51
|
Abstract
BACKGROUND Bipolar Disorder (BD), along with depression and schizophrenia, is one of the most serious mental illnesses, and one of the top 20 causes of severe impairment in everyday life. Recent molecular studies, using both traditional approaches and new procedures such as Whole-Genome Sequencing (WGS), have suggested that genetic factors could significantly contribute to the development of BD, with heritability estimates of up to 85%. However, it is assumed that BD is a multigenic and multifactorial illness with environmental factors that strongly contribute to disease development/progression, which means that progress in genetic knowledge of BD might be difficult to interpret in clinical practice. OBJECTIVE The aim of this study is to provide a synthetic description of the main SNPs variants identified/confirmed by recent extensive WGS analysis as well as by reconstruction in an in vitro mechanism or by amygdala activation protocol in vivo. METHOD Bibliographic data, genomic and protein Data Banks were consulted so as to carry out a cross genomic study for mutations, SNPs and chromosomal alterations described in these studies in BD patients. RESULTS Fifty-five different mutations have been described in 30 research papers by different genetic analyses including recent WGS analysis. Many of these studies have led to the discovery of the most probable susceptibility genes for BD, including ANK3, CACNA1C, NCAN, ODZ4, SYNE1, and TRANK1. Exploration has started the role of several of these mutations in BD pathophysiology using in vitro and animal models. CONCLUSION Although new genomic research technology in BD opens up new possibilities, the current results for common variants are still controversial because of four broad conditions: analytical validity, clinical validity, clinical utility and a reasonable cost for genetic analysis are not yet accessible.
Collapse
Affiliation(s)
- Germano Orrù
- Department of Surgical Sciences, Molecular Biology Service (MBS), University of Cagliari, Cagliari, Italy
- National Research Council of Italy, ISPA, Sassari, Italy
- Address correspondence to this author at the Department of Surgical Sciences, University of Cagliari, Germano Orrù Ph.D, via Ospedale 54, 09124 Cagliari, Italy; Tel: +39 070 609-2568; E-mail:
| | - Mauro Giovanni Carta
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
52
|
Croarkin PE, Luby JL, Cercy K, Geske JR, Veldic M, Simonson M, Joshi PT, Wagner KD, Walkup JT, Nassan MM, Cuellar-Barboza AB, Casuto L, McElroy SL, Jensen PS, Frye MA, Biernacka JM. Genetic Risk Score Analysis in Early-Onset Bipolar Disorder. J Clin Psychiatry 2017; 78:1337-1343. [PMID: 28199072 PMCID: PMC5818996 DOI: 10.4088/jcp.15m10314] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 05/02/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE In this study, we performed a candidate genetic risk score (GRS) analysis of early-onset bipolar disorder (BD). METHODS Treatment of Early Age Mania (TEAM) study enrollment and sample collection took place from 2003 to 2008. Mayo Clinic Bipolar Biobank samples were collected from 2009 to 2013. Genotyping and analyses for the present study took place from 2013 to 2014. The diagnosis of BD was based on Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision criteria. Eight single-nucleotide polymorphisms (SNPs), previously reported in genome-wide association studies to be associated with BD, were chosen for GRS analysis in early-onset bipolar disease. These SNPs map to 3 genes: CACNA1C (calcium channel, voltage-dependent, L type, alpha 1C subunit), ANK3 (ankyrin-3, node of Ranvier [ankyrin G]), and ODZ4 (teneurin transmembrane protein 4 [formerly "odz, odd Oz/10-m homolog 4 {Drosophila}, ODZ4"]). The 8 candidate SNPs were genotyped in patients from the TEAM study (n = 69); adult patients with BD (n = 732), including a subset with early-onset illness (n = 192); and healthy controls (n = 776). GRS analyses were performed to compare early-onset cases with controls. In addition, associations of early-onset BD with individual SNPs and haplotypes were explored. RESULTS GRS analysis revealed associations of the risk score with early-onset BD (P = .01). Gene-level haplotype analysis comparing TEAM patients with controls suggested association of early-onset BD with a CACNA1C haplotype (global test, P = .01). At the level of individual SNPs, comparison of TEAM cases with healthy controls provided nominally significant evidence for association of SNP rs10848632 in CACNA1C with early-onset BD (P = .017), which did not remain significant after correction for multiple comparisons. CONCLUSIONS These preliminary analyses suggest that previously identified BD risk loci, especially CACNA1C, have a role in early-onset BD, possibly with stronger effects than for late-onset BD.
Collapse
Affiliation(s)
- Paul E Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First St SW, Rochester, MN 55905.
- Departments of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Joan L Luby
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA
| | - Kelly Cercy
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Jennifer R Geske
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Marin Veldic
- Departments of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew Simonson
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Paramjit T Joshi
- Department of Psychiatry and Behavioral Sciences, Children's National Medical Center, Washington, DC, USA
| | - Karen Dineen Wagner
- Department of Psychiatry and Behavioral Sciences, The University of Texas Medical Branch, Galveston, Texas, USA
| | - John T Walkup
- Department of Psychiatry, Weill Cornell Medical College, New York, New York, USA
| | - Malik M Nassan
- Departments of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | - Mark A Frye
- Departments of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Joanna M Biernacka
- Departments of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
53
|
Saxena A, Scaini G, Bavaresco DV, Leite C, Valvassori SS, Carvalho AF, Quevedo J. Role of Protein Kinase C in Bipolar Disorder: A Review of the Current Literature. MOLECULAR NEUROPSYCHIATRY 2017; 3:108-124. [PMID: 29230399 DOI: 10.1159/000480349] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/14/2017] [Indexed: 12/19/2022]
Abstract
Bipolar disorder (BD) is a major health problem. It causes significant morbidity and imposes a burden on the society. Available treatments help a substantial proportion of patients but are not beneficial for an estimated 40-50%. Thus, there is a great need to further our understanding the pathophysiology of BD to identify new therapeutic avenues. The preponderance of evidence pointed towards a role of protein kinase C (PKC) in BD. We reviewed the literature pertinent to the role of PKC in BD. We present recent advances from preclinical and clinical studies that further support the role of PKC. Moreover, we discuss the role of PKC on synaptogenesis and neuroplasticity in the context of BD. The recent development of animal models of BD, such as stimulant-treated and paradoxical sleep deprivation, and the ability to intervene pharmacologically provide further insights into the involvement of PKC in BD. In addition, the effect of PKC inhibitors, such as tamoxifen, in the resolution of manic symptoms in patients with BD further points in that direction. Furthermore, a wide variety of growth factors influence neurotransmission through several molecular pathways that involve downstream effects of PKC. Our current understanding identifies the PKC pathway as a potential therapeutic avenue for BD.
