51
|
Structural and Functional Alterations in Mitochondria-Associated Membranes (MAMs) and in Mitochondria Activate Stress Response Mechanisms in an In Vitro Model of Alzheimer's Disease. Biomedicines 2021; 9:biomedicines9080881. [PMID: 34440085 PMCID: PMC8389659 DOI: 10.3390/biomedicines9080881] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by the accumulation of extracellular plaques composed by amyloid-β (Aβ) and intracellular neurofibrillary tangles of hyperphosphorylated tau. AD-related neurodegenerative mechanisms involve early changes of mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) and impairment of cellular events modulated by these subcellular domains. In this study, we characterized the structural and functional alterations at MAM, mitochondria, and ER/microsomes in a mouse neuroblastoma cell line (N2A) overexpressing the human amyloid precursor protein (APP) with the familial Swedish mutation (APPswe). Proteins levels were determined by Western blot, ER-mitochondria contacts were quantified by transmission electron microscopy, and Ca2+ homeostasis and mitochondria function were analyzed using fluorescent probes and Seahorse assays. In this in vitro AD model, we found APP accumulated in MAM and mitochondria, and altered levels of proteins implicated in ER-mitochondria tethering, Ca2+ signaling, mitochondrial dynamics, biogenesis and protein import, as well as in the stress response. Moreover, we observed a decreased number of close ER-mitochondria contacts, activation of the ER unfolded protein response, reduced Ca2+ transfer from ER to mitochondria, and impaired mitochondrial function. Together, these results demonstrate that several subcellular alterations occur in AD-like neuronal cells, which supports that the defective ER-mitochondria crosstalk is an important player in AD physiopathology.
Collapse
|
52
|
Brunetti D, Catania A, Viscomi C, Deleidi M, Bindoff LA, Ghezzi D, Zeviani M. Role of PITRM1 in Mitochondrial Dysfunction and Neurodegeneration. Biomedicines 2021; 9:biomedicines9070833. [PMID: 34356897 PMCID: PMC8301332 DOI: 10.3390/biomedicines9070833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/19/2022] Open
Abstract
Mounting evidence shows a link between mitochondrial dysfunction and neurodegenerative disorders, including Alzheimer Disease. Increased oxidative stress, defective mitodynamics, and impaired oxidative phosphorylation leading to decreased ATP production, can determine synaptic dysfunction, apoptosis, and neurodegeneration. Furthermore, mitochondrial proteostasis and the protease-mediated quality control system, carrying out degradation of potentially toxic peptides and misfolded or damaged proteins inside mitochondria, are emerging as potential pathogenetic mechanisms. The enzyme pitrilysin metallopeptidase 1 (PITRM1) is a key player in these processes; it is responsible for degrading mitochondrial targeting sequences that are cleaved off from the imported precursor proteins and for digesting a mitochondrial fraction of amyloid beta (Aβ). In this review, we present current evidence obtained from patients with PITRM1 mutations, as well as the different cellular and animal models of PITRM1 deficiency, which points toward PITRM1 as a possible driving factor of several neurodegenerative conditions. Finally, we point out the prospect of new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Dario Brunetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy;
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy;
| | - Alessia Catania
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy;
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy;
| | - Michela Deleidi
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany;
| | - Laurence A. Bindoff
- Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Haukeland University Hospital, N-5021 Bergen, Norway;
- Department of Clinical Medicine, University of Bergen, N-5021 Bergen, Norway
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy;
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
- Correspondence: (D.G.); (M.Z.)
| | - Massimo Zeviani
- Department of Neurosciences, University of Padova, 35128 Padova, Italy
- Venetian Institute of Molecular Medicine, 35128 Padova, Italy
- Correspondence: (D.G.); (M.Z.)
