Chow W, Dickerson EB, Bryan BA. Non-selective beta blockers inhibit angiosarcoma cell viability and increase progression free- and overall-survival in patients diagnosed with metastatic angiosarcoma. Oncoscience 2018; 5:109-119. [PMID: 29854879 PMCID: PMC5978448 DOI: 10.18632/oncoscience.413] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/02/2018] [Indexed: 12/18/2022] Open
Abstract
Patients with metastatic angiosarcoma undergoing chemotherapy, radiation, and/or surgery experience a median progression free survival of less than 6 months and a median overall survival of less than 12 months. Given the aggressive nature of this cancer, angiosarcoma clinical responses to chemotherapy or targeted therapeutics are generally very poor. Inhibition of beta adrenergic receptor (β-AR) signaling has recently been shown to decrease angiosarcoma tumor cell viability, abrogate tumor growth in mouse models, and decrease proliferation rates in preclinical and clinical settings. In the current study we used cell and animal tumor models to show that β-AR antagonism abrogates mitogenic signaling and reduces angiosarcoma tumor cell viability, and these molecular alterations translated into patient tumors. We demonstrated that non-selective β-AR antagonists are superior to selective β-AR antagonists at inhibiting angiosarcoma cell viability. A prospective analysis of non- selective β-AR antagonists in a single arm clinical study of metastatic angiosarcoma patients revealed that incorporation of either propranolol or carvedilol into patients' treatment regimens leads to a median progression free and overall survival of 9 and 36 months, respectively. These data suggest that incorporation of non-selective β-AR antagonists into existing therapies against metastatic angiosarcoma can enhance clinical outcomes.
Collapse
Affiliation(s)
- Clarissa N Amaya
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Mariah Perkins
- Department of Biochemistry, Baylor University, Waco, TX, USA
| | - Andres Belmont
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Connie Herrera
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Arezo Nasrazadani
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Alejandro Vargas
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Thuraieh Khayou
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Alexa Montoya
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA.,Department of Biology, University of Texas, El Paso, TX, USA
| | - Yessenia Ballou
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Dana Galvan
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Alexandria Rivas
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Steven Rains
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Luv Patel
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Vanessa Ortega
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Christopher Lopez
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - William Chow
- Mohs Micrographic Surgery and Cutaneous Oncology, San Leandro, CA, USA
| | - Erin B Dickerson
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Brad A Bryan
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA.,Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| |
Collapse
|
82
|
Abstract
Inhibitors of mTOR, including clinically available rapalogs such as rapamycin (Sirolimus) and Everolimus, are gerosuppressants, which suppress cellular senescence. Rapamycin slows aging and extends life span in a variety of species from worm to mammals. Rapalogs can prevent age-related diseases, including cancer, atherosclerosis, obesity, neurodegeneration and retinopathy and potentially rejuvenate stem cells, immunity and metabolism. Here, I further suggest how rapamycin can be combined with metformin, inhibitors of angiotensin II signaling (Losartan, Lisinopril), statins (simvastatin, atorvastatin), propranolol, aspirin and a PDE5 inhibitor. Rational combinations of these drugs with physical exercise and an anti-aging diet (Koschei formula) can maximize their anti-aging effects and decrease side effects.
Collapse
|
83
|
Rico M, Baglioni M, Bondarenko M, Laluce NC, Rozados V, André N, Carré M, Scharovsky OG, Menacho Márquez M. Metformin and propranolol combination prevents cancer progression and metastasis in different breast cancer models. Oncotarget 2018; 8:2874-2889. [PMID: 27926515 PMCID: PMC5356849 DOI: 10.18632/oncotarget.13760] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/22/2016] [Indexed: 01/01/2023] Open
Abstract
Discovery of new drugs for cancer treatment is an expensive and time-consuming process and the percentage of drugs reaching the clinic remains quite low. Drug repositioning refers to the identification and development of new uses for existing drugs and represents an alternative drug development strategy. In this work, we evaluated the antitumor effect of metronomic treatment with a combination of two repositioned drugs, metformin and propranolol, in triple negative breast cancer models. By in vitro studies with five different breast cancer derived cells, we observed that combined treatment decreased proliferation (P < 0.001), mitochondrial activity (P < 0.001), migration (P < 0.001) and invasion (P < 0.001). In vivo studies in immunocompetent mice confirmed the potential of this combination in reducing tumor growth (P < 0.001) and preventing metastasis (P < 0.05). Taken together our results suggest that metformin plus propranolol combined treatment might be beneficial for triple negative breast cancer control, with no symptoms of toxicity.
