51
|
Jusic A, Salgado-Somoza A, Paes AB, Stefanizzi FM, Martínez-Alarcón N, Pinet F, Martelli F, Devaux Y, Robinson EL, Novella S. Approaching Sex Differences in Cardiovascular Non-Coding RNA Research. Int J Mol Sci 2020; 21:E4890. [PMID: 32664454 PMCID: PMC7402336 DOI: 10.3390/ijms21144890] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) is the biggest cause of sickness and mortality worldwide in both males and females. Clinical statistics demonstrate clear sex differences in risk, prevalence, mortality rates, and response to treatment for different entities of CVD. The reason for this remains poorly understood. Non-coding RNAs (ncRNAs) are emerging as key mediators and biomarkers of CVD. Similarly, current knowledge on differential regulation, expression, and pathology-associated function of ncRNAs between sexes is minimal. Here, we provide a state-of-the-art overview of what is known on sex differences in ncRNA research in CVD as well as discussing the contributing biological factors to this sex dimorphism including genetic and epigenetic factors and sex hormone regulation of transcription. We then focus on the experimental models of CVD and their use in translational ncRNA research in the cardiovascular field. In particular, we want to highlight the importance of considering sex of the cellular and pre-clinical models in clinical studies in ncRNA research and to carefully consider the appropriate experimental models most applicable to human patient populations. Moreover, we aim to identify sex-specific targets for treatment and diagnosis for the biggest socioeconomic health problem globally.
Collapse
Affiliation(s)
- Amela Jusic
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Tuzla, 75000 Tuzla, Bosnia and Herzegovina;
| | - Antonio Salgado-Somoza
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (A.S.-S.); (F.M.S.); (Y.D.)
| | - Ana B. Paes
- INCLIVA Biomedical Research Institute, Menéndez Pelayo 4 Accesorio, 46010 Valencia, Spain; (A.B.P.); (N.M.-A.)
| | - Francesca Maria Stefanizzi
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (A.S.-S.); (F.M.S.); (Y.D.)
| | - Núria Martínez-Alarcón
- INCLIVA Biomedical Research Institute, Menéndez Pelayo 4 Accesorio, 46010 Valencia, Spain; (A.B.P.); (N.M.-A.)
| | - Florence Pinet
- INSERM, CHU Lille, Institut Pasteur de Lille, University of Lille, U1167 F-59000 Lille, France;
| | - Fabio Martelli
- Molecular Cardiology Laboratory, Policlinico San Donato IRCCS, San Donato Milanese, 20097 Milan, Italy;
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (A.S.-S.); (F.M.S.); (Y.D.)
| | - Emma Louise Robinson
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Susana Novella
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, and INCLIVA Biomedical Research Institute, Menéndez Pelayo 4 Accesorio, 46010 Valencia, Spain
| |
Collapse
|
52
|
Bafna D, Ban F, Rennie PS, Singh K, Cherkasov A. Computer-Aided Ligand Discovery for Estrogen Receptor Alpha. Int J Mol Sci 2020; 21:E4193. [PMID: 32545494 PMCID: PMC7352601 DOI: 10.3390/ijms21124193] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/30/2020] [Accepted: 06/09/2020] [Indexed: 02/08/2023] Open
Abstract
Breast cancer (BCa) is one of the most predominantly diagnosed cancers in women. Notably, 70% of BCa diagnoses are Estrogen Receptor α positive (ERα+) making it a critical therapeutic target. With that, the two subtypes of ER, ERα and ERβ, have contrasting effects on BCa cells. While ERα promotes cancerous activities, ERβ isoform exhibits inhibitory effects on the same. ER-directed small molecule drug discovery for BCa has provided the FDA approved drugs tamoxifen, toremifene, raloxifene and fulvestrant that all bind to the estrogen binding site of the receptor. These ER-directed inhibitors are non-selective in nature and may eventually induce resistance in BCa cells as well as increase the risk of endometrial cancer development. Thus, there is an urgent need to develop novel drugs with alternative ERα targeting mechanisms that can overcome the limitations of conventional anti-ERα therapies. Several functional sites on ERα, such as Activation Function-2 (AF2), DNA binding domain (DBD), and F-domain, have been recently considered as potential targets in the context of drug research and discovery. In this review, we summarize methods of computer-aided drug design (CADD) that have been employed to analyze and explore potential targetable sites on ERα, discuss recent advancement of ERα inhibitor development, and highlight the potential opportunities and challenges of future ERα-directed drug discovery.
Collapse
Affiliation(s)
| | | | | | | | - Artem Cherkasov
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; (D.B.); (F.B.); (P.S.R.); (K.S.)
| |
Collapse
|
53
|
Cerri S, Mus L, Blandini F. Parkinson's Disease in Women and Men: What's the Difference? JOURNAL OF PARKINSONS DISEASE 2020; 9:501-515. [PMID: 31282427 PMCID: PMC6700650 DOI: 10.3233/jpd-191683] [Citation(s) in RCA: 313] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Increasing evidence points to biological sex as an important factor in the development and phenotypical expression of Parkinson’s disease (PD). Risk of developing PD is twice as high in men than women, but women have a higher mortality rate and faster progression of the disease. Moreover, motor and nonmotor symptoms, response to treatments and disease risk factors differ between women and men. Altogether, sex-related differences in PD support the idea that disease development might involve distinct pathogenic mechanisms (or the same mechanism but in a different way) in male and female patients. This review summarizes the most recent knowledge concerning differences between women and men in PD clinical features, risk factors, response to treatments and mechanisms underlying the disease pathophysiology. Unraveling how the pathology differently affect the two sexes might allow the development of tailored interventions and the design of innovative programs that meet the distinct needs of men and women, improving patient care.
Collapse
Affiliation(s)
- Silvia Cerri
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Liudmila Mus
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Fabio Blandini
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
54
|
Macías I, Alcorta-Sevillano N, Rodríguez CI, Infante A. Osteoporosis and the Potential of Cell-Based Therapeutic Strategies. Int J Mol Sci 2020; 21:ijms21051653. [PMID: 32121265 PMCID: PMC7084428 DOI: 10.3390/ijms21051653] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
Osteoporosis, the most common chronic metabolic bone disease, is characterized by low bone mass and increased bone fragility. Nowadays more than 200 million individuals are suffering from osteoporosis and still the number of affected people is dramatically increasing due to an aging population and longer life, representing a major public health problem. Current osteoporosis treatments are mainly designed to decrease bone resorption, presenting serious adverse effects that limit their safety for long-term use. Numerous studies with mesenchymal stem cells (MSCs) have helped to increase the knowledge regarding the mechanisms that underlie the progression of osteoporosis. Emerging clinical and molecular evidence suggests that inflammation exerts a significant influence on bone turnover, thereby on osteoporosis. In this regard, MSCs have proven to possess broad immunoregulatory capabilities, modulating both adaptive and innate immunity. Here, we will discuss the role that MSCs play in the etiopathology of osteoporosis and their potential use for the treatment of this disease.
Collapse
|
55
|
Börzsei D, Szabó R, Hoffmann A, Veszelka M, Pávó I, Turcsán Z, Viczián C, Kupai K, Varga C, Pósa A. Distinct Approaches of Raloxifene: Its Far-Reaching Beneficial Effects Implicating the HO-System. Biomolecules 2020; 10:biom10030375. [PMID: 32121307 PMCID: PMC7175347 DOI: 10.3390/biom10030375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/10/2023] Open
Abstract
Selective estrogen receptor modulators (SERMs) were discovered in the mid-1900s in connection with estrogen-related pathological conditions. They were developed to antagonize the adverse effects of estrogen and have been shown to be effective against postmenopausal disorders manifested by estrogen deficiency. Raloxifene (RAL), one of the most widely used SERMs, expresses estrogen-like effects on bones, while it is found to be an antagonist on breast and uterus. RAL has multiple beneficial effects throughout the body, including antioxidant and anti-inflammatory properties, because of which it gains particular attention. Additionally, previous studies have revealed that RAL is an efficient modulator of heme-oxygenase (HO) expression. HO, through its general activity, participates in comprehensive cell defense processes, thus the induction of HO by RAL administration indicates a major role in its therapeutic efficacy. In this review, we compile the current knowledge about the overall metabolic, neurocognitive, and cardiovascular effects of RAL involving the cytoprotective HO-system.
Collapse
Affiliation(s)
- Denise Börzsei
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary; (D.B.); (R.S.); (A.H.); (M.V.); (I.P.); (Z.T.); (C.V.); (K.K.); (C.V.)
| | - Renáta Szabó
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary; (D.B.); (R.S.); (A.H.); (M.V.); (I.P.); (Z.T.); (C.V.); (K.K.); (C.V.)
- Interdisciplinary Excellence Centre, Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6720 Szeged, Hungary
| | - Alexandra Hoffmann
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary; (D.B.); (R.S.); (A.H.); (M.V.); (I.P.); (Z.T.); (C.V.); (K.K.); (C.V.)
| | - Médea Veszelka
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary; (D.B.); (R.S.); (A.H.); (M.V.); (I.P.); (Z.T.); (C.V.); (K.K.); (C.V.)
| | - Imre Pávó
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary; (D.B.); (R.S.); (A.H.); (M.V.); (I.P.); (Z.T.); (C.V.); (K.K.); (C.V.)
| | - Zsolt Turcsán
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary; (D.B.); (R.S.); (A.H.); (M.V.); (I.P.); (Z.T.); (C.V.); (K.K.); (C.V.)
| | - Csaba Viczián
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary; (D.B.); (R.S.); (A.H.); (M.V.); (I.P.); (Z.T.); (C.V.); (K.K.); (C.V.)
| | - Krisztina Kupai
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary; (D.B.); (R.S.); (A.H.); (M.V.); (I.P.); (Z.T.); (C.V.); (K.K.); (C.V.)
| | - Csaba Varga
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary; (D.B.); (R.S.); (A.H.); (M.V.); (I.P.); (Z.T.); (C.V.); (K.K.); (C.V.)
| | - Anikó Pósa
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary; (D.B.); (R.S.); (A.H.); (M.V.); (I.P.); (Z.T.); (C.V.); (K.K.); (C.V.)
