51
|
Cao Y, Di X, Cong S, Tian C, Wang Y, Jin X, Zhao M, Zhou X, Li R, Wang K. RBM10 recruits METTL3 to induce N6-methyladenosine-MALAT1-dependent modification, inhibiting the invasion and migration of NSCLC. Life Sci 2023; 315:121359. [PMID: 36608868 DOI: 10.1016/j.lfs.2022.121359] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023]
Abstract
AIMS Previous studies have shown that RNA binding motif 10 (RBM10) is a potential tumor suppressor protein that can inhibit proliferation and promote apoptosis of non-small cell lung cancer (NSCLC). Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) plays an important role in promoting the development of lung cancer. Inhibiting its m6A methylation can effectively inhibit the invasion and metastasis of lung cancer. There is concern that RBM10 could affect MALAT1 m6A methylation for the invasion and migration of NSCLC. MAIN METHODS AND FINDINGS Transwell and wound healing assays showed that RBM10 significantly inhibited the invasion and migration of NSCLC. CLIP-Seq showed that among all RBM10 binding RNAs, MALAT1 had the highest binding peak among all non-coding RNAs. RNA immunoprecipitation verified the direct combination of RBM10 and MALAT1. The rescue experiment confirmed that RBM10 affected the phosphorylation of the PI3K/AKT/mTOR pathway protein as well as the invasion and migration ability by regulating MALAT1. MeRIP-qPCR confirmed that RBM10 could inhibit the MALAT1 m6A methylation level by recruiting Methyltransferase Like 3 (METTL3). SIGNIFICANCE The study suggests that RBM10, as an RNA-binding protein, may inhibit the m6A methylation of MALAT1 by recruiting METTL3 and affecting phosphorylation of the downstream PI3K/AKT/mTOR pathway by binding and regulating MALAT1, ultimately affecting the invasion and migration of NSCLC.
Collapse
Affiliation(s)
- Yingshu Cao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun 130000, China
| | - Xin Di
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun 130000, China
| | - Shan Cong
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun 130000, China
| | - Chang Tian
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun 130000, China
| | - Yan Wang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun 130000, China
| | - Xin Jin
- Department of Oncology and Hematology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Min Zhao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun 130000, China
| | - Xijia Zhou
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun 130000, China
| | - Ranwei Li
- Department of Urinary Surgery, The Second Hospital of Jilin University, Changchun 130000, China
| | - Ke Wang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
52
|
Wang H, Feng Y, Zheng X, Xu X. The Diagnostic and Therapeutic Role of snoRNA and lincRNA in Bladder Cancer. Cancers (Basel) 2023; 15:cancers15041007. [PMID: 36831352 PMCID: PMC9954389 DOI: 10.3390/cancers15041007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Bladder cancer is one of the most common malignancies of the urinary tract and can be divided into non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC). Although the means of diagnosis and treatment have continually improved in recent years, the recurrence rate of bladder cancer remains high, and patients with MIBC typically have an unfavourable prognosis and a low quality of life. Emerging evidence demonstrates that long noncoding RNAs play a crucial role in the carcinogenesis and progression of bladder cancer. Long intergenic noncoding RNAs (lincRNAs) are a subgroup of long noncoding RNAs (lncRNAs) that do not overlap protein-coding genes. The potential role of lincRNAs in the regulation of gene expression has been explored in depth in recent years. Small nucleolar RNAs (snoRNAs) are a class of noncoding RNAs (ncRNAs) that mainly exist in the nucleolus, are approximately 60-300 nucleotides in length, and are hosted inside the introns of genes. Small nucleolar RNA host genes (SNHGs) have been associated with the origin and development of bladder cancer. In this review, we aim to comprehensively summarize the biological functions of these molecules in bladder cancer.
Collapse
Affiliation(s)
- Hao Wang
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yanfei Feng
- Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiangyi Zheng
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Correspondence: (X.Z.); (X.X.)
| | - Xin Xu
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Correspondence: (X.Z.); (X.X.)
| |
Collapse
|
53
|
Long Non-Coding RNAs as Novel Targets for Phytochemicals to Cease Cancer Metastasis. Molecules 2023; 28:molecules28030987. [PMID: 36770654 PMCID: PMC9921150 DOI: 10.3390/molecules28030987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Metastasis is a multi-step phenomenon during cancer development leading to the propagation of cancer cells to distant organ(s). According to estimations, metastasis results in over 90% of cancer-associated death around the globe. Long non-coding RNAs (LncRNAs) are a group of regulatory RNA molecules more than 200 base pairs in length. The main regulatory activity of these molecules is the modulation of gene expression. They have been reported to affect different stages of cancer development including proliferation, apoptosis, migration, invasion, and metastasis. An increasing number of medical data reports indicate the probable function of LncRNAs in the metastatic spread of different cancers. Phytochemical compounds, as the bioactive agents of plants, show several health benefits with a variety of biological activities. Several phytochemicals have been demonstrated to target LncRNAs to defeat cancer. This review article briefly describes the metastasis steps, summarizes data on some well-established LncRNAs with a role in metastasis, and identifies the phytochemicals with an ability to suppress cancer metastasis by targeting LncRNAs.
Collapse
|
54
|
Yu HH, Zhao W, Zhang BX, Wang Y, Li J, Fang YF. Morinda officinalis extract exhibits protective effects against atopic dermatitis by regulating the MALAT1/miR-590-5p/CCR7 axis. J Cosmet Dermatol 2023; 22:1602-1612. [PMID: 36639978 DOI: 10.1111/jocd.15610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory skin disease with a genetic predisposition, and the traditional Chinese medicine Morinda officinalis and its roots are characterized with anti-inflammatory effects and have been used for the treatment of various disease. However, it is still largely unknown whether Morinda officinalis extract (MOE) can be used for the treatment of AD. OBJECTIVES In our study we aimed to determine whether MOE could ameliorate 2,4-dinitrochlorobenzene (DNCB)-induced AD and elucidate molecular mechanisms. METHODS We established an AD mouse model by using DNCB. Skin pathological analysis and ELISA assay were used to detect the effect of MOE on the inflammation of AD model mouse skin and the expression changes of inflammatory factors, and further functional verification was performed in TNF-α/IFN-γ-induced HaCaT cells. RESULTS Our in vivo experiments confirmed that MOE remarkably reduced DNCB-induced AD lesions and symptoms, such as epidermal and dermal thickness and mast cell infiltration and inflammatory cytokines secretion in the mice models. In addition, the underlying mechanisms by which MOE ameliorated AD had been uncovered, and we verified that MOE inhibited MALAT1 expression in AD, resulting in attenuated expression of C-C chemokine receptor type 7 (CCR7) regulated by MALAT1-sponge miR-590-5p in a competing endogenous RNA (ceRNA) mechanisms-dependent manner, thereby inhibiting TNF-α/IFN-γ-induced cellular proliferation and inflammation.
Collapse
Affiliation(s)
- Huan-Huan Yu
- Department of Dermatology, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Wei Zhao
- Department of Dermatology, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Bu-Xin Zhang
- Department of Dermatology, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Ying Wang
- Department of Dermatology, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Jie Li
- Department of Dermatology, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yu-Fu Fang
- Department of Dermatology, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
55
|
Wang Z, Ma J, Wu R, Kong Y, Sun C. Recent advances of long non-coding RNAs in control of hepatic gluconeogenesis. Front Endocrinol (Lausanne) 2023; 14:1167592. [PMID: 37065737 PMCID: PMC10102572 DOI: 10.3389/fendo.2023.1167592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Gluconeogenesis is the main process for endogenous glucose production during prolonged fasting, or certain pathological conditions, which occurs primarily in the liver. Hepatic gluconeogenesis is a biochemical process that is finely controlled by hormones such as insulin and glucagon, and it is of great importance for maintaining normal physiological blood glucose levels. Dysregulated gluconeogenesis induced by obesity is often associated with hyperglycemia, hyperinsulinemia, and type 2 diabetes (T2D). Long noncoding RNAs (lncRNAs) are involved in various cellular events, from gene transcription to protein translation, stability, and function. In recent years, a growing number of evidences has shown that lncRNAs play a key role in hepatic gluconeogenesis and thereby, affect the pathogenesis of T2D. Here we summarized the recent progress in lncRNAs and hepatic gluconeogenesis.
Collapse
Affiliation(s)
- Zhe Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neurogeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Jinyu Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neurogeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Runze Wu
- Department of Endocrinology, Changshu No.2 People’s Hospital, Changshu, Jiangsu, China
| | - Yinghong Kong
- Department of Endocrinology, Changshu No.2 People’s Hospital, Changshu, Jiangsu, China
- *Correspondence: Yinghong Kong, ; Cheng Sun,
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neurogeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
- *Correspondence: Yinghong Kong, ; Cheng Sun,
| |
Collapse
|
56
|
Functional roles of long noncoding RNA MALAT1 in gynecologic cancers. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:48-65. [PMID: 36042115 DOI: 10.1007/s12094-022-02914-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023]
Abstract
Gynecologic cancers are reproductive disorders characterized by pelvic pain and infertility. The identification of new predictive markers and therapeutic targets for the treatment of gynecologic cancers is urgently necessary. One of the recent successes in gynecologic cancers research is identifying the role of signaling pathways in the pathogenesis of the disease. Recent experiments showed long noncoding RNAs (lncRNA) can be novel therapeutic approaches for the diagnosis and treatment of gynecologic cancers. LncRNA are transcribed RNA molecules that play pivotal roles in multiple biological processes by regulating the different steps of gene expression. Metastasis-associated lung adenocarcinoma transcript-1 (MALAT1) is a well-known lncRNA that plays functional roles in gene expression, RNA processing, and epigenetic regulation. High expression of MALAT1 is closely related to numerous human diseases. It is generally believed that MALAT1 expression is associated with cancer cell growth, autophagy, invasion, and metastasis. MALAT1 by targeting multiple signaling pathways and microRNAs (miRNAs) could contribute to the pathogenesis of gynecologic cancers. In this review, we will summarize functional roles of MALAT1 in the most common gynecologic cancers, including endometrium, breast, ovary, and cervix.
