51
|
Fernandez-Guerra P, Lund M, Corydon TJ, Cornelius N, Gregersen N, Palmfeldt J, Bross P. Application of an Image Cytometry Protocol for Cellular and Mitochondrial Phenotyping on Fibroblasts from Patients with Inherited Disorders. JIMD Rep 2015; 27:17-26. [PMID: 26404456 DOI: 10.1007/8904_2015_494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/13/2015] [Accepted: 08/24/2015] [Indexed: 12/14/2022] Open
Abstract
Cellular phenotyping of human dermal fibroblasts (HDFs) from patients with inherited diseases provides invaluable information for diagnosis, disease aetiology, prognosis and assessing of treatment options. Here we present a cell phenotyping protocol using image cytometry that combines measurements of crucial cellular and mitochondrial parameters: (1) cell number and viability, (2) thiol redox status (TRS), (3) mitochondrial membrane potential (MMP) and (4) mitochondrial superoxide levels (MSLs). With our protocol, cell viability, TRS and MMP can be measured in one small cell sample and MSL on a parallel one. We analysed HDFs from healthy individuals after treatment with various concentrations of hydrogen peroxide (H2O2) for different intervals, to mimic the physiological effects of oxidative stress. Our results show that cell number, viability, TRS and MMP decreased, while MSL increased both in a time- and concentration-dependent manner. To assess the use of our protocol for analysis of HDFs from patients with inherited diseases, we analysed HDFs from two patients with very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD), one with a severe clinical phenotype and one with a mild one. HDFs from both patients displayed increased MSL without H2O2 treatment. Treatment with H2O2 revealed significant differences in MMP and MSL between HDFs from the mild and the severe patient. Our results establish the capacity of our protocol for fast analysis of cellular and mitochondrial parameters by image cytometry in HDFs from patients with inherited metabolic diseases.
Collapse
Affiliation(s)
- Paula Fernandez-Guerra
- Department of Clinical Medicine, Research Unit for Molecular Medicine (MMF), Aarhus University Hospital, Brendstrupgaardsvej 100, 8200, Aarhus, Denmark.
| | - M Lund
- Department of Clinical Medicine, Research Unit for Molecular Medicine (MMF), Aarhus University Hospital, Brendstrupgaardsvej 100, 8200, Aarhus, Denmark
| | - T J Corydon
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - N Cornelius
- Department of Clinical Medicine, Research Unit for Molecular Medicine (MMF), Aarhus University Hospital, Brendstrupgaardsvej 100, 8200, Aarhus, Denmark.,Department of clinical Genetics, Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - N Gregersen
- Department of Clinical Medicine, Research Unit for Molecular Medicine (MMF), Aarhus University Hospital, Brendstrupgaardsvej 100, 8200, Aarhus, Denmark
| | - J Palmfeldt
- Department of Clinical Medicine, Research Unit for Molecular Medicine (MMF), Aarhus University Hospital, Brendstrupgaardsvej 100, 8200, Aarhus, Denmark
| | - Peter Bross
- Department of Clinical Medicine, Research Unit for Molecular Medicine (MMF), Aarhus University Hospital, Brendstrupgaardsvej 100, 8200, Aarhus, Denmark.
| |
Collapse
|
52
|
Hamdi Y, Kaddour H, Vaudry D, Leprince J, Zarrouk A, Hammami M, Vaudry H, Tonon MC, Amri M, Masmoudi-Kouki O. Octadecaneuropeptide ODN prevents hydrogen peroxide-induced oxidative damage of biomolecules in cultured rat astrocytes. Peptides 2015; 71:56-65. [PMID: 26143507 DOI: 10.1016/j.peptides.2015.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/05/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
Abstract
Oxidative stress, associated with a variety of disorders including neurodegenerative diseases, is a major cause of cellular dysfunction and biomolecule damages which play a crucial role in neuronal apoptosis. Astrocytes specifically synthesize and release endozepines, a family of regulatory peptides, including the octadecaneuropeptide ODN. We have recently shown that ODN is a potent glioprotective agent that prevents hydrogen peroxide (H2O2)-induced oxidative stress and apoptosis. The purpose of the present study was to investigate the potential protective effect of ODN on oxidative-generated damage of biomolecules in cultured rat astrocytes. Incubation of cells with subnanomolar concentrations of ODN (0.1fM-0.1nM) inhibited H2O2-evoked reactive oxygen species accumulation and cell death in a concentration-dependent manner. Exposure of H2O2-treated cells to 0.1nM ODN inhibited superoxide anion generation and blocked oxidative damage of cell molecules caused by H2O2i.e. formation and accumulation of lipid oxidation products, malondialdehydes and conjugated dienes, and protein carbonyl compounds. Taken together, these data demonstrate for the first time that ODN prevents oxidative stress-induced alteration of cellular constituents. ODN is thus a potential candidate to reduce neuronal damage in various pathological conditions involving oxidative neurodegeneration.
Collapse
Affiliation(s)
- Yosra Hamdi
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El Manar, 2092 Tunis, Tunisia
| | - Hadhemi Kaddour
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El Manar, 2092 Tunis, Tunisia; CIRB, CNRS UMR 7241, INSERM U1050, College de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France; Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris City, 75205 Paris Cedex, France
| | - David Vaudry
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, University of Rouen, 76128, Mont-Saint-Aignan, France; Regional Platform for Cell Imaging of Haute-Normandie (PRIMACEN), Institute for Biomedical Research and Innovation, University of Rouen, Mont-Saint-Aignan, France
| | - Jérôme Leprince
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, University of Rouen, 76128, Mont-Saint-Aignan, France; Regional Platform for Cell Imaging of Haute-Normandie (PRIMACEN), Institute for Biomedical Research and Innovation, University of Rouen, Mont-Saint-Aignan, France
| | - Amira Zarrouk
- UR12ES05, Laboratory of Nutrition-Functional Food & Vascular Health, Faculty of Medicine, University of Monastir, Monastir 5019, Tunisia
| | - Mohamed Hammami
- UR12ES05, Laboratory of Nutrition-Functional Food & Vascular Health, Faculty of Medicine, University of Monastir, Monastir 5019, Tunisia
| | - Hubert Vaudry
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, University of Rouen, 76128, Mont-Saint-Aignan, France; Regional Platform for Cell Imaging of Haute-Normandie (PRIMACEN), Institute for Biomedical Research and Innovation, University of Rouen, Mont-Saint-Aignan, France
| | - Marie-Christine Tonon
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, University of Rouen, 76128, Mont-Saint-Aignan, France
| | - Mohamed Amri
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El Manar, 2092 Tunis, Tunisia
| | - Olfa Masmoudi-Kouki
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El Manar, 2092 Tunis, Tunisia.
| |
Collapse
|
53
|
Chiodi Boudet LN, Polizzi P, Romero MB, Robles A, Marcovecchio JE, Gerpe MS. Histopathological and biochemical evidence of hepatopancreatic toxicity caused by cadmium in white shrimp, Palaemonetes argentinus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 113:231-240. [PMID: 25521337 DOI: 10.1016/j.ecoenv.2014.11.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/04/2014] [Accepted: 11/25/2014] [Indexed: 06/04/2023]
Abstract
Cadmium (Cd) is one of the most common pollutants in the environment and induces a range of tissue changes or damages and organ dysfunction. The histopathological effects of Cd and lipid peroxidation (LPO) on hepatopancreas of the freshwater shrimp, Palaemonetes argentinus, were studied. Shrimp were obtained from two lagoons with contrasting environmental quality, De los Padres (LP, impacted site) and Nahuel Rucá (NR, reference site), and were exposed to 3.06 and 12.24µgCdL(-1) for 3, 7, 10 and 15 days. The health status of both populations was also evaluated by histological analysis of control individuals. After exposure, shrimp were transferred to clean water for 28 days to evaluate the recuperation capacity of hepatopancreas. Control shrimp from NR exhibited a normal hepatopancreas structure; unlike control shrimp from LP which showed several alterations. These results were attributed to the different environmental quality of lagoons. The exposure to Cd resulted in several alterations in the histological structure of the hepatopancreas of both populations. The observed alterations included haemocytic and connective infiltrations in the intertubular space, erosioned microvilli, ripple of basal lamina, atrophied epithelium and necrosis, however, the latter was only observed in shrimp from LP. The exposure also caused an increase of LPO levels in both populations. P. argentinus was able to repair the hepatopancreas structure from the damage caused by Cd, evidenced by the histopathological results and LPO levels. Obtained results are indicating that the histological analysis of the hepatopancreas proved to be a highly sensitive method for evaluating water quality, in both environmental and laboratory conditions.
Collapse
Affiliation(s)
- L N Chiodi Boudet
- Toxicología Ambiental, Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias Marinas, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - P Polizzi
- Toxicología Ambiental, Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias Marinas, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - M B Romero
- Toxicología Ambiental, Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias Marinas, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - A Robles
- Toxicología Ambiental, Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias Marinas, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - J E Marcovecchio
- Área de Oceanografía Química, Instituto Argentino de Oceanografía (IADO- CONICET/UNS), Bahía Blanca, Argentina
| | - M S Gerpe
- Toxicología Ambiental, Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias Marinas, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
54
|
Shahaduzzaman MD, Mehta V, Golden JE, Rowe DD, Green S, Tadinada R, Foran EA, Sanberg PR, Pennypacker KR, Willing AE. Human umbilical cord blood cells induce neuroprotective change in gene expression profile in neurons after ischemia through activation of Akt pathway. Cell Transplant 2015; 24:721-35. [PMID: 25413246 DOI: 10.3727/096368914x685311] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human umbilical cord blood (HUCB) cell therapies have shown promising results in reducing brain infarct volume and most importantly in improving neurobehavioral function in rat permanent middle cerebral artery occlusion, a model of stroke. In this study, we examined the gene expression profile in neurons subjected to oxygen-glucose deprivation (OGD) with or without HUCB treatment and identified signaling pathways (Akt/MAPK) important in eliciting HUCB-mediated neuroprotective responses. Gene chip microarray analysis was performed using RNA samples extracted from the neuronal cell cultures from four experimental groups: normoxia, normoxia+HUCB, OGD, and OGD+HUCB. Both quantitative RT-PCR and immunohistochemistry were carried out to verify the microarray results. Using the Genomatix software program, promoter regions of selected genes were compared to reveal common transcription factor-binding sites and, subsequently, signal transduction pathways. Under OGD condition, HUCB cells significantly reduced neuronal loss from 68% to 44% [one-way ANOVA, F(3, 16)=11, p=0.0003]. Microarray analysis identified mRNA expression of Prdx5, Vcam1, CCL20, Alcam, and Pax6 as being significantly altered by HUCB cell treatment. Inhibition of the Akt pathway significantly abolished the neuroprotective effect of HUCB cells [one-way ANOVA, F(3, 11)=8.663, p=0.0031]. Our observations show that HUCB neuroprotection is dependent on the activation of the Akt signaling pathway that increases transcription of the Prdx5 gene. We concluded that HUCB cell therapy would be a promising treatment for stroke and other forms of brain injury by modifying acute gene expression to promote neural cell protection.