- Interdisciplinary Excellence Centre, Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6720 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-544884; Fax: +36-62-544291
| |
Collapse
|
56
|
Jaundoo R, Bohmann J, Gutierrez GE, Klimas N, Broderick G, Craddock TJA. Towards a Treatment for Gulf War Illness: A Consensus Docking Approach. Mil Med 2020; 185:554-561. [PMID: 32074351 PMCID: PMC7029833 DOI: 10.1093/milmed/usz299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 12/24/2022] Open
Abstract
Introduction Gulf War Illness (GWI) currently has no known cure and affects soldiers deployed during the Persian Gulf War. It is thought to originate from exposure to neurotoxicants combined with battlefield stress, and previous research indicates that treatment first involves inhibition of interleukin-2 and tumor necrosis factor alpha, followed by the glucocorticoid receptor. However, the off-target effects of pharmaceuticals hinder development of a drug treatment therapy. Materials and Methods AutoDock 4.2, AutoDock Vina, and Schrodinger’s Glide were used to perform consensus docking, a computational technique where pharmaceuticals are screened against targets using multiple scoring algorithms to obtain consistent binding affinities. FDA approved pharmaceuticals were docked against the above-mentioned immune and stress targets to determine a drug therapy for GWI. Additionally, the androgen and estrogen targets were screened to avoid pharmaceuticals with off-target interactions. Results While suramin bound to both immune targets with high affinity, top binders of the hormonal and glucocorticoid targets were non-specific towards their respective proteins, possibly due to high structure similarity between these proteins. Conclusions Development of a drug treatment therapy for GWI is threatened by the tight interplay between the immune and hormonal systems, often leading to drug interactions. Increasing knowledge of these interactions can lead to break-through therapies.
Collapse
Affiliation(s)
- Rajeev Jaundoo
- Institute for Neuro-Immune Medicine, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314-7796.,Department of Psychology & Neuroscience, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314-7796.,Department of Clinical Immunology, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314-7796
| | - Jonathan Bohmann
- Pharmaceuticals and Bioengineering Department, Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238-5166
| | - Gloria E Gutierrez
- Pharmaceuticals and Bioengineering, Chemistry and Chemical Engineering Division, Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238-5166
| | - Nancy Klimas
- Institute for Neuro-Immune Medicine, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314-7796.,Department of Clinical Immunology, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314-7796.,Miami Veterans Affairs Medical Center, 1201 N.W. 16th Street, Miami, FL 33125
| | - Gordon Broderick
- Institute for Neuro-Immune Medicine, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314-7796.,Department of Psychology & Neuroscience, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314-7796.,Department of Clinical Immunology, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314-7796.,Rochester Institute of Technology, One Lomb Memorial Drive, Rochester, NY 14623-5603.,Centre for Clinical Systems Biology, Rochester General Hospital Research Institute, 100 Kings Highway South, Rochester, NY 14617
| | - Travis J A Craddock
- Institute for Neuro-Immune Medicine, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314-7796.,Department of Psychology & Neuroscience, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314-7796.,Department of Clinical Immunology, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314-7796.,Department of Computer Science, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314-7796
| |
Collapse
|
57
|
Korotchkina L, Kazyulkin D, Komarov PG, Polinsky A, Andrianova EL, Joshi S, Gupta M, Vujcic S, Kononov E, Toshkov I, Tian Y, Krasnov P, Chernov MV, Veith J, Antoch MP, Middlemiss S, Somers K, Lock RB, Norris MD, Henderson MJ, Haber M, Chernova OB, Gudkov AV. OT-82, a novel anticancer drug candidate that targets the strong dependence of hematological malignancies on NAD biosynthesis. Leukemia 2020; 34:1828-1839. [PMID: 31896781 DOI: 10.1038/s41375-019-0692-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 11/23/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023]
Abstract
Effective treatment of some types of cancer can be achieved by modulating cell lineage-specific rather than tumor-specific targets. We conducted a systematic search for novel agents selectively toxic to cells of hematopoietic origin. Chemical library screenings followed by hit-to-lead optimization identified OT-82, a small molecule with strong efficacy against hematopoietic malignancies including acute myeloblastic and lymphoblastic adult and pediatric leukemias, erythroleukemia, multiple myeloma, and Burkitt's lymphoma in vitro and in mouse xenograft models. OT-82 was also more toxic towards patients-derived leukemic cells versus healthy bone marrow-derived hematopoietic precursors. OT-82 was shown to induce cell death by inhibiting nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the salvage pathway of NAD synthesis. In mice, optimization of OT-82 dosing and dietary niacin further expanded the compound's therapeutic index. In toxicological studies conducted in mice and nonhuman primates, OT-82 showed no cardiac, neurological or retinal toxicities observed with other NAMPT inhibitors and had no effect on mouse aging or longevity. Hematopoietic and lymphoid organs were identified as the primary targets for dose limiting toxicity of OT-82 in both species. These results reveal strong dependence of neoplastic cells of hematopoietic origin on NAMPT and introduce OT-82 as a promising candidate for the treatment of hematological malignancies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Jean Veith
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | | | | | | | | - Murray D Norris
- Children's Cancer Institute, Sydney, NSW, Australia.,University of New South Wales Centre for Childhood Cancer Research, Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|
58
|
Muchtaridi M, Yusuf M, Syahidah HN, Subarnas A, Zamri A, Bryant SD, Langer T. Cytotoxicity Of Chalcone Of Eugenia aquea Burm F. Leaves Against T47D Breast Cancer Cell Lines And Its Prediction As An Estrogen Receptor Antagonist Based On Pharmacophore-Molecular Dynamics Simulation. Adv Appl Bioinform Chem 2019; 12:33-43. [PMID: 31807030 PMCID: PMC6844098 DOI: 10.2147/aabc.s217205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 10/22/2019] [Indexed: 01/02/2023] Open
Abstract
Background The 2ʹ,4ʹ-dihydroxy-6-methoxy-3,5-3-dimethylchalcone (ChalcEA) isolated from Eugenia aquea Burm f. leaves has potential anticancer activity against human breast-adenocarcinoma cell lines (MCF-7) with an IC50 value of 250 µM. However, its apoptotic activity on the T47D breast cancer cell lines which is involving caspase-3 has not been investigated. Materials and methods Therefore, this study aims to evaluate the cytotoxicity of ChalcEA on the T47D cell lines using the 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium (WST) method and to predict its possible antagonistic activity on the human estrogen receptor alpha (hERα) using pharmacophore and molecular dynamics (MD) methods. The in vitro test of 10 synthesized ChalcEA derivatives was also performed as an insight into the further development of its structure as an anticancer agent. Results It is shown that ChalcEA has an IC50 of 142.58 ± 4.6 µM against the hERα-overexpressed T47D breast cancer cell lines, indicating its possible mechanism of anticancer activity as an antagonist of hERα. Pharmacophore study showed that ChalcEA shares similar features with the known hERα antagonist, 4-hydroxytamoxifen (4-OHT), which has hydrogen bond donor (HBD), hydrogen bond acceptor (HBA), ring aromaticity (RA), and hydrophobicity (Hy) features. Molecular docking showed that ChalcEA formed hydrogen bonds with Glu353 and Arg394, and hydrophobic interactions in a similar manner with 4-OHT. Moreover, MD simulations showed that ChalcEA destabilized the conformation of His524, a remarkable behavior of a known hERa antagonist, including 4-OHT. Furthermore, the 10 best chalcone derivatives resulted from pharmacophore- and docking-based screening, were tested against the T47D cell lines. None of the derivatives have better activity than ChalcEA. It is suggested that the functional groups at the B-ring of ChalcEA are interesting to be further optimized in the next studies. Conclusion ChalcEA might act as an antagonist toward hERα, thus warranting further investigation as a potential anticancer agent.
Collapse
Affiliation(s)
- Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Muhammad Yusuf
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Hasna Nur Syahidah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Anas Subarnas
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Adel Zamri
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, Riau 26293, Indonesia
| | | | - Thierry Langer
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna A-1090, Austria
| |
Collapse
|
59
|
Pepermans RA, Prossnitz ER. ERα-targeted endocrine therapy, resistance and the role of GPER. Steroids 2019; 152:108493. [PMID: 31518595 PMCID: PMC6859199 DOI: 10.1016/j.steroids.2019.108493] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 01/01/2023]
Abstract
Endocrine therapy is an effective option for the treatment of estrogen receptor alpha (ERα)-positive breast cancers. Unfortunately, a large fraction of women relapse with endocrine-resistant tumors. The presence of constitutively active ERα mutants, found in a subset of relapse tumors, is thought to be an important endocrine resistance mechanism and has prompted the search for more effective anti-hormone drugs that can effectively inhibit these mutant versions of the receptor. The G protein-coupled estrogen receptor (GPER) is also thought to contribute to the development of endocrine resistance, in part, due to its activation by clinically used selective estrogen receptor modulators and downregulators (SERMs/SERDs). Therefore, next-generation drugs should be screened for potential activity towards GPER. Here, we highlight the need for truly ERα-selective SERMs and SERDs that do not cross-react with GPER for the treatment of ERα-positive breast cancers.
Collapse
Affiliation(s)
- Richard A Pepermans
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Eric R Prossnitz
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States; University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
60
|
Zheng N, Hsieh E, Cai H, Shi L, Gu K, Zheng Y, Bao PP, Shu XO. Soy Food Consumption, Exercise, and Body Mass Index and Osteoporotic Fracture Risk Among Breast Cancer Survivors: The Shanghai Breast Cancer Survival Study. JNCI Cancer Spectr 2019; 3:pkz017. [PMID: 31157323 PMCID: PMC6527440 DOI: 10.1093/jncics/pkz017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 01/31/2019] [Accepted: 03/18/2019] [Indexed: 11/25/2022] Open
Abstract
Background Breast cancer survivors have a high incidence of osteoporosis-related fractures; the associated factors are understudied. We investigated incidence of bone fracture and its associations with soy food consumption, exercise, and body mass index among breast cancer survivors. Methods This prospective study included 4139 stage 0–III breast cancer patients and 1987 pre-/perimenopausal and 2152 postmenopausal patients. Fractures were assessed at 18 months and at 3, 5, and 10 years after cancer diagnosis. Osteoporotic fractures were defined as fractures caused by falls from standing height and at sites associated with osteoporosis. Exercise and soy isoflavone intake were assessed at 6 and 18 months postdiagnosis. Weight and height were measured at baseline. Lifetable and Cox regression analyses were employed. All statistical tests were two sided. Results The 10-year incidence for osteoporotic fractures was 2.9% and 4.4% for pre-/perimenopausal and postmenopausal patients, respectively. High soy isoflavone intake was associated with reduced risk among pre-/perimenopausal patients (hazard ratio [HR] = 0.22, 95% confidence interval [CI] = 0.09 to 0.53, for soy isoflavone mg/d ≥56.06 vs <31.31; Ptrend < .001) but not among postmenopausal patients (Pinteraction < .01). Overweight (vs normal weight) was a risk factor for pre-/perimenopausal patients (HR = 1.81, 95% CI = 1.04 to 3.14) but not for postmenopausal patients (HR = 0.67, 95% CI = 0.43 to 1.03; Pinteraction = .01). Exercise was inversely associated with osteoporotic fractures in postmenopausal patients (HR = 0.56, 95% CI = 0.33 to 0.97, for metabolic equivalents hours ≥12.6 vs <4.5) following a dose-response pattern (Ptrend = .035), an association not modified by menopausal status. Conclusions Our findings, especially the novel association of soy food intake with osteoporotic fractures in breast cancer survivors, if confirmed, can help guide future strategies for fracture risk reduction in this vulnerable population.