Collapse
Affiliation(s)
- Ashwini Saxena
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Giselli Scaini
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Daniela V Bavaresco
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Camila Leite
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Samira S Valvassori
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - André F Carvalho
- Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - João Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil.,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA
| |
Collapse
|
54
|
Sayana P, Colpo GD, Simões LR, Giridharan VV, Teixeira AL, Quevedo J, Barichello T. A systematic review of evidence for the role of inflammatory biomarkers in bipolar patients. J Psychiatr Res 2017; 92:160-182. [PMID: 28458141 DOI: 10.1016/j.jpsychires.2017.03.018] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/23/2017] [Indexed: 02/02/2023]
Abstract
Bipolar disorder (BD) is a neuropsychiatric disorder that is characterized by a phasic course of affective episodes interspersed with a euthymic state. Epidemiological, clinical, genetic, post-mortem and preclinical studies have shown that inflammatory reactions and immune modulation play a pivotal role in the pathophysiology of BD. It is conceptualized that biomarkers of inflammation and immune responses should be employed to monitor the disease process in bipolar patients. The objective of this systematic review is to analyse the inflammatory markers involved in human studies and to explore each individual marker for its potential clinical application and summarize evidence regarding their role in BD. A systematic review of human studies to measure inflammatory markers was conducted, and the studies were identified by searching PubMed/MEDLINE, PsycINFO, EMBASE, and Web of Science databases for peer-reviewed journals that were published until September 2015. In this review, we included peripheral markers, genetic, post-mortem and cell studies with inflammatory biomarker analysis in BD. One hundred and two (102) papers met the inclusion criteria. The pro-inflammatory cytokines were elevated and the anti-inflammatory cytokines were reduced in BD patients, particularly during manic and depressive phases when compared to the controls. These changes tend to disappear in euthymia, indicating that inflammation may be associated with acute phases of BD. Even though there are promising findings in this field, further clinical studies using more established detection techniques are needed to clearly show the benefit of using inflammatory markers in the diagnosis, follow-up and prognosis of patients with BD.
Collapse
Affiliation(s)
- Pavani Sayana
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Gabriela Delevati Colpo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Lutiana R Simões
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, UNESC, Criciúma, SC, Brazil
| | - Vijayasree Vayalanellore Giridharan
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Antonio Lucio Teixeira
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - João Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, UNESC, Criciúma, SC, Brazil
| | - Tatiana Barichello
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, UNESC, Criciúma, SC, Brazil.
| |
Collapse
|
55
|
Pereira LP, Köhler CA, de Sousa RT, Solmi M, de Freitas BP, Fornaro M, Machado-Vieira R, Miskowiak KW, Vieta E, Veronese N, Stubbs B, Carvalho AF. The relationship between genetic risk variants with brain structure and function in bipolar disorder: A systematic review of genetic-neuroimaging studies. Neurosci Biobehav Rev 2017; 79:87-109. [DOI: 10.1016/j.neubiorev.2017.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 12/21/2022]
|
56
|
Rao AR, Yourshaw M, Christensen B, Nelson SF, Kerner B. Rare deleterious mutations are associated with disease in bipolar disorder families. Mol Psychiatry 2017; 22:1009-1014. [PMID: 27725659 PMCID: PMC5388596 DOI: 10.1038/mp.2016.181] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 06/19/2016] [Accepted: 08/01/2016] [Indexed: 12/18/2022]
Abstract
Bipolar disorder (BD) is a common, complex and heritable psychiatric disorder characterized by episodes of severe mood swings. The identification of rare, damaging genomic mutations in families with BD could inform about disease mechanisms and lead to new therapeutic interventions. To determine whether rare, damaging mutations shared identity-by-descent in families with BD could be associated with disease, exome sequencing was performed in multigenerational families of the NIMH BD Family Study followed by in silico functional prediction. Disease association and disease specificity was determined using 5090 exomes from the Sweden-Schizophrenia (SZ) Population-Based Case-Control Exome Sequencing study. We identified 14 rare and likely deleterious mutations in 14 genes that were shared identity-by-descent among affected family members. The variants were associated with BD (P<0.05 after Bonferroni's correction) and disease specificity was supported by the absence of the mutations in patients with SZ. In addition, we found rare, functional mutations in known causal genes for neuropsychiatric disorders including holoprosencephaly and epilepsy. Our results demonstrate that exome sequencing in multigenerational families with BD is effective in identifying rare genomic variants of potential clinical relevance and also disease modifiers related to coexisting medical conditions. Replication of our results and experimental validation are required before disease causation could be assumed.
Collapse
Affiliation(s)
- Aliz R Rao
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Yourshaw
- Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | - Stanley F Nelson
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry and Biobehavioral Sciences at the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Berit Kerner
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
57
|
Sigitova E, Fišar Z, Hroudová J, Cikánková T, Raboch J. Biological hypotheses and biomarkers of bipolar disorder. Psychiatry Clin Neurosci 2017; 71:77-103. [PMID: 27800654 DOI: 10.1111/pcn.12476] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 10/04/2016] [Accepted: 10/25/2016] [Indexed: 02/06/2023]
Abstract
The most common mood disorders are major depressive disorders and bipolar disorders (BD). The pathophysiology of BD is complex, multifactorial, and not fully understood. Creation of new hypotheses in the field gives impetus for studies and for finding new biomarkers for BD. Conversely, new biomarkers facilitate not only diagnosis of a disorder and monitoring of biological effects of treatment, but also formulation of new hypotheses about the causes and pathophysiology of the BD. BD is characterized by multiple associations between disturbed brain development, neuroplasticity, and chronobiology, caused by: genetic and environmental factors; defects in apoptotic, immune-inflammatory, neurotransmitter, neurotrophin, and calcium-signaling pathways; oxidative and nitrosative stress; cellular bioenergetics; and membrane or vesicular transport. Current biological hypotheses of BD are summarized, including related pathophysiological processes and key biomarkers, which have been associated with changes in genetics, systems of neurotransmitter and neurotrophic factors, neuroinflammation, autoimmunity, cytokines, stress axis activity, chronobiology, oxidative stress, and mitochondrial dysfunctions. Here we also discuss the therapeutic hypotheses and mechanisms of the switch between depressive and manic state.
Collapse
Affiliation(s)
- Ekaterina Sigitova
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tereza Cikánková
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jiří Raboch
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
58
|
Del Grande C, Galli L, Schiavi E, Dell'Osso L, Bruschi F. Is Toxoplasma gondii a Trigger of Bipolar Disorder? Pathogens 2017; 6:pathogens6010003. [PMID: 28075410 PMCID: PMC5371891 DOI: 10.3390/pathogens6010003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/16/2016] [Accepted: 01/04/2017] [Indexed: 11/16/2022] Open
Abstract
Toxoplasma gondii, a ubiquitous intracellular parasite, has a strong tropism for the brain tissue, where it forms intracellular cysts within the neurons and glial cells, establishing a chronic infection. Although latent toxoplasmosis is generally assumed to be asymptomatic in immunocompetent individuals, it is now clear that it can induce behavioral manipulations in mice and infected humans. Moreover, a strong relation has emerged in recent years between toxoplasmosis and psychiatric disorders. The link between T. gondii and schizophrenia has been the most widely documented; however, a significant association with bipolar disorder (BD) and suicidal/aggressive behaviors has also been detected. T. gondii may play a role in the etiopathogenesis of psychiatric disorders affecting neurotransmitters, especially dopamine, that are implicated in the emergence of psychosis and behavioral Toxoplasma-induced abnormalities, and inducing brain inflammation by the direct stimulation of inflammatory cytokines in the central nervous system. Besides this, there is increasing evidence for a prominent role of immune dysregulation in psychosis and BD. The aim of this review is to describe recent evidence suggesting a link between Toxoplasma gondii and BD, focusing on the interaction between immune responses and this infectious agent in the etiopathogenesis of psychiatric symptoms.