Collapse
Affiliation(s)
- M D Shahaduzzaman
- Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Bastian A, Thorpe JE, Disch BC, Bailey-Downs LC, Gangjee A, Devambatla RKV, Henthorn J, Humphries KM, Vadvalkar SS, Ihnat MA. A small molecule with anticancer and antimetastatic activities induces rapid mitochondrial-associated necrosis in breast cancer. J Pharmacol Exp Ther 2015; 353:392-404. [PMID: 25720766 DOI: 10.1124/jpet.114.220335] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Therapy for treatment-resistant breast cancer provides limited options and the response rates are low. Therefore, the development of therapies with alternative chemotherapeutic strategies is necessary. AG311 (5-[(4-methylphenyl)thio]-9H-pyrimido[4,5-b]indole-2,4-diamine), a small molecule, is being investigated in preclinical and mechanistic studies for treatment of resistant breast cancer through necrosis, an alternative cell death mechanism. In vitro, AG311 induces rapid necrosis in numerous cancer cell lines as evidenced by loss of membrane integrity, ATP depletion, HMGB1 (high-mobility group protein B1) translocation, nuclear swelling, and stable membrane blebbing in breast cancer cells. Within minutes, exposure to AG311 also results in mitochondrial depolarization, superoxide production, and increased intracellular calcium levels. Additionally, upregulation of mitochondrial oxidative phosphorylation results in sensitization to AG311. This AG311-induced cell death can be partially prevented by treatment with the mitochondrial calcium uniporter inhibitor, Ru360 [(μ)[(HCO2)(NH3)4Ru]2OCl3], or an antioxidant, lipoic acid. Additionally, AG311 does not increase apoptotic markers such as cleavage of poly (ADP-ribose) polymerase (PARP) or caspase-3 and -7 activity. Importantly, in vivo studies in two orthotopic breast cancer mouse models (xenograft and allograft) demonstrate that AG311 retards tumor growth and reduces lung metastases better than clinically used agents and has no gross or histopathological toxicity. Together, these data suggest that AG311 is a first-in-class antitumor and antimetastatic agent inducing necrosis in breast cancer tumors, likely through the mitochondria.
Collapse
Affiliation(s)
- Anja Bastian
- Department of Pharmaceutical Sciences (A.B., J.E.T., B.C.D., M.A.I.), Department of Physiology (A.B.), Flow Cytometry and Imaging Laboratory (J.H.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; DormaTarg, Inc., Oklahoma City, Oklahoma (B.C.D., L.C.B.D., M.A.I.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (A.G., R.K.V.D.); and Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma (K.M.H., S.S.V.)
| | - Jessica E Thorpe
- Department of Pharmaceutical Sciences (A.B., J.E.T., B.C.D., M.A.I.), Department of Physiology (A.B.), Flow Cytometry and Imaging Laboratory (J.H.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; DormaTarg, Inc., Oklahoma City, Oklahoma (B.C.D., L.C.B.D., M.A.I.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (A.G., R.K.V.D.); and Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma (K.M.H., S.S.V.)
| | - Bryan C Disch
- Department of Pharmaceutical Sciences (A.B., J.E.T., B.C.D., M.A.I.), Department of Physiology (A.B.), Flow Cytometry and Imaging Laboratory (J.H.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; DormaTarg, Inc., Oklahoma City, Oklahoma (B.C.D., L.C.B.D., M.A.I.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (A.G., R.K.V.D.); and Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma (K.M.H., S.S.V.)
| | - Lora C Bailey-Downs
- Department of Pharmaceutical Sciences (A.B., J.E.T., B.C.D., M.A.I.), Department of Physiology (A.B.), Flow Cytometry and Imaging Laboratory (J.H.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; DormaTarg, Inc., Oklahoma City, Oklahoma (B.C.D., L.C.B.D., M.A.I.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (A.G., R.K.V.D.); and Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma (K.M.H., S.S.V.)
| | - Aleem Gangjee
- Department of Pharmaceutical Sciences (A.B., J.E.T., B.C.D., M.A.I.), Department of Physiology (A.B.), Flow Cytometry and Imaging Laboratory (J.H.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; DormaTarg, Inc., Oklahoma City, Oklahoma (B.C.D., L.C.B.D., M.A.I.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (A.G., R.K.V.D.); and Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma (K.M.H., S.S.V.)
| | - Ravi K V Devambatla
- Department of Pharmaceutical Sciences (A.B., J.E.T., B.C.D., M.A.I.), Department of Physiology (A.B.), Flow Cytometry and Imaging Laboratory (J.H.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; DormaTarg, Inc., Oklahoma City, Oklahoma (B.C.D., L.C.B.D., M.A.I.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (A.G., R.K.V.D.); and Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma (K.M.H., S.S.V.)
| | - Jim Henthorn
- Department of Pharmaceutical Sciences (A.B., J.E.T., B.C.D., M.A.I.), Department of Physiology (A.B.), Flow Cytometry and Imaging Laboratory (J.H.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; DormaTarg, Inc., Oklahoma City, Oklahoma (B.C.D., L.C.B.D., M.A.I.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (A.G., R.K.V.D.); and Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma (K.M.H., S.S.V.)
| | - Kenneth M Humphries
- Department of Pharmaceutical Sciences (A.B., J.E.T., B.C.D., M.A.I.), Department of Physiology (A.B.), Flow Cytometry and Imaging Laboratory (J.H.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; DormaTarg, Inc., Oklahoma City, Oklahoma (B.C.D., L.C.B.D., M.A.I.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (A.G., R.K.V.D.); and Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma (K.M.H., S.S.V.)
| | - Shraddha S Vadvalkar
- Department of Pharmaceutical Sciences (A.B., J.E.T., B.C.D., M.A.I.), Department of Physiology (A.B.), Flow Cytometry and Imaging Laboratory (J.H.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; DormaTarg, Inc., Oklahoma City, Oklahoma (B.C.D., L.C.B.D., M.A.I.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (A.G., R.K.V.D.); and Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma (K.M.H., S.S.V.)
| | - Michael A Ihnat
- Department of Pharmaceutical Sciences (A.B., J.E.T., B.C.D., M.A.I.), Department of Physiology (A.B.), Flow Cytometry and Imaging Laboratory (J.H.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; DormaTarg, Inc., Oklahoma City, Oklahoma (B.C.D., L.C.B.D., M.A.I.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (A.G., R.K.V.D.); and Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma (K.M.H., S.S.V.)
| |
Collapse
|
56
|
Tabassum S, Asim A, Khan RA, Arjmand F, Rajakumar D, Balaji P, Akbarsha MA. A multifunctional molecular entity Cu II–Sn IV heterobimetallic complex as a potential cancer chemotherapeutic agent: DNA binding/cleavage, SOD mimetic, topoisomerase Iα inhibitory and in vitro cytotoxic activities. RSC Adv 2015; 5:47439-47450. [DOI: 10.1039/c5ra07333b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
New chiral l-valine-derived Schiff base complexes with the bioactive heterocyclic ligand scaffold pyrazole (Hpz) were designed and synthesized with a view to find their potential as anticancer chemotherapeutic drug candidates.
Collapse
Affiliation(s)
- Sartaj Tabassum
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Ahmad Asim
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Rais Ahmad Khan
- Department of Chemistry
- King Saud University
- Riyadh
- Kingdom of Saudi Arabia
| | - Farukh Arjmand
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Dhivya Rajakumar
- Department of Biomedical Science
- Bharathidasan University
- Tiruchirappalli 620 024
- India
| | - Perumalsamy Balaji
- Department of Biomedical Science
- Bharathidasan University
- Tiruchirappalli 620 024
- India
| | - Mohammad Abdulkader Akbarsha
- Mahatma Gandhi-Doerenkamp Center (MGDC) for Alternatives to Use of Animals in Life Science Education
- Bharathidasan University
- Tiruchirappalli 620 024
- India
- Department of Food Science and Nutrition
| |
Collapse
|
57
|
Colín-Barenque L, Pedraza-Chaverri J, Medina-Campos O, Jimenez-Martínez R, Bizarro-Nevares P, González-Villalva A, Rojas-Lemus M, Fortoul TI. Functional and morphological olfactory bulb modifications in mice after vanadium inhalation. Toxicol Pathol 2014; 43:282-91. [PMID: 25492423 DOI: 10.1177/0192623314548668] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases, have olfaction impairment. These pathologies have also been linked to environmental pollutants. Vanadium is a pollutant, and its toxic mechanisms are related to the production of oxidative stress. In this study, we evaluated the effects of inhaled vanadium on olfaction, the olfactory bulb antioxidant, through histological and ultrastructural changes in granule cells. Mice in control group were made to inhale saline; the experimental group inhaled 0.02-M vanadium pentoxide (V2O5) for 1 hr twice a week for 4 weeks. Animals were sacrificed at 1, 2, 3, and 4 weeks after inhalation. Olfactory function was evaluated by the odorant test. The activity of glutathione peroxidase (GPx) and glutathione reductase (GR) was assayed in olfactory bulbs and processed for rapid Golgi method and ultrastructural analysis. Results show that olfactory function decreased at 4-week vanadium exposure; granule cells showed a decrease in dendritic spine density and increased lipofuscin, Golgi apparatus vacuolation, apoptosis, and necrosis. The activity of GPx and GR in the olfactory bulb was increased compared to that of the controls. Our results demonstrate that vanadium inhalation disturbs olfaction, histology, and the ultrastructure of the granule cells that might be associated with oxidative stress, a risk factor in neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Jose Pedraza-Chaverri
- Department of Biology, Facultad de Química, Ciudad Universitaria México, D.F., Mexico. UNAM
| | - Omar Medina-Campos
- Department of Biology, Facultad de Química, Ciudad Universitaria México, D.F., Mexico. UNAM
| | - Ruben Jimenez-Martínez
- Departament of Cellular and Tissular Biology, School of Medicine, México D.F., Mexico. UNAM
| | | | | | - Marcela Rojas-Lemus
- Departament of Cellular and Tissular Biology, School of Medicine, México D.F., Mexico. UNAM
| | - Teresa I Fortoul
- Departament of Cellular and Tissular Biology, School of Medicine, México D.F., Mexico. UNAM
| |
Collapse
|
58
|
Ávila Rodriguez M, Garcia-Segura LM, Cabezas R, Torrente D, Capani F, Gonzalez J, Barreto GE. Tibolone protects T98G cells from glucose deprivation. J Steroid Biochem Mol Biol 2014; 144 Pt B:294-303. [PMID: 25086299 DOI: 10.1016/j.jsbmb.2014.07.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 12/22/2022]
Abstract
The steroidal drug Tibolone is used for the treatment of climacteric symptoms and osteoporosis in post-menopausal women. Although Tibolone has been shown to exert neuroprotective actions after middle cerebral artery occlusion, its specific actions on glial cells have received very little attention. In the present study we have assessed whether Tibolone exerts protective actions in a human astrocyte cell model, the T98G cells, subjected to glucose deprivation. Our findings indicate that Tibolone decreases the effects of glucose deprivation on cell death, nuclear fragmentation, superoxide ion production, mitochondrial membrane potential, cytoplasmic calcium concentration and morphological parameters. These findings suggest that glial cells may participate in the neuroprotective actions of Tibolone in the brain.