Collapse
Affiliation(s)
- María Rico
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina.,El Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - María Baglioni
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Maryna Bondarenko
- Aix-Marseille Université, Inserm UMR_S 911, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Faculté de Pharmacie, Marseille, France
| | - Nahuel Cesatti Laluce
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Viviana Rozados
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Nicolas André
- Aix-Marseille Université, Inserm UMR_S 911, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Faculté de Pharmacie, Marseille, France.,Service d'Hématologie and Oncologie Pédiatrique, AP-HM, Marseille, France.,Metronomics Global Health Initiative, Marseille, France
| | - Manon Carré
- Aix-Marseille Université, Inserm UMR_S 911, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Faculté de Pharmacie, Marseille, France
| | - O Graciela Scharovsky
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina.,El Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.,Metronomics Global Health Initiative, Marseille, France
| | - Mauricio Menacho Márquez
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina.,El Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| |
Collapse
|
84
|
Resting heart rate is an independent predictor of advanced colorectal adenoma recurrence. PLoS One 2018; 13:e0193753. [PMID: 29499053 PMCID: PMC5834177 DOI: 10.1371/journal.pone.0193753] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/16/2018] [Indexed: 12/16/2022] Open
Abstract
Background and aim High heart rate is an independent predictor of total cancer incidence and all-cause mortality in patients with cancer. We aimed to evaluate the impact of resting heart rate on the recurrence of colorectal polyp, using long-term surveillance follow-up data of colorectal cancer survivors. Methods Three hundred patients were selected from the colorectal cancer survivor cohort of Severance Hospital, Seoul, Korea. Resting heart rate, physical activity, and body composition analysis at the time of 5-year survival, and clinical data including colonoscopy surveillance results were collected for mean follow-up duration of 8 years. Results Patients with a high resting heart rate showed a significantly higher recurrence rate of advanced adenoma than those with a low resting heart rate (quartile 1, 45–66 beats per minute (b.p.m.); quartile 2, 67–73 b.p.m.; quartile 3, 74–80 b.p.m.; quartile 4, 81–120 b.p.m.; 3.8% vs. 7.9% vs. 10.0% vs. 14.7%, p for trend = 0.018). After adjustment for various risk factors, patients in the highest quartile of resting heart rate (≥ 81 b.p.m.) had a significantly higher risk of advanced adenoma recurrence (hazard ratio [HR]: 6.183, 95% confidence interval [CI]: 1.181–32.373, p = 0.031), compared to those in the lowest quartile (≤ 66 b.p.m.). In subgroup analysis, the association of resting heart rate with advanced adenoma recurrence appeared to be stronger among patients who had more than normal body fat mass or sedentary life style. Conclusions Elevated resting heart rate was independently associated with a higher rate of advanced adenoma recurrence in colorectal cancer survivors.
Collapse
|
85
|
Jean Wrobel L, Bod L, Lengagne R, Kato M, Prévost-Blondel A, Le Gal FA. Propranolol induces a favourable shift of anti-tumor immunity in a murine spontaneous model of melanoma. Oncotarget 2018; 7:77825-77837. [PMID: 27788481 PMCID: PMC5363624 DOI: 10.18632/oncotarget.12833] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/12/2016] [Indexed: 12/16/2022] Open
Abstract
In a previous study on a xenograft model of melanoma, we showed that the beta-adrenergic receptor antagonist propranolol inhibits melanoma development by modulating angiogenesis, proliferation and cell survival. Stress hormones can influence tumor development in different ways and norepinephrine was shown to downregulate antitumor immune responses by favoring the accumulation of immunosuppressive cells, impairing the function of lymphocytes. We assessed the effect of propranolol on antitumor immune response in the MT/Ret mouse model of melanoma. Propranolol treatment delayed primary tumor growth and metastases development in MT/Ret mice. Consistent with our previous observations in human melanoma xenografts, propranolol induces a decrease in cell proliferation and vessel density in the primary tumors and in metastases. In this immunocompetent model, propranolol significantly reduced the infiltration of myeloid cells, particularly neutrophils, in the primary tumor. Inversely, cytotoxic tumor infiltrating lymphocytes were more frequent in the tumor stroma of treated mice. In a consistent manner, we observed the same shift in the proportions of infiltrating leukocytes in the metastases of treated mice. Our results suggest that propranolol, by decreasing the infiltration of immunosuppressive myeloid cells in the tumor microenvironment, restores a better control of the tumor by cytotoxic cells.
Collapse
Affiliation(s)
- Ludovic Jean Wrobel
- Hôpitaux Universitaires de Genève, Service de Dermatologie, Genève, Switzerland
| | - Lloyd Bod
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Renée Lengagne
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Armelle Prévost-Blondel
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | | |
Collapse
|
86
|
Montoya A, Amaya CN, Belmont A, Diab N, Trevino R, Villanueva G, Rains S, Sanchez LA, Badri N, Otoukesh S, Khammanivong A, Liss D, Baca ST, Aguilera RJ, Dickerson EB, Torabi A, Dwivedi AK, Abbas A, Chambers K, Bryan BA, Nahleh Z. Use of non-selective β-blockers is associated with decreased tumor proliferative indices in early stage breast cancer. Oncotarget 2018; 8:6446-6460. [PMID: 28031536 PMCID: PMC5351644 DOI: 10.18632/oncotarget.14119] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022] Open
Abstract
Previous studies suggest beta-adrenergic receptor (β-AR) antagonists (β-blockers) decrease breast cancer progression, tumor metastasis, and patient mortality; however the mechanism for this is unknown. Immunohistochemical analysis of normal and malignant breast tissue revealed overexpression of β1-AR and β3-AR in breast cancer. A retrospective cross-sectional study of 404 breast cancer patients was performed to determine the effect of β-blocker usage on tumor proliferation. Our analysis revealed that non-selective β-blockers, but not selective β-blockers, reduced tumor proliferation by 66% (p < 0.0001) in early stage breast cancer compared to non-users. We tested the efficacy of propranolol on an early stage breast cancer patient, and quantified the tumor proliferative index before and after treatment, revealing a propranolol-mediated 23% reduction (p = 0.02) in Ki67 positive tumor cells over a three-week period. The anti-proliferative effects of β-blockers were measured in a panel of breast cancer lines, demonstrating that mammary epithelial cells were resistant to propranolol, and that most breast cancer cell lines displayed dose dependent viability decreases following treatment. Selective β-blockers alone or in combination were not as effective as propranolol at reducing breast cancer cell proliferation. Molecular analysis revealed that propranolol treatment of the SK-BR-3 breast cancer line, which showed high sensitivity to beta blockade, led to a reduction in Ki67 protein expression, decreased phosphorylation of the mitogenic signaling regulators p44/42 MAPK, p38 MAPK, JNK, and CREB, increased phosphorylation of the cell survival/apoptosis regulators AKT, p53, and GSK3β. In conclusion, use of non-selective β-blockers in patients with early stage breast cancer may lead to decreased tumor proliferation.