Collapse
Affiliation(s)
- Claudia Del Grande
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Via Roma 67, 56127 Pisa, Italy.
| | - Luca Galli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Elisa Schiavi
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Via Roma 67, 56127 Pisa, Italy.
| | - Liliana Dell'Osso
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Via Roma 67, 56127 Pisa, Italy.
| | - Fabrizio Bruschi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| |
Collapse
|
59
|
das Neves Peixoto FS, de Sousa DF, Luz DCRP, Vieira NB, Gonçalves Júnior J, Dos Santos GCA, da Silva FCT, Rolim Neto ML. Bipolarity and suicidal ideation in children and adolescents: a systematic review with meta-analysis. Ann Gen Psychiatry 2017; 16:22. [PMID: 28439289 PMCID: PMC5399388 DOI: 10.1186/s12991-017-0143-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/01/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Affective disorders in children and adolescents have received growing attention in the world scenario of mental health. Additionally, there has been an increasing prevalence of suicidal ideation in this population. OBJECTIVE A systematic review with meta-analysis was conducted to demonstrate the main risk factors regarding the development of suicidal ideation in the bipolar disorder. METHODS This is a systematic review with meta-analysis using the PRISMA protocol (http://www.prisma-statement.org/). This study included secondary data. Original data in mental health were collected by mapping the evidence found in the following electronic databases: MEDLINE/PubMed, LILACS, SciELO, and ScienceDirect in the period from 2005 to 2015. RESULTS We found 1418 registrations in such databases, and 46 of them were selected to comprise this review. The result introduces a joint risk between the studies of 2.94 CI [2.29-3.78]. A significant correlation was verified between the risk factors and the suicidal ideation. The result was r (Pearson) = 0.7103 and p value <0.001. CONCLUSION Children and adolescents living with bipolar disorder are more vulnerable to suicidal ideation. These results reinforce the need of a more effective public policy directed toward this population.
Collapse
Affiliation(s)
| | | | | | - Nélio Barreto Vieira
- Program in Health Sciences, ABC School of Medicine-FMABC, Santo André, SP Brazil
| | - Jucier Gonçalves Júnior
- School of Medicine, Federal University of Cariri (UFCA), Divino Salvador Street, 284, Rosário, Barbalha, CE 63180-000 Brazil
| | | | | | - Modesto Leite Rolim Neto
- Program in Health Sciences, ABC School of Medicine-FMABC, Santo André, SP Brazil.,School of Medicine, Federal University of Cariri (UFCA), Divino Salvador Street, 284, Rosário, Barbalha, CE 63180-000 Brazil
| |
Collapse
|
60
|
D'Onofrio S, Mahaffey S, Garcia-Rill E. Role of calcium channels in bipolar disorder. CURRENT PSYCHOPHARMACOLOGY 2017; 6:122-135. [PMID: 29354402 PMCID: PMC5771645 DOI: 10.2174/2211556006666171024141949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bipolar disorder is characterized by a host of sleep-wake abnormalities that suggests that the reticular activating system (RAS) is involved in these symptoms. One of the signs of the disease is a decrease in high frequency gamma band activity, which accounts for a number of additional deficits. Bipolar disorder has also been found to overexpress neuronal calcium sensor protein 1 (NCS-1). Recent studies showed that elements in the RAS generate gamma band activity that is mediated by high threshold calcium (Ca2+) channels. This mini-review provides a description of recent findings on the role of Ca2+ and Ca2+ channels in bipolar disorder, emphasizing the involvement of arousal-related systems in the manifestation of many of the disease symptoms. This will hopefully bring attention to a much-needed area of research and provide novel avenues for therapeutic development.
Collapse
Affiliation(s)
- Stasia D'Onofrio
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Susan Mahaffey
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Edgar Garcia-Rill
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
61
|
Griesi-Oliveira K, Suzuki AM, Muotri AR. TRPC Channels and Mental Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 976:137-148. [PMID: 28508319 DOI: 10.1007/978-94-024-1088-4_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transient receptor potential canonical (TRPC) channels mediate the influx of different types of cations through the cell membrane and are involved in many functions of the organism. Evidences of involvement of TRPC channels in neuronal development suggest that this family of proteins might play a role in certain neurological disorders. As reported, knockout mice for different TRPC channels show alterations in neuronal morphological and functional parameters, with behavioral abnormalities, such as in exploratory and social behaviors. Although mutations in TRPC channels could be related to mental/neurological disorders, there are only a few cases reported in literature, indicating that this correlation should be further explored. Nonetheless, other functional evidences support the implication of these channels in neurological diseases. In this chapter, we summarize the main findings relating TRPC channels to neurological disorders, such as autism spectrum disorders, bipolar disorder, and intellectual disability among others.
Collapse
Affiliation(s)
| | - Angela May Suzuki
- Department of Genetics and Evolutionary Biology, Bioscience Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Alysson Renato Muotri
- Department of Pediatrics and Department of Cellular & Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA. .,Rady Children's Hospital San Diego, San Diego, CA, USA. .,UCSD Stem Cell Program, Institute for Genomic Medicine, New York, NY, USA.
| |
Collapse
|
62
|
Feng W, Chakraborty A. Fragility Extraordinaire: Unsolved Mysteries of Chromosome Fragile Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:489-526. [PMID: 29357071 DOI: 10.1007/978-981-10-6955-0_21] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chromosome fragile sites are a fascinating cytogenetic phenomenon now widely implicated in a slew of human diseases ranging from neurological disorders to cancer. Yet, the paths leading to these revelations were far from direct, and the number of fragile sites that have been molecularly cloned with known disease-associated genes remains modest. Moreover, as more fragile sites were being discovered, research interests in some of the earliest discovered fragile sites ebbed away, leaving a number of unsolved mysteries in chromosome biology. In this review we attempt to recount some of the early discoveries of fragile sites and highlight those phenomena that have eluded intense scrutiny but remain extremely relevant in our understanding of the mechanisms of chromosome fragility. We then survey the literature for disease association for a comprehensive list of fragile sites. We also review recent studies addressing the underlying cause of chromosome fragility while highlighting some ongoing debates. We report an observed enrichment for R-loop forming sequences in fragile site-associated genes than genomic average. Finally, we will leave the reader with some lingering questions to provoke discussion and inspire further scientific inquiries.