Collapse
Affiliation(s)
- Marco Ávila Rodriguez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | | | - Ricardo Cabezas
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Daniel Torrente
- Department of Physics and Astronomy, The University of Texas at San Antonio, United States
| | - Francisco Capani
- Laboratorio de Citoarquitectura y Plasticidad Neuronal, Instituto de Investigaciones cardiológicas Prof. Dr. Alberto C. Taquini (ININCA), Facultad de Medicina, UBA-CONICET, Marcelo T. de Alvear 2270, C1122AAJ Buenos Aires, Argentina
| | - Janneth Gonzalez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia.
| |
Collapse
|
59
|
Nagayasu Y, Morita SY, Hayashi H, Miura Y, Yokoyama K, Michikawa M, Ito JI. Increasing cellular level of phosphatidic acid enhances FGF-1 production in long term-cultured rat astrocytes. Brain Res 2014; 1563:31-40. [DOI: 10.1016/j.brainres.2014.03.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 03/18/2014] [Accepted: 03/22/2014] [Indexed: 11/15/2022]
|
60
|
Cellular protection using Flt3 and PI3Kα inhibitors demonstrates multiple mechanisms of oxidative glutamate toxicity. Nat Commun 2014; 5:3672. [PMID: 24739485 DOI: 10.1038/ncomms4672] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/17/2014] [Indexed: 02/07/2023] Open
Abstract
Glutamate-induced oxidative stress is a major contributor to neurodegenerative diseases. Here, we identify small-molecule inhibitors of this process. We screen a kinase inhibitor library on neuronal cells and identify Flt3 and PI3Kα inhibitors as potent protectors against glutamate toxicity. Both inhibitors prevented reactive oxygen species (ROS) generation, mitochondrial hyperpolarization and lipid peroxidation in neuronal cells, but they do so by distinct molecular mechanisms. The PI3Kα inhibitor protects cells by inducing partial restoration of depleted glutathione levels and accumulation of intracellular amino acids, whereas the Flt3 inhibitor prevents lipid peroxidation, a key mechanism of glutamate-mediated toxicity. We also demonstrate that glutamate toxicity involves a combination of ferroptosis, necrosis and AIF-dependent apoptosis. We confirm the protective effect by using multiple inhibitors of these kinases and multiple cell types. Our results not only identify compounds that protect against glutamate-stimulated oxidative stress, but also provide new insights into the mechanisms of glutamate toxicity in neurons.
Collapse
|
61
|
Zhang G, Zou X, Miao S, Chen J, Du T, Zhong L, Ju G, Liu G, Zhu Y. The anti-oxidative role of micro-vesicles derived from human Wharton-Jelly mesenchymal stromal cells through NOX2/gp91(phox) suppression in alleviating renal ischemia-reperfusion injury in rats. PLoS One 2014; 9:e92129. [PMID: 24637475 PMCID: PMC3956873 DOI: 10.1371/journal.pone.0092129] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/17/2014] [Indexed: 01/03/2023] Open
Abstract
Oxidative stress is known as one of the main contributors in renal ischemia/reperfusion injury (IRI). Here we hypothesized that Micro-vesicles (MVs) derived from human Wharton Jelly mesenchymal stromal cells (hWJMSCs) could protect kidney against IRI through mitigating oxidative stress. MVs isolated from hWJMSCs conditioned medium were injected intravenously in rats immediately after unilateral kidney ischemia for 60 min. The animals were sacrificed at 24h, 48h and 2 weeks respectively after reperfusion. Our results show that the expression of NOX2 and reactive oxygen species (ROS) in injured kidney tissues was declined and the oxidative stress was alleviated in MVs group at 24h and 48h in parallel with the reduced apoptosis and enhanced proliferation of cells. IRI-initiated fibrosis was abrogated by MVs coincident with renal function amelioration at 2 weeks. NOX2 was also found down-regulated by MVs both in human umbilical vein endothelial cells (HUVEC) and NRK-52E cell line under hypoxia injury model in vitro. In conclusion, a single administration of hWJMSC-MVs might protect the kidney by alleviation of the oxidative stress in the early stage of kidney IRI through suppressing NOX2 expression. Moreover, it could reduce the fibrosis and improved renal function.
Collapse
Affiliation(s)
- Guangyuan Zhang
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangyu Zou
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuai Miao
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinjun Chen
- Shanghai Key Laboratory of Tissue Engineering, Tissue Engineering Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Du
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Urology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Liang Zhong
- Department of Urology, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guanqun Ju
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guohua Liu
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (YZ); (GL)
| | - Yingjian Zhu
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (YZ); (GL)
| |
Collapse
|
62
|
Banerjee P, Mehta A, Shanthi C. Investigation into the cyto-protective and wound healing properties of cryptic peptides from bovine Achilles tendon collagen. Chem Biol Interact 2014; 211:1-10. [DOI: 10.1016/j.cbi.2014.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/03/2013] [Accepted: 01/07/2014] [Indexed: 11/26/2022]
|
63
|
Sharma T, Airao V, Panara N, Vaishnav D, Ranpariya V, Sheth N, Parmar S. Solasodine protects rat brain against ischemia/reperfusion injury through its antioxidant activity. Eur J Pharmacol 2014; 725:40-6. [DOI: 10.1016/j.ejphar.2014.01.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 12/20/2013] [Accepted: 01/07/2014] [Indexed: 02/04/2023]
|
64
|
The relationship between inflammatory biomarkers and telomere length in an occupational prospective cohort study. PLoS One 2014; 9:e87348. [PMID: 24475279 PMCID: PMC3903646 DOI: 10.1371/journal.pone.0087348] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 12/20/2013] [Indexed: 11/23/2022] Open
Abstract
Background Chronic inflammation from recurring trauma is an underlying pathophysiological basis of numerous diseases. Furthermore, it may result in cell death, scarring, fibrosis, and loss of tissue function. In states of inflammation, subsequent increases in oxidative stress and cellular division may lead to the accelerated erosion of telomeres, crucial genomic structures which protect chromosomes from decay. However, the association between plasma inflammatory marker concentrations and telomere length has been inconsistent in previous studies. Objective The purpose of this study was to determine the longitudinal association between telomere length and plasma inflammatory biomarker concentrations including: CRP, SAA, sICAM-1, sVCAM-1, VEGF, TNF-α, IL-1β, IL-2, IL-6, IL-8, and IL-10. Methods The longitudinal study population consisted of 87 subjects. The follow-up period was approximately 2 years. Plasma inflammatory biomarker concentrations were assessed using highly sensitive electrochemiluminescent assays. Leukocyte relative telomere length was assessed using Real-Time qPCR. Linear mixed effects regression models were used to analyze the association between repeated-measurements of relative telomere length as the outcome and each inflammatory biomarker concentration as continuous exposures separately. The analyses controlled for major potential confounders and white blood cell differentials. Results At any follow-up time, each incremental ng/mL increase in plasma CRP concentration was associated with a decrease in telomere length of −2.6×10−2 (95%CI: −4.3×10−2, −8.2×10−3, p = 0.004) units. Similarly, the estimate for the negative linear association between SAA and telomere length was −2.6×10−2 (95%CI:−4.5×10−2, −6.1×10−3, p = 0.011). No statistically significant associations were observed between telomere length and plasma concentrations of pro-inflammatory interleukins, TNF-α, and VEGF. Conclusions Findings from this study suggest that increased systemic inflammation, consistent with vascular injury, is associated with decreased leukocyte telomere length.
Collapse
|
65
|
Cervellati F, Cervellati C, Romani A, Cremonini E, Sticozzi C, Belmonte G, Pessina F, Valacchi G. Hypoxia induces cell damage via oxidative stress in retinal epithelial cells. Free Radic Res 2014; 48:303-12. [PMID: 24286355 DOI: 10.3109/10715762.2013.867484] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Retinal diseases (RD), including diabetic retinopathy, are among the most important eye diseases in industrialized countries. RD is characterized by abnormal angiogenesis associated with an increase in cell proliferation and apoptosis. Hypoxia could be one of the triggers of the pathogenic mechanism of this disease. A key regulatory component of the cell's hypoxia response system is hypoxia-inducible factor 1 alpha (HIF-1α). It has been demonstrated that the induction of HIF-1α expression can be also achieved in vitro by exposure with cobalt chloride (CoCl2), leading to an intracellular hypoxia-like state. In this study we have investigated the effects of CoCl2 on human retinal epithelium cells (hRPE), which are an integral part of the blood-retinal barrier, with the aim to determine the possible role of oxidative stress in chemical hypoxia-induced damage in retinal epithelial cells. Our data showed that CoCl2 treatment is able to induce HIF-1α expression, that parallels with the formation of reactive oxygen species (ROS) and the increase of lipid 8-isoprostanes and 4-hydroxynonenal (4-HNE) protein adducts levels. In addition we observed the activation of the redox-sensitive transcription factor nuclear factor-kappaB (NFkB) by CoCl2 which can explain the increased levels of vascular endothelial growth factor (VEGF). The increased number of dead cells seems to be related to an apoptotic process. Taken together these evidences suggest that oxidative stress induced by hypoxia might be involved in RD development through the stimulation of two key-events of RD such as neo-angiogenesis and apoptosis.