Collapse
|
57
|
Farzaneh M, Najafi S, Anbiyaee O, Azizidoost S, Khoshnam SE. LncRNA MALAT1-related signaling pathways in osteosarcoma. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:21-32. [PMID: 35790599 DOI: 10.1007/s12094-022-02876-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/10/2022] [Indexed: 01/07/2023]
Abstract
Osteosarcoma (OS) is a common and malignant form of bone cancer, which affects children and young adults. OS is identified by osteogenic differentiation and metastasis. However, the exact molecular mechanism of OS development and progression is still unclear. Recently, long non-coding RNAs (lncRNA) have been proven to regulate OS proliferation and drug resistance. LncRNAs are longer than 200 nucleotides that represent the extensive applications in the processing of pre-mRNA and the pathogenesis of human diseases. Metastasis-associated lung adenocarcinoma transcript-1 (MALAT1) is a well-known lncRNA known as a transcriptional and translational regulator. The aberrant expression of MALAT1 has been shown in several human cancers. The high level of MALAT1 is involved in OS cell growth and tumorigenicity by targeting several signaling pathways and miRNAs. Hence, MALAT1 might be a suitable approach for OS diagnosis and treatment. In this review, we will summarize the role of lncRNA MALAT1 in the pathophysiology of OS.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Anbiyaee
- School of Medicine, Cardiovascular Research Center, Nemazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
58
|
Fu F, Du K, Li YS, Li LS, Xin Y, Wang D, Lei TY, Deng Q, Yu QX, Liao C. Identification of Alternative Splicing and LncRNA Genes in Brain Tissues of Fetal Mice at Different Developmental Stages. Comb Chem High Throughput Screen 2023; 26:58-82. [PMID: 35400338 DOI: 10.2174/1386207325666220408091206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/12/2022] [Accepted: 01/27/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Brain development is an extremely complex and precisely regulated process, with about one-third of genes expressed and precisely regulated during brain development. OBJECTIVE This study aims to explore the molecular mechanisms involved in brain development. METHODS We first established the expression profile of long non-coding RNAs (lncRNAs) and mRNAs in brain tissues of fetal mice at 12.5d, 14.5d and 16.5d through high-throughput sequencing. Second, the associated functions, pathways, and networks of the co-differentially expressed lncRNAs and mRNAs were identified via Gene Ontology (GO), pathway analysis, and PPI network. After bioinformatic analysis and screening, 8 differentially expressed lncRNAs and mRNAs with the same genetic origin were verified by RT-qPCR analysis in brain tissues of fetal mice at different developmental stages. RESULTS The data revealed that there were 972 co-differentially expressed lncRNAs and 992 codifferentially expressed mRNAs in brain tissues of fetal mice at 12.5d, 14.5d and 16.5d. And we discovered 125 differentially expressed lncRNAs and mRNAs, which have the same genetic origin, in brain tissues of fetal mice at 12.5d, 14.5d and 16.5d through sequencing results and bioinformatics analysis. Besides, we proved that 8 lncRNAs, which have had the same genetic origin as differentially expressed mRNAs, were prominently downregulated, while their maternal genes were upregulated during brain development in fetal mice. CONCLUSION Our results preliminarily illustrated the differentially expressed lncRNAs and mRNAs, both of which were derived from the same parent genes, during brain development in fetal mice, which suggests that alternative splicing of lncRNA exists during brain development. Besides, our study provides a perspective on critical genes for brain development, which might be the underlying therapeutic targets for developmental brain diseases in children.
Collapse
Affiliation(s)
- Fang Fu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Kun Du
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Ying-Si Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Lu-Shan Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yang Xin
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Dan Wang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Ting-Ying Lei
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Qiong Deng
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Qiu-Xia Yu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Can Liao
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| |
Collapse
|
59
|
Yin Z, Wang J, Li T, Ma L, Kang J, Liu G. miR-188-5p and Host MALAT1 Regulate RBE Cell Migration, Invasion, and Apoptosis via Up-regulating PSMD10 in Cholangiocarcinoma. Appl Biochem Biotechnol 2023; 195:655-671. [PMID: 36121635 DOI: 10.1007/s12010-022-04136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 02/08/2023]
Abstract
The study is designed to explore the regulatory network that MALAT1 competitively binds with miR-188-5p to up-regulate PSMD10 to facilitate cholangiocarcinoma cell migration and invasion and suppress apoptosis. qRT-PCR and fluorescence in situ hybridization (FISH) were used to examine the expression and positive signal of MALAT1 and miR-188-5p in cholangiocarcinoma tissues and HIBEC, HCCC-9810, RBE, and QBC939 cells. Western blot, qRT-PCR, and immunohistochemistry were selected to detect PSMD10 expression in cholangiocarcinoma tissues and cell lines. Dual luciferase reporter gene assay was adopted to verify that miR-188-5p targeted MALAT1 and PSMD10. qRT-PCR, pull down, and western blot were used to examine the regulation of MALAT1-miR-188-5p-PSMD10 axis. Transwell, wound healing assay, and Tunel cell apoptosis were adopted to respectively detect the regulatory abilities of MALAT1-miR-188-5p-PSMD10 axis on cell invasion, migration, and apoptosis. Western blot was used to detect the regulation mechanism of MALAT1 on Bax, Bcl-2, and caspase-3 proteins. Nude mice subcutaneous xenograft model of cholangiocarcinoma was established to examine the impacts of MALAT1 on subcutaneous tumor growth. Immunohistochemistry was adopted to examine the positive indicator of Ki67 antibodies and SMD10 antibodies in each group. MALAT1 and PSMD10 were highly expressed in cholangiocarcinoma tissues and cell lines, while miR-188-5p was lowly expressed. MALAT1 could competitively bind to miR-188-5p, and miR-188-5p could negatively regulate PSMD10. MALAT1, In-miR-188-5p, and PSMD10 could facilitate cell invasion and migration and inhibit apoptosis, while siMALAT1, miR-188-5p, and siPSMD10 produced an opposite result. MALAT1-miR-188-5p-PSMD10 axis could promote RBE cell invasion and migration and inhibit apoptosis, whereas siMALAT1-In-miR-188-5p-siPSMD10 axis showed an opposite result. On the other hand, it was verified that up-regulation/down-regulation of MALAT1 can inhibit/promote Bax and caspase-3 proteins and promote/inhibit the expression of Bcl-2 protein. MALAT1 could facilitate subcutaneous tumor growth and enhance cell proliferation and positive signal of PSMD10, while miR-188-5p worked in an opposite direction. MALAT1 competitively binds to miR-188-5p to up-regulate mRNA translation and protein expression of PSMD10, thereby facilitating cholangiocarcinoma cell invasion and migration and inhibiting its apoptosis. However, interfering MALAT1-miR-188-5p-PSMD10 axis could inhibit the occurrence and development of cholangiocarcinoma.
Collapse
Affiliation(s)
- Zhaoqiang Yin
- Department of Minimally Invasive and Biliary Surgery, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Jianlong Wang
- Department of Minimally Invasive and Biliary Surgery, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Tao Li
- Department of Minimally Invasive and Biliary Surgery, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Lifeng Ma
- Department of Minimally Invasive and Biliary Surgery, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Jiansheng Kang
- Department of Minimally Invasive and Biliary Surgery, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Guochao Liu
- Department of Minimally Invasive and Biliary Surgery, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
60
|
Rastad H, Samimisedeh P, Alan MS, Afshar EJ, Ghalami J, Hashemnejad M, Alan MS. The role of lncRNA CERS6-AS1 in cancer and its molecular mechanisms: A systematic review and meta-analysis. Pathol Res Pract 2023; 241:154245. [PMID: 36580796 DOI: 10.1016/j.prp.2022.154245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND LncRNAs have the potential to play a regulatory role in different processes of cancer development and progression. We conducted a systematic review and meta-analysis of evidence on the clinical significance and prognostic value of lncRNA CERS6-AS1 in cancer. METHODS This systematic review was conducted following PRISMA guidelines. Medline and Embase databases were searched using the relevant key terms covering lncRNA CERS6-AS1 and cancer. We pooled the estimated effect sizes and their 95 % confidence interval (CI) using random-effects models in STATA 16.0 (StataCorp, College Station, TX, USA). RESULTS Eleven articles on pancreatic, colorectal, gastric, papillary thyroid, breast, and hepatocellular cancers fulfilled our eligibility criteria. Studies consistently found that lncRNA CERS6-AS1 expression is upregulated in all assessed cancers. Based on our meta-analysis, its aberrant expression was directly associated with unfavorable clinical outcomes, including higher stage (pooled Odds ratios (95 % CI): 3.15 (2.01-4.93; I2 = 0.0 %), tumor size (1.97 (1.27-3.05; I2 = 37.8 %), lymph node metastasis (6.48 (4.01-10.45; I2 = 0.40 %), and poor survival (Pooled log-rank test P-value < 0.001) in patients. Regarding potential mechanisms, functional studies revealed that LncRNA CERS6-AS1 is involved in cancer growth mainly by sponging miRNAs and regulating their downstream targets. CONCLUSION Available evidence suggests that LncRNA CERS6-AS1 is upregulated in different cancers and has an oncogenic role. LncRNA CERS6-AS1 expression level might predict cancer prognosis, highlighting its potential application as a prognostic biomarker for cancer.
Collapse
Affiliation(s)
- Hadith Rastad
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Parham Samimisedeh
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahin Seifi Alan
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Elmira Jafari Afshar
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Jamileh Ghalami
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran; The Clinical Research Development units of Kamali Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Hashemnejad
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahnaz Seifi Alan
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
61
|
Liu Y, Han Y, Zhang Y, Lv T, Peng X, Huang J. LncRNAs has been identified as regulators of Myeloid-derived suppressor cells in lung cancer. Front Immunol 2023; 14:1067520. [PMID: 36817434 PMCID: PMC9932034 DOI: 10.3389/fimmu.2023.1067520] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Lung tumours are widespread pathological conditions that attract much attention due to their high incidence of death. The immune system contributes to the progression of these diseases, especially non-small cell lung cancer, resulting in the fast evolution of immune-targeted therapy. Myeloid-derived suppressor cells (MDSCs) have been suggested to promote the progression of cancer in the lungs by suppressing the immune response through various mechanisms. Herein, we summarized the clinical studies on lung cancer related to MDSCs. However, it is noteworthy to mention the discovery of long non-coding RNAs (lncRNAs) that had different phenotypes and could regulate MDSCs in lung cancer. Therefore, by reviewing the different phenotypes of lncRNAs and their regulation on MDSCs, we summarized the lncRNAs' impact on the progression of lung tumours. Data highlight LncRNAs as anti-cancer agents. Hence, we aim to discuss their possibilities to inhibit tumour growth and trigger the development of immunosuppressive factors such as MDSCs in lung cancer through the regulation of lncRNAs. The ultimate purpose is to propose novel and efficient therapy methods for curing patients with lung tumours.
Collapse
Affiliation(s)
- Yifan Liu
- Department of Oncology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China.,Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yukun Han
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China.,Department of Medical Imaging, School of Medicine, and Positron Emission Computed Tomography (PET) Center of the First Affiliated Hospital, Yangtze University, Jingzhou, Hubei, China
| | - Yanhua Zhang
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Tongtong Lv
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Xiaochun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jinbai Huang
- Department of Medical Imaging, School of Medicine, and Positron Emission Computed Tomography (PET) Center of the First Affiliated Hospital, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
62
|
Zhang Y, Jiang J, Ma J, Wei Z, Wang Y, Song B, Meng J, Jia G, de Magalhães JP, Rigden D, Hang D, Chen K. DirectRMDB: a database of post-transcriptional RNA modifications unveiled from direct RNA sequencing technology. Nucleic Acids Res 2022; 51:D106-D116. [PMID: 36382409 PMCID: PMC9825532 DOI: 10.1093/nar/gkac1061] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
With advanced technologies to map RNA modifications, our understanding of them has been revolutionized, and they are seen to be far more widespread and important than previously thought. Current next-generation sequencing (NGS)-based modification profiling methods are blind to RNA modifications and thus require selective chemical treatment or antibody immunoprecipitation methods for particular modification types. They also face the problem of short read length, isoform ambiguities, biases and artifacts. Direct RNA sequencing (DRS) technologies, commercialized by Oxford Nanopore Technologies (ONT), enable the direct interrogation of any given modification present in individual transcripts and promise to address the limitations of previous NGS-based methods. Here, we present the first ONT-based database of quantitative RNA modification profiles, DirectRMDB, which includes 16 types of modification and a total of 904,712 modification sites in 25 species identified from 39 independent studies. In addition to standard functions adopted by existing databases, such as gene annotations and post-transcriptional association analysis, we provide a fresh view of RNA modifications, which enables exploration of the epitranscriptome in an isoform-specific manner. The DirectRMDB database is freely available at: http://www.rnamd.org/directRMDB/.