Collapse
Affiliation(s)
- Wenyi Feng
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Arijita Chakraborty
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
63
|
Childhood adverse life events and parental psychopathology as risk factors for bipolar disorder. Transl Psychiatry 2016; 6:e929. [PMID: 27779625 PMCID: PMC5290348 DOI: 10.1038/tp.2016.201] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/12/2016] [Accepted: 08/22/2016] [Indexed: 12/28/2022] Open
Abstract
Childhood adverse events are risk factors for later bipolar disorder. We quantified the risks for a later diagnosis of bipolar disorder after exposure to adverse life events in children with and without parental psychopathology. This register-based population cohort study included all persons born in Denmark from 1980 to 1998 (980 554 persons). Adversities before age 15 years were: familial disruption; parental somatic illness; any parental psychopathology; parental labour market exclusion; parental imprisonment; placement in out-of-home care; and parental natural and unnatural death. We calculated risk estimates of each of these eight life events as single exposure and risk estimates for exposure to multiple life events. Main outcome variable was a diagnosis of bipolar disorder after the age of 15 years, analysed with Cox proportional hazard regression. Single exposure to most of the investigated adversities were associated with increased risk for bipolar disorder, exceptions were parental somatic illness and parental natural death. By far the strongest risk factor for bipolar disorder in our study was any mental disorder in the parent (hazard ratio 3.53; 95% confidence interval 2.73-4.53) and the additional effects of life events on bipolar risk were limited. An effect of early adverse life events on bipolar risk later in life was mainly observed in children without parental psychopathology. Our findings do not exclude early-life events as possible risk factors, but challenge the concept of adversities as important independent determinants of bipolar disorder in genetically vulnerable individuals.
Collapse
|
64
|
Oliveira J, Kazma R, Le Floch E, Bennabi M, Hamdani N, Bengoufa D, Dahoun M, Manier C, Bellivier F, Krishnamoorthy R, Deleuze JF, Yolken R, Leboyer M, Tamouza R. Toxoplasma gondii exposure may modulate the influence of TLR2 genetic variation on bipolar disorder: a gene-environment interaction study. Int J Bipolar Disord 2016; 4:11. [PMID: 27207565 PMCID: PMC4875582 DOI: 10.1186/s40345-016-0052-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/05/2016] [Indexed: 12/18/2022] Open
Abstract
Background Genetic vulnerability to environmental stressors is yet to be clarified in bipolar disorder (BD), a complex multisystem disorder in which immune dysfunction and infectious insults seem to play a major role in the pathophysiology. Association between pattern-recognition receptor coding genes and BD had been previously reported. However, potential interactions with history of pathogen exposure are yet to be explored. Methods 138 BD patients and 167 healthy controls were tested for serostatus of Toxoplasma gondii, CMV, HSV-1 and HSV-2 and genotyped for TLR2 (rs4696480 and rs3804099), TLR4 (rs1927914 and rs11536891) and NOD2 (rs2066842) polymorphisms (SNPs). Both the pathogen-specific seroprevalence and the TLR/NOD2 genetic profiles were compared between patients and controls followed by modelling of interactions between these genes and environmental infectious factors in a regression analysis. Results First, here again we observed an association between BD and Toxoplasma gondii (p = 0.045; OR = 1.77; 95 % CI 1.01–3.10) extending the previously published data on a cohort of a relatively small number of patients (also included in the present sample). Second, we found a trend for an interaction between the TLR2rs3804099 SNP and Toxoplasma gondii seropositivity in conferring BD risk (p = 0.017, uncorrected). Conclusions Pathogen exposure may modulate the influence of the immunogenetic background on BD. A much larger sample size and information on period of pathogen exposure are needed in future gene–environment interaction studies.
Collapse
Affiliation(s)
- José Oliveira
- INSERM, U1160, Hôpital Saint Louis, Paris, France.,Fondation FondaMental, Créteil, France
| | - Rémi Kazma
- Centre National de Génotypage, CEA, Evry, France
| | | | - Meriem Bennabi
- INSERM, U1160, Hôpital Saint Louis, Paris, France.,Fondation FondaMental, Créteil, France
| | - Nora Hamdani
- Fondation FondaMental, Créteil, France.,Faculté de Médecine, Université Paris-Est, Créteil, France.,AP-HP, DHU PePSY, Pôle de Psychiatrie, Hôpitaux Universitaires Henri Mondor, Créteil, France.,INSERM, U955, Psychiatrie Translationnelle, Créteil, France
| | - Djaouida Bengoufa
- Laboratoire Jean Dausset and LabEx Transplantex, Hôpital Saint Louis, Paris, France
| | - Mehdi Dahoun
- Laboratoire Jean Dausset and LabEx Transplantex, Hôpital Saint Louis, Paris, France
| | | | - Frank Bellivier
- Sorbonne Paris-Cité, Université Paris Diderot, Paris, France.,INSERM UMR-S1144-VariaPsy, Hôpital Fernand Widal, Paris, France
| | | | | | - Robert Yolken
- Stanley Laboratory of Developmental Neurovirology, Johns Hopkins University Medical Center, Baltimore, USA.,Stanley Research Program, Sheppard Pratt, Baltimore, MD, USA
| | - Marion Leboyer
- Fondation FondaMental, Créteil, France.,Faculté de Médecine, Université Paris-Est, Créteil, France.,AP-HP, DHU PePSY, Pôle de Psychiatrie, Hôpitaux Universitaires Henri Mondor, Créteil, France.,INSERM, U955, Psychiatrie Translationnelle, Créteil, France
| | - Ryad Tamouza
- INSERM, U1160, Hôpital Saint Louis, Paris, France. .,Fondation FondaMental, Créteil, France. .,Laboratoire Jean Dausset and LabEx Transplantex, Hôpital Saint Louis, Paris, France. .,Sorbonne Paris-Cité, Université Paris Diderot, Paris, France.
| |
Collapse
|
65
|
Herteleer L, Zwarts L, Hens K, Forero D, Del-Favero J, Callaerts P. Mood stabilizing drugs regulate transcription of immune, neuronal and metabolic pathway genes in Drosophila. Psychopharmacology (Berl) 2016; 233:1751-62. [PMID: 26852229 DOI: 10.1007/s00213-016-4223-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 01/28/2016] [Indexed: 12/29/2022]
Abstract
RATIONALE Lithium and valproate (VPA) are drugs used in the management of bipolar disorder. Even though they reportedly act on various pathways, the transcriptional targets relevant for disease mechanism and therapeutic effect remain unclear. Furthermore, multiple studies used lymphoblasts of bipolar patients as a cellular proxy, but it remains unclear whether peripheral cells provide a good readout for the effects of these drugs in the brain. OBJECTIVES We used Drosophila culture cells and adult flies to analyze the transcriptional effects of lithium and VPA and define mechanistic pathways. METHODS Transcriptional profiles were determined for Drosophila S2-cells and adult fly heads following lithium or VPA treatment. Gene ontology categories were identified using the DAVID functional annotation tool with a cut-off of p < 0.05. Significantly enriched GO terms were clustered using REVIGO and DAVID functional annotation clustering. Significance of overlap between transcript lists was determined with a Fisher's exact hypergeometric test. RESULTS Treatment of cultured cells and adult flies with lithium and VPA induces transcriptional responses in genes with similar ontology, with as most prominent immune response, neuronal development, neuronal function, and metabolism. CONCLUSIONS (i) Transcriptional effects of lithium and VPA in Drosophila S2 cells and heads show significant overlap. (ii) The overlap between transcriptional alterations in peripheral versus neuronal cells at the single gene level is negligible, but at the gene ontology and pathway level considerable overlap can be found. (iii) Lithium and VPA act on evolutionarily conserved pathways in Drosophila and mammalian models.