Collapse
Affiliation(s)
- F Cervellati
- Department of Life Sciences and Biotechnology, University of Ferrara , Ferrara , Italy
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Cho H, Sajja V, VandeVord P, Lee Y. Blast induces oxidative stress, inflammation, neuronal loss and subsequent short-term memory impairment in rats. Neuroscience 2013; 253:9-20. [DOI: 10.1016/j.neuroscience.2013.08.037] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/06/2013] [Accepted: 08/21/2013] [Indexed: 12/17/2022]
|
67
|
Bajić A, Spasić M, Andjus PR, Savić D, Parabucki A, Nikolić-Kokić A, Spasojević I. Fluctuating vs. continuous exposure to H₂O₂: the effects on mitochondrial membrane potential, intracellular calcium, and NF-κB in astroglia. PLoS One 2013; 8:e76383. [PMID: 24124554 PMCID: PMC3790680 DOI: 10.1371/journal.pone.0076383] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/27/2013] [Indexed: 01/08/2023] Open
Abstract
The effects of H2O2 are widely studied in cell cultures and other in vitro systems. However, such investigations are performed with the assumption that H2O2 concentration is constant, which may not properly reflect in vivo settings, particularly in redox-turbulent microenvironments such as mitochondria. Here we introduced and tested a novel concept of fluctuating oxidative stress. We treated C6 astroglial cells and primary astrocytes with H2O2, using three regimes of exposure - continuous, as well as fluctuating at low or high rate, and evaluated mitochondrial membrane potential and other parameters of mitochondrial activity - respiration, reducing capacity, and superoxide production, as well as intracellular ATP, intracellular calcium, and NF-κB activation. When compared to continuous exposure, fluctuating H2O2 induced a pronounced hyperpolarization in mitochondria, whereas the activity of electron transport chain appears not to be significantly affected. H2O2 provoked a decrease of ATP level and an increase of intracellular calcium concentration, independently of the regime of treatment. However, fluctuating H2O2 induced a specific pattern of large-amplitude fluctuations of calcium concentration. An impact on NF-κB activation was observed for high rate fluctuations, whereas continuous and low rate fluctuating oxidative stress did not provoke significant effects. Presented results outline the (patho)physiological relevance of redox fluctuations.
Collapse
Affiliation(s)
- Aleksandar Bajić
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Mihajlo Spasić
- Department of Physiology, Institute for Biological Research ‘Siniša Stanković’, University of Belgrade, Belgrade, Serbia
| | - Pavle R. Andjus
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Danijela Savić
- Department of Neurobiology, Institute for Biological Research ‘Siniša Stanković’, University of Belgrade, Belgrade, Serbia
| | - Ana Parabucki
- Department of Neurobiology, Institute for Biological Research ‘Siniša Stanković’, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Nikolić-Kokić
- Department of Physiology, Institute for Biological Research ‘Siniša Stanković’, University of Belgrade, Belgrade, Serbia
| | - Ivan Spasojević
- Life Sciences Department, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
68
|
Huang YY, Nagata K, Tedford CE, McCarthy T, Hamblin MR. Low-level laser therapy (LLLT) reduces oxidative stress in primary cortical neurons in vitro. JOURNAL OF BIOPHOTONICS 2013; 6:829-38. [PMID: 23281261 PMCID: PMC3651776 DOI: 10.1002/jbio.201200157] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 11/13/2012] [Accepted: 11/26/2012] [Indexed: 05/18/2023]
Abstract
Low-level laser (light) therapy (LLLT) involves absorption of photons being in the mitochondria of cells leading to improvement in electron transport, increased mitochondrial membrane potential (MMP), and greater ATP production. Low levels of reactive oxygen species (ROS) are produced by LLLT in normal cells that are beneficial. We exposed primary cultured murine cortical neurons to oxidative stressors: hydrogen peroxide, cobalt chloride and rotenone in the presence or absence of LLLT (3 J/cm², CW, 810 nm wavelength laser, 20 mW/cm²). Cell viability was determined by Prestoblue™ assay. ROS in mitochondria was detected using Mito-sox, while ROS in cytoplasm was detected with CellRox™. MMP was measured with tetramethylrhodamine. In normal neurons LLLT elevated MMP and increased ROS. In oxidatively-stressed cells LLLT increased MMP but reduced high ROS levels and protected cultured cortical neurons from death. Although LLLT increases ROS in normal neurons, it reduces ROS in oxidatively-stressed neurons. In both cases MMP is increased. These data may explain how LLLT can reduce clinical oxidative stress in various lesions while increasing ROS in cells in vitro.
Collapse
Affiliation(s)
- Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston MA, USA
- Department of Pathology, Guangxi Medical University, Nanning, Guangxi, China
| | - Kazuya Nagata
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston MA 02114, USA
- Graduate School of Medicine, University of Tokyo, Japan
| | | | | | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| |
Collapse
|
69
|
Brickley DR, Agyeman AS, Kopp RF, Hall BA, Harbeck MC, Belova L, Volden PA, Wu W, Roe MW, Conzen SD. Serum- and glucocorticoid-induced protein kinase 1 (SGK1) is regulated by store-operated Ca2+ entry and mediates cytoprotection against necrotic cell death. J Biol Chem 2013; 288:32708-32719. [PMID: 24043625 DOI: 10.1074/jbc.m113.507210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serum and glucocorticoid-regulated kinase 1 (SGK1) encodes a phosphatidylinositol 3-kinase-dependent serine/threonine kinase that is rapidly induced in response to cellular stressors and is an important cell survival signal. Previous studies have suggested that an increase in cytoplasmic Ca(2+) concentration ([Ca(2+)]c) is required for increased SGK1 expression, but the subcellular source of Ca(2+) regulating SGK1 transcription remains uncertain. Activation of endoplasmic reticulum stress (ERS) with thapsigargin (TG) increased SGK1 mRNA and protein expression in MDA-MB-231 cells. Intracellular Ca(2+) imaging revealed that store-operated Ca(2+) entry played a prominent role in SGK1 induction by TG. Neither ERS nor release of Ca(2+) from the ER was sufficient to activate SGK1. Prolonged elevation of intracellular Ca(2+) levels, however, triggered cell death with a much greater proportion of the cells undergoing necrosis rather than apoptosis. A relative increase in the percentage of cells undergoing necrosis was observed in cells expressing a short hairpin RNA targeted to the SGK1 gene. Necrotic cell death evoked by cytoplasmic Ca(2+) overloading was associated with persistent hyperpolarization of the inner mitochondrial membrane and a modest increase in calpain activation, but did not involve detectable caspase 3 or caspase 7 activation. The effects of cytoplasmic Ca(2+) overloading on mitochondrial membrane potential were significantly reduced in cells expressing SGK1 compared with SGK1-depleted cells. Our findings indicate that store-operated Ca(2+) entry regulates SGK1 expression in epithelial cells and suggest that SGK1-dependent cytoprotective signaling involves effects on maintaining mitochondrial function.
Collapse
Affiliation(s)
| | | | | | - Ben A Hall
- From the Sections of Hematology/Oncology
| | | | | | | | - Wei Wu
- From the Sections of Hematology/Oncology
| | - Michael W Roe
- the Departments of Medicine; Cell and Developmental Biology, The State University of New York Upstate Medical University, Syracuse, New York 13210.
| | - Suzanne D Conzen
- From the Sections of Hematology/Oncology; Ben May Department for Cancer Biology, The University of Chicago, Chicago, Illinois 60637.
| |
Collapse
|
70
|
Kim EH, Kim IH, Lee MJ, Thach Nguyen C, Ha JA, Lee SC, Choi S, Choi KT, Pyo S, Rhee DK. Anti-oxidative stress effect of red ginseng in the brain is mediated by peptidyl arginine deiminase type IV (PADI4) repression via estrogen receptor (ER) β up-regulation. JOURNAL OF ETHNOPHARMACOLOGY 2013; 148:474-485. [PMID: 23665163 DOI: 10.1016/j.jep.2013.04.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/05/2013] [Accepted: 04/18/2013] [Indexed: 06/02/2023]
Abstract
AIM OF THE STUDY Ginseng has been used as an anti-stress agent, and its active ingredient, ginsenoside, is similar in structure to estrogen. However, the effect of ginseng on the stressed brain is not completely understood. The aim of this study is to understand systematically how red ginseng (RG) affects gene expressions in the brain of immobilization (IMO) stressed mice to elucidate its underlying mechanism. MATERIALS AND METHODS For in vivo experiments, mice were stressed by immobilization for 30, 45, or 60 min, and gene expression in the mice brain was analyzed by microarray and system biology. Apoptosis was measured by terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP nick-end labeling (TUNEL) staining, and gene expression by Western blot or qPCR. For in vitro study, the SK-N-SH neuroblastoma cells were stressed by H2O2 exposure. The resultant cytotoxicity was measured by MTT assay, and gene expression by Western blot, ELISA, or qPCR. RESULTS Microarray analysis of genes in IMO stressed mice brains showed that RG administration prior to IMO stress downregulated >40 genes including peptidyl arginine deiminase type 4 (PADI4). Interestingly, PADI4 was up-regulated by various stresses such as H2O2, acrylamide, and tunicamycin in neuroblastoma SK-N-SH cells but inhibited by RG. IMO stress and in vitro H2O2 stress depressed the estrogen receptor (ER)-β expression but not ERα. However, RG treatment increased ERβ expression both in vivo and in vitro. Comparative analysis regarding the networks by systems biology revealed that TNF-α plays a critical role in IMO stress, and the cell death associated network was much higher than other categories. Consistently, the IMO stress induced TNF-α and Cox-2 expressions, malondialdehyde (MDA), and cell death in the brain, whereas RG administration inhibited these inductions in vivo. siRNA and transient expression studies revealed that ERβ inhibited the PADI4 expression. CONCLUSION PADI4 could be used as an oxidative stress marker. RG seems to inhibit oxidative stress-inducible PADI4 by up-regulating ERβ expression in the brain thus protecting brain cells from apoptosis.
Collapse
Affiliation(s)
- Eun-Hye Kim
- School of Pharmacy, Sungkyunkwan University, Su-Won 440-746, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
DeSantiago J, Bare DJ, Banach K. Ischemia/Reperfusion injury protection by mesenchymal stem cell derived antioxidant capacity. Stem Cells Dev 2013; 22:2497-507. [PMID: 23614555 DOI: 10.1089/scd.2013.0136] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation after ischemia/reperfusion (I/R) injury reduces infarct size and improves cardiac function. We used mouse ventricular myocytes (VMs) in an in vitro model of I/R to determine the mechanism by which MSCs prevent reperfusion injury by paracrine signaling. Exposure of mouse VMs to an ischemic challenge depolarized their mitochondrial membrane potential (Ψmito), increased their diastolic Ca(2+), and significantly attenuated cell shortening. Reperfusion of VMs with Ctrl tyrode or MSC-conditioned tyrode (ConT) resulted in a transient increase of the Ca(2+) transient amplitudes in all cells. ConT-reperfused cells exhibited a decreased number early after depolarization (EADs) (ConT: 6.3% vs. Ctrl: 28.4%) and prolonged survival (ConT: 58% vs. Ctrl: 33%). Ψmito rapidly recovered in Ctrl as well as ConT-treated VMs on reperfusion; however, in Ctrl solution, an exaggerated hyperpolarization of Ψmito was determined that preceded the collapse of Ψmito. The ability of ConT to attenuate the hyperpolarization of Ψmito was suppressed on inhibition of the PI3K/Akt signaling pathway or IK,ATP. However, protection of Ψmito was best mimicked by the reactive oxygen species (ROS) scavenger mitoTEMPO. Analysis of ConT revealed a significant antioxidant capacity that was linked to the presence of extracellular superoxide dismutase (SOD3) in ConT. In conclusion, MSC ConT protects VMs from simulated I/R injury by its SOD3-mediated antioxidant capacity and by delaying the recovery of Ψmito through Akt-mediated opening of IK,ATP. These changes attenuate reperfusion-induced ROS production and prevent the opening of the permeability transition pore and arrhythmic Ca(2+) release.