Collapse
Affiliation(s)
| | | | | | - Zhen Wei
- Correspondence may also be addressed to Zhen Wei.
| | - Yue Wang
- Department of Mathematical Sciences, Xi’anJiaotong-Liverpool University, Suzhou, Jiangsu 215123, China,Department of Computer Science, University of Liverpool, L69 7ZB, Liverpool, UK
| | - Bowen Song
- Department of Mathematical Sciences, Xi’anJiaotong-Liverpool University, Suzhou, Jiangsu 215123, China,Institute of Systems, Molecular and Integrative Biology, Xi’anJiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| | - Jia Meng
- Department of Biological Sciences, Xi’anJiaotong-Liverpool University, Suzhou, Jiangsu 215123, China,AI University Research Centre, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China,Institute of Systems, Molecular and Integrative Biology, Xi’anJiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - João Pedro de Magalhães
- Institute of Life Course and Medical Sciences, Xi’anJiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| | - Daniel J Rigden
- Institute of Systems, Molecular and Integrative Biology, Xi’anJiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| | - Daiyun Hang
- Correspondence may also be addressed to Daiyun Hang.
| | - Kunqi Chen
- To whom correspondence should be addressed. Tel: +86 0591 22862299;
| |
Collapse
|
63
|
Shah JB, Pueschl D, Wubbenhorst B, Fan M, Pluta J, D'Andrea K, Hubert AP, Shilan JS, Zhou W, Kraya AA, Llop Guevara A, Ruan C, Serra V, Balmaña J, Feldman M, Morin PJ, Nayak A, Maxwell KN, Domchek SM, Nathanson KL. Analysis of matched primary and recurrent BRCA1/2 mutation-associated tumors identifies recurrence-specific drivers. Nat Commun 2022; 13:6728. [PMID: 36344544 PMCID: PMC9640723 DOI: 10.1038/s41467-022-34523-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/27/2022] [Indexed: 11/09/2022] Open
Abstract
Recurrence is a major cause of death among BRCA1/2 mutation carriers with breast (BrCa) and ovarian cancers (OvCa). Herein we perform multi-omic sequencing on 67 paired primary and recurrent BrCa and OvCa from 27 BRCA1/2 mutation carriers to identify potential recurrence-specific drivers. PARP1 amplifications are identified in recurrences (False Discovery Rate q = 0.05), and PARP1 is significantly overexpressed across primary BrCa and recurrent BrCa and OvCa, independent of amplification status. RNA sequencing analysis finds two BRCA2 isoforms, BRCA2-201/Long and BRCA2-001/Short, respectively predicted to be sensitive and insensitive to nonsense-mediated decay. BRCA2-001/Short is expressed more frequently in recurrences and associated with reduced overall survival in breast cancer (87 vs. 121 months; Hazard Ratio = 2.5 [1.18-5.5]). Loss of heterozygosity (LOH) status is discordant in 25% of patient's primary and recurrent tumors, with switching between both LOH and lack of LOH found. Our study reveals multiple potential drivers of recurrent disease in BRCA1/2 mutation-associated cancer, improving our understanding of tumor evolution and suggesting potential biomarkers.
Collapse
Affiliation(s)
- Jennifer B Shah
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dana Pueschl
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bradley Wubbenhorst
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mengyao Fan
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Pluta
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kurt D'Andrea
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anna P Hubert
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jake S Shilan
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Wenting Zhou
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Adam A Kraya
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alba Llop Guevara
- Experimental Therapeutics Group, Vall d'Hebron Institut d'Oncologia, Barcelona, Spain
| | - Catherine Ruan
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institut d'Oncologia, Barcelona, Spain
| | - Judith Balmaña
- Hereditary Cancer Genetics Group, Vall d'Hebron Institut d'Oncologia, Barcelona, Spain
- Department of Medical Oncology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Michael Feldman
- Division of Surgical Pathology, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Pat J Morin
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anupma Nayak
- Division of Surgical Pathology, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kara N Maxwell
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Basser Center for BRCA, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Susan M Domchek
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Basser Center for BRCA, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Katherine L Nathanson
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Basser Center for BRCA, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
64
|
Mostafa A, Abdelsalam SM, Sabbah W.S, Mekawey D. Mesenchymal Stem Cells Treatment Aggravates Tumor Growth Regardless Its Route of Administration: An In vivo Study. Asian Pac J Cancer Prev 2022; 23:3309-3315. [PMID: 36308353 PMCID: PMC9924341 DOI: 10.31557/apjcp.2022.23.10.3309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Indexed: 02/18/2023] Open
Abstract
OBJECTIVES to clarify the effect of MSCs in cancer growth and to detect whether the rout of administration (either locally inside the tumor tissue or systemic )could affect the outcome of treatment or not. METHODS Eighteen female mice were involved in the study. All mice were subcutaneously inoculated with Ehrlich tumor cells into the right flank. After three week of tumor growth; the mice were divided randomly in to three groups six mice for each ; group I: untreated Erlish tumor group; group II: Erlish tumor treated by local injection of 1 x106 MSCs/week inside the tumor tissue, group III: Erlish tumor treated by systemic injection of 1 x106 MSCs iv in tail vein/week. Tumor growth was recorded .After 4 weeks of stem cells injection, all rats were sacrificed by cervical dislocation and tumor tissues were collected for histopathological study. inflammatory cytokine TNF was assessed by ELISA, lncRNA MALAT ,NFKB and MMP2 genes expression were assessed by Quantitative RT-PCR. RESULTS Erlish tumor was developed as a well-defined capsule composed by connective tissue infiltrated by inflammatory and neoplastic cells surrounded the tumors. The tumor growth regarding size and weight of tumor tissue was significantly aggravated after both local and systemic treatment MSCs (p value =0.007, 0.001) respectively. Inflammatory cytokines TNF and NFKB were significantly elevated (p value <0.0001), lncRNA MALAT, MMP2 expressions were significantly induced (p value <0.0001), after MSCs treatment with more significant increase in those treated by local intratumor injection of MSCs compared to those treated by systemic MSCs(p value <0.0001). CONCLUSION Ehrlich tumor model is feasible and easily monitored tumor model. Although MSCs have anti-inflammatory effect and the ability to regenerate the damaged tissue; it could aggravate tumor growth as it exploited by cancer cells for behave of tumor cells.
Collapse
Affiliation(s)
- Abeer Mostafa
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt. ,For Correspondence:
| | | | - W .S. Sabbah
- Department of Anatomy, Faculty of Medicine for girls, Al Azhar University, Egypt.
| | - Dina Mekawey
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
65
|
Lin X, Huang X, Wang L, Liu W. The long noncoding RNA MALAT1/microRNA-598-3p axis regulates the proliferation and apoptosis of retinoblastoma cells through the PI3K/AKT pathway. Mol Vis 2022; 28:269-279. [PMID: 36284668 PMCID: PMC9514550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 09/02/2022] [Indexed: 11/05/2022] Open
Abstract
Purpose This study was designed to dissect the role of long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in retinoblastoma (RB) and its underlying mechanism. Methods Gain- and loss-of-function experiments were adopted to explore the effects of MALAT1 and microRNA (miR)-598-3p on the biologic behaviors of RB cells. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to assess the expression of MALAT1 and miR-598-3p in Y79 and HXO-RB44 cells. The proliferation of RB cells was determined with the cell counting kit-8 (CCK-8) assay and 5-ethynyl-2'-deoxyuridine (EdU) staining. Flow cytometry was employed for the measurement of the apoptotic rate, western blotting for examination of the expression of apoptosis-related proteins (Bax and Bcl-2) and phosphoinositide 3-kinase/protein kinase-B (PI3K/AKT) pathway-related factors (PI3K, AKT, p-PI3K, and p-AKT), and the luciferase reporter assay for assessment of the interaction between MALAT1 and miR-598-3p. Results High expression of MALAT1 and low expression of miR-598-3p were noticed in Y79 and HXO-RB44 cells. MALAT1 upregulation or miR-598-3p downregulation facilitated RB cell proliferation and inhibited cell apoptosis, as evidenced by the increased proliferation rate and Bcl-2 expression, as well as diminished Bax expression and apoptotic rate, in the RB cells after transfection with pcDNA3.1-MALAT1 or miR-598-3p inhibitor. MALAT1 bound to and negatively regulated miR-598-3p. The PI3K/AKT pathway activation occurred with MALAT1 overexpression. MALAT1 promoted RB cell proliferation and repressed cell apoptosis by repressing miR-598-3p to activate the PI3K/AKT pathway. Conclusions MALAT1 repressed miR-598-3p to activate the PI3K/AKT pathway, thus facilitating cell proliferation and inhibiting cell apoptosis in RB.
Collapse
Affiliation(s)
- Xiaoli Lin
- Department of Ophthalmology, Sanya People’s Hospital, Sanya, Hainan, P.R. China
| | - Xionggao Huang
- Department of Ophthalmology, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, P.R. China
| | - Ling Wang
- Department of Ophthalmology, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, P.R. China
| | - Weixian Liu
- Department of Ophthalmology, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, P.R. China
| |
Collapse
|
66
|
Zhong Y, Ashley CL, Steain M, Ataide SF. Assessing the suitability of long non-coding RNAs as therapeutic targets and biomarkers in SARS-CoV-2 infection. Front Mol Biosci 2022; 9:975322. [PMID: 36052163 PMCID: PMC9424846 DOI: 10.3389/fmolb.2022.975322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are RNA transcripts that are over 200 nucleotides and rarely encode proteins or peptides. They regulate gene expression and protein activities and are heavily involved in many cellular processes such as cytokine secretion in respond to viral infection. In severe COVID-19 cases, hyperactivation of the immune system may cause an abnormally sharp increase in pro-inflammatory cytokines, known as cytokine release syndrome (CRS), which leads to severe tissue damage or even organ failure, raising COVID-19 mortality rate. In this review, we assessed the correlation between lncRNAs expression and cytokine release syndrome by comparing lncRNA profiles between COVID-19 patients and health controls, as well as between severe and non-severe cases. We also discussed the role of lncRNAs in CRS contributors and showed that the lncRNA profiles display consistency with patients’ clinic symptoms, thus suggesting the potential of lncRNAs as drug targets or biomarkers in COVID-19 treatment.
Collapse
Affiliation(s)
- Yichen Zhong
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Caroline L. Ashley
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Megan Steain
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Sandro Fernandes Ataide
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
- *Correspondence: Sandro Fernandes Ataide,
| |
Collapse
|
67
|
HEIH Promotes Malignant Progression of Gastric Cancer by Regulating STAT3-Mediated Autophagy and Glycolysis. DISEASE MARKERS 2022; 2022:2634526. [PMID: 36246567 PMCID: PMC9568361 DOI: 10.1155/2022/2634526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 12/02/2022]
Abstract
To study the clinical value of HEIH hyperexpression in gastric cancer and the molecular mechanism of promoting malignant proliferation of gastric cancer cells, qRT-PCR was used to detect the expression of HEIH in gastric cancer and nontumor gastric tissues. HEIH interference sequence was constructed to downregulate HEIH expression in MGC-803 and BGC-823 cell lines. CCK8, clonogenesis, and Transwell assay were used to detect the effects of HEIH on proliferation and invasion of tumor cells. The protein levels of STAT3, p-STAT3, P62, and LC3 were detected by Western blotting. The results showed that HEIH was highly expressed in gastric cancer (P < 0.01). Interference of HEIH expression in MGC-803 and BGC-823 cells reduced the proliferation and invasion of gastric cancer cells, and the results were statistically significant (P < 0.05). HEIH acts as a miRNA sponge for miR-4500. HEIH promotes gastric cancer development by inhibiting miR-4500. STAT3 is a downstream target of miR-4500. HEIH inhibits autophagy and promotes glycolysis. In conclusion, HEIH is highly expressed in gastric cancers. HEIH promotes malignant proliferation and development of gastric cancer cells. HEIH may be a new candidate site for pathological diagnosis and molecular drug therapy for future clinical treatment of gastric cancer.