Collapse
Affiliation(s)
- L Herteleer
- Laboratory of Behavioral and Developmental Genetics, VIB-KULeuven, Herestraat 49 bus 602, 3000, Leuven, Belgium
- KULeuven Department of Human Genetics, Leuven, Belgium
- VIB Center for the Biology of Disease, Leuven, Belgium
| | - L Zwarts
- Laboratory of Behavioral and Developmental Genetics, VIB-KULeuven, Herestraat 49 bus 602, 3000, Leuven, Belgium
- KULeuven Department of Human Genetics, Leuven, Belgium
- VIB Center for the Biology of Disease, Leuven, Belgium
| | - K Hens
- Laboratory of Behavioral and Developmental Genetics, VIB-KULeuven, Herestraat 49 bus 602, 3000, Leuven, Belgium
- KULeuven Department of Human Genetics, Leuven, Belgium
- VIB Center for the Biology of Disease, Leuven, Belgium
- Centre for Neural Circuits and Behavior, Oxford University, Oxford, UK
| | - D Forero
- Laboratory of Behavioral and Developmental Genetics, VIB-KULeuven, Herestraat 49 bus 602, 3000, Leuven, Belgium
- KULeuven Department of Human Genetics, Leuven, Belgium
- VIB Center for the Biology of Disease, Leuven, Belgium
- Applied Molecular Genomics Group, VIB Department of Molecular Genetics, Leuven, Belgium
- University of Antwerp, Antwerp, Belgium
- Laboratory of Neuropsychiatric Genetics, School of Medicine, Antonio Narino University, Bogota, Colombia
| | - J Del-Favero
- Applied Molecular Genomics Group, VIB Department of Molecular Genetics, Leuven, Belgium
- University of Antwerp, Antwerp, Belgium
| | - P Callaerts
- Laboratory of Behavioral and Developmental Genetics, VIB-KULeuven, Herestraat 49 bus 602, 3000, Leuven, Belgium.
- KULeuven Department of Human Genetics, Leuven, Belgium.
- VIB Center for the Biology of Disease, Leuven, Belgium.
| |
Collapse
|
66
|
Leboyer M, Oliveira J, Tamouza R, Groc L. Is it time for immunopsychiatry in psychotic disorders? Psychopharmacology (Berl) 2016; 233:1651-60. [PMID: 26988846 DOI: 10.1007/s00213-016-4266-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/03/2016] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Immune dysregulation is suggested to play an important aetiological role in schizophrenia (SZ) and bipolar disorder (BD) potentially driving neurodevelopmental pathways. Immune dysfunction may precede the onset of psychiatric disorders and parallel the development of multiaxial comorbidity, including suicidal behaviour and metabolic and autoimmune disorders. Depicting the source of the chronic low-grade inflammatory component in SZ and BD is thus a research priority. Strong environmental insults early in life, such as infections, acting on a background of genetic vulnerability, may induce potent and enduring inflammatory responses setting a state of liability to second-hit environmental encounters, namely childhood trauma, drug abuse or additional infectious exposures. The immunogenetic background of susceptibility, suggested to be not only lying within the HLA locus but also implicating inherited deficits of the innate immune system, may amplify the harmful biological effects of infections/psychosocial stress leading to the manifestation of a broad range of psychiatric symptoms. OBJECTIVES The present review aims to discuss the following: (i) biological arguments in favour of a chronic low-grade inflammation in SZ and BD and its potential origin in the interaction between the immunogenetic background and environmental infectious insults, and (ii) the consequences of this inflammatory dysfunction by focusing on N-methyl-D-aspartate (NMDA) receptor antibodies and activation of the family of human endogenous retroviruses (HERVs). CONCLUSIONS Specific therapeutic approaches targeting immune pathways may lead the way to novel personalized medical interventions, improvement of quality of life and average life expectancy of psychiatric patients, if not even prevent mood episodes and psychotic symptoms.
Collapse
Affiliation(s)
- Marion Leboyer
- Université Paris-Est, INSERM U955, Laboratoire Psychiatrie Translationnelle, et AP-HP, DHU Pe-PSY, Pole de Psychiatrie et d'addictologie des Hôpitaux Universitaires Henri Mondor, et fondation FondaMental, F-94000, Créteil, France. .,Pôle de Psychiatrie, Hôpital Albert Chenevier, 40 rue de Mesly, 94000, Créteil, France.
| | - José Oliveira
- Université Paris-Est, INSERM U955, Laboratoire Psychiatrie Translationnelle, et AP-HP, DHU Pe-PSY, Pole de Psychiatrie et d'addictologie des Hôpitaux Universitaires Henri Mondor, et fondation FondaMental, F-94000, Créteil, France.,INSERM, U1160, Hôpital Saint Louis, Laboratoire Jean Dausset and LabEx Transplantex, Hôpital Saint Louis, Université Paris Diderot, Sorbonne Paris-Cité, Paris, France
| | - Ryad Tamouza
- INSERM, U1160, Hôpital Saint Louis, Laboratoire Jean Dausset and LabEx Transplantex, Hôpital Saint Louis, Université Paris Diderot, Sorbonne Paris-Cité, Paris, France
| | - Laurent Groc
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000, Bordeaux, France
| |
Collapse
|
67
|
Sato C, Hane M, Kitajima K. Relationship between ST8SIA2, polysialic acid and its binding molecules, and psychiatric disorders. Biochim Biophys Acta Gen Subj 2016; 1860:1739-52. [PMID: 27105834 DOI: 10.1016/j.bbagen.2016.04.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 04/15/2016] [Accepted: 04/16/2016] [Indexed: 12/21/2022]
Abstract
Polysialic acid (polySia, PSA) is a unique and functionally important glycan, particularly in vertebrate brains. It is involved in higher brain functions such as learning, memory, and social behaviors. Recently, an association between several genetic variations and single nucleotide polymorphisms (SNPs) of ST8SIA2/STX, one of two polysialyltransferase genes in vertebrates, and psychiatric disorders, such as schizophrenia (SZ), bipolar disorder (BD), and autism spectrum disorder (ASD), was reported based on candidate gene approaches and genome-wide studies among normal and mental disorder patients. It is of critical importance to determine if the reported mutations and SNPs in ST8SIA2 lead to impairments of the structure and function of polySia, which is the final product of ST8SIA2. To date, however, only a few such forward-directed studies have been conducted. In addition, the molecular mechanisms underlying polySia-involved brain functions remain unknown, although polySia was shown to have an anti-adhesive effect. In this report, we review the relationships between psychiatric disorders and polySia and/or ST8SIA2, and describe a new function of polySia as a regulator of neurologically active molecules, such as brain-derived neurotrophic factor (BDNF) and dopamine, which are deeply involved in psychiatric disorders. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Chihiro Sato
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| | - Masaya Hane
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Ken Kitajima
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
68
|
Lima LDA, Feio-dos-Santos AC, Belangero SI, Gadelha A, Bressan RA, Salum GA, Pan PM, Moriyama TS, Graeff-Martins AS, Tamanaha AC, Alvarenga P, Krieger FV, Fleitlich-Bilyk B, Jackowski AP, Brietzke E, Sato JR, Polanczyk GV, Mari JDJ, Manfro GG, do Rosário MC, Miguel EC, Puga RD, Tahira AC, Souza VN, Chile T, Gouveia GR, Simões SN, Chang X, Pellegrino R, Tian L, Glessner JT, Hashimoto RF, Rohde LA, Sleiman PMA, Hakonarson H, Brentani H. An integrative approach to investigate the respective roles of single-nucleotide variants and copy-number variants in Attention-Deficit/Hyperactivity Disorder. Sci Rep 2016; 6:22851. [PMID: 26947246 PMCID: PMC4780010 DOI: 10.1038/srep22851] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 02/23/2016] [Indexed: 02/07/2023] Open