Collapse
Affiliation(s)
- Alexa Montoya
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, Texas, USA.,Department of Biology, University of Texas, El Paso, Texas, USA
| | - Clarissa N Amaya
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Andres Belmont
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Nabih Diab
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Richard Trevino
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Geri Villanueva
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Steven Rains
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Luis A Sanchez
- Department of Hematology/Oncology, Loma Linda University Health Sciences Center, Loma Linda, California, USA
| | - Nabeel Badri
- Department of Hematology/Oncology, Loma Linda University Health Sciences Center, Loma Linda, California, USA
| | - Salman Otoukesh
- Department of Hematology/Oncology, Loma Linda University Health Sciences Center, Loma Linda, California, USA
| | - Ali Khammanivong
- Department of Veterinary Clinical Sciences, University of Minnesota, Saint Paul, Minnesota, USA
| | - Danielle Liss
- Department of Hematology/Oncology, Loma Linda University Health Sciences Center, Loma Linda, California, USA
| | - Sarah T Baca
- Border Biomedical Research Center, University of Texas, El Paso, Texas, USA
| | - Renato J Aguilera
- Border Biomedical Research Center, University of Texas, El Paso, Texas, USA
| | - Erin B Dickerson
- Department of Veterinary Clinical Sciences, University of Minnesota, Saint Paul, Minnesota, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Alireza Torabi
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA.,Department of Pathology, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Alok K Dwivedi
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, Texas, USA.,Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA.,Division of Biostatistics and Epidemiology, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Aamer Abbas
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA.,Department of Hematology/Oncology, Loma Linda University Health Sciences Center, Loma Linda, California, USA
| | - Karinn Chambers
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA.,Department of Surgery, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Brad A Bryan
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, Texas, USA.,Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Zeina Nahleh
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA.,Department of Hematology/Oncology, Loma Linda University Health Sciences Center, Loma Linda, California, USA
| |
Collapse
|
87
|
Zhou C, Chen X, Zeng W, Peng C, Huang G, Li X, Ouyang Z, Luo Y, Xu X, Xu B, Wang W, He R, Zhang X, Zhang L, Liu J, Knepper TC, He Y, McLeod HL. Propranolol induced G0/G1/S phase arrest and apoptosis in melanoma cells via AKT/MAPK pathway. Oncotarget 2018; 7:68314-68327. [PMID: 27582542 PMCID: PMC5356557 DOI: 10.18632/oncotarget.11599] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/12/2016] [Indexed: 01/15/2023] Open
Abstract
Both preclinical and epidemiology studies associate β-adrenoceptors-blockers (β-blockers) with activity against melanoma. However, the underlying mechanism is still unclear, especially in acral melanoma. In this study, we explored the effect of propranolol, a non-selective β-blocker, on the A375 melanoma cell line, two primary acral melanoma cell lines (P-3, P-6) and mice xenografts. Cell viability assay demonstrated that 50μM-400μM of propranolol inhibited viability in a concentration and time dependent manner with an IC50 ranging from 65.33μM to 148.60μM for 24h -72h treatment, but propranolol (less than 200μM) had no effect on HaCaT cell line. Western blots showed 100μM propranolol significantly reduced the expression of Bcl-2 while increasing the expressions of Bax, cytochrome c, cleaved capase-9 and cleaved caspase-3, and down-regulated the levels of p-AKT, p-BRAF, p-MEK1/2 and p-ERK1/2 in melanoma cells, after a 24h incubation. The in vivo data confirmed the isolation results. Mice received daily ip. administration of propranolol at the dose of 2 mg/kg for 3 weeks and the control group was treated with the same volume of saline. The mean tumor volume at day 21 in A375 xenografts was 82.33 ± 3.75mm3vs. 2044.67 ± 54.57mm3 for the propranolol-treated mice and the control group, respectively, and 31.66 ± 4.67 mm3vs. 1074.67 ± 32.17 mm3 for the P-3 xenografts. Propranolol also reduced Ki67, inhibited phosphorylation of AKT, BRAF, MEK1/2 and ERK1/2 in xenografts. These are the first data to demonstrate that propranolol might inhibit melanoma by activating the intrinsic apoptosis pathway and inactivating the MAPK and AKT pathways.