Collapse
Affiliation(s)
- Neil Zheng
- Yale College, Yale University, New Haven, CT
| | - Evelyn Hsieh
- Section of Rheumatology, Yale School of Medicine, Yale University, New Haven, CT
| | - Hui Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
| | - Liang Shi
- Shanghai Municipal Center for Disease Prevention and Control, Shanghai, China
| | - Kai Gu
- Shanghai Municipal Center for Disease Prevention and Control, Shanghai, China
| | - Ying Zheng
- Shanghai Municipal Center for Disease Prevention and Control, Shanghai, China.,Shanghai Cancer Hospital, Fudan University, Shanghai, China
| | - Ping-Ping Bao
- Shanghai Municipal Center for Disease Prevention and Control, Shanghai, China
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
61
|
Plasma levels of Semaphorin 4D are decreased by adjuvant tamoxifen but not aromatase inhibitor therapy in breast cancer patients. J Bone Oncol 2019; 16:100237. [PMID: 31011525 PMCID: PMC6461588 DOI: 10.1016/j.jbo.2019.100237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 01/28/2023] Open
Abstract
Background Semaphorin 4D (Sema4D) is a glycoprotein that inhibits bone formation and has been associated with cancer progression and the occurrence of bone metastases. Recently, Sema4D expression has been linked to estrogen signaling in breast cancer. Endocrine therapies like tamoxifen and aromatase inhibitors (AI) are a standard therapeutic approach in hormone receptor positive breast cancers. Tamoxifen exerts ER-agonistic effects on bone, whereas AI negatively affect bone health by increasing resorption and fracture risk. The effect of endocrine therapies on circulating Sema4D levels in breast cancer patients has not been investigated yet. Methods We measured circulating Sema4D plasma levels at primary diagnosis and in a follow-up sample 12 months after surgery in a cohort of 46 pre- and postmenopausal women with primary estrogen receptor positive breast cancer receiving adjuvant tamoxifen or AI. Results The mean baseline levels ± SD for Sema4D were 441.6 ± 143.4 pmol/l. No significant differences in total plasma Sema4D were observed when stratifying the patients according to age, menopausal status, tumor subtype, nodal and hormone receptor status, or tumor size. However, Sema4D levels were significantly reduced by 28% (p<0.001) in tamoxifen treated patients 12 months after surgery, whereas no alteration was observed in patients treated with AI. Conclusion This finding potentially represents an additional mechanism of the bone-protective properties of tamoxifen and further emphasizes a link between Sema4D and estrogen receptor signaling.
Collapse
|
62
|
Fuentes N, Silveyra P. Estrogen receptor signaling mechanisms. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:135-170. [PMID: 31036290 DOI: 10.1016/bs.apcsb.2019.01.001] [Citation(s) in RCA: 495] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The primary female sex hormones, estrogens, are responsible for the control of functions of the female reproductive system, as well as the development of secondary sexual characteristics that appear during puberty and sexual maturity. Estrogens exert their actions by binding to specific receptors, the estrogen receptors (ERs), which in turn activate transcriptional processes and/or signaling events that result in the control of gene expression. These actions can be mediated by direct binding of estrogen receptor complexes to specific sequences in gene promoters (genomic effects), or by mechanisms that do not involve direct binding to DNA (non-genomic effects). Whether acting via direct nuclear effects, indirect non-nuclear actions, or a combination of both, the effects of estrogens on gene expression are controlled by highly regulated complex mechanisms. In this chapter, we summarize the knowledge gained in the past 60years since the discovery of the estrogen receptors on the mechanisms governing estrogen-mediated gene expression. We provide an overview of estrogen biosynthesis, and we describe the main mechanisms by which the female sex hormone controls gene transcription in different tissues and cell types. Specifically, we address the molecular events governing regulation of gene expression via the nuclear estrogen receptors (ERα, and ERβ) and the membrane estrogen receptor (GPER1). We also describe mechanisms of cross-talk between signaling cascades activated by both nuclear and membrane estrogen receptors. Finally, we discuss natural compounds that are able to target specific estrogen receptors and their implications for human health and medical therapeutics.
Collapse
Affiliation(s)
- Nathalie Fuentes
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Patricia Silveyra
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States; The University of North Carolina at Chapel Hill, School of Nursing, Chapel Hill, NC, United States.
| |
Collapse
|
63
|
Ulm M, Ramesh AV, McNamara KM, Ponnusamy S, Sasano H, Narayanan R. Therapeutic advances in hormone-dependent cancers: focus on prostate, breast and ovarian cancers. Endocr Connect 2019; 8:R10-R26. [PMID: 30640710 PMCID: PMC6365668 DOI: 10.1530/ec-18-0425] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/14/2019] [Indexed: 12/17/2022]
Abstract
Hormonal cancers affect over 400,000 men and women and contribute collectively to over 100,000 deaths in the United States alone. Thanks to advances in the understanding of these cancers at the molecular level and to the discovery of several disease-modifying therapeutics, the last decade has seen a plateauing or even a decreasing trend in the number of deaths from these cancers. These advanced therapeutics not only effectively slow the growth of hormonal cancers, but also provide an insight on how these cancers become refractory and evolve as an altogether distinct subset. This review summarizes the current therapeutic trends in hormonal cancers, with focus on prostate, breast and ovarian cancers. The review discusses the clinical drugs being used now, promising molecules that are going through various stages of development and makes some predictions on how the therapeutic landscape will shift in the next decade.
Collapse
Affiliation(s)
- Michael Ulm
- University of Tennessee Health Science Center, Memphis, Tennessee, USA
- West Cancer Center, Memphis, Tennessee, USA
| | | | | | - Suriyan Ponnusamy
- University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | - Ramesh Narayanan
- University of Tennessee Health Science Center, Memphis, Tennessee, USA
- West Cancer Center, Memphis, Tennessee, USA
| |
Collapse
|
64
|
Réau M, Lagarde N, Zagury JF, Montes M. Nuclear Receptors Database Including Negative Data (NR-DBIND): A Database Dedicated to Nuclear Receptors Binding Data Including Negative Data and Pharmacological Profile. J Med Chem 2018; 62:2894-2904. [PMID: 30354114 DOI: 10.1021/acs.jmedchem.8b01105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nuclear receptors (NRs) are transcription factors that regulate gene expression in various physiological processes through their interactions with small hydrophobic molecules. They constitute an important class of targets for drugs and endocrine disruptors and are widely studied for both health and environment concerns. Since the integration of negative data can be critical for accurate modeling of ligand activity profiles, we manually collected and annotated NRs interaction data (positive and negative) through a sharp review of the corresponding literature. 15 116 positive and negative interactions data are provided for 28 NRs together with 593 PDB structures in the freely available Nuclear Receptors Database Including Negative Data ( http://nr-dbind.drugdesign.fr ). The NR-DBIND contains the most extensive information about interaction data on NRs, which should bring valuable information to chemists, biologists, pharmacologists and toxicologists.
Collapse
Affiliation(s)
- Manon Réau
- Laboratoire GBA, EA4627 , Conservatoire National des Arts et Métiers , 2 Rue Conté , 75003 Paris , France
| | - Nathalie Lagarde
- Laboratoire GBA, EA4627 , Conservatoire National des Arts et Métiers , 2 Rue Conté , 75003 Paris , France.,Université Paris Diderot, Sorbonne Paris Cité, Molécules Thérapeutiques in Silico, INSERM UMR-S 973, 75205 Paris , France
| | - Jean-François Zagury
- Laboratoire GBA, EA4627 , Conservatoire National des Arts et Métiers , 2 Rue Conté , 75003 Paris , France
| | - Matthieu Montes
- Laboratoire GBA, EA4627 , Conservatoire National des Arts et Métiers , 2 Rue Conté , 75003 Paris , France
| |
Collapse
|
65
|
Savage S, McClory A, Zhang H, Cravillion T, Lim NK, Masui C, Robinson SJ, Han C, Ochs C, Rege PD, Gosselin F. Synthesis of Selective Estrogen Receptor Degrader GDC-0810 via Stereocontrolled Assembly of a Tetrasubstituted All-Carbon Olefin. J Org Chem 2018; 83:11571-11576. [DOI: 10.1021/acs.joc.8b01551] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | - Christoph Ochs
- Department of Process Chemistry and Catalysis, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Pankaj D. Rege
- Department of Process Chemistry and Catalysis, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | | |
Collapse
|
66
|
Traboulsi T, El Ezzy M, Dumeaux V, Audemard E, Mader S. Role of SUMOylation in differential ERα transcriptional repression by tamoxifen and fulvestrant in breast cancer cells. Oncogene 2018; 38:1019-1037. [PMID: 30190545 PMCID: PMC6514857 DOI: 10.1038/s41388-018-0468-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/15/2018] [Accepted: 07/20/2018] [Indexed: 01/19/2023]
Abstract
Antiestrogens (AEs) are widely used for treatment of estrogen receptor alpha (ERα)-positive breast cancer, but display variable degrees of partial agonism in estrogen target tissues and breast cancer (BC) cells. The fact that BC cells resistant to selective ER modulators (SERMs) like tamoxifen (Tam) can still be sensitive to pure AEs, also called selective ER downregulators, suggests different mechanisms of action, some of which may contribute to the more complete suppression of estrogen target genes by pure AEs. We report herein that pure AEs such as fulvestrant induce transient binding of ERα to DNA, followed by rapid release after 30–40 min without loss of nuclear localization. Loss of DNA binding preceded receptor degradation and was not prevented by proteasome inhibition. Chromatin was less accessible in the presence of fulvestrant than with estradiol or Tam as early as 20 min following treatment, suggesting that chromatin remodeling by pure AEs at ERα target regions prevents transcription in spite of receptor binding. SUMO2/3 marks were detected on chromatin at the peak of ERα binding in cells treated with pure AEs, but not SERMs. Furthermore, decreasing SUMOylation by overexpressing the deSUMOylase SENP1 significantly delayed receptor release from DNA and de-repressed expression of estrogen target genes in the presence of fulvestrant, both in ERα-expressing MCF-7 cells and in transiently transfected ER-negative SK-BR-3 cells. Finally, mutation V534E, identified in a breast metastasis resistant to hormonal therapies, prevented ERα modification and resulted in increased transcriptional activity of estrogen target genes in the presence of fulvestrant in SK-BR-3 cells. Together, our results establish a role for SUMOylation in achieving a more complete transcriptional shut-off of estrogen target genes by pure AEs vs. SERMs in BC cells.