Collapse
|
68
|
Comprehensive analysis of DRAIC and TP53TG1 in breast cancer luminal subtypes through the construction of lncRNAs regulatory model. Breast Cancer 2022; 29:1050-1066. [DOI: 10.1007/s12282-022-01385-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/07/2022] [Indexed: 12/23/2022]
|
69
|
Makgoo L, Mosebi S, Mbita Z. Long noncoding RNAs (lncRNAs) in HIV-mediated carcinogenesis: Role in cell homeostasis, cell survival processes and drug resistance. Noncoding RNA Res 2022; 7:184-196. [PMID: 35991514 PMCID: PMC9361211 DOI: 10.1016/j.ncrna.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/04/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
There is accruing data implicating long non-coding RNAs (lncRNAs) in the development and progression of non-communicable diseases such as cancer. These lncRNAs have been implicated in many diverse HIV-host interactions, some of which are beneficial to HIV propagation. The virus-host interactions induce the expression of HIV-regulated long non-coding RNAs, which are implicated in the carcinogenesis process, therefore, it is critical to understand the molecular mechanisms that underpin these HIV-regulated lncRNAs, especially in cancer formation. Herein, we summarize the role of HIV-regulated lncRNAs targeting cancer development-related processes including apoptosis, cell cycle, cell survival signalling, angiogenesis and drug resistance. It is unclear how lncRNAs regulate cancer development, this review also discuss recent discoveries regarding the functions of lncRNAs in cancer biology. Innovative research in this field will be beneficial for the future development of therapeutic strategies targeting long non-coding RNAs that are regulated by HIV, especially in HIV associated cancers.
Collapse
|
70
|
De Martino M, Esposito F, Capone M, Pallante P, Fusco A. Noncoding RNAs in Thyroid-Follicular-Cell-Derived Carcinomas. Cancers (Basel) 2022; 14:cancers14133079. [PMID: 35804851 PMCID: PMC9264824 DOI: 10.3390/cancers14133079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Thyroid tumors represent the most common neoplastic pathology of the endocrine system. Mutations occurring in oncogenes and tumor suppressor genes are responsible for thyroid carcinogenesis; however, the complete mutational landscape characterizing these neoplasias has not been completely unveiled. It has been established that only the 2% of the human genome codes for proteins, suggesting that the vast majority of the genome has regulatory capabilities, which, if altered, could account for the onset of cancer. Hence, many scientific efforts are currently focused on the characterization of the heterogeneous class of noncoding RNAs, which represent an abundant part of the transcribed noncoding genome. In this review, we mainly focus on the involvement of microRNAs, long noncoding RNAs, and pseudogenes in thyroid cancer. The determination of the diagnosis, prognosis, and treatment of thyroid cancers based on the evaluation of the noncoding RNA network could allow the implementation of a more personalized approach to fighting these pathologies. Abstract Among the thyroid neoplasias originating from follicular cells, we can include well-differentiated carcinomas, papillary (PTC) and follicular (FTC) thyroid carcinomas, and the undifferentiated anaplastic (ATC) carcinomas. Several mutations in oncogenes and tumor suppressor genes have already been observed in these malignancies; however, we are still far from the comprehension of their full regulation-altered landscape. Even if only 2% of the human genome has the ability to code for proteins, most of the noncoding genome is transcribed, constituting the heterogeneous class of noncoding RNAs (ncRNAs), whose alterations are associated with the development of several human diseases, including cancer. Hence, many scientific efforts are currently focused on the elucidation of their biological role. In this review, we analyze the scientific literature regarding the involvement of microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and pseudogenes in FTC, PTC, and ATC. Recent findings emphasized the role of lncRNAs in all steps of cancer progression. In particular, lncRNAs may control progression steps by regulating the expression of genes and miRNAs involved in cell proliferation, apoptosis, epithelial–mesenchymal transition, and metastatization. In conclusion, the determination of the diagnosis, prognosis, and treatment of cancer based on the evaluation of the ncRNA network could allow the implementation of a more personalized approach to fighting thyroid tumors.
Collapse
Affiliation(s)
- Marco De Martino
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
| | - Francesco Esposito
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
| | - Maria Capone
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli “Federico II”, Via S. Pansini 5, 80131 Napoli, Italy
| | - Pierlorenzo Pallante
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
- Correspondence: (P.P.); (A.F.)
| | - Alfredo Fusco
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli “Federico II”, Via S. Pansini 5, 80131 Napoli, Italy
- Correspondence: (P.P.); (A.F.)
| |
Collapse
|
71
|
Liu C, Zhang Y, Ma Z, Yi H. Long Noncoding RNAs as Orchestrators of CD4+ T-Cell Fate. Front Cell Dev Biol 2022; 10:831215. [PMID: 35794862 PMCID: PMC9251064 DOI: 10.3389/fcell.2022.831215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
CD4+ T cells differentiate towards different subpopulations through the regulation of lineage-specific cytokines and transcription factors, which flexibly respond to various immune challenges. However, considerable work has demonstrated that the CD4+ T-cell differentiation mechanism is complex and not limited to transcription factors and cytokines. Long noncoding RNAs (lncRNAs) are RNA molecules with lengths exceeding 200 base pairs that regulate various biological processes and genes. LncRNAs have been found to conciliate the plasticity of CD4+ T-cell differentiation. Then, we focused on lncRNAs involved in CD4+ T-cell differentiation and enlisted some molecular thought into the plasticity and functional heterogeneity of CD4+ T cells. Furthermore, elucidating how lncRNAs modulate CD4+ T-cell differentiation in disparate immune diseases may provide a basis for the pathological mechanism of immune-mediated diseases.
Collapse
Affiliation(s)
- Chang Liu
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, China
| | - Yanli Zhang
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, China
| | - Zhanchuan Ma
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, China
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, China
- *Correspondence: Huanfa Yi,
| |
Collapse
|
72
|
Cao L, Yan G, Yu S, Li F, Su Z, Hou X, Xiao J, Tian T. Associations of MALAT1 and its functional single nucleotide polymorphisms with cancer. Pathol Res Pract 2022; 236:153988. [PMID: 35759938 DOI: 10.1016/j.prp.2022.153988] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Systematic research on the associations between vital single nucleotide polymorphisms (SNPs) in MALAT1 and cancer risk was still lacking. Thus, we performed this study. MATERIALS AND METHODS The literature searches were until April 1, 2022. The pooled association-analysis results were assessed by odds ratios (ORs) and the corresponding 95% confidence intervals (CIs) in three genetic models. In addition, we explored the potential functions of MALAT1 and its vital SNPs based on several public websites. RESULTS Eighteen articles about four SNPs (rs619586, rs664589, rs1194338, and rs3200401) involving 11,843 cancer cases and 14,682 controls were collected. Rs619586, rs664589, and rs1194338 were associated with cancer risk (all P-value < 0.05). Each SNP of the three was significantly related to the risk of colorectal cancer (CRC), and rs619586 correlated with hepatocellular carcinoma (HCC) risk (all P-value < 0.05). The three SNPs might affect the transcription factor, promoter, or enhancer functions. MALAT1 expressed significantly higher in CRC and HCC than in normal tissues. The respective area under the receiver operating characteristic curve of MALAT1 for CRC and HCC patients was 0.783 and 0.864. Moreover, survival analysis indicated that MALAT1 might be a potential prognostic marker of CRC and HCC (all relevant P-value < 0.05). CONCLUSIONS The functional SNPs in MALAT1 correlated with cancer risk. MALAT1 and its vital functional SNPs might be potential biomarkers for predicting the risk and prognosis of two types of cancer, especially CRC. Further investigations are needed to confirm our present findings.
Collapse
Affiliation(s)
- Lina Cao
- Department of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Nantong, China
| | - Guodong Yan
- Department of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Nantong, China
| | - Shumin Yu
- Department of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Nantong, China
| | - Fuju Li
- Department of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Nantong, China
| | - Zhixia Su
- Department of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Nantong, China
| | - Xiaoyan Hou
- Center for Disease Control and Prevention of Nantong, Nantong, Jiangsu, China.
| | - Jing Xiao
- Department of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Nantong, China.
| | - Tian Tian
- Department of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Nantong, China.
| |
Collapse
|
73
|
Sur S, Ray RB. Emerging role of lncRNA ELDR in development and cancer. FEBS J 2022; 289:3011-3023. [PMID: 33860640 DOI: 10.1111/febs.15876] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Whole-genome sequencing and transcriptome analysis revealed more than 90% of the human genome transcribes noncoding RNAs including lncRNAs. From the beginning of the 21st century, lncRNAs have gained widespread attention as a new layer of regulation in biological processes. lncRNAs are > 200 nucleotides in size, transcribed by RNA polymerase II, and share many similarities with mRNAs. lncRNA interacts with DNA, RNA, protein, and miRNAs, thereby regulating many biological processes. In this review, we have focused mainly on LINC01156 [also known as the EGFR long non-coding downstream RNA (ELDR) or Fabl] and its biological importance. ELDR is a newly identified lncRNA and first reported in a mouse model, but it has a human homolog. The human ELDR gene is closely localized downstream of epidermal growth factor receptor (EGFR) gene at chromosome 7 on the opposite strand. ELDR is highly expressed in neuronal stem cells and associated with neuronal differentiation and mouse brain development. ELDR is upregulated in head and neck cancer, suggesting its role as an oncogene and its importance in prognosis and therapy. Publicly available RNA-seq data further support its oncogenic potential in different cancers. Here, we summarize all the aspects of ELDR in development and cancer, highlighting its future perspectives in the context of mechanism.
Collapse
Affiliation(s)
- Subhayan Sur
- Department of Pathology, Saint Louis University, MO, USA
| | - Ratna B Ray
- Department of Pathology, Saint Louis University, MO, USA.,Cancer Center, Saint Louis University, MO, USA
| |
Collapse
|
74
|
Mahmoudi Z, Karamali N, Roghani SA, Assar S, Pournazari M, Soufivand P, Salari F, Rezaiemanesh A. Efficacy of DMARDs and methylprednisolone treatment on the gene expression levels of HSPA5, MMD, and non-coding RNAs MALAT1, H19, miR-199a-5p, and miR-1-3p, in patients with rheumatoid arthritis. Int Immunopharmacol 2022; 108:108878. [PMID: 35623291 DOI: 10.1016/j.intimp.2022.108878] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a systemic autoimmune disease with chronic inflammation characterized by joint damage and even extra-articular involvement. In this study, the gene expression levels of MALAT1, H19 and their possible downstream microRNAs, miR-199a-5p, miR-1-3p, and the predicted targets of these miRNAs, HSPA5 and MMD, were examined. METHODS Twenty-five newly diagnosed RA patients and 25 healthy individuals were included. For six months, patients were treated with conventional disease-modifying antirheumatic drugs (DMARDs) and Methylprednisolone (mPRED). Blood samples were obtained from healthy controls and patients (before and after treatment). After RNA extraction, the RT-qPCR technique was used to evaluate the expression level of the studied genes. RESULTS Data showed that the expression level of MALAT1, H19, miR-199a-5p, and miR-1-3p was significantly higher in the newly diagnosed patients with RA than the healthy subjects, but the increase in the expression level of HSPA5 and MMD genes in the new cases was not significant compared to healthy controls. After treatment, except for the expression level of lncRNAs, the expression level of miRNAs, HSPA5, and MMD significantly increased. Based on ROC curve analysis of MALAT1, H19, miR-199a-5p and miR-1-3p have a high ability to identify patients from healthy individuals (AUC = 0.986, AUC = 0.995, AUC = 0.855, AUC = 0.675, respectively). CONCLUSION MALAT1 and H19 may be candidates as potential biomarkers for the discrimination between RA patients and controls. DMARDs plus mPRED therapy do not have a desirable effect on reducing inflammatory responses and ER stress.