Collapse
Affiliation(s)
- Jaime DeSantiago
- Section of Cardiology, Department of Medicine, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois 60612-7323, USA
| | | | | |
Collapse
|
72
|
Nomura K, Lee M, Banks C, Lee G, Morris BJ. An ASK1-p38 signalling pathway mediates hydrogen peroxide-induced toxicity in NG108-15 neuronal cells. Neurosci Lett 2013; 549:163-7. [PMID: 23742763 DOI: 10.1016/j.neulet.2013.05.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 12/01/2022]
Abstract
Reactive oxygen species (ROS) are believed to be involved in many forms of neurodegeneration, including ischaemic infarct damage and Alzheimer's disease. Despite the known involvement of p38 and JNK MAP kinases in mediating apoptosis and cell death in a variety of cell types, the details of the signalling pathways activated in neuronal cells by ROS are poorly characterised. Recently TAK1 (MAP3K7), a kinase upstream of JNK and p38, has attracted attention as a possible mediator of ischaemic cell death. This study tested the hypothesis that hydrogen peroxide (H2O2), which produces ROS, induces apoptosis in the NG108-15 neuronal cell line via activation of either TAK1 or the related kinase ASK1 (MAP3K5). H2O2 caused a concentration-dependent reduction in cell viability associated with caspase 3 activation. Loss of cell viability was inhibited by a selective caspase 3 inhibitor, and by the p38 inhibitor SB203580, but was not affected by the JNK inhibitor SP600125. The selective TAK1 inhibitor 5Z-7-oxozeaenol (5Z-7) exacerbated the loss of cell viability, whereas the ASK1 inhibitor NQDI-1 completely prevented caspase activation and cell death. These results show that pharmacological inhibition of ASK1 is neuroprotective, implicating an ASK1-p38 signalling pathway in ROS-induced apoptosis in neurones. The results also imply that the role of TAK1 may be neuroprotective rather than pro-degenerative.
Collapse
Affiliation(s)
- Koji Nomura
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | |
Collapse
|
73
|
Li WA, Moore-Langston S, Chakraborty T, Rafols JA, Conti AC, Ding Y. Hyperglycemia in stroke and possible treatments. Neurol Res 2013; 35:479-91. [PMID: 23622737 DOI: 10.1179/1743132813y.0000000209] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hyperglycemia affects approximately one-third of acute ischemic stroke patients and is associated with poor clinical outcomes. In experimental and clinical stroke studies, hyperglycemia has been shown to be detrimental to the penumbral tissue for several reasons. First, hyperglycemia exacerbates both calcium imbalance and the accumulation of reactive oxygen species (ROS) in neurons, leading to increased apoptosis. Second, hyperglycemia fuels anaerobic energy production, causing lactic acidosis, which further stresses neurons in the penumbral regions. Third, hyperglycemia decreases blood perfusion after ischemic stroke by lowering the availability of nitric oxide (NO), which is a crucial mediator of vasodilation. Lastly, hyperglycemia intensifies the inflammatory response after stroke, causing edema, and hemorrhage through disruption of the blood brain barrier and degradation of white matter, which leads to a worsening of functional outcomes. Many neuroprotective treatments addressing hyperglycemia in stroke have been implemented in the past decade. Early clinical use of insulin provided mixed results due to insufficiently controlled glucose levels and heterogeneity of patient population. Recently, however, the latest Stroke Hyperglycemia Insulin Network Effort trial has addressed the shortcomings of insulin therapy. While glucagon-like protein-1 administration, hyperbaric oxygen preconditioning, and ethanol therapy appear promising, these treatments remain in their infancy and more research is needed to better understand the mechanisms underlying hyperglycemia-induced injuries. Elucidation of these mechanistic pathways could lead to the development of rational treatments that reduce hyperglycemia-associated injuries and improve functional outcomes for ischemic stroke patients.
Collapse
Affiliation(s)
- William A Li
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | | | | | | |
Collapse
|
74
|
Yan KH, Lin YW, Hsiao CH, Wen YC, Lin KH, Liu CC, Hsieh MC, Yao CJ, Yan MDE, Lai GM, Chuang SE, Lee LM. Mefloquine induces cell death in prostate cancer cells and provides a potential novel treatment strategy in vivo.. Oncol Lett 2013; 5:1567-1571. [PMID: 23759954 PMCID: PMC3678863 DOI: 10.3892/ol.2013.1259] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/04/2013] [Indexed: 12/03/2022] Open
Abstract
Mefloquine (MQ) is currently in clinical use as a prophylactic treatment for malaria. Previous studies have shown that MQ induces oxidative stress in vitro. The present study investigated the anticancer effects of MQ treatment in PC3 cells. The cell viability was evaluated using sulphorhodamine-B (SRB) staining, while annexin V and propidium iodide (PI) were used as an assay for cell death. Reactive oxygen species (ROS) formation was detected with 2′,7′-dichlorofluorescein-diacetate (DCFH-DA), a sensitive intracellular probe, and the alteration of cellular status was defined by trypan blue staining. The results of the present study indicated that MQ has a high cytotoxicity that causes cell death in PC3 cells. MQ markedly inhibited the PC3 cells through non-apoptotic cell death. MQ also induced significant ROS production. The MQ treatment mediated G1 cell cycle arrest and cyclin D1 accumulation through p21 upregulation in the PC3 cells. Moreover, the use of MQ improved the survival of the treatment group compared with the control group in the experimental mice. The present study indicates that MQ possesses potential therapeutic efficacy for the treatment of prostate cancer (PCa) in vivo. These findings provide insights that may aid the further optimization and application of new and existing therapeutic options.
Collapse
Affiliation(s)
- Kun-Huang Yan
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan, R.O.C
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Yan KH, Yao CJ, Hsiao CH, Lin KH, Lin YW, Wen YC, Liu CC, Yan MDE, Chuang SE, Lai GM, Lee LM. Mefloquine exerts anticancer activity in prostate cancer cells via ROS-mediated modulation of Akt, ERK, JNK and AMPK signaling. Oncol Lett 2013; 5:1541-1545. [PMID: 23760395 PMCID: PMC3678889 DOI: 10.3892/ol.2013.1211] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/03/2013] [Indexed: 11/06/2022] Open
Abstract
Mefloquine (MQ) is a prophylactic anti-malarial drug. Previous studies have shown that MQ induces oxidative stress in vitro. Evidence indicates that reactive oxygen species (ROS) may be used as a therapeutic modality to kill cancer cells. This study investigated whether MQ also inhibits prostate cancer (PCa) cell growth. We used sulforhodamine B (SRB) staining to determine cell viability. MQ has a highly selective cytotoxicity that inhibits PCa cell growth. The antitumor effect was most significant when examined using a colony formation assay. MQ also induces hyperpolarization of the mitochondrial membrane potential (MMP), as well as ROS generation. The blockade of MQ-induced anticancer effects by N-acetyl cysteine (NAC) pre-treatment confirmed the role of ROS. This indicates that the MQ-induced anticancer effects are caused primarily by increased ROS generation. Moreover, we observed that MQ-mediated ROS simultaneously downregulated Akt phosphorylation and activated extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and adenosine monophosphate-activated protein kinase (AMPK) signaling in PC3 cells. These findings provide insights for further anticancer therapeutic options.
Collapse
Affiliation(s)
- Kun-Huang Yan
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei Medical University, Taipei 11696
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Cheng G, Kong RH, Zhang LM, Zhang JN. Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies. Br J Pharmacol 2013; 167:699-719. [PMID: 23003569 DOI: 10.1111/j.1476-5381.2012.02025.x] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Traumatic brain injury (TBI) is a major health and socioeconomic problem throughout the world. It is a complicated pathological process that consists of primary insults and a secondary insult characterized by a set of biochemical cascades. The imbalance between a higher energy demand for repair of cell damage and decreased energy production led by mitochondrial dysfunction aggravates cell damage. At the cellular level, the main cause of the secondary deleterious cascades is cell damage that is centred in the mitochondria. Excitotoxicity, Ca(2+) overload, reactive oxygen species (ROS), Bcl-2 family, caspases and apoptosis inducing factor (AIF) are the main participants in mitochondria-centred cell damage following TBI. Some preclinical and clinical results of mitochondria-targeted therapy show promise. Mitochondria- targeted multipotential therapeutic strategies offer new hope for the successful treatment of TBI and other acute brain injuries.
Collapse
Affiliation(s)
- Gang Cheng
- Neurosurgical Department, PLA Navy General Hospital, Beijing, China
| | | | | | | |
Collapse
|
77
|
Borysiewicz E, Doppalapudi S, Kirschman LT, Konat GW. TLR3 ligation protects human astrocytes against oxidative stress. J Neuroimmunol 2012; 255:54-9. [PMID: 23245579 DOI: 10.1016/j.jneuroim.2012.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/11/2012] [Accepted: 11/21/2012] [Indexed: 11/17/2022]
Abstract
Astrocytic Toll-like receptor 3 (TLR3) plays an important role not only in antiviral response but also in regeneration/healing of the CNS. The present study was undertaken to determine whether the neuroprotective effects of TLR3 signaling also include antioxidative protection. TLR3 ligation in human astrocytes induced protracted resistance of the cells to H(2)O(2) toxicity. Similar resistance was induced by conditioned medium from TLR3-ligated astrocytes indicating the involvement of paracrine signaling mechanisms. Out of 13 major antioxidative genes only the gene encoding superoxide dismutase 2 (SOD2) was postligationally upregulated suggesting that SOD2 is the major enzyme responsible for this protection.
Collapse
Affiliation(s)
- E Borysiewicz
- Department of Neurobiology and Anatomy, West Virginia University School of Medicine, 1 Medical Center Dr., Morgantown, WV 26506, USA
| | | | | | | |
Collapse
|
78
|
Matarrese P, Petitta C, Scirocco A, Ascione B, Ammoscato F, Di Natale G, Anastasi E, Marconi M, Chirletti P, Malorni W, Severi C. Antioxidants counteract lipopolysaccharide-triggered alterations of human colonic smooth muscle cells. Free Radic Biol Med 2012; 53:2102-11. [PMID: 23044262 DOI: 10.1016/j.freeradbiomed.2012.09.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 09/06/2012] [Accepted: 09/17/2012] [Indexed: 02/08/2023]
Abstract
Gut dysmotility develops in individuals during and after recovering from infective acute gastroenteritis and it is apparently due to a direct effect of circulating lipopolysaccharides (LPS). This is an endotoxin with a prooxidant activity derived from gram-negative bacteria. Due to the lack of human models available so far, the mechanisms underlying LPS-induced gut dysmotility are, however, poorly investigated. In the present work long-term effects of LPS and their reversibility have been assessed by means of different analytical cytology methods on pure primary cultures of human colonic smooth muscle cells. We found that LPS triggered the following alterations: (i) a redox imbalance with profound changes of contractile microfilament network, and (ii) the induction of cell cycle progression with dedifferentiation from a contractile to a synthetic phenotype. These alterations persisted also after LPS removal. Importantly, two unrelated antioxidants, alpha-tocopherol and N-acetylcysteine, were able to reverse the cytopathic effects of LPS and to restore normal muscle cell function. The present data indicate that LPS is capable of triggering a persistent and long-term response that could contribute to muscle dysfunction occurring after an infective and related inflammatory burst and suggest a reappraisal of antioxidants in the management of postinfective motor disorders of the gut.