Collapse
Affiliation(s)
- Chengfang Zhou
- Department of Clinical Pharmacology, XiangYa Hospital, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
| | - Xiang Chen
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China
| | - Weiqi Zeng
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China
| | - Cong Peng
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China
| | - Gang Huang
- Department of Orthopedics, Hunan Tumor Hospital, Changsha, China
| | - Xian'an Li
- Department of Orthopedics, Hunan Tumor Hospital, Changsha, China
| | - Zhengxiao Ouyang
- Department of Orthopedics, Hunan Tumor Hospital, Changsha, China
| | - Yi Luo
- Department of Orthopedics, Hunan Tumor Hospital, Changsha, China
| | - Xuezheng Xu
- Department of Orthopedics, Hunan Tumor Hospital, Changsha, China
| | - Biaobo Xu
- Department of Clinical Pharmacology, XiangYa Hospital, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
| | - Weili Wang
- Department of Clinical Pharmacology, XiangYa Hospital, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
| | - Ruohui He
- Department of Clinical Pharmacology, XiangYa Hospital, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
| | - Xu Zhang
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Jie Liu
- Department of Clinical Pharmacology, XiangYa Hospital, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
| | - Todd C Knepper
- Moffitt Cancer Center, DeBartolo Family Personalized Medicine Institute, Tampa, FL, USA
| | - Yijing He
- Department of Clinical Pharmacology, XiangYa Hospital, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China.,Moffitt Cancer Center, DeBartolo Family Personalized Medicine Institute, Tampa, FL, USA.,Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China
| | - Howard L McLeod
- Department of Clinical Pharmacology, XiangYa Hospital, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China.,Moffitt Cancer Center, DeBartolo Family Personalized Medicine Institute, Tampa, FL, USA
| |
Collapse
|
88
|
Mehta LS, Watson KE, Barac A, Beckie TM, Bittner V, Cruz-Flores S, Dent S, Kondapalli L, Ky B, Okwuosa T, Piña IL, Volgman AS. Cardiovascular Disease and Breast Cancer: Where These Entities Intersect: A Scientific Statement From the American Heart Association. Circulation 2018; 137:e30-e66. [PMID: 29437116 PMCID: PMC6722327 DOI: 10.1161/cir.0000000000000556] [Citation(s) in RCA: 479] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of mortality in women, yet many people perceive breast cancer to be the number one threat to women's health. CVD and breast cancer have several overlapping risk factors, such as obesity and smoking. Additionally, current breast cancer treatments can have a negative impact on cardiovascular health (eg, left ventricular dysfunction, accelerated CVD), and for women with pre-existing CVD, this might influence cancer treatment decisions by both the patient and the provider. Improvements in early detection and treatment of breast cancer have led to an increasing number of breast cancer survivors who are at risk of long-term cardiac complications from cancer treatments. For older women, CVD poses a greater mortality threat than breast cancer itself. This is the first scientific statement from the American Heart Association on CVD and breast cancer. This document will provide a comprehensive overview of the prevalence of these diseases, shared risk factors, the cardiotoxic effects of therapy, and the prevention and treatment of CVD in breast cancer patients.
Collapse
|
89
|
Li N, Ngo CTA, Aleynikova O, Beauchemin N, Richard S. The p53 status can influence the role of Sam68 in tumorigenesis. Oncotarget 2018; 7:71651-71659. [PMID: 27690217 PMCID: PMC5342108 DOI: 10.18632/oncotarget.12305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/20/2016] [Indexed: 02/02/2023] Open
Abstract
The expression and activities of RNA binding proteins are frequently dysregulated in human cancer. Their roles, however, appears to be complex, with reports indicating both pro-tumorigenic and tumor suppressive functions. Here we show, using two classical mouse cancer models, that the role of KH-type RNA binding protein, Sam68, in tumor development can be influenced by the status of the p53 tumor suppressor. We demonstrate that in mice expressing wild type p53, Sam68-deficiency resulted in a higher incidence and malignancy of carcinogen-induced tumors, suggesting a tumor suppressive role for Sam68. In marked contrast, Sam68-haploinsufficiency significantly delayed the onset of tumors in mice lacking p53 and prolonged their survival, indicating that Sam68 accelerates the development of p53-deficient tumors. These findings provide considerable insight into a previously unknown relationship between Sam68 and the p53 tumor suppressor in tumorigenesis.