Collapse
Affiliation(s)
- Zahra Mahmoudi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Negin Karamali
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Askar Roghani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shirin Assar
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehran Pournazari
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parviz Soufivand
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Salari
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
75
|
Cao Y, Liu J, Lu Q, Huang K, Yang B, Reilly J, Jiang N, Shu X, Shang L. An update on the functional roles of long non‑coding RNAs in ischemic injury (Review). Int J Mol Med 2022; 50:91. [PMID: 35593308 PMCID: PMC9170192 DOI: 10.3892/ijmm.2022.5147] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/05/2022] [Indexed: 11/20/2022] Open
Abstract
Ischemic injuries result from ischemia and hypoxia in cells. Tissues and organs receive an insufficient supply of nutrients and accumulate metabolic waste, which leads to the development of inflammation, fibrosis and a series of other issues. Ischemic injuries in the brain, heart, kidneys, lungs and other organs can cause severe adverse effects. Acute renal ischemia induces acute renal failure, heart ischemia induces myocardial infarction and cerebral ischemia induces cerebrovascular accidents, leading to loss of movement, consciousness and possibly, life-threatening disabilities. Existing evidence suggests that long non-coding RNAs (lncRNAs) are regulatory sequences involved in transcription, post-transcription, epigenetic regulation and multiple physiological processes. lncRNAs have been shown to be differentially expressed following ischemic injury, with the severity of the ischemic injury being affected by the upregulation or downregulation of certain types of lncRNA. The present review article provides an extensive summary of the functional roles of lncRNAs in ischemic injury, with a focus on the brain, heart, kidneys and lungs. The present review mainly summarizes the functional roles of lncRNA MALAT1, lncRNA MEG3, lncRNA H19, lncRNA TUG1, lncRNA NEAT1, lncRNA AK139328 and lncRNA CAREL, among which lncRNA MALAT1, in particular, plays a crucial role in ischemic injury and is currently a hot research topic.
Collapse
Affiliation(s)
- Yanqun Cao
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Jia Liu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Quzhe Lu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Kai Huang
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Baolin Yang
- Department of Human Anatomy, School of Basic Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Na Jiang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi 330006, P.R. China
| | - Xinhua Shu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Lei Shang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
76
|
Tang Q, Hu X, Guo Q, Shi Y, Liu L, Ying G. Discovery and Validation of a Novel Metastasis-Related lncRNA Prognostic Signature for Colorectal Cancer. Front Genet 2022; 13:704988. [PMID: 35664303 PMCID: PMC9162157 DOI: 10.3389/fgene.2022.704988] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Cancer metastasis-related chemoresistance and tumour progression are the leading causes of death among CRC patients. Therefore, it is urgent to identify reliable novel biomarkers for predicting the metastasis of CRC. Methods: The gene expression and corresponding clinical data of CRC patients were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Univariate and multivariate analyses were performed to identify prognostic metastasis-related lncRNAs. Nomograms were constructed, and the predictive accuracy of the nomogram model was assessed by ROC curve analysis. Then, the R package “pRRophetic” was used to predict chemotherapeutic response in CRC patients. In addition, the CIBERSORT database was introduced to evaluate tumour infiltrating immune cells between the high—and low-risk groups. The potential roles of SNHG7 and ZEB1-AS1 in CRC cell lines were further confirmed by in vitro experiments. Results: An 8-lncRNA (LINC00261, RP1-170O19.17, CAPN10-AS1, SNHG7, ZEB1-AS1, U47924.27, NIFK-AS1, and LINC00925) signature was constructed for CRC prognosis prediction, which stratified patients into two risk groups. Kaplan-Meier analysis revealed that patients in the higher-risk group had a lower survival probability than those in the lower-risk group [p < 0.001 (TCGA); P = 0.044 (GSE39582); and P = 0.0078 (GSE29621)] The AUCs of 1-, 3-, and 5-year survival were 0.678, 0.669, and 0.72 in TCGA; 0.58, 0.55, and 0.56 in GSE39582; and 0.75, 0.54, and 0.56 in GSE29621, respectively. In addition, the risk score was an independent risk factor for CRC patients. Nomograms were constructed, and the predictive accuracy was assessed by ROC curve analysis. This signature could effectively predict the immune status and chemotherapy response in CRC patients. Moreover, SNHG7 and ZEB1-AS1 depletion significantly suppressed the colony formation, migration, and invasion of CRC cells in vitro. Conclusion: We constructed a signature that could predict the metastasis of CRC and provide certain theoretical guidance for novel therapeutic approaches for CRC.
Collapse
Affiliation(s)
- Qiang Tang
- Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xin Hu
- Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qiong Guo
- Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yueyue Shi
- Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Liming Liu
- Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- *Correspondence: Liming Liu, ; Guoguang Ying,
| | - Guoguang Ying
- Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- *Correspondence: Liming Liu, ; Guoguang Ying,
| |
Collapse
|
77
|
LncRNA-MALAT1 Regulates Cancer Glucose Metabolism in Prostate Cancer via MYBL2/mTOR Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8693259. [PMID: 35557985 PMCID: PMC9086835 DOI: 10.1155/2022/8693259] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 12/24/2022]
Abstract
It is known that the long noncoding RNAs (lncRNA) MALAT1 is associated with tumorigenesis and progression in various cancers; however, its functions and mechanisms in prostate cancer (PCa) initiation and progression are still unknown. In the present study, our findings revealed that MALAT1 plays a critical part in regulating PCa proliferation and glucose metabolism. Knockdown of MALAT1 affects the protein and mRNA levels of MYBL2. In addition, MALAT1 enhances the phosphorylation level of mTOR pathway by upregulating MYBL2. Knockdown of MALAT1 or MYBL2 in PCa cell lines significantly inhibits their proliferation capacity. Silencing MALAT1/MYBL2/mTOR axis in PCa cell lines affects their glycolysis and lactate levels, and we verified these findings in mice. Furthermore, we explored the underlying tumorigenesis functions of MYBL2 in PCa and found that high expression of MYBL2 was positively associated with TNM stage, Gleason score, PSA level, and poor survival rate in PCa patients. Taken together, our research suggests that MALAT1 controls cancer glucose metabolism and progression by upregulating MYBL2-mTOR axis.
Collapse
|
78
|
Li J, Momen-Heravi F, Wu X, He K. Mechanism of METTL14 and m6A modification of lncRNA MALAT1 in the proliferation of oral squamous cell carcinoma cells. Oral Dis 2022. [PMID: 35467063 DOI: 10.1111/odi.14220] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/30/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Methyltransferase-like 14 (METTL14) plays an epigenetic role in various cancer through N6-methyladenosine (m6A) modification. This study sought to analyze the mechanism of METTL14 in oral squamous cell carcinoma (OSCC) cell proliferation. METHODS Expression levels of METTL14, lncRNA metastasis associated with lung adenocarcinoma transcript 1 (lncRNA MALAT1), microRNA (miR)-224-5p, and histone lysine demethylase 2A (KDM2A) in OSCC tissues (N = 40), and cell lines (FaDu, SCC-25, CAL-27, and SCC-15) were detected. Cell viability and colony formation capacity were assessed. m6A level, stability, and subcellular localization of lncRNA MALAT1 were determined. Nude mouse xenograft tumor assay was performed to confirm the role of METTL14 in vivo. RESULTS METTL14 and lncRNA MALAT1 were upregulated, and miR-224-5p was downregulated in OSCC tissues and cells. Silencing METTL14 repressed OSCC cell viability and colony formation. Overexpression of MALAT1 and KDM2A or miR-224-5p downregulation reversed the inhibition of silencing METTL14 on OSCC cell proliferation. METTL14 induced m6A modification of MALAT1 to upregulate MALAT1. MALAT1 is comparatively bound to miR-224-5p to promote KDM2A transcription. In vivo, METTL14 promoted tumor growth via regulating MALAT1/miR-224-5p/ KDM2A. CONCLUSIONS Overall, our findings verified the therapeutic role of silencing METTL14 in OSCC treatment through the MALAT1/miR-224-5p/KDM2A axis.
Collapse
Affiliation(s)
- Jinli Li
- Department of Gastroenterology, 923 Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Nanning City, Guangxi Province, China
| | - Fatemeh Momen-Heravi
- Cancer Biology and Immunology Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, New York, USA
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, Columbia University College of Dental Medicine, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York, USA
| | - Xun Wu
- Department of Maxillofacial Surgery, Southern Medical University Shenzhen Stomatology Hospital (Pingshan), Shenzhen City, Guangdong Province, China
| | - Kaili He
- Department of Stomatology, Shenzhen Children's Hospital, Shenzhen City, Guangdong Province, China
| |
Collapse
|
79
|
Iaiza A, Tito C, Ganci F, Sacconi A, Gallo E, Masciarelli S, Fontemaggi G, Fatica A, Melis E, Petrozza V, Venuta F, Marino M, Blandino G, Fazi F. Long Non-Coding RNAs in the Cell Fate Determination of Neoplastic Thymic Epithelial Cells. Front Immunol 2022; 13:867181. [PMID: 35529877 PMCID: PMC9073009 DOI: 10.3389/fimmu.2022.867181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Thymic Epithelial Tumors (TETs) arise from epithelial cells of the thymus and are very rare neoplasms comprising Thymoma, Thymic carcinoma, and Thymic Neuroendocrine tumors that still require in-depth molecular characterization. Long non-coding RNAs (lncRNAs) are emerging as relevant gene expression modulators involved in the deregulation of several networks in almost all types of human cancer, including TETs. LncRNAs act at different control levels in the regulation of gene expression, from transcription to translation, and modulate several pathways relevant to cell fate determination under normal and pathological conditions. The activity of lncRNAs is strongly dependent on their expression, localization, and post-transcriptional modifications. Starting from our recently published studies, this review focuses on the involvement of lncRNAs in the acquisition of malignant traits by neoplastic thymic epithelial cells, and describes the possible use of these molecules as targets for the design of novel therapeutic approaches specific for TET. Furthermore, the involvement of lncRNAs in myasthenia gravis (MG)-related thymoma, which is still under investigation, is discussed.