Collapse
Affiliation(s)
- Tatiana Traboulsi
- Institute for Research in Immunology and Cancer, Montréal, QC, H3C 3J7, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Mohamed El Ezzy
- Institute for Research in Immunology and Cancer, Montréal, QC, H3C 3J7, Canada
| | - Vanessa Dumeaux
- Institute for Research in Immunology and Cancer, Montréal, QC, H3C 3J7, Canada.,PERFORM Centre, Concordia University, Montréal, QC, H4B 1R6, Canada
| | - Eric Audemard
- Institute for Research in Immunology and Cancer, Montréal, QC, H3C 3J7, Canada
| | - Sylvie Mader
- Institute for Research in Immunology and Cancer, Montréal, QC, H3C 3J7, Canada. .,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, H3C 3J7, Canada.
| |
Collapse
|
67
|
Franks LN, Ford BM, Fujiwara T, Zhao H, Prather PL. The tamoxifen derivative ridaifen-B is a high affinity selective CB 2 receptor inverse agonist exhibiting anti-inflammatory and anti-osteoclastogenic effects. Toxicol Appl Pharmacol 2018; 353:31-42. [PMID: 29906493 PMCID: PMC6487498 DOI: 10.1016/j.taap.2018.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/25/2018] [Accepted: 06/11/2018] [Indexed: 12/15/2022]
Abstract
Selective estrogen receptor modulators (SERMs) target estrogen receptors (ERs) to treat breast cancer and osteoporosis. Several SERMs exhibit anti-cancer activity not related to ERs. To discover novel anti-cancer drugs acting via ER-independent mechanisms, derivatives of the SERM tamoxifen, known as the "ridaifen" compounds, have been developed that exhibit reduced or no ER affinity, while maintaining cytotoxicity. Tamoxifen and other SERMs bind to cannabinoid receptors with moderate affinity. Therefore, ER-independent effects of SERMs might be mediated via cannabinoid receptors. This study determined whether RID-B, a first generation ridaifen compound, exhibits affinity and/or activity at CB1 and/or CB2 cannabinoid receptors. RID-B binds with high affinity (Ki = 43.7 nM) and 17-fold selectivity to CB2 over CB1 receptors. RID-B acts as an inverse agonist at CB2 receptors, modulating G-protein and adenylyl cyclase activity with potency values predicted by CB2 affinity. Characteristic of an antagonist, RID-B co-incubation produces a parallel-rightward shift in the concentration-effect curve of CB2 agonist WIN-55,212-2 to inhibit adenylyl cyclase activity. CB2 inverse agonists are reported to exhibit anti-inflammatory and anti-ostoeclastogenic effects. In LPS-activated macrophages, RID-B exhibits anti-inflammatory effects by reducing levels of nitric oxide (NO), IL-6 and IL-1α, but not TNFα. Only reduction of NO concentration by RID-B is mediated by cannabinoid receptors. RID-B also exhibits pronounced anti-osteoclastogenic effects, reducing the number of osteoclasts differentiating from primary bone marrow macrophages in a cannabinoid receptor-dependent manner. In summary, the tamoxifen derivative RID-B, developed with reduced affinity for ERs, is a high affinity selective CB2 inverse agonist with anti-inflammatory and anti-osteoclastogenic properties.
Collapse
MESH Headings
- Adenylyl Cyclase Inhibitors/pharmacology
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Benzoxazines/pharmacology
- Binding, Competitive/drug effects
- Bone Marrow Cells/drug effects
- CHO Cells
- Cell Differentiation/drug effects
- Cricetinae
- Cricetulus
- Drug Inverse Agonism
- Mice
- Mice, Inbred C57BL
- Morpholines/pharmacology
- Naphthalenes/pharmacology
- Osteoclasts/drug effects
- Pyrrolidines/metabolism
- Pyrrolidines/pharmacology
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/metabolism
- Selective Estrogen Receptor Modulators/metabolism
- Selective Estrogen Receptor Modulators/pharmacology
- Tamoxifen/analogs & derivatives
- Tamoxifen/metabolism
- Tamoxifen/pharmacology
Collapse
Affiliation(s)
- Lirit N Franks
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Benjamin M Ford
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Toshifumi Fujiwara
- Department of Internal Medicine, Endocrinology Division, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Haibo Zhao
- Department of Internal Medicine, Endocrinology Division, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Paul L Prather
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
68
|
Wiedemann B, Weisner J, Rauh D. Chemical modulation of transcription factors. MEDCHEMCOMM 2018; 9:1249-1272. [PMID: 30151079 PMCID: PMC6097187 DOI: 10.1039/c8md00273h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
Transcription factors (TFs) constitute a diverse class of sequence-specific DNA-binding proteins, which are key to the modulation of gene expression. TFs have been associated with human diseases, including cancer, Alzheimer's and other neurodegenerative diseases, which makes this class of proteins attractive targets for chemical biology and medicinal chemistry research. Since TFs lack a common binding site or structural similarity, the development of small molecules to efficiently modulate TF biology in cells and in vivo is a challenging task. This review highlights various strategies that are currently being explored for the identification and development of modulators of Myc, p53, Stat, Nrf2, CREB, ER, AR, HIF, NF-κB, and BET proteins.
Collapse
Affiliation(s)
- Bianca Wiedemann
- Technische Universität Dortmund , Fakultät für Chemie und Chemische Biologie , Otto-Hahn-Strasse 4a , D-44227 Dortmund , Germany . ; ; Tel: +49 (0)231 755 7080
| | - Jörn Weisner
- Technische Universität Dortmund , Fakultät für Chemie und Chemische Biologie , Otto-Hahn-Strasse 4a , D-44227 Dortmund , Germany . ; ; Tel: +49 (0)231 755 7080
| | - Daniel Rauh
- Technische Universität Dortmund , Fakultät für Chemie und Chemische Biologie , Otto-Hahn-Strasse 4a , D-44227 Dortmund , Germany . ; ; Tel: +49 (0)231 755 7080
| |
Collapse
|
69
|
Fredette NC, Meyer MR, Prossnitz ER. Role of GPER in estrogen-dependent nitric oxide formation and vasodilation. J Steroid Biochem Mol Biol 2018; 176:65-72. [PMID: 28529128 PMCID: PMC5694388 DOI: 10.1016/j.jsbmb.2017.05.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/08/2017] [Accepted: 05/16/2017] [Indexed: 12/11/2022]
Abstract
Estrogens are potent regulators of vasomotor tone, yet underlying receptor- and ligand-specific signaling pathways remain poorly characterized. The primary physiological estrogen 17β-estradiol (E2), a non-selective agonist of classical nuclear estrogen receptors (ERα and ERβ) as well as the G protein-coupled estrogen receptor (GPER), stimulates formation of the vasodilator nitric oxide (NO) in endothelial cells. Here, we studied the contribution of GPER signaling in E2-dependent activation of endothelial NO formation and subsequent vasodilation. Employing E2 and the GPER-selective agonist G-1, we investigated eNOS phosphorylation and NO formation in human endothelial cells, and endothelium-dependent vasodilation in the aortae of wild-type and Gper-deficient mice. Both E2 and G-1 induced phosphorylation of eNOS at the activation site Ser1177 to similar extents. Endothelial NO production to E2 was comparable to that of G-1, and was substantially reduced after pharmacological inhibition of GPER. Similarly, the clinically used ER-targeting drugs 4OH-tamoxifen, raloxifene, and ICI182,780 (faslodex, fulvestrant™) induced NO formation in part via GPER. We identified c-Src, EGFR, PI3K and ERK signaling pathways to be involved in GPER-dependent NO formation. In line with activation of NO formation in cells, E2 and G-1 induced equally potent vasodilation in the aorta of wild-type mice. Gper deletion completely abrogated the vasodilator response to G-1, while reducing the response to E2 by ∼50%. These findings indicate that a substantial portion of E2-induced endothelium-dependent vasodilation and NO formation is mediated by GPER. Thus, selective targeting of vascular GPER may be a suitable approach to activate the endothelial NO pathway, possibly leading to reduced vasomotor tone and inhibition of atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Natalie C Fredette
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Current address: Department of Pathology, University of Florida, Gainesville, FL, USA
| | - Matthias R Meyer
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Eric R Prossnitz
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
70
|
Padilla Colón CJ, Molina-Vicenty IL, Frontera-Rodríguez M, García-Ferré A, Rivera BP, Cintrón-Vélez G, Frontera-Rodríguez S. Muscle and Bone Mass Loss in the Elderly Population: Advances in diagnosis and treatment. JOURNAL OF BIOMEDICINE (SYDNEY, NSW) 2018; 3:40-49. [PMID: 30505650 PMCID: PMC6261527 DOI: 10.7150/jbm.23390] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aging is the result of different functional changes leading to a substantial reduction of all human capabilities. A variety of anatomical and physiological changes occur with advancing age. These changes are more evident in the elderly population. There are various methods to measure muscle and bone mass loss, but the dual X-ray absorptiometry (DXA) is considered one of the most efficient. The elderly population (65 years and older) has been increasing throughout the years. Loss of muscle mass (sarcopenia) and loss bone mass (osteopenia or osteoporosis) with advancing age, when untreated, represent a major public health problem for the elderly population and may result in loss of independence in later life. Untreated age-related sarcopenia and osteopenia/osteoporosis increase the risk for falls and fractures, making older individuals more susceptible to the development of mobility limitations or severe disabilities that ultimately affect their capacity for independence. In this review, we will discuss the muscle and bone mass loss in the elderly population and advances in diagnosis and treatment.