Abstract
Many studies have attempted to investigate the genetic susceptibility of Attention-Deficit/Hyperactivity Disorder (ADHD), but without much success. The present study aimed to analyze both single-nucleotide and copy-number variants contributing to the genetic architecture of ADHD. We generated exome data from 30 Brazilian trios with sporadic ADHD. We also analyzed a Brazilian sample of 503 children/adolescent controls from a High Risk Cohort Study for the Development of Childhood Psychiatric Disorders, and also previously published results of five CNV studies and one GWAS meta-analysis of ADHD involving children/adolescents. The results from the Brazilian trios showed that cases with de novo SNVs tend not to have de novo CNVs and vice-versa. Although the sample size is small, we could also see that various comorbidities are more frequent in cases with only inherited variants. Moreover, using only genes expressed in brain, we constructed two "in silico" protein-protein interaction networks, one with genes from any analysis, and other with genes with hits in two analyses. Topological and functional analyses of genes in this network uncovered genes related to synapse, cell adhesion, glutamatergic and serotoninergic pathways, both confirming findings of previous studies and capturing new genes and genetic variants in these pathways.
Collapse
Affiliation(s)
- Leandro de Araújo Lima
- Inter-institutional Grad Program on Bioinformatics, University of São Paulo, São Paulo, SP, Brazil.,Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Sintia Iole Belangero
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Ary Gadelha
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Rodrigo Affonseca Bressan
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Giovanni Abrahão Salum
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pedro Mario Pan
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Tais Silveira Moriyama
- Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Ana Soledade Graeff-Martins
- Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
| | - Ana Carina Tamanaha
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Pedro Alvarenga
- Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
| | - Fernanda Valle Krieger
- Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
| | - Bacy Fleitlich-Bilyk
- Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
| | - Andrea Parolin Jackowski
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Elisa Brietzke
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - João Ricardo Sato
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Center of Mathematics, Computation and Cognition. Universidade Federal do ABC, Santo André, Brazil
| | - Guilherme Vanoni Polanczyk
- Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
| | - Jair de Jesus Mari
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Gisele Gus Manfro
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Conceição do Rosário
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Eurípedes Constantino Miguel
- Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
| | - Renato David Puga
- Hospital Israelita Albert Einstein, Clinical Research, São Paulo, SP, Brazil
| | - Ana Carolina Tahira
- Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Viviane Neri Souza
- Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Thais Chile
- Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Gisele Rodrigues Gouveia
- Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Sérgio Nery Simões
- Inter-institutional Grad Program on Bioinformatics, University of São Paulo, São Paulo, SP, Brazil.,Federal Institute of Espírito Santo, Serra, ES, Brazil
| | - Xiao Chang
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Renata Pellegrino
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lifeng Tian
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joseph T Glessner
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ronaldo Fumio Hashimoto
- Inter-institutional Grad Program on Bioinformatics, University of São Paulo, São Paulo, SP, Brazil.,Mathematics &Statistics Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Luis Augusto Rohde
- Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrick M A Sleiman
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Helena Brentani
- Inter-institutional Grad Program on Bioinformatics, University of São Paulo, São Paulo, SP, Brazil.,Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
| |
Collapse
|
69
|
Martin RF, Desai SP. An Examination of Horace Wells' Life as a Manifestation of Major Depressive and Seasonal Affective Disorders. J Anesth Hist 2016; 2:22-7. [PMID: 26898142 DOI: 10.1016/j.janh.2015.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 08/27/2015] [Accepted: 09/27/2015] [Indexed: 10/22/2022]
Abstract
Horace Wells was a Hartford, Connecticut, dentist whose practice flourished because of his clinical skills. He had an imaginative mind that propelled him to the forefront in several aspects of dentistry. Unfortunately, he suffered a recurrent "illness" that began in the winter and resolved in the spring. These symptoms were compatible with both major depressive disorder and seasonal affective disorder as a qualifier. Wells' introduction of nitrous oxide as an anesthetic was also associated with self-inhalation. This led to periods of hypomania, followed by depression. With the progression to ether, then chloroform, there was an episode of mania in January 1848, followed by depression and suicide.
Collapse
Affiliation(s)
- Ramon F Martin
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| | - Sukumar P Desai
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
70
|
Kim KH, Liu J, Sells Galvin RJ, Dage JL, Egeland JA, Smith RC, Merchant KM, Paul SM. Transcriptomic Analysis of Induced Pluripotent Stem Cells Derived from Patients with Bipolar Disorder from an Old Order Amish Pedigree. PLoS One 2015; 10:e0142693. [PMID: 26554713 PMCID: PMC4640865 DOI: 10.1371/journal.pone.0142693] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/26/2015] [Indexed: 01/24/2023] Open
Abstract
Fibroblasts from patients with Type I bipolar disorder (BPD) and their unaffected siblings were obtained from an Old Order Amish pedigree with a high incidence of BPD and reprogrammed to induced pluripotent stem cells (iPSCs). Established iPSCs were subsequently differentiated into neuroprogenitors (NPs) and then to neurons. Transcriptomic microarray analysis was conducted on RNA samples from iPSCs, NPs and neurons matured in culture for either 2 weeks (termed early neurons, E) or 4 weeks (termed late neurons, L). Global RNA profiling indicated that BPD and control iPSCs differentiated into NPs and neurons at a similar rate, enabling studies of differentially expressed genes in neurons from controls and BPD cases. Significant disease-associated differences in gene expression were observed only in L neurons. Specifically, 328 genes were differentially expressed between BPD and control L neurons including GAD1, glutamate decarboxylase 1 (2.5 fold) and SCN4B, the voltage gated type IV sodium channel beta subunit (-14.6 fold). Quantitative RT-PCR confirmed the up-regulation of GAD1 in BPD compared to control L neurons. Gene Ontology, GeneGo and Ingenuity Pathway Analysis of differentially regulated genes in L neurons suggest that alterations in RNA biosynthesis and metabolism, protein trafficking as well as receptor signaling pathways may play an important role in the pathophysiology of BPD.