Collapse
Affiliation(s)
- Alessia Iaiza
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Claudia Tito
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Federica Ganci
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Sacconi
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Enzo Gallo
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
- Department of Life Science and Public Health, Histology and Embryology Unit, Catholic University of the Sacred Hearth, Rome, Italy
| | - Giulia Fontemaggi
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Alessandro Fatica
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University of Rome, Rome, Italy
| | - Enrico Melis
- Thoracic Surgery, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Vincenzo Petrozza
- Pathology Unit, ICOT, Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Federico Venuta
- Department of Thoracic Surgery, Sapienza University of Rome, Rome, Italy
| | - Mirella Marino
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- *Correspondence: Francesco Fazi, ; Giovanni Blandino, ; Mirella Marino,
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- *Correspondence: Francesco Fazi, ; Giovanni Blandino, ; Mirella Marino,
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
- *Correspondence: Francesco Fazi, ; Giovanni Blandino, ; Mirella Marino,
| |
Collapse
|
80
|
Guo Y, Xie Y, Luo Y. The Role of Long Non-Coding RNAs in the Tumor Immune Microenvironment. Front Immunol 2022; 13:851004. [PMID: 35222443 PMCID: PMC8863945 DOI: 10.3389/fimmu.2022.851004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
Tumorigenesis is a complicated process caused by successive genetic and epigenetic alterations. The past decades demonstrated that the immune system affects tumorigenesis, tumor progression, and metastasis. Although increasing immunotherapies are revealed, only a tiny proportion of them are effective. Long non-coding RNAs (lncRNAs) are a class of single-stranded RNA molecules larger than 200 nucleotides and are essential in the molecular network of oncology and immunology. Increasing researches have focused on the connection between lncRNAs and cancer immunotherapy. However, the in-depth mechanisms are still elusive. In this review, we outline the latest studies on the functions of lncRNAs in the tumor immune microenvironment. Via participating in various biological processes such as neutrophil recruitment, macrophage polarization, NK cells cytotoxicity, and T cells functions, lncRNAs regulate tumorigenesis, tumor invasion, epithelial-mesenchymal transition (EMT), and angiogenesis. In addition, we reviewed the current understanding of the relevant strategies for targeting lncRNAs. LncRNAs-based therapeutics may represent promising approaches in serving as prognostic biomarkers or potential therapeutic targets in cancer, providing ideas for future research and clinical application on cancer diagnosis and therapies.
Collapse
Affiliation(s)
- Yingli Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yajuan Xie
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yao Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
81
|
Li H, Li M, Guo H, Lin G, Huang Q, Qiu M. Integrative Analyses of Circulating mRNA and lncRNA Expression Profile in Plasma of Lung Cancer Patients. Front Oncol 2022; 12:843054. [PMID: 35433477 PMCID: PMC9008738 DOI: 10.3389/fonc.2022.843054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Circulating-free RNAs (cfRNAs) have been regarded as potential biomarkers for “liquid biopsy” in cancers. However, the circulating messenger RNA (mRNA) and long noncoding RNA (lncRNA) profiles of lung cancer have not been fully characterized. In this study, we profiled circulating mRNA and lncRNA profiles of 16 lung cancer patients and 4 patients with benign pulmonary nodules. Compared with benign pulmonary nodules, 806 mRNAs and 1,762 lncRNAs were differentially expressed in plasma of lung adenocarcinoma patients. For lung squamous cell carcinomas, 256 mRNAs and 946 lncRNAs were differentially expressed. A total of 231 mRNAs and 298 lncRNAs were differentially expressed in small cell lung cancer. Eleven mRNAs, 51 lncRNAs, and 207 canonical pathways were differentially expressed in lung cancer in total. Forty-five blood samples were collected to verify our findings via performing qPCR. There are plenty of meaningful mRNAs and lncRNAs that were found. MYC, a transcription regulator associated with the stemness of cancer cells, is overexpressed in lung adenocarcinoma. Transforming growth factor beta (TGFB1), which plays pleiotropic roles in cancer progression, was found to be upregulated in lung squamous carcinoma. MALAT1, a well-known oncogenic lncRNA, was also found to be upregulated in lung squamous carcinoma. Thus, this study provided a systematic resource of mRNA and lncRNA expression profiles in lung cancer plasma.
Collapse
Affiliation(s)
- Haoran Li
- Department of Thoracic Surgery, Peking University People’s Hospital, Beijing, China
| | - Mingru Li
- Department of Thoracic Surgery, Aerospace 731 Hospital, Beijing, China
| | - Haifa Guo
- The First Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Guihu Lin
- Department of Thoracic Surgery, Aerospace 731 Hospital, Beijing, China
| | - Qi Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Qi Huang, ; Mantang Qiu,
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People’s Hospital, Beijing, China
- *Correspondence: Qi Huang, ; Mantang Qiu,
| |
Collapse
|
82
|
MALAT1-related signaling pathways in colorectal cancer. Cancer Cell Int 2022; 22:126. [PMID: 35305641 PMCID: PMC8933897 DOI: 10.1186/s12935-022-02540-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 03/05/2022] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most lethal and prevalent solid malignancies worldwide. There is a great need of accelerating the development and diagnosis of CRC. Long noncoding RNAs (lncRNA) as transcribed RNA molecules play an important role in every level of gene expression. Metastasis‐associated lung adenocarcinoma transcript‐1 (MALAT1) is a highly conserved nucleus-restricted lncRNA that regulates genes at the transcriptional and post-transcriptional levels. High expression of MALAT1 is closely related to numerous human cancers. It is generally believed that MALAT1 expression is associated with CRC cell proliferation, tumorigenicity, and metastasis. MALAT1 by targeting multiple signaling pathways and microRNAs (miRNAs) plays a pivotal role in CRC pathogenesis. Therefore, MALAT1 can be a potent gene for cancer prediction and diagnosis. In this review, we will demonstrate signaling pathways associated with MALAT1 in CRC.
Collapse
|
83
|
Bai Q, Pan Z, Nabi G, Rashid F, Liu Y, Khan S. Emerging role of competing endogenous RNA and associated noncoding RNAs in thyroid cancer. Am J Cancer Res 2022; 12:961-973. [PMID: 35411240 PMCID: PMC8984881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023] Open
Abstract
Cancer of the thyroid is the most common endocrine malignancy. While treatment options are limited for individuals with medullary or anaplastic thyroid cancer, understanding the underlying mechanisms is vital to developing a successful thyroid cancer treatment strategy due to the tumor's multistep carcinogenesis. Non-coding RNAs (ncRNAs) have been associated with thyroid cancer progression in several recent studies; however, the role of regulatory interactions among different types of ncRNAs in thyroid cancer remains unclear. Recently, competing endogenous RNA (ceRNA) has been discovered as a mechanism demonstrating regulatory interactions among non-coding RNAs, including pseudogenes, long non-coding RNAs (lnRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs). It has been concluded from the literature that numerous ceRNA networks are deregulated during the development, invasion, and metastasis of thyroid cancer, as well as in epithelial-mesenchymal transition (EMT) and drug resistance. Further understanding of these deregulations is important to develop diagnostic procedures for early detection of thyroid cancer and promising therapeutic options for effective treatment. The purpose of this review is to highlight the emerging roles of some newly found ceRNA members in thyroid cancer and outline the current body of knowledge regarding ceRNA, lncRNA, pseudogenes, and miRNAs.
Collapse
Affiliation(s)
- Qian Bai
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou UniversityZhengzhou 450000, Henan, China
- The Second Affiliated Hospital of Zhengzhou UniversityZhengzhou 450000, Henan, China
| | - Zhenjie Pan
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou UniversityZhengzhou 450000, Henan, China
| | - Ghulam Nabi
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal UniversityShijiazhuang 050024, Hebei, China
| | - Farooq Rashid
- Dermatology Hospital, Southern Medical UniversityGuangzhou 510091, Guangdong, China
| | - Yang Liu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450002, Henan, China
| | - Suliman Khan
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou UniversityZhengzhou 450000, Henan, China
- The Second Affiliated Hospital of Zhengzhou UniversityZhengzhou 450000, Henan, China
| |
Collapse
|
84
|
Lift the curtain on long non-coding RNAs in hematological malignancies: Pathogenic elements and potential targets. Cancer Lett 2022; 536:215645. [DOI: 10.1016/j.canlet.2022.215645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/01/2022] [Accepted: 03/12/2022] [Indexed: 12/19/2022]
|
85
|
LncRNA-miRNA-mRNA regulatory axes in endometrial cancer: a comprehensive overview. Arch Gynecol Obstet 2022; 306:1431-1447. [PMID: 35182183 DOI: 10.1007/s00404-022-06423-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Recent research on tumorigenesis and progression has opened up an array of novel molecular mechanisms in the form of interactions between cellular non-coding RNAs (long non-coding RNA[lncRNA]/microRNA [miRNA]) and coding transcripts that regulate health and disease. Endometrial cancer (EC) is a prominent gynecological malignancy with a high incidence rate and poorly known etiology and prognostic factors that hinder the success of disease management. The emerging role of lncRNA-miRNA-mRNA interactions and their dysregulation in the pathophysiology of EC has been elucidated in many recent studies. METHODS A thorough literature review was conducted to explore information about lncRNA-miRNA-mRNA axes in EC. RESULTS Several lncRNAs act as molecular sponges that sequester various tumor suppressor miRNAs to inhibit their function, leading to the dysregulation of their target mRNA transcripts that contribute to the EC regulation. CONCLUSIONS This review summarizes these networks of molecular mechanisms and their contribution to different aspects of endometrial carcinogenesis, leading to a better conceptualization of the molecular pathways that underlie the disease and helping establish novel diagnostic biomarkers and therapeutic intervention points to aid the curative intent of EC.
Collapse
|
86
|
Zhu YS, Zhu J. Molecular and cellular functions of long non-coding RNAs in prostate and breast cancer. Adv Clin Chem 2022; 106:91-179. [PMID: 35152976 DOI: 10.1016/bs.acc.2021.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Long noncoding RNAs (lncRNAs) are defined as noncoding RNA transcripts with a length greater than 200 nucleotides. Research over the last decade has made great strides in our understanding of lncRNAs, especially in the biology of their role in cancer. In this article, we will briefly discuss the biogenesis and characteristics of lncRNAs, then review their molecular and cellular functions in cancer by using prostate and breast cancer as examples. LncRNAs are abundant, diverse, and evolutionarily, less conserved than protein-coding genes. They are often expressed in a tumor and cell-specific manner. As a key epigenetic factor, lncRNAs can use a wide variety of molecular mechanisms to regulate gene expression at each step of the genetic information flow pathway. LncRNAs display widespread effects on cell behavior, tumor growth, and metastasis. They act intracellularly and extracellularly in an autocrine, paracrine and endocrine fashion. Increased understanding of lncRNA's role in cancer has facilitated the development of novel biomarkers for cancer diagnosis, led to greater understanding of cancer prognosis, enabled better prediction of therapeutic responses, and promoted identification of potential targets for cancer therapy.