Collapse
Affiliation(s)
- Carlos J. Padilla Colón
- Department of Education, Physical Education and Health Programs, San Juan, PR, USA
- Research and Development Service (151), VA Caribbean Healthcare System, San Juan PR, USA
| | - Irma L. Molina-Vicenty
- Research and Development Service (151), VA Caribbean Healthcare System, San Juan PR, USA
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
- Department of Radiological Sciences, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA
| | - María Frontera-Rodríguez
- Research and Development Service (151), VA Caribbean Healthcare System, San Juan PR, USA
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| | - Alejandra García-Ferré
- Research and Development Service (151), VA Caribbean Healthcare System, San Juan PR, USA
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| | | | - Gerardo Cintrón-Vélez
- Research and Development Service (151), VA Caribbean Healthcare System, San Juan PR, USA
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| | - Sebastián Frontera-Rodríguez
- Research and Development Service (151), VA Caribbean Healthcare System, San Juan PR, USA
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| |
Collapse
|
71
|
Khan MM. Translational Significance of Selective Estrogen Receptor Modulators in Psychiatric Disorders. Int J Endocrinol 2018; 2018:9516592. [PMID: 30402099 PMCID: PMC6196929 DOI: 10.1155/2018/9516592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/10/2018] [Accepted: 09/02/2018] [Indexed: 12/11/2022] Open
Abstract
Accumulating data from various clinical trial studies suggests that adjuvant therapy with ovarian hormones (estrogens) could be effective in reducing cognitive deficit and psychopathological symptoms in women with psychiatric disorders. However, estrogen therapy poses serious limitations and health issues including feminization in men and increased risks of thromboembolism, hot flashes, breast hyperplasia, and endometrium hyperplasia when used for longer duration in older women (aged ≥ 60 years) or in women who have genetic predispositions. On the other hand, selective estrogen receptor modulators (SERMs), which may (or may not) carry some risks of hot flashes, thromboembolism, breast hyperplasia, and endometrial hyperplasia, are generally devoid of feminization effect. In clinical trial studies, adjuvant therapy with tamoxifen, a triphenylethylene class of SERM, has been found to reduce the frequency of manic episodes in patients with bipolar disorder, whereas addition of raloxifene, a benzothiophene class of SERM, to regular doses of antipsychotic drugs has been found to reduce cognitive deficit and psychological symptoms in men and women with schizophrenia, including women with treatment refractory psychosis. These outcomes together with potent neurocognitive, neuroprotective, and cardiometabolic properties suggest that SERMs could be the potential targets for designing effective and safer therapies for psychiatric disorders.
Collapse
Affiliation(s)
- Mohammad M. Khan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Zawia, P.O. Box 16418, Az-Zawiyah, Libya
| |
Collapse
|
72
|
Choudhary M, Ding JD, Qi X, Boulton ME, Yao PL, Peters JM, Malek G. PPARβ/δ selectively regulates phenotypic features of age-related macular degeneration. Aging (Albany NY) 2017; 8:1952-1978. [PMID: 27622388 PMCID: PMC5076447 DOI: 10.18632/aging.101031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/26/2016] [Indexed: 01/18/2023]
Abstract
Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) is a nuclear receptor that regulates differentiation, inflammation, lipid metabolism, extracellular matrix remodeling, and angiogenesis in multiple tissues. These pathways are also central to the pathogenesis of age-related macular degeneration (AMD), the leading cause of vision loss globally. With the goal of identifying signaling pathways that may be important in the development of AMD, we investigated the impact of PPARβ/δ activation on ocular tissues affected in the disease. PPARβ/δ is expressed and can be activated in AMD vulnerable cells, including retinal pigment epithelial (RPE) and choroidal endothelial cells. Further, PPARβ/δ knockdown modulates AMD-related pathways selectively. Specifically, genetic ablation of Pparβ/δ in aged mice resulted in exacerbation of several phenotypic features of early dry AMD, but attenuation of experimentally induced choroidal neovascular (CNV) lesions. Antagonizing PPARβ/δ in both in vitro angiogenesis assays and in the in vivo experimentally induced CNV model, inhibited angiogenesis and angiogenic pathways, while ligand activation of PPARβ/δ, in vitro, decreased RPE lipid accumulation, characteristic of dry AMD. This study demonstrates for the first time, selective regulation of a nuclear receptor in the eye and establishes that selective targeting of PPARβ/δ may be a suitable strategy for treatment of different clinical sub-types of AMD.
Collapse
Affiliation(s)
- Mayur Choudhary
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27703, USA
| | - Jin-Dong Ding
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27703, USA
| | - Xiaoping Qi
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael E Boulton
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Pei-Li Yao
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jeffrey M Peters
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Goldis Malek
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27703, USA.,Department of Pathology, Duke University School of Medicine, Durham, NC 27703, USA
| |
Collapse
|
73
|
Silva LAS, Felix FB, Araujo JMD, Souza EV, Camargo EA, Grespan R. Agonistic activity of tamoxifen, a selective estrogen-receptor modulator (SERM), on arthritic ovariectomized mice. ACTA ACUST UNITED AC 2017; 51:e6799. [PMID: 29160416 PMCID: PMC5685064 DOI: 10.1590/1414-431x20176799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 09/05/2017] [Indexed: 11/22/2022]
Abstract
Arthritis is positively associated with the decline of sex hormones, especially estrogen. Tamoxifen (TMX) is a selective estrogen receptor modulator, possessing agonist or antagonistic activity in different tissues. Thus, the objective of this study was to investigate the effect of TMX on the zymosan-induced arthritis model. Female Swiss normal and ovariectomized (OVX) mice were divided into groups and treated for five days with TMX (0.3, 0.9 or 2.7 mg/kg) or 17-β-estradiol (E2, 50 µg/kg). On the fifth day, arthritis was induced and 4 h later, leukocyte migration into joint cavities was evaluated. The neutrophil migration in OVX animals, but not in normal mice, treated with TMX (all tested doses) was significantly decreased compared with mice that received the vehicle (P≤0.05). Similarly, this effect was also demonstrated in the E2-treated group. Therefore, the present study demonstrates that TMX presented agonist effects in inhibiting neutrophil migration and preventing arthritis progression in OVX mice.
Collapse
Affiliation(s)
- L A S Silva
- Programa de Pós-Graduação em Ciências Fisiológicas, Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, SE, Brasil
| | - F B Felix
- Programa de Pós-Graduação em Ciências Fisiológicas, Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, SE, Brasil
| | - J M D Araujo
- Programa de Pós-Graduação em Ciências Fisiológicas, Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, SE, Brasil
| | - E V Souza
- Programa de Pós-Graduação em Ciências Fisiológicas, Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, SE, Brasil
| | - E A Camargo
- Programa de Pós-Graduação em Ciências Fisiológicas, Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, SE, Brasil
| | - R Grespan
- Programa de Pós-Graduação em Ciências Fisiológicas, Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, SE, Brasil
| |
Collapse
|
74
|
Carswell JM, Roberts SA. Induction and Maintenance of Amenorrhea in Transmasculine and Nonbinary Adolescents. Transgend Health 2017; 2:195-201. [PMID: 29142910 PMCID: PMC5684657 DOI: 10.1089/trgh.2017.0021] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The treatment of persistent uterine bleeding in those patients who identify as transmasculine or nonbinary is often straightforward, but can be difficult in a subset of patients. This article reviews the physiology of the normal menstrual cycle and the hormonal influences on the endometrium, and then explores options for the treatment of persistent bleeding for people both already on testosterone and for those who are either not ready for or who do not desire testosterone.
Collapse
Affiliation(s)
- Jeremi M. Carswell
- Department of Medicine, Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts
| | - Stephanie A. Roberts
- Department of Medicine, Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
75
|
Pandey V, Zhang M, Chong QY, You M, Raquib AR, Pandey AK, Liu DX, Liu L, Ma L, Jha S, Wu ZS, Zhu T, Lobie PE. Hypomethylation associated enhanced transcription of trefoil factor-3 mediates tamoxifen-stimulated oncogenicity of ER+ endometrial carcinoma cells. Oncotarget 2017; 8:77268-77291. [PMID: 29100386 PMCID: PMC5652779 DOI: 10.18632/oncotarget.20461] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/16/2017] [Indexed: 12/20/2022] Open
Abstract
Tamoxifen (TAM) is widely used as an adjuvant therapy for women with breast cancer (BC). However, TAM possesses partial oestrogenic activity in the uterus and its use has been associated with an increased incidence of endometrial carcinoma (EC). The molecular mechanism for these observations is not well understood. Herein, we demonstrated that forced expression of Trefoil factor 3 (TFF3), in oestrogen receptor-positive (ER+) EC cells significantly increased cell cycle progression, cell survival, anchorage-independent growth, invasiveness and tumour growth in xenograft models. Clinically, elevated TFF3 protein expression was observed in EC compared with normal endometrial tissue, and its increased expression in EC was significantly associated with myometrial invasion. TAM exposure increased expression of TFF3 in ER+ EC cells and its elevated expression resulted in increased oncogenicity and invasiveness. TAM-stimulated expression of TFF3 in EC cells was associated with hypomethylation of the TFF3 promoter sequence and c-JUN/SP1-dependent transcriptional activation. In addition, small interfering (si) RNA-mediated depletion or polyclonal antibody inhibition of TFF3 significantly abrogated oncogenicity and invasiveness in EC cells consequent to TAM induction or forced expression of TFF3. Hence, TAM-stimulated upregulation of TFF3 in EC cells was critical in promoting EC progression associated with TAM treatment. Importantly, inhibition of TFF3 function might be an attractive molecular modality to abrogate the stimulatory effects of TAM on endometrial tissue and to limit the progression of EC.