Collapse
Affiliation(s)
- Kwi Hye Kim
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Jiangang Liu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Rachelle J. Sells Galvin
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Jeffrey L. Dage
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Janice A. Egeland
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Rosamund C. Smith
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
- * E-mail:
| | - Kalpana M. Merchant
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Steven M. Paul
- Mind and Brain Institute, Weill Cornell Medical College, New York, New York, United States of America
| |
Collapse
|
71
|
Drago A, Crisafulli C, Calabrò M, Serretti A. Enrichment pathway analysis. The inflammatory genetic background in Bipolar Disorder. J Affect Disord 2015; 179:88-94. [PMID: 25855618 DOI: 10.1016/j.jad.2015.03.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/18/2015] [Accepted: 03/18/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The pathophysiology of Bipolar Disorder (BD) is yet to be fully characterized. In the last years attention was focused on neurodevelopment or neurodegenerative events. In this context, hyper- and hypo- activation of inflammatory cascades may play a role in modulating the architecture and function of neuronal tissues. In the present paper we tested the enrichment of molecular pathways related to inflammatory cascades (IL-1, IL-2, IL-6, IL-8, TNF and INF) testing whether genes related to these systems hold more variations associated with the risk for BD than expected. METHODS ~7000 bipolar patients and controls with genome-wide data available from NIMH dataset were analyzed. SNPs were imputed, checked for quality control, pruned and tested for association (0.01<p). Fisher test was conducted to test the enrichment within the pathways and the association was permutated (10(5) times) to limit false positive findings. RESULTS As a result, IL-6, IL-8 and IFN related pathways held twice to thrice the number of expected variants associated with BD. These tests resisted the permutation analysis. LIMITATIONS The restricted number of inflammatory components included in the analysis and the lack of functional consequences for some of the SNPs analyzed may be biased; however, these choices helped the authors to lighten the statistical computational load for the analyses and at the same time included possibly hidden SNPs in linkage disequilibrium with the analyzed variations. CONCLUSIONS We bring evidence that the inflammatory cascades may be genetically varied in Bipolar patients. This genetic background may explain part of the pathophysiology of the disorder.
Collapse
Affiliation(s)
- Antonio Drago
- I.R.C.C.S. "San Giovanni di Dio", Fatebenefratelli, Brescia, Italy.
| | - Concetta Crisafulli
- Department of Biomedical Science and morphological and functional images, University of Messina, Messina, Italy
| | - Marco Calabrò
- Department of Biomedical Science and morphological and functional images, University of Messina, Messina, Italy; Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences - DIBINEM -, University of Bologna, Bologna, Italy
| |
Collapse
|
72
|
Dickerson F, Stallings C, Origoni A, Katsafanas E, Schweinfurth LAB, Savage CLG, Khushalani S, Yolken R. Pentraxin 3 is reduced in bipolar disorder. Bipolar Disord 2015; 17:409-14. [PMID: 25425421 DOI: 10.1111/bdi.12281] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/29/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Immunologic abnormalities have been found in bipolar disorder but pentraxin 3, a marker of innate immunity, has not been studied in this population. METHODS Levels of pentraxin 3 were measured in individuals with bipolar disorder, schizophrenia, and non-psychiatric controls. Linear regression models were used to compare the pentraxin 3 levels in each of the psychiatric groups to that in the control group, adjusting for demographic and clinical variables. Logistic regression models were used to calculate the odds ratios associated with levels of pentraxin 3 which differed from specified levels of the control group. RESULTS The sample consisted of 831 individuals: 256 with bipolar disorder, 309 with schizophrenia, and 266 without a psychiatric disorder. The levels of pentraxin 3 in the bipolar disorder, but not in the schizophrenia, group were significantly lower than those of controls, adjusting for age, gender, race, maternal education, smoking status, and body mass index (t = -3.78, p < 0.001). The individuals with bipolar disorder also had significantly increased odds of having low levels of pentraxin 3 relative to both the 10th and 25th percentile level of the controls and significantly decreased odds of having a level greater than the 75th and the 90th percentile level of the controls, adjusting for the same covariates. CONCLUSIONS Individuals with bipolar disorder have low levels of pentraxin 3 which may reflect impaired innate immunity. An increased understanding of the role of innate immunity in the etiopathogenesis of bipolar disorder might lead to new modalities for the diagnosis and treatment of this disorder.
Collapse
Affiliation(s)
- Faith Dickerson
- Stanley Research Program, Sheppard Pratt Health System, Baltimore, MD, USA
| | - Cassie Stallings
- Stanley Research Program, Sheppard Pratt Health System, Baltimore, MD, USA
| | - Andrea Origoni
- Stanley Research Program, Sheppard Pratt Health System, Baltimore, MD, USA
| | - Emily Katsafanas
- Stanley Research Program, Sheppard Pratt Health System, Baltimore, MD, USA
| | | | | | - Sunil Khushalani
- Stanley Research Program, Sheppard Pratt Health System, Baltimore, MD, USA
| | - Robert Yolken
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
73
|
Tondo L, Visioli C, Preti A, Baldessarini RJ. Bipolar disorders following initial depression: modeling predictive clinical factors. J Affect Disord 2015; 167:44-9. [PMID: 25082113 DOI: 10.1016/j.jad.2014.05.043] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/23/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Most first lifetime episodes among persons eventually diagnosed with bipolar disorder are depressive, often with years of delay to a final differentiation from unipolar major depression. To support early differentiation, we tested several predictive factors for association with later diagnoses of bipolar disorder. METHOD With data from mood-disorder patients with first-lifetime episodes of major depression, we used multivariate, logistic modeling and Bayesian methods including Receiver Operating Characteristic curves to evaluate ability of one or more selected factors to differentiate patients who later met DSM-IV-TR diagnostic criteria for bipolar disorder and not unipolar major depressive disorder. RESULTS We analyzed data from 2146 patients (642 bipolar, 1504 unipolar) at risk for 13 years following initial depressive episodes. In multivariate modeling for 812 subjects with information on all clinical factors considered, seven significantly and independently differentiated bipolar from unipolar disorders, ranking (by significance): (a) ≥4 previous depressive episodes, (b) suicidal acts, (c) cyclothymic temperament, (d) family history of bipolar disorder, (e) substance-abuse, (f) younger-at-onset, or onset-age <25, and (g) male sex; four of these (c, d, f, g) can be identified at illness-onset. Bayesian analysis indicated optimal sensitivity and specificity at 2-4 factors/person and correct classification of 64-67% of cases, and ROC analysis of factors/person yielded a significant area-under-the-curve of 0.72 [CI: 0.68-0.75]. CONCLUSIONS In multivariate modeling, 7 factors were significantly and independently associated with bipolar disorder diagnosed up to 13 years after initial depression.