Collapse
Affiliation(s)
- Yuan-Shan Zhu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Clinical and Translational Science Center, Weill Cornell Medicine, New York, NY, United States.
| | - Jifeng Zhu
- Clinical and Translational Science Center, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
87
|
Kim EJ, Kim JS, Lee S, Cheon I, Kim SR, Ko YH, Kang K, Tan X, Kurie JM, Ahn YH. ZEB1-regulated lnc-Nr2f1 promotes the migration and invasion of lung adenocarcinoma cells. Cancer Lett 2022; 533:215601. [PMID: 35176421 DOI: 10.1016/j.canlet.2022.215601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 11/25/2022]
Abstract
Numerous long non-coding RNAs (lncRNAs) are differentially expressed in cancer cells compared with normal cells and are involved in tumor progression and metastasis. Metastasis is initiated by the epithelial-to-mesenchymal transition (EMT) process, which can also be regulated by lncRNAs. Given that ZEB1 is an important transcription factor inducing EMT, we screened lncRNAs controlled by ZEB1 using RNA sequencing in murine lung adenocarcinoma cells. Among several lncRNAs regulated by ZEB1, we selected lnc-Nr2f1. Lnc-Nr2f1 is upregulated by ZEB1 and TGF-β, a potent EMT signal. Growth, migration, and invasion of lung adenocarcinoma cells were decreased after lnc-Nr2f1 knockdown and increased after lnc-Nr2f1 overexpression. Interestingly, lnc-Nr2f1 was transcriptionally controlled by NR2F1, a transcription factor that is transcribed in the antisense direction. NR2F1 was also upregulated and positively correlated with ZEB1, forming a ZEB1/NR2F1/lnc-Nr2f1 axis. Lnc-Nr2f1, in turn, promoted Twist2 transcription through direct binding to its genomic DNA region. Collectively, lnc-Nr2f1 was upregulated by ZEB1 and NR2F1, and promoted migration and invasion of lung adenocarcinoma cells via TWIST2 regulation.
Collapse
Affiliation(s)
- Eun Ju Kim
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - Jeong Seon Kim
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Sieun Lee
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - Inyoung Cheon
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - Seo Ree Kim
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Yoon Ho Ko
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, Chungnam, 31116, South Korea
| | - Xiaochao Tan
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Young-Ho Ahn
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea.
| |
Collapse
|
88
|
Liu Y, Khan S, Li L, ten Hagen TL, Falahati M. Molecular mechanisms of thyroid cancer: A competing endogenous RNA (ceRNA) point of view. Biomed Pharmacother 2022; 146:112251. [DOI: 10.1016/j.biopha.2021.112251] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/25/2022] Open
|
89
|
Kattner AA. The best protection is early detection. Biomed J 2022; 44:S155-S161. [PMID: 35042015 PMCID: PMC9068561 DOI: 10.1016/j.bj.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 10/29/2022] Open
Abstract
This current special issue of the Biomedical Journal provides insights in various cancer forms, and possible ways of prognostic and predictive screening. In detail we learn about lung cancer and tissue samples from ground glass opacifications, liquid biopsy through circulating tumor cells in colon cancer, transcription factor analysis in cervical cancer, and long non-coding RNAs in breast and lung cancer. A prognosis factor in individuals with acute myeloid leukemia and a rare fungal infection are determined. Challenges surrounding transplantation are elucidated, a potential biomarker for allograft dysfunction is presented, as well as a mean to save beta cells after islet transplantation. We get to know more about drug resistance in transplant recipients with tuberculosis, and also in the case of H.pylori infection. Lastly, the possibilities of cardiac shock wave therapy in simultaneous artery and renal disease is explored, we are presented with genetic factors contributing to cancer risk in arseniasis areas, and protocol recommendations for the optimal reproducibility of bladder volume in prostate cancer treatment. Three markers for detecting stages of diabetic retinopathy are covered, as well as a way to mitigate effects of lungworm secretions. Finally we get to see a novel approach for acupuncture needle material, and two management approaches for a form of skeletal malocclusion.
Collapse
|
90
|
The association of long non-coding RNA in the prognosis of oral squamous cell carcinoma. Genes Genomics 2022; 44:327-342. [PMID: 35023067 DOI: 10.1007/s13258-021-01194-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/17/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Oral cancer is considered one of the most prevalent cancers in India. This is mainly because India suffers from high usage of tobacco, which is one of the main causative agents of oral cancer, and lacks proper health and sexual hygiene in rural areas. DISCUSSION Non-coding RNAs are reported to be involved in the various mechanism and causality of cancer. Numerous reports have identified viable prospects connecting non-coding RNA (ncRNA) with cancer. Specific ncRNAs like long non-coding RNA or lncRNAs are recently being prioritized as potential associations in the cause of cancer. CONCLUSION This review aims at presenting a concise perspective on the basics and the recent advancements of the lncRNA research pertaining specifically to oral cancer, its recurrence, and the future possibilities of knowledge it might possess.
Collapse
|
91
|
Cao C, Zhen W, Yu H, Zhang L, Liu Y. lncRNA MALAT1/miR-143 axis is a potential biomarker for in-stent restenosis and is involved in the multiplication of vascular smooth muscle cells. Open Life Sci 2022; 16:1303-1312. [PMID: 35005241 PMCID: PMC8691378 DOI: 10.1515/biol-2021-0126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/09/2021] [Accepted: 10/18/2021] [Indexed: 12/03/2022] Open
Abstract
The purpose of this study is to observe the potential value and underlying mechanism of the metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)/miR-143 axis in ISR. A total of 150 participants were enrolled, including 100 patients (observation group) with coronary heart disease who underwent stent implantation in the Department of Cardiology of our hospital between January 2018 and January 2020, and 50 healthy people (control group) concurrently underwent a physical examination. Serum MALAT1 and miR-143 levels were detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Tumor necrosis factor-α (TNF-α; 10 ng/mL) induced human vascular smooth muscle cells (HVSMCs). MALAT1 increased while miR-143 decreased in the observation group versus the control group (P < 0.001). The non-restenosis group had significantly elevated MALAT1 expression while decreased miR-143 expression than the restenosis group (P < 0.001). The areas under the curves of the expression of MALAT1 and miR-143 in predicting restenosis were 0.917 and 0.881, respectively. Following si-MALAT1 transfection, HVSMC multiplication and invasiveness decreased significantly (P < 0.05). miR-143-inhibitor was observed to upregulate the luciferase activity of MALAT1-WT (P < 0.05). MALAT1 is highly expressed in patients with ISR while miR-143 is decreased, and the MALAT1/miR-143 axis is a potential pathway to modulate the multiplication and invasiveness of HVSMCs.
Collapse
Affiliation(s)
- Chen Cao
- Interventional Department, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou 450014, China
| | - Wei Zhen
- President's Office, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou 450014, China
| | - Haibin Yu
- Interventional Department, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou 450014, China
| | - Li Zhang
- Nursing Department, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou 450014, China
| | - Yiling Liu
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou 450014, China
| |
Collapse
|
92
|
Investigation of the expression level of long non-coding RNAs in dental follicles of impacted mandibular third molars. Clin Oral Investig 2022; 26:2817-2825. [PMID: 34988693 DOI: 10.1007/s00784-021-04259-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/23/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Dental follicle (DF) is made up of mesenchymal cells and fibers surrounding the enamel organ of a developing tooth. It has been shown that cystic and neoplastic lesions can develop from the pericoronal follicles of impacted third molars (ITMs). But the molecular transformation of DF tissues has not yet been uncovered and remains elusive. Accordingly, in the present study, we aimed to investigate the differential expression of lncRNA genes in DF tissues associated with asymptomatic impacted mandibular third molars (IMTMs) that do not show pathological pericoronal radiolucency in radiographic examination. MATERIAL AND METHODS A total of 30 patients with unilateral mesioangular IMTMs were enrolled for the study. The expressions of lncRNA genes were determined in the DF and healthy gingival tissues obtained from study patients. For the determination of lncRNA expression levels, RNA was isolated from the obtained tissues, converted to cDNA samples, and analyzed by quantitative real-time PCR method. RESULTS As a result, we found that the gene expression of MEG3 was increased about 10-fold in DF tissues compared to healthy gingival tissues (p < 0.0001). In addition, NORAD expression was found to be upregulated 4.2-fold (p = 0.0002) in DF tissues. Also, expression level of MALAT1 was found to be decreased 1.24-fold (p = 0.584) and TP73-AS1 increased 2.6-fold (p = 0.093) in DF tissues compared to healthy gingival tissues. CONCLUSIONS Consequently, present findings suggest that differentially expressed lncRNAs in DFs might be associated with the various levels of cellular events including osteogenic differentiation, DNA damage, and the transformation into odontogenic pathology. CLINICAL RELEVANCE Expression levels of MEG3 and NORAD lncRNA molecules may guide clinicians in the evaluation of asymptomatic ITM dental follicles that cannot be determined radiologically and during extraction of these teeth for prophylactic purposes.
Collapse
|
93
|
Abstract
Most of the transcribed human genome codes for noncoding RNAs (ncRNAs), and long noncoding RNAs (lncRNAs) make for the lion's share of the human ncRNA space. Despite growing interest in lncRNAs, because there are so many of them, and because of their tissue specialization and, often, lower abundance, their catalog remains incomplete and there are multiple ongoing efforts to improve it. Consequently, the number of human lncRNA genes may be lower than 10,000 or higher than 200,000. A key open challenge for lncRNA research, now that so many lncRNA species have been identified, is the characterization of lncRNA function and the interpretation of the roles of genetic and epigenetic alterations at their loci. After all, the most important human genes to catalog and study are those that contribute to important cellular functions-that affect development or cell differentiation and whose dysregulation may play a role in the genesis and progression of human diseases. Multiple efforts have used screens based on RNA-mediated interference (RNAi), antisense oligonucleotide (ASO), and CRISPR screens to identify the consequences of lncRNA dysregulation and predict lncRNA function in select contexts, but these approaches have unresolved scalability and accuracy challenges. Instead-as was the case for better-studied ncRNAs in the past-researchers often focus on characterizing lncRNA interactions and investigating their effects on genes and pathways with known functions. Here, we focus most of our review on computational methods to identify lncRNA interactions and to predict the effects of their alterations and dysregulation on human disease pathways.
Collapse
|
94
|
Cao Z, Oyang L, Luo X, Xia L, Hu J, Lin J, Tan S, Tang Y, Zhou Y, Cao D, Liao Q. The roles of long non-coding RNAs in lung cancer. J Cancer 2022; 13:174-183. [PMID: 34976181 PMCID: PMC8692699 DOI: 10.7150/jca.65031] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/05/2021] [Indexed: 12/29/2022] Open
Abstract
Lung cancer is the most common malignancy, being a serious threat of human lives. The incidence and mortality of lung cancer has been increasing rapidly in the past decades. Although the development of new therapeutic modes, such as target therapy, the overall survival rate of lung cancer remains low. It is urgent to advance the understanding of molecular oncology and find novel biomarkers and targets for the early diagnosis, treatment, and prognostic prediction of lung cancer. Long non-coding RNAs (lncRNAs) are non-protein coding RNA transcripts that are more than 200 nucleotides in length. LncRNAs exert diverse biological functions by regulating gene expressions at transcriptional, translational, and post-translational levels. In the past decade, it has been shown that lncRNAs are extensively involved in the pathogenesis of various diseases, including lung cancer. In this review, we highlighted the lncRNAs characterized in lung cancer and discussed their translational potential in lung cancer clinics.