Collapse
Affiliation(s)
- Vijay Pandey
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Min Zhang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, P.R. China
| | - Qing-Yun Chong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Mingliang You
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Amit K Pandey
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Dong-Xu Liu
- School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Liang Liu
- Department of Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, P.R China.,Department of Radiology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, P.R China
| | - Lan Ma
- Tsinghua Berkeley Shenzhen Institute, Division of Life Sciences & Health, Tsinghua University Graduate School, Shenzhen, P.R China
| | - Sudhakar Jha
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Zheng-Sheng Wu
- Department of Pathology, Anhui Medical University, Hefei, P.R China
| | - Tao Zhu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, P.R. China
| | - Peter E Lobie
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Pharmacology, National University of Singapore, Singapore.,Tsinghua Berkeley Shenzhen Institute, Division of Life Sciences & Health, Tsinghua University Graduate School, Shenzhen, P.R China
| |
Collapse
|
76
|
Compounds from Cynomorium songaricum with Estrogenic and Androgenic Activities Suppress the Oestrogen/Androgen-Induced BPH Process. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:6438013. [PMID: 28588640 PMCID: PMC5447316 DOI: 10.1155/2017/6438013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/09/2017] [Indexed: 11/22/2022]
Abstract
Objective To investigate the phytoestrogenic and phytoandrogenic activities of compounds isolated from CS and uncover the role of CS in prevention of oestrogen/androgen-induced BPH. Methods Cells were treated with CS compounds, and immunofluorescence assay was performed to detect the nuclear translocation of ERα or AR in MCF-7 or LNCaP cells; luciferase reporter assay was performed to detect ERs or AR transcriptional activity in HeLa or AD293 cells; MTT assay was performed to detect the cell proliferation of MCF-7 or LNCaP cells. Oestrogen/androgen-induced BPH model was established in rat and the anti-BPH, anti-estrogenic, and anti-androgenic activities of CS in vivo were further investigated. Results The nuclear translocation of ERα was stimulated by nine CS compounds, three of which also stimulated AR translocation. The transcriptional activities of ERα and ERβ were induced by five compounds, within which only ECG induced AR transcriptional activity as well. Besides, ECG stimulated the proliferation of both MCF-7 cells and LNCaP cells. CS extract suppressed oestrogen/androgen-induced BPH progress in vivo by downregulation of E2 and T level in serum and alteration of the expressions of ERα, ERβ, and AR in the prostate. Conclusion Our data demonstrates that compounds from CS exhibit phytoestrogenic and phytoandrogenic activities, which may contribute to inhibiting the oestrogen/androgen-induced BPH development.
Collapse
|
77
|
Traboulsi T, El Ezzy M, Gleason JL, Mader S. Antiestrogens: structure-activity relationships and use in breast cancer treatment. J Mol Endocrinol 2017; 58:R15-R31. [PMID: 27729460 PMCID: PMC5148801 DOI: 10.1530/jme-16-0024] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/11/2016] [Indexed: 12/11/2022]
Abstract
About 70% of breast tumors express estrogen receptor alpha (ERα), which mediates the proliferative effects of estrogens on breast epithelial cells, and are candidates for treatment with antiestrogens, steroidal or non-steroidal molecules designed to compete with estrogens and antagonize ERs. The variable patterns of activity of antiestrogens (AEs) in estrogen target tissues and the lack of systematic cross-resistance between different types of molecules have provided evidence for different mechanisms of action. AEs are typically classified as selective estrogen receptor modulators (SERMs), which display tissue-specific partial agonist activity (e.g. tamoxifen and raloxifene), or as pure AEs (e.g. fulvestrant), which enhance ERα post-translational modification by ubiquitin-like molecules and accelerate its proteasomal degradation. Characterization of second- and third-generation AEs, however, suggests the induction of diverse ERα structural conformations, resulting in variable degrees of receptor downregulation and different patterns of systemic properties in animal models and in the clinic.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Hormonal/chemistry
- Antineoplastic Agents, Hormonal/pharmacology
- Antineoplastic Agents, Hormonal/therapeutic use
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Clinical Trials as Topic
- Drug Evaluation, Preclinical
- Drug Resistance, Neoplasm
- Estrogen Antagonists/chemistry
- Estrogen Antagonists/pharmacology
- Estrogen Antagonists/therapeutic use
- Estrogen Receptor alpha/antagonists & inhibitors
- Estrogen Receptor alpha/chemistry
- Estrogen Receptor alpha/metabolism
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Models, Molecular
- Molecular Conformation
- Molecular Structure
- Mutation
- Protein Binding
- Protein Processing, Post-Translational
- Receptors, Estrogen/antagonists & inhibitors
- Receptors, Estrogen/chemistry
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Selective Estrogen Receptor Modulators/chemistry
- Selective Estrogen Receptor Modulators/pharmacology
- Selective Estrogen Receptor Modulators/therapeutic use
- Structure-Activity Relationship
- Treatment Outcome
Collapse
Affiliation(s)
- T Traboulsi
- Institute for Research in Immunology and CancerUniversité de Montréal, Montréal, Québec, Canada
- Department of Biochemistry and Molecular MedicineUniversité de Montréal, Montréal, Québec, Canada
| | - M El Ezzy
- Institute for Research in Immunology and CancerUniversité de Montréal, Montréal, Québec, Canada
| | - J L Gleason
- Department of ChemistryMcGill University, Montréal, Québec, Canada
| | - S Mader
- Institute for Research in Immunology and CancerUniversité de Montréal, Montréal, Québec, Canada
- Department of Biochemistry and Molecular MedicineUniversité de Montréal, Montréal, Québec, Canada
| |
Collapse
|
78
|
Franks LN, Ford BM, Prather PL. Selective Estrogen Receptor Modulators: Cannabinoid Receptor Inverse Agonists with Differential CB1 and CB2 Selectivity. Front Pharmacol 2016; 7:503. [PMID: 28066250 PMCID: PMC5177629 DOI: 10.3389/fphar.2016.00503] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/07/2016] [Indexed: 12/16/2022] Open
Abstract
Selective estrogen receptor modulators (SERMs) are used to treat estrogen receptor (ER)-positive breast cancer and osteoporosis. Interestingly, tamoxifen and newer classes of SERMs also exhibit cytotoxic effects in cancers devoid of ERs, indicating a non-estrogenic mechanism of action. Indicative of a potential ER-independent target, reports demonstrate that tamoxifen binds to cannabinoid receptors (CBRs) with affinity in the low μM range and acts as an inverse agonist. To identify cannabinoids with improved pharmacological properties relative to tamoxifen, and further investigate the use of different SERM scaffolds for future cannabinoid drug development, this study characterized the affinity and activity of SERMs in newer structural classes at CBRs. Fourteen SERMs from five structurally distinct classes were screened for binding to human CBRs. Compounds from four of five SERM classes examined bound to CBRs. Subsequent studies fully characterized CBR affinity and activity of one compound from each class. Ospemifine (a triphenylethylene) selectively bound to CB1Rs, while bazedoxifine (an indole) bound to CB2Rs with highest affinity. Nafoxidine (a tetrahydronaphthalene) and raloxifene (RAL; a benzothiaphene) bound to CB1 and CB2Rs non-selectively. All four compounds acted as inverse agonists at CB1 and CB2Rs, reducing basal G-protein activity with IC50 values in the nM to low μM range. Ospemifine, bazedoxifene and RAL also acted as inverse agonists to elevate basal intracellular cAMP levels in intact CHO-hCB2 cells. The four SERMs examined also acted as CB1 and CB2R antagonists in the cAMP assay, producing rightward shifts in the concentration-effect curve of the CBR agonist CP-55,940. In conclusion, newer classes of SERMs exhibit improved pharmacological characteristics (e.g., in CBR affinity and selectivity) relative to initial studies with tamoxifen, and thus suggest that different SERM scaffolds may be useful for development of safe and selective drugs acting via CBRs.
Collapse
Affiliation(s)
- Lirit N Franks
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock AR, USA
| | - Benjamin M Ford
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock AR, USA
| | - Paul L Prather
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock AR, USA
| |
Collapse
|
79
|
Morita M, Sato Y, Iwasaki R, Kobayashi T, Watanabe R, Oike T, Miyamoto K, Toyama Y, Matsumoto M, Nakamura M, Kawana H, Nakagawa T, Miyamoto T. Selective Estrogen Receptor Modulators Suppress Hif1α Protein Accumulation in Mouse Osteoclasts. PLoS One 2016; 11:e0165922. [PMID: 27802325 PMCID: PMC5089792 DOI: 10.1371/journal.pone.0165922] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/30/2016] [Indexed: 01/08/2023] Open
Abstract
Anti-bone resorptive drugs such as bisphosphonates, the anti-RANKL antibody (denosumab), or selective estrogen receptor modulators (SERMs) have been developed to treat osteoporosis. Mechanisms underlying activity of bisphosphonates or denosumab in this context are understood, while it is less clear how SERMs like tamoxifen, raloxifene, or bazedoxifene inhibit bone resorption. Recently, accumulation of hypoxia inducible factor 1 alpha (Hif1α) in osteoclasts was shown to be suppressed by estrogen in normal cells. In addition, osteoclast activation and decreased bone mass seen in estrogen-deficient conditions was found to require Hif1α. Here, we used western blot analysis of cultured osteoclast precursor cells to show that tamoxifen, raloxifene, or bazedoxifene all suppress Hif1α protein accumulation. The effects of each SERM on osteoclast differentiation differed in vitro. Our results suggest that interventions such as the SERMs evaluated here could be useful to inhibit Hif1α and osteoclast activity under estrogen-deficient conditions.