Collapse
Affiliation(s)
- Naomi Li
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Sir Mortimer B Davis Jewish General Hospital, Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada.,Department of Medicine and Oncology, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Chau Tuan-Anh Ngo
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Sir Mortimer B Davis Jewish General Hospital, Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada.,Department of Medicine and Oncology, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Olga Aleynikova
- Department of Pathology, Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
| | - Nicole Beauchemin
- Department of Medicine and Oncology, McGill University, Montréal, Québec H3A 1A1, Canada.,Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada.,Rosalind and Morris Goodman Cancer Centre, Montréal, Québec H3A 1A3, Canada
| | - Stéphane Richard
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Sir Mortimer B Davis Jewish General Hospital, Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada.,Department of Medicine and Oncology, McGill University, Montréal, Québec H3A 1A1, Canada
| |
Collapse
|
90
|
Qiao G, Chen M, Bucsek MJ, Repasky EA, Hylander BL. Adrenergic Signaling: A Targetable Checkpoint Limiting Development of the Antitumor Immune Response. Front Immunol 2018; 9:164. [PMID: 29479349 PMCID: PMC5812031 DOI: 10.3389/fimmu.2018.00164] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/18/2018] [Indexed: 12/15/2022] Open
Abstract
An immune response must be tightly controlled so that it will be commensurate with the level of response needed to protect the organism without damaging normal tissue. The roles of cytokines and chemokines in orchestrating these processes are well known, but although stress has long been thought to also affect immune responses, the underlying mechanisms were not as well understood. Recently, the role of nerves and, specifically, the sympathetic nervous system, in regulating immune responses is being revealed. Generally, an acute stress response is beneficial but chronic stress is detrimental because it suppresses the activities of effector immune cells while increasing the activities of immunosuppressive cells. In this review, we first discuss the underlying biology of adrenergic signaling in cells of both the innate and adaptive immune system. We then focus on the effects of chronic adrenergic stress in promoting tumor growth, giving examples of effects on tumor cells and immune cells, explaining the methods commonly used to induce stress in preclinical mouse models. We highlight how this relates to our observations that mandated housing conditions impose baseline chronic stress on mouse models, which is sufficient to cause chronic immunosuppression. This problem is not commonly recognized, but it has been shown to impact conclusions of several studies of mouse physiology and mouse models of disease. Moreover, the fact that preclinical mouse models are chronically immunosuppressed has critical ramifications for analysis of any experiments with an immune component. Our group has found that reducing adrenergic stress by housing mice at thermoneutrality or treating mice housed at cooler temperatures with β-blockers reverses immunosuppression and significantly improves responses to checkpoint inhibitor immunotherapy. These observations are clinically relevant because there are numerous retrospective epidemiological studies concluding that cancer patients who were taking β-blockers have better outcomes. Clinical trials testing whether β-blockers can be repurposed to improve the efficacy of traditional and immunotherapies in patients are on the horizon.
Collapse
Affiliation(s)
- Guanxi Qiao
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Minhui Chen
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Mark J. Bucsek
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Elizabeth A. Repasky
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Bonnie L. Hylander
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
91
|
Kuol N, Stojanovska L, Apostolopoulos V, Nurgali K. Role of the nervous system in cancer metastasis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:5. [PMID: 29334991 PMCID: PMC5769535 DOI: 10.1186/s13046-018-0674-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/30/2017] [Indexed: 12/20/2022]
Abstract
Cancer remains as one of the leading cause of death worldwide. The development of cancer involves an intricate process, wherein many identified and unidentified factors play a role. Although most studies have focused on the genetic abnormalities which initiate and promote cancer, there is overwhelming evidence that tumors interact within their environment by direct cell-to-cell contact and with signaling molecules, suggesting that cancer cells can influence their microenvironment and bidirectionally communicate with other systems. However, only in recent years the role of the nervous system has been recognized as a major contributor to cancer development and metastasis. The nervous system governs functional activities of many organs, and, as tumors are not independent organs within an organism, this system is integrally involved in tumor growth and progression.
Collapse
Affiliation(s)
- Nyanbol Kuol
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Lily Stojanovska
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Kulmira Nurgali
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia. .,Department of Medicine, Western Health, The University of Melbourne, Regenerative Medicine and Stem Cells Program, AIMSS, Melbourne, Australia.
| |
Collapse
|
92
|
Kokolus KM, Zhang Y, Sivik JM, Schmeck C, Zhu J, Repasky EA, Drabick JJ, Schell TD. Beta blocker use correlates with better overall survival in metastatic melanoma patients and improves the efficacy of immunotherapies in mice. Oncoimmunology 2017; 7:e1405205. [PMID: 29399407 DOI: 10.1080/2162402x.2017.1405205] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/21/2022] Open
Abstract
Immunotherapy has expanded treatment options for cancers with historically poor outcomes, yet a significant proportion of patients still fail to achieve durable clinical benefit. We defined the contribution of β-adrenergic receptor (βAR) signaling, a component of the stress response, on success of immunotherapy for melanoma since the use of antagonists (β-blockers) is associated with improved clinical outcomes in some cancers. We show that metastatic melanoma patients who received immunotherapy had improved overall survival if they also received pan β-blockers. This retrospective analysis is reinforced by results showing that βAR blockade enhances the control of murine melanoma growth by anti-(α)PD-1 checkpoint blockade. However, this effect was most significant when β-blocker was combined with dual αPD-1 + high dose interleukin-2 therapy and was reproduced by selective blockade of β2ARs. These results identify a novel strategy that can be quickly introduced to potentially increase the number of patients who benefit from immune-based therapies.
Collapse
Affiliation(s)
- Kathleen M Kokolus
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, USA
| | - Ying Zhang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Jeffrey M Sivik
- Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Carla Schmeck
- Division of Hematology and Oncology, Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Junjia Zhu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | | | - Joseph J Drabick
- Division of Hematology and Oncology, Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Todd D Schell
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
93
|
Kuang X, Qi M, Peng C, Zhou C, Su J, Zeng W, Liu H, Zhang J, Chen M, Shen M, Xie X, Li F, Zhao S, Li Q, Luo Z, Chen J, Tao J, He Y, Chen X. Propranolol enhanced the anti-tumor effect of sunitinib by inhibiting proliferation and inducing G0/G1/S phase arrest in malignant melanoma. Oncotarget 2017; 9:802-811. [PMID: 29416656 PMCID: PMC5787512 DOI: 10.18632/oncotarget.22696] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/21/2017] [Indexed: 12/16/2022] Open
Abstract
Both sunitinib, a multi-target tyrosine kinase inhibitor (TKI) and propranolol, a non-selective β-blocker, have proven therapeutic effects on malignant melanoma (MM). This study reports a synergistic effect of propranolol and sunitinib upon A375, P8 MM cell lines and mice xenografts. Cell viability assays detected a significant decrease of sunitinib IC50 in combination with propranolol, which was confirmed by a colony formation assay. Western blot showed that propranolol and sunitinib combination significantly down-regulated phospho-Rb, phospho-ERK, Cyclin D1, and Cyclin E, but had no effect on Bax, Bcl-2, or cleaved PARP expression. The average tumor size of propranolol and low-dose sunitinib (Sun L) combination treated mice was reduced and similar to high-dose sunitinib treated A375 xenografts. The Ki67 index was significantly reduced in propranolol and Sun L combination treated group compared with single Sun L treated group. This synergistic effect between propranolol and sunitinib to inhibit MM proliferation was through suppressing ERK/Cyclin D1/Rb/Cyclin E pathways and inducing G0/G1/S phase arrest, rather than by inducing tumor cell apoptosis.