Collapse
Affiliation(s)
- Paola Matarrese
- Department of Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Kleikers PWM, Wingler K, Hermans JJR, Diebold I, Altenhöfer S, Radermacher KA, Janssen B, Görlach A, Schmidt HHHW. NADPH oxidases as a source of oxidative stress and molecular target in ischemia/reperfusion injury. J Mol Med (Berl) 2012; 90:1391-406. [PMID: 23090009 DOI: 10.1007/s00109-012-0963-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 09/26/2012] [Accepted: 09/28/2012] [Indexed: 02/07/2023]
Abstract
Ischemia/reperfusion injury (IRI) is crucial in the pathology of major cardiovascular diseases, such as stroke and myocardial infarction. Paradoxically, both the lack of oxygen during ischemia and the replenishment of oxygen during reperfusion can cause tissue injury. Clinical outcome is also determined by a third, post-reperfusion phase characterized by tissue remodeling and adaptation. Increased levels of reactive oxygen species (ROS) have been suggested to be key players in all three phases. As a second paradox, ROS seem to play a double-edged role in IRI, with both detrimental and beneficial effects. These Janus-faced effects of ROS may be linked to the different sources of ROS or to the different types of ROS that exist and may also depend on the phase of IRI. With respect to therapeutic implications, an untargeted application of antioxidants may not differentiate between detrimental and beneficial ROS, which might explain why this approach is clinically ineffective in lowering cardiovascular mortality. Under some conditions, antioxidants even appear to be harmful. In this review, we discuss recent breakthroughs regarding a more targeted and promising approach to therapeutically modulate ROS in IRI. We will focus on NADPH oxidases and their catalytic subunits, NOX, as they represent the only known enzyme family with the sole function to produce ROS. Similar to ROS, NADPH oxidases may play a dual role as different NOX isoforms may mediate detrimental or protective processes. Unraveling the precise sequence of events, i.e., determining which role the individual NOX isoforms play in the various phases of IRI, may provide the crucial molecular and mechanistic understanding to finally effectively target oxidative stress.
Collapse
Affiliation(s)
- Pamela W M Kleikers
- Vascular Drug Discovery Group, Department of Pharmacology and Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Cellular adaptation to anthrax lethal toxin-induced mitochondrial cholesterol enrichment, hyperpolarization, and reactive oxygen species generation through downregulating MLN64 in macrophages. Mol Cell Biol 2012; 32:4846-60. [PMID: 23028046 DOI: 10.1128/mcb.00494-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellular adaptation to different stresses related to survival and function has been demonstrated in several cell types. Anthrax lethal toxin (LeTx) induces rapid cell death, termed "pyroptosis," by activating NLRP1b/caspase-1 in murine macrophages. We and others (S. D. Ha et al., J. Biol. Chem. 282:26275-26283, 2007; I. I. Salles et al., Proc. Natl. Acad. Sci. U. S. A. 100:12426 -12431, 2003) have shown that RAW264.7 cells preexposed to sublethal doses of LeTx become resistant to subsequent high cytolytic doses of LeTx, termed toxin-induced resistance (TIR). To date, the cellular mechanisms of pyroptosis and TIR are largely unknown. We found that LeTx caused NLRP1b/caspase-1-dependent mitochondrial dysfunction, including hyperpolarization and generation of reactive oxygen species, which was distinct from that induced by stimuli such as NLRP3-activating ATP. In TIR cells, these mitochondrial events were not detected, although caspase-1 was activated, in response to LeTx. We identified that downregulation of the late endosomal cholesterol-transferring protein MLN64 in TIR cells was involved in TIR. The downregulation of MLN64 in TIR cells was at least in part due to DNA methyltransferase 1-mediated DNA methylation. In wild-type RAW264.7 cells and primary bone marrow-derived macrophages, LeTx caused NLRP1b/caspase-1-dependent mitochondrial translocation of MLN64, resulting in cholesterol enrichment, membrane hyperpolarization, reactive oxygen species (ROS) generation, and depletion of free glutathione (GSH). This study demonstrates for the first time that MLN64 plays a key role in LeTx/caspase-1-induced mitochondrial dysfunction.
Collapse
|
81
|
Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Hüttemann M. Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol 2012; 47:9-23. [PMID: 23011809 DOI: 10.1007/s12035-012-8344-z] [Citation(s) in RCA: 465] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/27/2012] [Indexed: 12/20/2022]
Abstract
Stroke and circulatory arrest cause interferences in blood flow to the brain that result in considerable tissue damage. The primary method to reduce or prevent neurologic damage to patients suffering from brain ischemia is prompt restoration of blood flow to the ischemic tissue. However, paradoxically, restoration of blood flow causes additional damage and exacerbates neurocognitive deficits among patients who suffer a brain ischemic event. Mitochondria play a critical role in reperfusion injury by producing excessive reactive oxygen species (ROS) thereby damaging cellular components, and initiating cell death. In this review, we summarize our current understanding of the mechanisms of mitochondrial ROS generation during reperfusion, and specifically, the role the mitochondrial membrane potential plays in the pathology of cerebral ischemia/reperfusion. Additionally, we propose a temporal model of ROS generation in which posttranslational modifications of key oxidative phosphorylation (OxPhos) proteins caused by ischemia induce a hyperactive state upon reintroduction of oxygen. Hyperactive OxPhos generates high mitochondrial membrane potentials, a condition known to generate excessive ROS. Such a state would lead to a "burst" of ROS upon reperfusion, thereby causing structural and functional damage to the mitochondria and inducing cell death signaling that eventually culminate in tissue damage. Finally, we propose that strategies aimed at modulating this maladaptive hyperpolarization of the mitochondrial membrane potential may be a novel therapeutic intervention and present specific studies demonstrating the cytoprotective effect of this treatment modality.
Collapse
Affiliation(s)
- Thomas H Sanderson
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
82
|
Newington JT, Rappon T, Albers S, Wong DY, Rylett RJ, Cumming RC. Overexpression of pyruvate dehydrogenase kinase 1 and lactate dehydrogenase A in nerve cells confers resistance to amyloid β and other toxins by decreasing mitochondrial respiration and reactive oxygen species production. J Biol Chem 2012; 287:37245-58. [PMID: 22948140 DOI: 10.1074/jbc.m112.366195] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We previously demonstrated that nerve cell lines selected for resistance to amyloid β (Aβ) peptide exhibit elevated aerobic glycolysis in part due to increased expression of pyruvate dehydrogenase kinase 1 (PDK1) and lactate dehydrogenase A (LDHA). Here, we show that overexpression of either PDK1 or LDHA in a rat CNS cell line (B12) confers resistance to Aβ and other neurotoxins. Treatment of Aβ-sensitive cells with various toxins resulted in mitochondrial hyperpolarization, immediately followed by rapid depolarization and cell death, events accompanied by increased production of cellular reactive oxygen species (ROS). In contrast, cells expressing either PDK1 or LDHA maintained a lower mitochondrial membrane potential and decreased ROS production with or without exposure to toxins. Additionally, PDK1- and LDHA-overexpressing cells exhibited decreased oxygen consumption but maintained levels of ATP under both normal culture conditions and following Aβ treatment. Interestingly, immunoblot analysis of wild type mouse primary cortical neurons treated with Aβ or cortical tissue extracts from 12-month-old APPswe/PS1dE9 transgenic mice showed decreased expression of LDHA and PDK1 when compared with controls. Additionally, post-mortem brain extracts from patients with Alzheimer disease exhibited a decrease in PDK1 expression compared with nondemented patients. Collectively, these findings indicate that key Warburg effect enzymes play a central role in mediating neuronal resistance to Αβ or other neurotoxins by decreasing mitochondrial activity and subsequent ROS production. Maintenance of PDK1 or LDHA expression in certain regions of the brain may explain why some individuals tolerate high levels of Aβ deposition without developing Alzheimer disease.
Collapse
Affiliation(s)
- Jordan T Newington
- Department of Biology, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | | | | | | | | | | |
Collapse
|
83
|
Chan SH, Kikkawa U, Matsuzaki H, Chen JH, Chang WC. Insulin receptor substrate-1 prevents autophagy-dependent cell death caused by oxidative stress in mouse NIH/3T3 cells. J Biomed Sci 2012; 19:64. [PMID: 22788551 PMCID: PMC3430578 DOI: 10.1186/1423-0127-19-64] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 06/27/2012] [Indexed: 11/10/2022] Open
Abstract
Background Insulin receptor substrate (IRS)-1 is associated with tumorigenesis; its levels are elevated in several human cancers. IRS-1 protein binds to several oncogene proteins. Oxidative stress and reactive oxygen species (ROS) are involved in the initiation and progression of cancers. Cancer cells produce greater levels of ROS than normal cells do because of increased metabolic stresses. However, excessive production of ROS kills cancer cells. Autophagy usually serves as a survival mechanism in response to stress conditions, but excessive induction of autophagy results in cell death. In addition to inducing necrosis and apoptosis, ROS induces autophagic cell death. ROS inactivates IRS-1 mediated signaling and reduces intracellular IRS-1 concentrations. Thus, there is a complex relationship between IRS-1, ROS, autophagy, and cancer. It is not fully understood how cancer cells grow rapidly and survive in the presence of high ROS levels. Methods and results In this study, we established mouse NIH/3T3 cells that overexpressed IRS-1, so mimicking cancers with increased IRS-1 expression levels; we found that the IRS-1 overexpressing cells grow more rapidly than control cells do. Treatment of cells with glucose oxidase (GO) provided a continuous source of ROS; low dosages of GO promoted cell growth, while high doses induced cell death. Evidence for GO induced autophagy includes increased levels of isoform B-II microtubule-associated protein 1 light chain 3 (LC3), aggregation of green fluorescence protein-tagged LC3, and increased numbers of autophagic vacuoles in cells. Overexpression of IRS-1 resulted in inhibition of basal autophagy, and reduced oxidative stress-induced autophagy and cell death. ROS decreased the mammalian target of rapamycin (mTOR)/p70 ribosomal protein S6 kinase signaling, while overexpression of IRS-1 attenuated this inhibition. Knockdown of autophagy-related gene 5 inhibited basal autophagy and diminished oxidative stress-induced autophagy and cell death. Conclusion Our results suggest that overexpression of IRS-1 promotes cells growth, inhibits basal autophagy, reduces oxidative stress-induced autophagy, and diminishes oxidative stress-mediated autophagy-dependent cell death. ROS-mediated autophagy may occur via inhibition of IRS-1/phosphatidylinositol 3-kinase/mTOR signaling. Our data afford a plausible explanation for IRS-1 involvement in tumor initiation and progression.