Collapse
Affiliation(s)
- Mayu Morita
- Division of Oral and Maxillofacial surgery, Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yuiko Sato
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Advanced Therapy for Musculoskeletal Disorders, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ryotaro Iwasaki
- Division of Oral and Maxillofacial surgery, Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tami Kobayashi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Musculoskeletal Reconstruction and Regeneration Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ryuichi Watanabe
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takatsugu Oike
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kana Miyamoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yoshiaki Toyama
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiromasa Kawana
- Division of Oral and Maxillofacial surgery, Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Taneaki Nakagawa
- Division of Oral and Maxillofacial surgery, Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takeshi Miyamoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Advanced Therapy for Musculoskeletal Disorders, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
- * E-mail:
| |
Collapse
|
80
|
Palacios S, Cancelo MJ. Clinical update on the use of ospemifene in the treatment of severe symptomatic vulvar and vaginal atrophy. Int J Womens Health 2016; 8:617-626. [PMID: 27822125 PMCID: PMC5089832 DOI: 10.2147/ijwh.s110035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The physiological decrease in vaginal estrogens is accountable for the emergence of vulvar and vaginal atrophy (VVA) and its related symptoms such as vaginal dryness, dyspareunia, vaginal and/or vulvar irritation or itching, and dysuria. The repercussion of these symptoms on quality of life often makes it necessary to initiate treatment. Up until now, the treatments available included vaginal moisturizers and lubricants, local estrogens, and hormonal therapy. However, therapeutic options have now been increased with the approval of 60 mg ospemifene, the first nonhormonal oral treatment with an agonist effect on the vaginal epithelium and an endometrial and breast safety profile which makes it unique. This is the first selective estrogen receptor modulator indicated in women with moderate-to-severe vaginal atrophy not eligible for local estrogen treatment. Considering that "local estrogen noneligible women" are those in whom such treatment cannot be administered either because it is contraindicated or due to skill issues, who are averse to the mode and convenience of vaginal products' administration or to their use on account of potential systemic absorption, or those who demonstrate dissatisfaction in terms of efficacy and safety, it is clear that there is a significant unmet medical need in VVA management. In fact, a great number of women show lack of adherence, dropping out of at least one VVA treatment, including nonhormonal moisturizers and lubricants, which they consider to be ineffective and uncomfortable. If they could choose, many of them may opt for oral treatment. In Phase III studies, ospemifene demonstrated efficacy in vaginal dryness and dyspareunia, regenerating vaginal cells, improving lubrication, and reducing pain during sexual intercourse. Symptoms improved in the first 4 weeks and endured for up to 1 year. Additionally, it demonstrated a good endometrial, cardiovascular system, and breast safety profile.
Collapse
Affiliation(s)
| | - María Jesús Cancelo
- Gynecology and Obstetrics Department, Guadalajara University Hospital, University of Alcalá, Spain
| |
Collapse
|
81
|
Green JM, Metz J, Lee O, Trznadel M, Takesono A, Brown AR, Owen SF, Kudoh T, Tyler CR. High-Content and Semi-Automated Quantification of Responses to Estrogenic Chemicals Using a Novel Translucent Transgenic Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6536-45. [PMID: 27227508 DOI: 10.1021/acs.est.6b01243] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Rapid embryogenesis, together with genetic similarities with mammals, and the desire to reduce mammalian testing, are major incentives for using the zebrafish model in chemical screening and testing. Transgenic zebrafish, engineered for identifying target gene expression through expression of fluorophores, have considerable potential for both high-content and high-throughput testing of chemicals for endocrine activity. Here we generated an estrogen responsive transgenic zebrafish model in a pigment-free "Casper" phenotype, facilitating identification of target tissues and quantification of these responses in whole intact fish. Using the ERE-GFP-Casper model we show chemical type and concentration dependence for green fluorescent protein (GFP) induction and both spatial and temporal responses for different environmental estrogens tested. We also developed a semiautomated (ArrayScan) imaging and image analysis system that we applied to quantify whole body fluorescence responses for a range of different estrogenic chemicals in the new transgenic zebrafish model. The zebrafish model developed provides a sensitive and highly integrative system for identifying estrogenic chemicals, their target tissues and effect concentrations for exposures in real time and across different life stages. It thus has application for chemical screening to better direct health effects analysis of environmental estrogens and for investigating the functional roles of estrogens in vertebrates.
Collapse
Affiliation(s)
- Jon M Green
- Biosciences, College of Life and Environmental Sciences, University of Exeter , Geoffrey Pope, Stocker Road, Exeter, Devon EX4 4QD, United Kingdom
| | - Jeremy Metz
- Biosciences, College of Life and Environmental Sciences, University of Exeter , Geoffrey Pope, Stocker Road, Exeter, Devon EX4 4QD, United Kingdom
| | - Okhyun Lee
- Biosciences, College of Life and Environmental Sciences, University of Exeter , Geoffrey Pope, Stocker Road, Exeter, Devon EX4 4QD, United Kingdom
| | - Maciej Trznadel
- Biosciences, College of Life and Environmental Sciences, University of Exeter , Geoffrey Pope, Stocker Road, Exeter, Devon EX4 4QD, United Kingdom
| | - Aya Takesono
- Biosciences, College of Life and Environmental Sciences, University of Exeter , Geoffrey Pope, Stocker Road, Exeter, Devon EX4 4QD, United Kingdom
| | - A Ross Brown
- Biosciences, College of Life and Environmental Sciences, University of Exeter , Geoffrey Pope, Stocker Road, Exeter, Devon EX4 4QD, United Kingdom
| | - Stewart F Owen
- AstraZeneca, Global Environment , Alderley Park, Macclesfield, Cheshire SK10 4TF, United Kingdom
| | - Tetsuhiro Kudoh
- Biosciences, College of Life and Environmental Sciences, University of Exeter , Geoffrey Pope, Stocker Road, Exeter, Devon EX4 4QD, United Kingdom
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter , Geoffrey Pope, Stocker Road, Exeter, Devon EX4 4QD, United Kingdom
| |
Collapse
|
82
|
Börjesson AE, Farman HH, Movérare-Skrtic S, Engdahl C, Antal MC, Koskela A, Tuukkanen J, Carlsten H, Krust A, Chambon P, Sjögren K, Lagerquist MK, Windahl SH, Ohlsson C. SERMs have substance-specific effects on bone, and these effects are mediated via ERαAF-1 in female mice. Am J Physiol Endocrinol Metab 2016; 310:E912-8. [PMID: 27048997 PMCID: PMC4935145 DOI: 10.1152/ajpendo.00488.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/01/2016] [Indexed: 11/22/2022]
Abstract
The bone-sparing effect of estrogens is mediated primarily via estrogen receptor (ER)α, which stimulates gene transcription through activation function (AF)-1 and AF-2. The role of ERαAF-1 for the estradiol (E2) effects is tissue specific. The selective ER modulators (SERMs) raloxifene (Ral), lasofoxifene (Las), and bazedoxifene (Bza) can be used to treat postmenopausal osteoporosis. They all reduce the risk for vertebral fractures, whereas Las and partly Bza, but not Ral, reduce the risk for nonvertebral fractures. Here, we have compared the tissue specificity of Ral, Las, and Bza and evaluated the role of ERαAF-1 for the effects of these SERMs, with an emphasis on bone parameters. We treated ovariectomized (OVX) wild-type (WT) mice and OVX mice lacking ERαAF-1 (ERαAF-1(0)) with E2, Ral, Las, or Bza. All three SERMs increased trabecular bone mass in the axial skeleton. In the appendicular skeleton, only Las increased the trabecular bone volume/tissue volume and trabecular number, whereas both Ral and Las increased the cortical bone thickness and strength. However, Ral also increased cortical porosity. The three SERMs had only a minor effect on uterine weight. Notably, all evaluated effects of these SERMs were absent in ovx ERαAF-1(0) mice. In conclusion, all SERMs had similar effects on axial bone mass. However, the SERMs had slightly different effects on the appendicular skeleton since only Las increased the trabecular bone mass and only Ral increased the cortical porosity. Importantly, all SERM effects require a functional ERαAF-1 in female mice. These results could lead to development of more specific treatments for osteoporosis.
Collapse
Affiliation(s)
- Anna E Börjesson
- Rheumatology and Bone Diseases Unit, Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Helen H Farman
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sofia Movérare-Skrtic
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Engdahl
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria Cristina Antal
- Strasbourg University, Faculté de Médecine, Institut d'Histologie, Strasbourg, France
| | - Antti Koskela
- Department of Anatomy and Cell Biology, MRC Oulu, University of Oulu, Oulu, Finland
| | - Juha Tuukkanen
- Department of Anatomy and Cell Biology, MRC Oulu, University of Oulu, Oulu, Finland
| | - Hans Carlsten
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Andrée Krust
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (Centre National de la Recherche Scientifique UMR7104; National de la Sante et de la Recherche Medicale U596; ULP, Collège de France), Illkirch, Strasbourg, France
| | - Pierre Chambon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (Centre National de la Recherche Scientifique UMR7104; National de la Sante et de la Recherche Medicale U596; ULP, Collège de France), Illkirch, Strasbourg, France
| | - Klara Sjögren
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marie K Lagerquist
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sara H Windahl
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden;
| |
Collapse
|
83
|
Umetani M. Re-adopting classical nuclear receptors by cholesterol metabolites. J Steroid Biochem Mol Biol 2016; 157:20-6. [PMID: 26563834 PMCID: PMC4724260 DOI: 10.1016/j.jsbmb.2015.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 07/10/2015] [Accepted: 11/04/2015] [Indexed: 12/22/2022]
Abstract
Since the first cloning of the human estrogen receptor (ER) α in 1986 and the subsequent cloning of human ERβ, there has been extensive investigation of the role of estrogen/ER. Estrogens/ER play important roles not only in sexual development and reproduction but also in a variety of other functions in multiple tissues. Selective Estrogen Receptor Modulators (SERMs) are ER lignds that act as agonists or antagonists depending on the target genes and tissues, and until recently, only synthetic SERMs have been recognized. However, the discovery of the first endogenous SERM, 27-hydroxycholesterol (27HC), opened a new dimension of ER action in health and disease. In addition to the identification of 27HC as a SERM, oxysterols have been recently demonstrated as indirect modulators of ER through interaction with the nuclear receptor Liver X Receptor (LXR) β. In this review, the recent progress on these novel roles of oxysterols in ER modulation is summarized.