Collapse
Affiliation(s)
- Xinwei Kuang
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
| | - Min Qi
- Department of Plastic and Cosmetic Surgery, XiangYa Hospital, Central South University, Changsha, China
| | - Cong Peng
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
| | - Chengfang Zhou
- Department of Clinical Pharmacology, XiangYa Hospital, Central South University, Changsha, China
| | - Juan Su
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
| | - Weiqi Zeng
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
| | - Hong Liu
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
| | - Jianglin Zhang
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
| | - Mingliang Chen
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
| | - Minxue Shen
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
| | - Xiaoyun Xie
- Department of Rheumatology, XiangYa Hospital, Central South University, Changsha, China
| | - Fangfang Li
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
| | - Shuang Zhao
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
| | - Qingling Li
- Department of Pathology, XiangYa Hospital, Central South University, Changsha, China
| | - Zhongling Luo
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
| | - Junchen Chen
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
| | - Juan Tao
- Department of Dermatology, Affiliated Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yijing He
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
| | - Xiang Chen
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
| |
Collapse
|
94
|
Dexmedetomidine promotes metastasis in rodent models of breast, lung, and colon cancers. Br J Anaesth 2017; 120:188-196. [PMID: 29397129 DOI: 10.1016/j.bja.2017.11.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 08/04/2017] [Accepted: 09/03/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Perioperative strategies can significantly influence long-term cancer outcomes. Dexmedetomidine, an α2-adrenoceptor agonist, is increasingly used perioperatively for its sedative, analgesic, anxiolytic, and sympatholytic effects. Such actions might attenuate the perioperative promotion of metastases, but other findings suggest opposite effects on primary tumour progression. We tested the effects of dexmedetomidine in clinically relevant models of dexmedetomidine use on cancer metastatic progression. METHODS Dexmedetomidine was given to induce sub-hypnotic to sedative effects for 6-12 h, and its effects on metastasis formation, using various cancer types, were studied in naïve animals and in the context of stress and surgery. RESULTS Dexmedetomidine increased tumour-cell retention and growth of metastases of a mammary adenocarcinoma (MADB 106) in F344 rats, Lewis lung carcinoma (3LL) in C57BL/6 mice, and colon adenocarcinoma (CT26) in BALB/c mice. The metastatic burden increased in both sexes and in all organs tested, including lung, liver, and kidney, as well as in brain employing a novel external carotid-artery inoculation approach. These effects were mediated through α2-adrenergic, but not α1-adrenergic, receptors. Low sub-hypnotic doses of dexmedetomidine were moderately beneficial in attenuating the deleterious effects of one stress paradigm, but not of the surgery or other stressors. CONCLUSIONS The findings call for mechanistic translational studies to understand these deleterious effects of dexmedetomidine, and warrant prospective clinical trials to assess the impact of perioperative dexmedetomidine use on outcomes in cancer patients.
Collapse
|
95
|
Smith CJ, Minas TZ, Ambs S. Analysis of Tumor Biology to Advance Cancer Health Disparity Research. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:304-316. [PMID: 29137948 DOI: 10.1016/j.ajpath.2017.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/24/2017] [Accepted: 06/29/2017] [Indexed: 12/20/2022]
Abstract
Cancer mortality rates in the United States continue to decline. Reductions in tobacco use, uptake of preventive measures, adoption of early detection methods, and better treatments have resulted in improved cancer outcomes for men and women. Despite this progress, some population groups continue to experience an excessive cancer burden when compared with other population groups. One of the most prominent cancer health disparities exists in prostate cancer. Prostate cancer mortality rates are highest among men of African ancestry when compared with other men, both in the United States and globally. This disparity and other cancer health disparities are largely explained by differences in access to health care, diet, lifestyle, cultural barriers, and disparate exposures to carcinogens and pathogens. Dietary and lifestyle factors, pathogens, and ancestry-related factors can modify tumor biology and induce a more aggressive disease. There are numerous examples of how environmental exposures, like tobacco, chronic stress, or dietary factors, induce an adverse tumor biology, leading to a more aggressive disease and decreased patient survival. Because of population differences in the exposure to these risk factors, they can be the cause of cancer disparities. In this review, we will summarize recent advances in our understanding of prostate and breast cancer disparities in the United States and discuss how the analysis of tumor biology can advance health disparity research.