Collapse
Affiliation(s)
- Shih-Hung Chan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
84
|
Ciarlo L, Manganelli V, Matarrese P, Garofalo T, Tinari A, Gambardella L, Marconi M, Grasso M, Misasi R, Sorice M, Malorni W. Raft-like microdomains play a key role in mitochondrial impairment in lymphoid cells from patients with Huntington's disease. J Lipid Res 2012; 53:2057-2068. [PMID: 22773688 DOI: 10.1194/jlr.m026062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Huntington's disease (HD) is a genetic neurodegenerative disease characterized by an exceedingly high number of contiguous glutamine residues in the translated protein, huntingtin (Htt). The primary site of cell toxicity is the nucleus, but mitochondria have been identified as key components of cell damage. The present work has been carried out in immortalized lymphocytes from patients with HD. These cells, in comparison with lymphoid cells from healthy subjects, displayed: i) a redistribution of mitochondria, forming large aggregates; ii) a constitutive hyperpolarization of mitochondrial membrane; and iii) a constitutive alteration of mitochondrial fission machinery, with high apoptotic susceptibility. Moreover, mitochondrial fission molecules, e.g., protein dynamin-related protein 1, as well as Htt, associated with mitochondrial raft-like microdomains, glycosphingolipid-enriched structures detectable in mitochondria. These findings, together with the observation that a ceramide synthase inhibitor and a raft disruptor are capable of impairing the peculiar mitochondrial remodeling in HD cells, suggest that mitochondrial alterations occurring in these cells could be due to raft-mediated defects of mitochondrial fission/fusion machinery.
Collapse
Affiliation(s)
- Laura Ciarlo
- Section of Cell Aging and Degeneration, Department of Therapeutic Research and Medicine Evaluation, and Department of Technology, Istituto Superiore di Sanità, Rome, Italy
| | | | - Paola Matarrese
- Section of Cell Aging and Degeneration, Department of Therapeutic Research and Medicine Evaluation, and Department of Technology, Istituto Superiore di Sanità, Rome, Italy; Center of Integrated Metabolomics, Rome, Italy; and
| | - Tina Garofalo
- Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| | | | - Lucrezia Gambardella
- Section of Cell Aging and Degeneration, Department of Therapeutic Research and Medicine Evaluation, and Department of Technology, Istituto Superiore di Sanità, Rome, Italy
| | - Matteo Marconi
- Section of Cell Aging and Degeneration, Department of Therapeutic Research and Medicine Evaluation, and Department of Technology, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Grasso
- Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| | - Roberta Misasi
- Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| | - Walter Malorni
- Section of Cell Aging and Degeneration, Department of Therapeutic Research and Medicine Evaluation, and Department of Technology, Istituto Superiore di Sanità, Rome, Italy; San Raffaele Institute Sulmona, L'Aquila, Italy.
| |
Collapse
|
85
|
Hüttemann M, Helling S, Sanderson TH, Sinkler C, Samavati L, Mahapatra G, Varughese A, Lu G, Liu J, Ramzan R, Vogt S, Grossman LI, Doan JW, Marcus K, Lee I. Regulation of mitochondrial respiration and apoptosis through cell signaling: cytochrome c oxidase and cytochrome c in ischemia/reperfusion injury and inflammation. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1817:598-609. [PMID: 21771582 PMCID: PMC3229836 DOI: 10.1016/j.bbabio.2011.07.001] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 01/09/2023]
Abstract
Cytochrome c (Cytc) and cytochrome c oxidase (COX) catalyze the terminal reaction of the mitochondrial electron transport chain (ETC), the reduction of oxygen to water. This irreversible step is highly regulated, as indicated by the presence of tissue-specific and developmentally expressed isoforms, allosteric regulation, and reversible phosphorylations, which are found in both Cytc and COX. The crucial role of the ETC in health and disease is obvious since it, together with ATP synthase, provides the vast majority of cellular energy, which drives all cellular processes. However, under conditions of stress, the ETC generates reactive oxygen species (ROS), which cause cell damage and trigger death processes. We here discuss current knowledge of the regulation of Cytc and COX with a focus on cell signaling pathways, including cAMP/protein kinase A and tyrosine kinase signaling. Based on the crystal structures we highlight all identified phosphorylation sites on Cytc and COX, and we present a new phosphorylation site, Ser126 on COX subunit II. We conclude with a model that links cell signaling with the phosphorylation state of Cytc and COX. This in turn regulates their enzymatic activities, the mitochondrial membrane potential, and the production of ATP and ROS. Our model is discussed through two distinct human pathologies, acute inflammation as seen in sepsis, where phosphorylation leads to strong COX inhibition followed by energy depletion, and ischemia/reperfusion injury, where hyperactive ETC complexes generate pathologically high mitochondrial membrane potentials, leading to excessive ROS production. Although operating at opposite poles of the ETC activity spectrum, both conditions can lead to cell death through energy deprivation or ROS-triggered apoptosis.
Collapse
Affiliation(s)
- Maik Hüttemann
- Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Hypoxic-ischemic injury in the developing brain: the role of reactive oxygen species originating in mitochondria. Neurol Res Int 2012; 2012:542976. [PMID: 22548167 PMCID: PMC3323863 DOI: 10.1155/2012/542976] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/12/2011] [Accepted: 11/22/2011] [Indexed: 02/01/2023] Open
Abstract
Mitochondrial dysfunction is the most fundamental mechanism of cell damage in cerebral hypoxia-ischemia and reperfusion. Mitochondrial respiratory chain (MRC) is increasingly recognized as a source for reactive oxygen species (ROS) in the postischemic tissue. Potentially, ROS originating in MRC can contribute to the reperfusion-driven oxidative stress, promoting mitochondrial membrane permeabilization. The loss of mitochondrial membranes integrity during reperfusion is considered as the major mechanism of secondary energy failure. This paper focuses on current data that support a pathogenic role of ROS originating from mitochondrial respiratory chain in the promotion of secondary energy failure and proposes potential therapeutic strategy against reperfusion-driven oxidative stress following hypoxia-ischemia-reperfusion injury of the developing brain.
Collapse
|
87
|
Yannopoulos F, Mäkelä T, Arvola O, Haapanen H, Anttila V, Kiviluoma K, Juvonen T. Remote ischemic precondition preserves cerebral oxygen tension during hypothermic circulatory arrest. SCAND CARDIOVASC J 2012; 46:245-50. [DOI: 10.3109/14017431.2012.661874] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
88
|
Haines B, Li PA. Overexpression of mitochondrial uncoupling protein 2 inhibits inflammatory cytokines and activates cell survival factors after cerebral ischemia. PLoS One 2012; 7:e31739. [PMID: 22348126 PMCID: PMC3279373 DOI: 10.1371/journal.pone.0031739] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/12/2012] [Indexed: 01/29/2023] Open
Abstract
Mitochondria play a critical role in cell survival and death after cerebral ischemia. Uncoupling proteins (UCPs) are inner mitochondrial membrane proteins that disperse the mitochondrial proton gradient by translocating H+ across the inner membrane in order to stabilize the inner mitochondrial membrane potential (ΔΨm) and reduce the formation of reactive oxygen species. Previous studies have demonstrated that mice transgenically overexpressing UCP2 (UCP2 Tg) in the brain are protected from cerebral ischemia, traumatic brain injury and epileptic challenges. This study seeks to clarify the mechanisms responsible for neuroprotection after transient focal ischemia. Our hypothesis is that UCP2 is neuroprotective by suppressing innate inflammation and regulating cell cycle mediators. PCR gene arrays and protein arrays were used to determine mechanisms of damage and protection after transient focal ischemia. Our results showed that ischemia increased the expression of inflammatory genes and suppressed the expression of anti-apoptotic and cell cycle genes. Overexpression of UCP2 blunted the ischemia-induced increase in IL-6 and decrease in Bcl2. Further, UCP2 increased the expression of cell cycle genes and protein levels of phospho-AKT, PKC and MEK after ischemia. It is concluded that the neuroprotective effects of UCP2 against ischemic brain injury are associated with inhibition of pro-inflammatory cytokines and activation of cell survival factors.
Collapse
Affiliation(s)
- Bryan Haines
- The Buck Institute for Research on Aging, Novato, California, United States of America
| | - P. Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), North Carolina Central University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
89
|
Robaszkiewicz A, Pogorzelska M, Bartosz G, Soszyński M. Chloric acid(I) affects antioxidant defense of lung epitelial cells. Toxicol In Vitro 2011; 25:1328-34. [DOI: 10.1016/j.tiv.2011.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 03/28/2011] [Accepted: 04/27/2011] [Indexed: 11/29/2022]
|
90
|
The potential of tetrandrine as a protective agent for ischemic stroke. Molecules 2011; 16:8020-32. [PMID: 21926947 PMCID: PMC6264536 DOI: 10.3390/molecules16098020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 09/15/2011] [Accepted: 09/15/2011] [Indexed: 12/31/2022] Open
Abstract
Stroke is one of the leading causes of mortality, with a high incidence of severe morbidity in survivors. The treatment to minimize tissue injury after stroke is still unsatisfactory and it is mandatory to develop effective treatment strategies for stroke. The pathophysiology of ischemic stroke is complex and involves many processes including energy failure, loss of ion homeostasis, increased intracellular calcium level, platelet aggregation, production of reactive oxygen species, disruption of blood brain barrier, and inflammation and leukocyte infiltration, etc. Tetrandrine, a bisbenzylisoquinoline alkaloid, has many pharmacologic effects including anti-inflammatory and cytoprotective effects. In addition, tetrandrine has been found to protect the liver, heart, small bowel and brain from ischemia/reperfusion injury. It is a calcium channel blocker, and can inhibit lipid peroxidation, reduce generation of reactive oxygen species, suppress the production of cytokines and inflammatory mediators, inhibit neutrophil recruitment and platelet aggregation, which are all devastating factors during ischemia/reperfusion injury of the brain. Because tetrandrine can counteract these important pathophysiological processes of ischemic stroke, it has the potential to be a protective agent for ischemic stroke.