Collapse
Affiliation(s)
- Leonardo Tondo
- International Consortium for Bipolar Disorder Research, Mailman Research Center, McLean Division of Massachusetts General Hospital, Boston, MA, USA; Centro Lucio Bini Mood Disorders Center, Cagliari and Rome, Italy.
| | - Caterina Visioli
- Centro Lucio Bini Mood Disorders Center, Cagliari and Rome, Italy
| | - Antonio Preti
- Centro Lucio Bini Mood Disorders Center, Cagliari and Rome, Italy
| | - Ross J Baldessarini
- International Consortium for Bipolar Disorder Research, Mailman Research Center, McLean Division of Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
74
|
Kember RL, Georgi B, Bailey-Wilson JE, Stambolian D, Paul SM, Bućan M. Copy number variants encompassing Mendelian disease genes in a large multigenerational family segregating bipolar disorder. BMC Genet 2015; 16:27. [PMID: 25887117 PMCID: PMC4382929 DOI: 10.1186/s12863-015-0184-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/19/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Bipolar affective disorder (BP) is a common, highly heritable psychiatric disorder characterized by periods of depression and mania. Using dense SNP genotype data, we characterized CNVs in 388 members of an Old Order Amish Pedigree with bipolar disorder. We identified CNV regions arising from common ancestral mutations by utilizing the pedigree information. By combining this analysis with whole genome sequence data in the same individuals, we also explored the role of compound heterozygosity. RESULTS Here we describe 541 inherited CNV regions, of which 268 are rare in a control population of European origin but present in a large number of Amish individuals. In addition, we highlight a set of CNVs found at higher frequencies in BP individuals, and within genes known to play a role in human development and disease. As in prior reports, we find no evidence for an increased burden of CNVs in BP individuals, but we report a trend towards a higher burden of CNVs in known Mendelian disease loci in bipolar individuals (BPI and BPII, p = 0.06). CONCLUSIONS We conclude that CNVs may be contributing factors in the phenotypic presentation of mood disorders and co-morbid medical conditions in this family. These results reinforce the hypothesis of a complex genetic architecture underlying BP disorder, and suggest that the role of CNVs should continue to be investigated in BP data sets.
Collapse
Affiliation(s)
- Rachel L Kember
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA.
| | - Benjamin Georgi
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA.
| | - Joan E Bailey-Wilson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD, USA.
| | - Dwight Stambolian
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Steven M Paul
- Appel Alzheimer's Disease Research Institute, Mind and Brain Institute, Weill Cornell Medical College, New York, NY, USA.
| | - Maja Bućan
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
75
|
Hasler G, Wolf A. Toward stratified treatments for bipolar disorders. Eur Neuropsychopharmacol 2015; 25:283-94. [PMID: 25595029 DOI: 10.1016/j.euroneuro.2014.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/07/2014] [Accepted: 12/23/2014] [Indexed: 01/02/2023]
Abstract
In bipolar disorders, there are unclear diagnostic boundaries with unipolar depression and schizophrenia, inconsistency of treatment guidelines, relatively long trial-and-error phases of treatment optimization, and increasing use of complex combination therapies lacking empirical evidence. These suggest that the current definition of bipolar disorders based on clinical symptoms reflects a clinically and etiologically heterogeneous entity. Stratification of treatments for bipolar disorders based on biomarkers and improved clinical markers are greatly needed to increase the efficacy of currently available treatments and improve the chances of developing novel therapeutic approaches. This review provides a theoretical framework to identify biomarkers and summarizes the most promising markers for stratification regarding beneficial and adverse treatment effects. State and stage specifiers, neuropsychological tests, neuroimaging, and genetic and epigenetic biomarkers will be discussed with respect to their ability to predict the response to specific pharmacological and psychosocial psychotherapies for bipolar disorders. To date, the most reliable markers are derived from psychopathology and history-taking, while no biomarker has been found that reliably predicts individual treatment responses. This review underlines both the importance of clinical diagnostic skills and the need for biological research to identify markers that will allow the targeting of treatment specifically to sub-populations of bipolar patients who are more likely to benefit from a specific treatment and less likely to develop adverse reactions.
Collapse
Affiliation(s)
- Gregor Hasler
- Department of Molecular Psychiatry, University Hospital of Psychiatry, University of Bern, Bolligenstrasse 111, 3000 Bern, Switzerland.
| | - Andreas Wolf
- Department of Molecular Psychiatry, University Hospital of Psychiatry, University of Bern, Bolligenstrasse 111, 3000 Bern, Switzerland
| |
Collapse
|
76
|
Mansur RB, Brietzke E, McIntyre RS. Is there a "metabolic-mood syndrome"? A review of the relationship between obesity and mood disorders. Neurosci Biobehav Rev 2015; 52:89-104. [PMID: 25579847 DOI: 10.1016/j.neubiorev.2014.12.017] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 12/19/2014] [Accepted: 12/31/2014] [Indexed: 12/12/2022]
Abstract
Obesity and mood disorders are highly prevalent and co-morbid. Epidemiological studies have highlighted the public health relevance of this association, insofar as both conditions and its co-occurrence are associated with a staggering illness-associated burden. Accumulating evidence indicates that obesity and mood disorders are intrinsically linked and share a series of clinical, neurobiological, genetic and environmental factors. The relationship of these conditions has been described as convergent and bidirectional; and some authors have attempted to describe a specific subtype of mood disorders characterized by a higher incidence of obesity and metabolic problems. However, the nature of this association remains poorly understood. There are significant inconsistencies in the studies evaluating metabolic and mood disorders; and, as a result, several questions persist about the validity and the generalizability of the findings. An important limitation in this area of research is the noteworthy phenotypic and pathophysiological heterogeneity of metabolic and mood disorders. Although clinically useful, categorical classifications in both conditions have limited heuristic value and its use hinders a more comprehensive understanding of the association between metabolic and mood disorders. A recent trend in psychiatry is to move toward a domain specific approach, wherein psychopathology constructs are agnostic to DSM-defined diagnostic categories and, instead, there is an effort to categorize domains based on pathogenic substrates, as proposed by the National Institute of Mental Health (NIMH) Research Domain Criteria Project (RDoC). Moreover, the substrates subserving psychopathology seems to be unspecific and extend into other medical illnesses that share in common brain consequences, which includes metabolic disorders. Overall, accumulating evidence indicates that there is a consistent association of multiple abnormalities in neuropsychological constructs, as well as correspondent brain abnormalities, with broad-based metabolic dysfunction, suggesting, therefore, that the existence of a "metabolic-mood syndrome" is possible. Nonetheless, empirical evidence is necessary to support and develop this concept. Future research should focus on dimensional constructs and employ integrative, multidisciplinary and multimodal approaches.
Collapse
Affiliation(s)
- Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada; Interdisciplinary Laboratory of Clinical Neuroscience (LINC), Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil.
| | - Elisa Brietzke
- Interdisciplinary Laboratory of Clinical Neuroscience (LINC), Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada
| |
Collapse
|