Collapse
Affiliation(s)
- Cheryl J Smith
- Laboratory of Human Carcinogenesis, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Tsion Z Minas
- Laboratory of Human Carcinogenesis, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
96
|
Shin S, Kim HI, Kim NY, Lee KY, Kim DW, Yoo YC. Effect of postoperative analgesia technique on the prognosis of gastric cancer: a retrospective analysis. Oncotarget 2017; 8:104594-104604. [PMID: 29262664 PMCID: PMC5732830 DOI: 10.18632/oncotarget.21979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023] Open
Abstract
Background Whether regional analgesia techniques have favorable impact on prognosis after cancer surgery is unclear, and existing reports show controversial results. The aim of the present study was to evaluate and compare recurrence and mortality between patients that received either intravenous (IV) or epidural patient controlled analgesia (PCA) for pain control after curative surgery for gastric cancer. Materials and methods Medical records of patients that underwent curative gastrectomy for gastric cancer between November 2005 and December 2010 were reviewed. Identified patients were categorized according to the use of IV or epidural PCA for postoperative analgesia. Demographic and perioperative variables including type of PCA were analyzed by univariate and multiple regression analysis to investigate any association with recurrence and mortality after surgery. Propensity score matching was done to adjust for selection bias. Results Of the 3,799 patients included in this analysis, 374 and 3, 425 patients received IV and epidural PCAs, respectively. No difference in recurrence (HR, 1.092; 95% CI 0.859 to 1.388; P = 0.471) or mortality (HR, 0.695; 95% CI 0.429 to 1.125; P = 0.138) was identified between the use of IV and epidural PCA. Propensity score matching also showed no difference in recurrence (HR, 1.098; 95% CI 0.756 to 1.596; P = 0.623) or mortality (HR, 0.855; 95% CI 0.391 to 1.869; P = 0.695) between the two groups. Conclusions Postoperative use of epidural analgesia was not found to be associated with reduced recurrence or mortality after curative surgery in gastric cancer patients. This finding needs to be confirmed with prospective studies in the future.
Collapse
Affiliation(s)
- Seokyung Shin
- Department of Anesthesiology and Pain Medicine, Severance Hospital, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Korea
| | - Hyoung-Il Kim
- Department of Surgery, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Korea
| | - Na Young Kim
- Department of Anesthesiology and Pain Medicine, Severance Hospital, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Korea
| | - Ki-Young Lee
- Department of Anesthesiology and Pain Medicine, Severance Hospital, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Korea
| | - Dong Wook Kim
- Department of Policy Research Affairs, National Health Insurance Service Ilsan Hospital, Ilsan-donggu, Goyang-si, Gyeonggi-do 10444, Korea
| | - Young Chul Yoo
- Department of Anesthesiology and Pain Medicine, Severance Hospital, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
97
|
Chung JF, Lee SJ, Sood AK. Immunological consequences of ageing microvascular hemodynamic changes in view of cancer development and treatment. Oncotarget 2017; 8:69047-69061. [PMID: 28978180 PMCID: PMC5620320 DOI: 10.18632/oncotarget.17749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/24/2017] [Indexed: 11/25/2022] Open
Abstract
Risk factors of cardiovascular diseases have long been implicated as risk factors for carcinogenesis, but clear explanations for their association have not been presented. In this article, fundamental concepts from carcinogenesis, microvascular hemodynamics, and immunity are collectively reviewed and analyzed in context of the known features of vascular ageing effects, in formulating a theory that suggests reduced microvascular immunity as an important driving factor for carcinogenesis. Furthermore, scientific, preclinical, and clinical evidence that support this new theory are presented in an interdisciplinary manner, offering new explanations to previously unanswered factors that impact cancer risks and its treatment outcome such as chronic drug use, temperature, stress and exercise effects among others. Forward-looking topics discussing the implications of this new idea to cancer immunotherapeutics are also discussed.
Collapse
Affiliation(s)
| | - Sang Joon Lee
- Division of Integrative Biosciences and Biotechnology (IBB), Pohang University of Science and Technology (POSTECH), Pohang, South Korea.,Center for Biofluid and Biomimic Research, Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Anil K Sood
- Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
98
|
Liu Y, Yu X, Zhuang J. Epinephrine Stimulates Cell Proliferation and Induces Chemoresistance in Myeloma Cells through the β-Adrenoreceptor in vitro. Acta Haematol 2017; 138:103-110. [PMID: 28848082 DOI: 10.1159/000478517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 06/06/2017] [Indexed: 01/07/2023]
Abstract
OBJECTIVES To explore the effect of the β-adrenoreceptor signaling pathway on myeloma cells. METHODS The myeloma U266 cell line was treated with epinephrine and propranolol. Cell proliferation was analyzed by MTS assay. Apoptosis was detected by flow cytometry. The β-receptor subtype and the key enzyme of epinephrine were identified by reverse transcription polymerase chain reaction (RT-PCR). RESULTS Epinephrine (5-50 μM) promoted U266 cell growth in a dose-dependent manner and neutralized the inhibition effect of bortezomib (25 and 50 ng/mL) in vitro. Cell proliferation was inhibited by a β-receptor antagonist, propranolol, at a concentration of 50-200 μM. The proportions of early and late apoptotic cells were enhanced after treatment with propranolol. The expression of caspase 3/7, 8, and 9 was elevated in propranolol-treated myeloma cells. Both β1- and β2-adrenoceptor mRNAs were expressed in the U266 cell line. Key enzymes dopamine hydroxylase and tyrosinehydroxylase were identified in myeloma cells. CONCLUSIONS Our results reveal that epinephrine stimulates myeloma cell growth in vitro while the β-blocker propranolol has an antiproliferative effect, indicating that stress hormones may trigger the progression of myeloma.