Collapse
|
91
|
Kadenbach B, Ramzan R, Moosdorf R, Vogt S. The role of mitochondrial membrane potential in ischemic heart failure. Mitochondrion 2011; 11:700-6. [DOI: 10.1016/j.mito.2011.06.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/13/2011] [Accepted: 06/08/2011] [Indexed: 11/16/2022]
|
92
|
Enciu AM, Constantinescu SN, Popescu LM, Mureşanu DF, Popescu BO. Neurobiology of vascular dementia. J Aging Res 2011; 2011:401604. [PMID: 21876809 PMCID: PMC3160011 DOI: 10.4061/2011/401604] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 06/27/2011] [Accepted: 06/28/2011] [Indexed: 01/22/2023] Open
Abstract
Vascular dementia is, in its current conceptual form, a distinct type of dementia with a spectrum of specific clinical and pathophysiological features. However, in a very large majority of cases, these alterations occur in an already aged brain, characterized by a milieu of cellular and molecular events common for different neurodegenerative diseases. The cell signaling defects and molecular dyshomeostasis might lead to neuronal malfunction prior to the death of neurons and the alteration of neuronal networks. In the present paper, we explore some of the molecular mechanisms underlying brain malfunction triggered by cerebrovascular disease and risk factors. We suggest that, in the age of genetic investigation and molecular diagnosis, the concept of vascular dementia needs a new approach.
Collapse
Affiliation(s)
- Ana-Maria Enciu
- Department of Cellular and Molecular Medicine, School of Medicine, "Carol Davila" University of Medicine and Pharmacy, 8 Eroilor Sanitari, Sector 5, 050474 Bucharest, Romania
| | | | | | | | | |
Collapse
|
93
|
Woodruff TM, Thundyil J, Tang SC, Sobey CG, Taylor SM, Arumugam TV. Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol Neurodegener 2011; 6:11. [PMID: 21266064 PMCID: PMC3037909 DOI: 10.1186/1750-1326-6-11] [Citation(s) in RCA: 384] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Accepted: 01/25/2011] [Indexed: 01/02/2023] Open
Abstract
Stroke is the world's second leading cause of mortality, with a high incidence of severe morbidity in surviving victims. There are currently relatively few treatment options available to minimize tissue death following a stroke. As such, there is a pressing need to explore, at a molecular, cellular, tissue, and whole body level, the mechanisms leading to damage and death of CNS tissue following an ischemic brain event. This review explores the etiology and pathogenesis of ischemic stroke, and provides a general model of such. The pathophysiology of cerebral ischemic injury is explained, and experimental animal models of global and focal ischemic stroke, and in vitro cellular stroke models, are described in detail along with experimental strategies to analyze the injuries. In particular, the technical aspects of these stroke models are assessed and critically evaluated, along with detailed descriptions of the current best-practice murine models of ischemic stroke. Finally, we review preclinical studies using different strategies in experimental models, followed by an evaluation of results of recent, and failed attempts of neuroprotection in human clinical trials. We also explore new and emerging approaches for the prevention and treatment of stroke. In this regard, we note that single-target drug therapies for stroke therapy, have thus far universally failed in clinical trials. The need to investigate new targets for stroke treatments, which have pleiotropic therapeutic effects in the brain, is explored as an alternate strategy, and some such possible targets are elaborated. Developing therapeutic treatments for ischemic stroke is an intrinsically difficult endeavour. The heterogeneity of the causes, the anatomical complexity of the brain, and the practicalities of the victim receiving both timely and effective treatment, conspire against developing effective drug therapies. This should in no way be a disincentive to research, but instead, a clarion call to intensify efforts to ameliorate suffering and death from this common health catastrophe. This review aims to summarize both the present experimental and clinical state-of-the art, and to guide future research directions.
Collapse
Affiliation(s)
- Trent M Woodruff
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia.
| | | | | | | | | | | |
Collapse
|
94
|
Downes CE, Crack PJ. Neural injury following stroke: are Toll-like receptors the link between the immune system and the CNS? Br J Pharmacol 2010; 160:1872-88. [PMID: 20649586 DOI: 10.1111/j.1476-5381.2010.00864.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The CNS can exhibit features of inflammation in response to injury, infection or disease, whereby resident cells generate inflammatory mediators, including cytokines, prostaglandins, free radicals and complement, chemokines and adhesion molecules that recruit immune cells, and activate glia and microglia. Cerebral ischaemia triggers acute inflammation, which exacerbates primary brain damage. The regulation of inflammation after stroke is multifaceted and comprises vascular effects, distinct cellular responses, apoptosis and chemotaxis. There are many cell types that are affected including neurons, astrocytes, microglia and endothelial cells, all responding to the resultant neuroinflammation in different ways. Over the past 20 years, researchers examining brain tissue at various time intervals after stroke observed the presence of inflammatory cells, neutrophils and monocytes at the site of injury, as well as the activation of endogenous glia and microglia. This review examines the involvement of these cells in the progression of neural injury and proposes that the Toll-like receptors (TLRs) are likely to be an integral component in the communication between the CNS and the periphery. This receptor system is the archetypal pathogen sensing receptor system and its presence and signalling in the brain following neural injury suggests a more diverse role. We propose that the TLR system presents excellent pharmacological targets for the design of a new generation of therapeutic agents to modulate the inflammation that accompanies neural injury.
Collapse
Affiliation(s)
- Catherine E Downes
- Department of Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
95
|
Haines BA, Mehta SL, Pratt SM, Warden CH, Li PA. Deletion of mitochondrial uncoupling protein-2 increases ischemic brain damage after transient focal ischemia by altering gene expression patterns and enhancing inflammatory cytokines. J Cereb Blood Flow Metab 2010; 30:1825-33. [PMID: 20407461 PMCID: PMC2948647 DOI: 10.1038/jcbfm.2010.52] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Mitochondrial hyperpolarization inhibits the electron transport chain and increases incomplete reduction of oxygen, enabling production of reactive oxygen species (ROS). The consequence is mitochondrial damage that eventually causes cell death. Uncoupling proteins (UCPs) are inner mitochondrial membrane proteins that dissipate the mitochondrial proton gradient by transporting H(+) across the inner membrane, thereby stabilizing the inner mitochondrial membrane potential and reducing the formation of ROS. The role of UCP2 in neuroprotection is still in debate. This study seeks to clarify the role of UCP2 in transient focal ischemia (tFI) and to further understand the mechanisms of ischemic brain damage. Both wild-type and UCP2-knockout mice were subjected to tFI. Knocking out UCP2 significantly increased the infarct volume to 61% per hemisphere as compared with 18% in wild-type animals. Knocking out UCP2 suppressed antioxidant, cell-cycle, and DNA repair genes, including Sod1 and Sod2, Gstm1, and cyclins. Furthermore, knocking out UCP2 significantly upregulated the protein levels of the inflammatory cytokines, including CTACK, CXCL16, Eotaxin-2, fractalkine, and BLC. It is concluded that knocking out the UCP2 gene exacerbates neuronal death after cerebral ischemia with reperfusion and this detrimental effect is mediated by alteration of antioxidant genes and upregulation of inflammatory mediators.
Collapse
Affiliation(s)
- Bryan A Haines
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | | | | | | | | |
Collapse
|
96
|
Jensen KHR, Rekling JC. Development of a no-wash assay for mitochondrial membrane potential using the styryl dye DASPEI. ACTA ACUST UNITED AC 2010; 15:1071-81. [PMID: 20713988 DOI: 10.1177/1087057110376834] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mitochondrial dysfunction is a hallmark of several diseases and may also result from drugs with unwanted side effects on mitochondrial biochemistry. The mitochondrial membrane potential is a good indicator of mitochondrial function. Here, the authors have developed a no-wash mitochondrial membrane potential assay using 2-(4-(dimethylamino)styryl)-N-ethylpyridinium iodide (DASPEI), a rarely used mitochondrial potentiometric probe, in a 96-well format using a fluorescent plate reader. The assay was validated using 2 protonophores (CCCP, DNP), which are known uncouplers, and the neuroleptic thioridazine, which is a suspected mitochondrial toxicant. CCCP and DNP have short-term depolarizing effects, and thioridazine has long-term hyperpolarizing effects on the mitochondrial membrane potential of Chinese hamster ovary (CHO) cells. The assay also detected changes of the mitochondrial membrane potential in CHO cells exposed to cobalt (mimicking hypoxia) and in PC12 cells exposed to amyloid β, demonstrating that the assay can be used in cellular models of hypoxia and Alzheimer's disease. The assay needs no washing steps, has a Z' value >0.5, can be used on standard fluorometers, has good post liquid-handling stability, and thus is suitable for large-scale screening efforts. In summary, the DASPEI assay is simple and rapid and may be of use in toxicological testing, drug target discovery, and mechanistic models of diseases involving mitochondrial dysfunction.
Collapse
Affiliation(s)
- Kristian H R Jensen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
97
|
Tian Z, Quan X, Leung AW, Xiang J, Xu C. Hematoporphyrin monomethyl ether enhances the killing of ultrasound on osteosarcoma cells involving intracellular reactive oxygen species and calcium ion elevation. Integr Cancer Ther 2010; 9:365-9. [PMID: 20702491 DOI: 10.1177/1534735410379013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE The present study aims to investigate the possible mechanisms of hematoporphyrin monomethyl ether (HMME) enhancing the cytotoxicity of ultrasound in osteosarcoma cells. METHODS Osteosarcoma cell line UMR-106 was treated by HMME and ultrasound radiation, with the HMME concentration kept at 20 μg/mL and ultrasound radiation for 10 seconds at the intensity of 0.5 W/cm². Cell proliferation was investigated at 12, 24, 36, and 48 hours using MTT assay after ultrasound and HMME treatment. Ultrastructural morphology was observed using transmission electron microscopy (TEM). Intracellular reactive oxygen species (ROS) was measured using a flow cytometry with DCFH-DA staining and intracellular free calcium ion (Ca(2+)) with Fluo-3-AM staining. RESULTS The UMR-106 cells proliferated rapidly in the sham radiation and HMME treatment alone group, but ultrasound-treated cells and HMME-ultrasound-treated cells proliferated slowly. There was a significant difference between HMME-ultrasound treatment and the controls, including ultrasound radiation, HMME treatment alone, and sham radiation (P < .05). TEM showed endoplasmic reticulum and mitochondrial swelling in the ultrasound-treated cells, and more cells presented apoptosis and necrosis after treatment with ultrasound and HMME together. Intracellular ROS and Ca(2+) in the cells increased more significantly after both ultrasound and HMME treatment than after ultrasound treatment alone. CONCLUSIONS HMME could effectively enhance the inhibition effect of ultrasound on osteosarcoma cells. Intracellular ROS and Ca(2+) in the UMR-106 cells increased more significantly after the treatment of HMME and ultrasound together, indicating that the enhancement of HMME on ultrasound cytotoxicity to osteosarcoma cells possibly involves both intracellular ROS and Ca(2+) elevation.
Collapse
Affiliation(s)
- Zedan Tian
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|