Collapse
Affiliation(s)
- Zhe Cao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jiaqi Hu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,Clinical Research Center for Wound Healing in Hunan Province, Changsha 410013, Hunan, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Deliang Cao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,Clinical Research Center for Wound Healing in Hunan Province, Changsha 410013, Hunan, China
| |
Collapse
|
95
|
Tong G, Tong W, He R, Cui Z, Li S, Zhou B, Yin Z. MALAT1 Polymorphisms and Lung Cancer Susceptibility in a Chinese Northeast Han Population. Int J Med Sci 2022; 19:1300-1306. [PMID: 35928715 PMCID: PMC9346381 DOI: 10.7150/ijms.73026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/21/2022] [Indexed: 11/05/2022] Open
Abstract
Background: LncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) was competitive endogenous RNA (ceRNA) involved in various molecular processes for metastasis development in lung cancer. Single nucleotide polymorphisms (SNPs) in MALAT1 gene might be predictive markers for lung cancer. In our study, we selected rs619586 and rs3200401 in MALAT1 gene to explore their effects on lung cancer susceptibility. Methods: The case-control study included 444 lung cancer cases and 460 healthy controls. Genotyping was performed by Taqman allelic discrimination method. Logistic regression, Student t-test, and Chi-square test (χ2 ) were used to analyze the data. Results: The findings of the study showed that rs3200401 was significantly associated with the risk of non-small cell lung cancer (NSCLC) and lung squamous cell carcinoma (LUSC). Compared with homozygous CC genotype, CT heterozygous genotype decreased risk of NSCLC (Pa = 0.034) and LUSC (Pa = 0.025). In addition, no statistical association was detected between rs619586 and lung cancer susceptibility. The interactions between genes and cigarette smoking were discovered via crossover analysis. However, there were no remarkable gene-environment interactions in additive and multiplicative model. Conclusion: Rs3200401 in lncRNA MALAT1 was associated with the susceptibility of non-small-cell lung cancer and lung squamous cell carcinoma. The gene-environmental (cigarette smoking) interactions were not notable.
Collapse
Affiliation(s)
- Guanghui Tong
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, P.R. China.,Department of Obstetrics and Gynecology, Liaoning Provincial Hospital for women and children, Shayang Street, Heping District, Shenyang 110122, P.R. China
| | - Weiwei Tong
- Clinical Laboratory, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Ran He
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, P.R. China
| | - Zhigang Cui
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, P.R. China
| | - Sixuan Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, P.R. China
| | - Baosen Zhou
- Department of Clinical Epidemiology and Center of Evidence Based Medicine, The First Hospital of China Medical University, No. 155 Nanjing Bei Street, Heping District, Shenyang 110001, P.R. China
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, P.R. China
| |
Collapse
|
96
|
Abstract
The last decade has seen an enormous increase in long non-coding RNA (lncRNA) research within rheumatology. LncRNAs are arbitrarily classed as non-protein encoding RNA transcripts that exceed 200 nucleotides in length. These transcripts have tissue and cell specific patterns of expression and are implicated in a variety of biological processes. Unsurprisingly, numerous lncRNAs are dysregulated in rheumatoid conditions, correlating with disease activity and cited as potential biomarkers and targets for therapeutic intervention. In this chapter, following an introduction into each condition, we discuss the lncRNAs involved in rheumatoid arthritis, osteoarthritis and systemic lupus erythematosus. These inflammatory joint conditions share several inflammatory signalling pathways and therefore not surprisingly many commonly dysregulated lncRNAs are shared across these conditions. In the interest of translational research only those lncRNAs which are strongly conserved have been addressed. The lncRNAs discussed here have diverse roles in regulating inflammation, proliferation, migration, invasion and apoptosis. Understanding the molecular basis of lncRNA function in rheumatology will be crucial in fully determining the inflammatory mechanisms that drive these conditions.
Collapse
|
97
|
Zhou H, Gao Y, Li X, Shang S, Wang P, Zhi H, Guo S, Sun D, Liu H, Li X, Zhang Y, Ning S. Identifying and characterizing lincRNA genomic clusters reveals its cooperative functions in human cancer. J Transl Med 2021; 19:509. [PMID: 34906173 PMCID: PMC8672572 DOI: 10.1186/s12967-021-03179-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/03/2021] [Indexed: 02/01/2023] Open
Abstract
Background Emerging evidence has revealed that some long intergenic non-coding RNAs (lincRNAs) are likely to form clusters on the same chromosome, and lincRNA genomic clusters might play critical roles in the pathophysiological mechanism. However, the comprehensive investigation of lincRNA clustering is rarely studied, particularly the characterization of their functional significance across different cancer types. Methods In this study, we firstly constructed a computational method basing a sliding window approach for systematically identifying lincRNA genomic clusters. We then dissected these lincRNA genomic clusters to identify common characteristics in cooperative expression, conservation among divergent species, targeted miRNAs, and CNV frequency. Next, we performed comprehensive analyses in differentially-expressed patterns and overall survival outcomes for patients from The Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx) across multiple cancer types. Finally, we explored the underlying mechanisms of lincRNA genomic clusters by functional enrichment analysis, pathway analysis, and drug-target interaction. Results We identified lincRNA genomic clusters according to the algorithm. Clustering lincRNAs tended to be co-expressed, highly conserved, targeted by more miRNAs, and with similar deletion and duplication frequency, suggesting that lincRNA genomic clusters may exert their effects by acting in combination. We further systematically explored conserved and cancer-specific lincRNA genomic clusters, indicating they were involved in some important mechanisms of disease occurrence through diverse approaches. Furthermore, lincRNA genomic clusters can serve as biomarkers with potential clinical significance and involve in specific pathological processes in the development of cancer. Moreover, a lincRNA genomic cluster named Cluster127 in DLK1-DIO3 imprinted locus was discovered, which contained MEG3, MEG8, MEG9, MIR381HG, LINC02285, AL132709.5, and AL132709.1. Further analysis indicated that Cluster127 may have the potential for predicting prognosis in cancer and could play their roles by participating in the regulation of PI3K-AKT signaling pathway. Conclusions Clarification of the lincRNA genomic clusters specific roles in human cancers could be beneficial for understanding the molecular pathogenesis of different cancer types. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03179-5.
Collapse
Affiliation(s)
- Hanxiao Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Yue Gao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Xin Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Shipeng Shang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Peng Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Hui Zhi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Shuang Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Dailin Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Hongjia Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
98
|
Zhang L, Shao Y, Tang C, Liu Z, Tang D, Hu C, Liang X, Hu Z, Luo G. Identification of Novel Biomarkers in Platelets for Diagnosing Parkinson's Disease. Eur Neurol 2021; 85:122-131. [PMID: 34875658 DOI: 10.1159/000520102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 10/04/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a common neurodegenerative disease affecting the elderly, but there is no blood test for PD diagnosis in the clinic currently. This study aimed to explore promising biomarkers in platelets (PLTs) for PD diagnosis. METHODS PLTs were isolated from whole blood samples of PD patients and healthy controls (HCs), and RNA was extracted for sequencing. RNA-seq was performed on the Illumina HiSeq platform. RESULTS A total of 2,221 genes with differential transcript levels (GDTLs) were identified between PD patients and HCs, 1,041 of which are upregulated genes and 1,180 of which are downregulated genes. WASH5P was the most upregulated gene and AC114491.1 was the most downregulated gene. Among the top 12 most relevant genes, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), eukaryotic elongation factor 1A (EEF1A1), and cathepsin S (CTSS) were reported to be associated with PD. Furthermore, gene ontology analysis showed that the most significant term in biological processes was neutrophil degranulation; the most enriched term in cellular components was cytoplasmic vesicle lumen; and tumor necrosis factor receptor superfamily binding was the most significant term in molecular functions. In the Kyoto Encyclopedia of Genes and Genomes enrichment analysis, inflammation-related pathway accounts for the majority. CONCLUSION Our findings demonstrated WASH5P, MALAT1, EEF1A1, and CTSS may be promising biomarkers in PD, which may contribute to improving the effectiveness and accuracy of diagnosis for PD in the future.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Neurology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, China,
| | - Yiye Shao
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunlei Tang
- Department of Neurology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, China
| | - Zhen Liu
- Department of Neurology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, China
| | - Dingzhong Tang
- Department of Neurology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, China
| | - Canfang Hu
- Department of Neurology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, China
| | - Xuelin Liang
- Department of Neurology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, China
| | - Zhaoyang Hu
- Fun-Med Pharmaceutical Technology (Shanghai) Co., Ltd., Shanghai, China
| | - Guojun Luo
- Department of Neurology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, China
| |
Collapse
|
99
|
Zhou Q, Liu L, Zhou J, Chen Y, Xie D, Yao Y, Cui D. Novel Insights Into MALAT1 Function as a MicroRNA Sponge in NSCLC. Front Oncol 2021; 11:758653. [PMID: 34778078 PMCID: PMC8578859 DOI: 10.3389/fonc.2021.758653] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/06/2021] [Indexed: 12/21/2022] Open
Abstract
The long non-coding RNA metastasis-associated lung adenocarcinoma transcript-1 (MALAT1) was initially found to be overexpressed in early non-small cell lung cancer (NSCLC). Accumulating studies have shown that MALAT1 is overexpressed in the tissue or serum of NSCLC and plays a key role in its occurrence and development. In addition, the expression level of MALAT1 is significantly related to the tumor size, stage, metastasis, and distant invasion of NSCLC. Therefore, MALAT1 could be used as a biomarker for the early diagnosis, severity assessment, or prognosis evaluation of NSCLC patients. This review describes the basic properties and biological functions of MALAT1, focuses on the specific molecular mechanism of MALAT1 as a microRNA sponge in the occurrence and development of NSCLC in recent years, and emphasizes the application and potential prospect of MALAT1 in molecular biological markers and targeted therapy of NSCLC.
Collapse
Affiliation(s)
- Qinfeng Zhou
- Department of Laboratory Medicine, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Lianfang Liu
- Department of Oncology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Jing Zhou
- Department of Laboratory Medicine, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Yuanyuan Chen
- Department of Laboratory Medicine, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Dacheng Xie
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Yinan Yao
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
100
|
Li L, Khan S, Li S, Wang S, Wang F. Noncoding RNAs: emerging players in skin cancers pathogenesis. Am J Cancer Res 2021; 11:5591-5608. [PMID: 34873482 PMCID: PMC8640824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023] Open
Abstract
Skin malignancies form in tissues of the skin and are the most frequent cancers in the world, with an increasing incidence and a steady fatality rate. They are classified as melanoma or nonmelanoma cancers, which include basal cell carcinoma and squamous cell carcinoma. Noncoding RNA transcripts have received increased attention after the thorough analysis of the human genome revealed that most of the genomic components are not encoded to protein. MicroRNAs, long noncoding RNAs, and circular RNAs are some of the well-studied types of these noncoding regions. The alteration in any of these members' expression is associated intrinsically with human cancers, including skin malignancies, due to their critical functions in cell processes for normal development. As a result, investigating the noncoding component of the transcriptome opens up the possibility of discovering new therapeutic and diagnostic targets. This review discusses current studies on the involvement of microRNAs, long noncoding RNAs, and circular RNAs in the pathogenesis of human skin cancers.
Collapse
Affiliation(s)
- Lin Li
- Department of Dermatology, The Affiliated Children’s Hospital of Zhengzhou UniversityZhengzhou 450053, Henan, China
| | - Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou UniversityZhengzhou 450014, Henan, China
- Department of Medical Lab Technology, The University of HaripurPakistan
| | - Song Li
- Department of Dermatology, The Affiliated Children’s Hospital of Zhengzhou UniversityZhengzhou 450053, Henan, China
| | - Shengchun Wang
- Department of Dermatology, The Affiliated Children’s Hospital of Zhengzhou UniversityZhengzhou 450053, Henan, China
| | - Fang Wang
- Department of Dermatology, The Affiliated Children’s Hospital of Zhengzhou UniversityZhengzhou 450053, Henan, China
| |
Collapse
|