Collapse
Affiliation(s)
- Michihisa Umetani
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, 3517 Cullen Blvd, SERC 545, Houston, TX 77204-5056, USA.
| |
Collapse
|
84
|
Boonmuen N, Gong P, Ali Z, Chittiboyina AG, Khan I, Doerge DR, Helferich WG, Carlson KE, Martin T, Piyachaturawat P, Katzenellenbogen JA, Katzenellenbogen BS. Licorice root components in dietary supplements are selective estrogen receptor modulators with a spectrum of estrogenic and anti-estrogenic activities. Steroids 2016; 105:42-9. [PMID: 26631549 PMCID: PMC4714869 DOI: 10.1016/j.steroids.2015.11.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/09/2015] [Accepted: 11/18/2015] [Indexed: 12/29/2022]
Abstract
Licorice root extracts are often consumed as botanical dietary supplements by menopausal women as a natural alternative to pharmaceutical hormone replacement therapy. In addition to their components liquiritigenin (Liq) and isoliquiritigenin (Iso-Liq), known to have estrogenic activity, licorice root extracts also contain a number of other flavonoids, isoflavonoids, and chalcones. We have investigated the estrogenic activity of 7 of these components, obtained from an extract of Glycyrrhiza glabra powder, namely Glabridin (L1), Calycosin (L2), Methoxychalcone (L3), Vestitol (L4), Glyasperin C (L5), Glycycoumarin (L6), and Glicoricone (L7), and compared them with Liq, Iso-Liq, and estradiol (E2). All components, including Liq and Iso-Liq, have low binding affinity for estrogen receptors (ERs). Their potency and efficacy in stimulating the expression of estrogen-regulated genes reveal that Liq and Iso-Liq and L2, L3, L4, and L6 are estrogen agonists. Interestingly, L3 and L4 have an efficacy nearly equivalent to E2 but with a potency ca. 10,000-fold less. The other components, L1, L5 and L7, acted as partial estrogen antagonists. All agonist activities were reversed by the antiestrogen, ICI 182,780, or by knockdown of ERα with siRNA, indicating that they are ER dependent. In HepG2 hepatoma cells stably expressing ERα, only Liq, Iso-Liq, and L3 stimulated estrogen-regulated gene expression, and in all cases gene stimulation did not occur in HepG2 cells lacking ERα. Collectively, these findings classify the components of licorice root extracts as low potency, mixed ER agonists and antagonists, having a character akin to that of selective estrogen receptor modulators or SERMs.
Collapse
Affiliation(s)
- Nittaya Boonmuen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Ping Gong
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Zulfiqar Ali
- National Center for Natural Products Research, University of Mississippi, Oxford, MS 38677, United States
| | - Amar G Chittiboyina
- National Center for Natural Products Research, University of Mississippi, Oxford, MS 38677, United States
| | - Ikhlas Khan
- National Center for Natural Products Research, University of Mississippi, Oxford, MS 38677, United States
| | - Daniel R Doerge
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - William G Helferich
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Kathryn E Carlson
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Teresa Martin
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Pawinee Piyachaturawat
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Chakri Naruebodindra Medical Institute, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - John A Katzenellenbogen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Benita S Katzenellenbogen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
85
|
Abstract
Cancer chemoprevention refers to the use of agents for the inhibition, delay, or reversal of carcinogenesis before invasion. In the present review, agents examined in the context of cancer chemoprevention are classified in four major categories—hormonal, medications, diet-related agents, and vaccines—and the main representatives of each category are presented. Although there are serious constraints in the documentation of effectiveness of chemopreventive agents, mainly stemming from the long latency of the condition they are addressing and the frequent lack of intermediate biomarkers, there is little disagreement about the role of aspirin, whereas a diet rich in vegetables and fruits appears to convey more protection than individual micronutrients. Among categories of cancer chemopreventive agents, hormonal ones and vaccines might hold more promise for the future. Also, the identification of individuals who would benefit most from chemopreventive interventions on the basis of their genetic profiles could open new prospects for cancer chemoprevention.
Collapse
Affiliation(s)
- Vassiliki Benetou
- Department of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, Athens, GR-115 27, Greece
| | - Areti Lagiou
- Department of Public Health and Community Health, Faculty of Health Professions, Athens Technological Educational Institute (TEI Athens), Athens, Greece
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, Athens, GR-115 27, Greece; Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
86
|
Fabian CJ, Kimler BF, Zalles CM, Phillips TA, Metheny T, Petroff BK, Havighurst TC, Kim K, Bailey HH, Heckman-Stoddard BM. Clinical Trial of Acolbifene in Premenopausal Women at High Risk for Breast Cancer. Cancer Prev Res (Phila) 2015; 8:1146-55. [PMID: 26391916 DOI: 10.1158/1940-6207.capr-15-0109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/07/2015] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to assess the feasibility of using the selective estrogen receptor modulator (SERM) acolbifene as a breast cancer prevention agent in premenopausal women. To do so, we assessed change in proliferation in benign breast tissue sampled by random periareolar fine-needle aspiration (RPFNA) as a primary endpoint, along with changes in other risk biomarkers and objective and subjective side effects as secondary endpoints. Twenty-five women with cytologic hyperplasia ± atypia and ≥2% of breast epithelial cells staining positive for Ki-67, received 20 mg acolbifene daily for 6-8 months, and then had benign breast tissue and blood risk biomarkers reassessed. Ki-67 decreased from a median of 4.6% [interquartile range (IQR), 3.1%-8.5%] at baseline to 1.4% (IQR, 0.6%-3.5%) after acolbifene (P < 0.001; Wilcoxon signed-rank test), despite increases in bioavailable estradiol. There were also significant decreases in expression (RT-qPCR) of estrogen-inducible genes that code for pS2, ERα, and progesterone receptor (P ≤ 0.026). There was no significant change in serum IGF1, IGFBP3, IGF1:IGFBP3 ratio, or mammographic breast density. Subjective side effects were minimal with no significant increase in hot flashes, muscle cramps, arthralgias, or fatigue. Objective measures showed a clinically insignificant decrease in lumbar spine bone density (DEXA) and an increase in ovarian cysts but no change in endometrial thickness (sonography). In summary, acolbifene was associated with favorable changes in benign breast epithelial cell proliferation and estrogen-inducible gene expression but minimal side effects, suggesting a phase IIB placebo-controlled trial evaluating it further for breast cancer prevention.
Collapse
Affiliation(s)
- Carol J Fabian
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Bruce F Kimler
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas.
| | | | - Teresa A Phillips
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Trina Metheny
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Brian K Petroff
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Thomas C Havighurst
- Department of Biostatistics and Medical Informatics, University of Wisconsin Madison, Madison, Wisconsin
| | - KyungMann Kim
- Department of Biostatistics and Medical Informatics, University of Wisconsin Madison, Madison, Wisconsin
| | - Howard H Bailey
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin
| | | |
Collapse
|
87
|
Geusens P. New insights into treatment of osteoporosis in postmenopausal women. RMD Open 2015; 1:e000051. [PMID: 26557374 PMCID: PMC4632141 DOI: 10.1136/rmdopen-2015-000051] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 01/05/2023] Open
Abstract
For the prevention of fractures, antiresorptive drugs (bisphosphonates and denosumab) that decrease high bone resorption and, secondarily, also bone formation, are the mainstream of therapy. Osteoanabolic drugs, such as teriparatide, increase bone formation more than bone resorption, and are used in severe osteoporosis, including patients treated with antiresorptive drugs who still lose bone and have recurrent fractures. New potential drugs for fracture prevention that uncouple bone resorption from bone formation include odanacatib, a specific inhibitor of cathepsin-K, the enzyme that degrades bone collagen type I, that inhibits bone resorption and only temporarily bone formation, and monoclonal antibodies against sclerostin (romosozumab, blosozumab), that stimulate bone formation and decrease bone resorption.
Collapse
Affiliation(s)
- Piet Geusens
- Department of Internal Medicine, Division of Rheumatology , CAPHRI School for Public Health and Primary Care, Maastricht University Medical Center , Maastricht , The Netherlands ; Hasselt University, Biomedical Research Institute, and Transnationale Universiteit Limburg , Hasselt , Belgium
| |
Collapse
|
88
|
Saraiva AL, Payan-Carreira R, Gärtner F, Fortuna da Cunha MR, Rêma A, Faria F, Lourenço LM, Pires MDA. An immunohistochemical study on the expression of sex steroid receptors, Ki-67 and cytokeratins 7 and 20 in feline endometrial adenocarcinomas. BMC Vet Res 2015; 11:204. [PMID: 26268561 PMCID: PMC4535787 DOI: 10.1186/s12917-015-0530-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 08/04/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endometrial adenocarcinomas are a rare type of tumour in cats. Though different morphologies have been reported, the most frequent histological type of feline endometrial adenocarcinoma (FEA) is the papillary serous. Characterization of molecular markers expression in FEA may contribute to clarify the pathogenesis of these tumours and to assess the differences between normal endometrium and FEA regarding the expression pattern of several proteins. Therefore, this study aimed to evaluate the immunohistochemical profile of a wide panel of antibodies (specific for ER-α, PR, Ki-67, CK7 and CK20) in twenty-four cases of FEA. Comparisons were made between FEA and feline normal cyclic endometrium in follicular (n = 13) and luteal (n = 10) stages. Except for Ki-67, all other molecular markers were assessed independently for the intensity of immunolabeling and for the percentage of cells expressing the protein. RESULTS This study showed that in FEA a loss of expression occurs for ER-α (P ≤ 0.0001) and less markedly also for PR. The lost in sex steroid receptors concerns a decrease in both the proportion of labelled cells and the intensity of immunolabelling (P = 0.002 and P = 0.024, respectively). Proliferative activity, estimated via Ki-67 immunoreaction, significantly increased in FEA as compared to normal endometrium (P ≤ 0.0001). Feline endometrial adenocarcinomas maintained the CK7+/CK20+ status of normal endometrium. However, FEA showed decreased CK7 intensity of labelling compared to normal endometria (P ≤ 0.0001) and loss of CK20 expression, both in intensity (P ≤ 0.0001) and in percentage of positive cells (P = 0.01), compared to normal tissues. CONCLUSIONS Data gathered in this study suggest that proliferation in FEA accompanies ER-α down-regulation, possibly following activation of pathways mediated by local growth factors. Moreover, FEA retains combined expression of CK7 and CK20, as evidenced in normal endometrial epithelia, although a decrease in CK7 expression was observed.
Collapse
Affiliation(s)
- Ana Laura Saraiva
- CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal. .,Escola Universitária Vasco da Gama (EUVG), Avenida José R. Sousa Fernandes, Campus Universitário, Bloco B, Lordemão, 3020-210, Coimbra, Portugal.
| | - Rita Payan-Carreira
- CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - Fátima Gärtner
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313, Porto, Portugal. .,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135, Porto, Portugal.
| | - Marta R Fortuna da Cunha
- CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - Alexandra Rêma
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313, Porto, Portugal.
| | - Fátima Faria
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313, Porto, Portugal.
| | - Lígia M Lourenço
- CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - Maria Dos Anjos Pires
- CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal.
| |
Collapse
|