Collapse
Affiliation(s)
- Yang Liu
- Department of Hematology, Peking Union Medical College Hospital, Beijing, China
| | | | | |
Collapse
|
99
|
Decker AM, Jung Y, Cackowski FC, Yumoto K, Wang J, Taichman RS. Sympathetic Signaling Reactivates Quiescent Disseminated Prostate Cancer Cells in the Bone Marrow. Mol Cancer Res 2017; 15:1644-1655. [PMID: 28814453 DOI: 10.1158/1541-7786.mcr-17-0132] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 07/03/2017] [Accepted: 08/03/2017] [Indexed: 02/06/2023]
Abstract
Clinical observations have identified an association between psychologic stress and cancer relapse, suggesting that the sympathetic nervous system/norepinephrine (NE) plays a role in reactivation of dormant disseminated tumor cells (DTC) in the bone marrow niche. Here, the mechanism by which NE regulates prostate cancer DTCs in the marrow is explored. NE directly stimulated prostate cancer cell proliferation through β2-adrenergic receptors (ADRB2). NE also altered prostate cancer proliferation in the marrow niche by indirectly downregulating the secretion of the dormancy inducing molecule growth arrest specific-6 (GAS6) expressed by osteoblasts. These observations were confirmed in cocultures of prostate cancer cells expressing the fluorescent ubiquitination-based cell-cycle reporters (FUCCI) and osteoblasts isolated from GAS6-deficient (GAS6-/-) animals. A novel ex vivo model system, using femurs harvested from GAS6+/+ or GAS6-/- mice, was used to confirm these results. As in coculture, when prostate cancer cells were injected into the marrow cavities of GAS6+/+ femurs, NE altered the prostate cancer cell cycle. However, NE had less of an impact on prostate cancer cells in femur explants isolated from GAS6-/- mice. Together, this study demonstrates that NE reactivates prostate cancer cell cycling through both a direct action on prostate cancer cells and indirectly on adjacent niche cells.Implications: Identification of mechanisms that target DTCs may provide novel therapeutic approaches to prevent or treat cancer metastases more effectively. Mol Cancer Res; 15(12); 1644-55. ©2017 AACR.
Collapse
Affiliation(s)
- Ann M Decker
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Younghun Jung
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Frank C Cackowski
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan.,Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Kenji Yumoto
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Jingchen Wang
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Russel S Taichman
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan.
| |
Collapse
|
100
|
Chen L, Chubak J, Boudreau DM, Barlow WE, Weiss NS, Li CI. Use of Antihypertensive Medications and Risk of Adverse Breast Cancer Outcomes in a SEER-Medicare Population. Cancer Epidemiol Biomarkers Prev 2017; 26:1603-1610. [PMID: 28807926 DOI: 10.1158/1055-9965.epi-17-0346] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/31/2017] [Accepted: 08/09/2017] [Indexed: 11/16/2022] Open
Abstract
Background: It is unclear if use of common antihypertensive medications influences the risk of adverse breast cancer outcomes.Methods: Using the linked Surveillance, Epidemiology and End-Results (SEER)-Medicare database, we identified 14,766 women between ages 66 and 80 years diagnosed with incident stage I/II breast cancer between 2007 and 2011. Medicare Part D data were obtained to characterize women's post-cancer use of various antihypertensive medications. Outcomes included a second breast cancer event (SBCE; a composite outcome defined as the first of a recurrence or a second contralateral primary breast cancer), breast cancer recurrence, and breast cancer-specific mortality. Time-varying Cox proportional hazard models were used to estimate hazard ratios (HR) and their associated 95% confidence intervals (CI).Results: There were 791 SBCEs, 627 breast cancer recurrences, and 237 breast cancer deaths identified over a median follow-up of 3 years. Use of diuretics (n = 8,517) after breast cancer diagnosis was associated with 29% (95% CI, 1.10-1.51), 36% (95% CI, 1.14-1.63) and 51% (95% CI, 1.11-2.04) higher risks of a SBCE, recurrence, and breast cancer death, respectively. Compared with nonusers, β-blockers users (n = 7,145) had a 41% (95% CI, 1.07-1.84) higher risk of breast cancer death. Use of angiotensin II receptor blockers, calcium channel blockers and angiotensin-converting enzyme inhibitors were not associated with risks of breast cancer outcomes.Conclusions: Use of diuretics and β-blockers may be associated with increased risk of breast cancer outcomes among older women.Impact: Most antihypertensive medications are safe with respect to breast cancer outcomes, but more research is needed for diuretics and β-blockers. Cancer Epidemiol Biomarkers Prev; 26(11); 1603-10. ©2017 AACR.
Collapse
Affiliation(s)
- Lu Chen
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington. .,Kaiser Permanente Washington Health Research Institute, Seattle, Washington.,Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
| | - Jessica Chubak
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington.,Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
| | - Denise M Boudreau
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington.,Department of Pharmacy, University of Washington, Seattle, Washington
| | | | - Noel S Weiss
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
| | - Christopher I Li
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
| |
Collapse
|