| |
Collapse
|
53
|
Jadiya P, Garbincius JF, Elrod JW. Reappraisal of metabolic dysfunction in neurodegeneration: Focus on mitochondrial function and calcium signaling. Acta Neuropathol Commun 2021; 9:124. [PMID: 34233766 PMCID: PMC8262011 DOI: 10.1186/s40478-021-01224-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/27/2021] [Indexed: 02/06/2023] Open
Abstract
The cellular and molecular mechanisms that drive neurodegeneration remain poorly defined. Recent clinical trial failures, difficult diagnosis, uncertain etiology, and lack of curative therapies prompted us to re-examine other hypotheses of neurodegenerative pathogenesis. Recent reports establish that mitochondrial and calcium dysregulation occur early in many neurodegenerative diseases (NDDs), including Alzheimer's disease, Parkinson's disease, Huntington's disease, and others. However, causal molecular evidence of mitochondrial and metabolic contributions to pathogenesis remains insufficient. Here we summarize the data supporting the hypothesis that mitochondrial and metabolic dysfunction result from diverse etiologies of neuropathology. We provide a current and comprehensive review of the literature and interpret that defective mitochondrial metabolism is upstream and primary to protein aggregation and other dogmatic hypotheses of NDDs. Finally, we identify gaps in knowledge and propose therapeutic modulation of mCa2+ exchange and mitochondrial function to alleviate metabolic impairments and treat NDDs.
Collapse
Affiliation(s)
- Pooja Jadiya
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad St, MERB 949, Philadelphia, PA, 19140, USA
| | - Joanne F Garbincius
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad St, MERB 949, Philadelphia, PA, 19140, USA
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad St, MERB 949, Philadelphia, PA, 19140, USA.
| |
Collapse
|
54
|
UPR mt activation protects against MPP +-induced toxicity in a cell culture model of Parkinson's disease. Biochem Biophys Res Commun 2021; 569:17-22. [PMID: 34216993 DOI: 10.1016/j.bbrc.2021.06.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 01/02/2023]
Abstract
The pathogenesis of Parkinson's disease (PD) remains elusive, but mitochondrial dysfunction is believed to be one crucial step in its pathogenesis. The mitochondrial unfolded protein response (UPRmt) is an important mitochondrial quality control strategy that maintains mitochondrial function in response to disturbances of mitochondrial protein homeostasis. Activation of the UPRmt and the beneficial effect of rescuing mitochondrial proteostasis have been reported in several genetic models of PD. However, the pathogenic relevance of the UPRmt in idiopathic PD is unknown. The present study examined the link between the UPRmt and mitochondrial dysfunction in 1-methyl-4-phenylpyridinium (MPP+)-treated SH-SY5Y cells. Treatment with MPP + induced activation of the UPRmt, reflected by an increase in the expression of UPRmt-related chaperones, proteases, and transcription mediators. UPRmt activation that was induced by overexpressing mutant ornithine transcarbamylase significantly reduced the production of mitochondrial reactive oxygen species (ROS) and improved cell survival in SH-SY5Y cells following MPP+ treatment. Moreover, the overexpression of activating transcription factor 5 (mammalian UPRmt transcription factor) conferred protection against MPP+-induced ROS production and against cell death in SH-SY5Y cells. Overall, our results demonstrate the beneficial effect of UPRmt activation in MPP + -treated cells, shedding new light on the mechanism of mitochondrial dysfunction in the pathogenesis of PD.
Collapse
|
55
|
Abstract
Mitochondria are organelles with vital functions in almost all eukaryotic cells. Often described as the cellular 'powerhouses' due to their essential role in aerobic oxidative phosphorylation, mitochondria perform many other essential functions beyond energy production. As signaling organelles, mitochondria communicate with the nucleus and other organelles to help maintain cellular homeostasis, allow cellular adaptation to diverse stresses, and help steer cell fate decisions during development. Mitochondria have taken center stage in the research of normal and pathological processes, including normal tissue homeostasis and metabolism, neurodegeneration, immunity and infectious diseases. The central role that mitochondria assume within cells is evidenced by the broad impact of mitochondrial diseases, caused by defects in either mitochondrial or nuclear genes encoding for mitochondrial proteins, on different organ systems. In this Review, we will provide the reader with a foundation of the mitochondrial 'hardware', the mitochondrion itself, with its specific dynamics, quality control mechanisms and cross-organelle communication, including its roles as a driver of an innate immune response, all with a focus on development, disease and aging. We will further discuss how mitochondrial DNA is inherited, how its mutation affects cell and organismal fitness, and current therapeutic approaches for mitochondrial diseases in both model organisms and humans.
Collapse
Affiliation(s)
- Marlies P. Rossmann
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Sonia M. Dubois
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Suneet Agarwal
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Leonard I. Zon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
56
|
Dorszewska J, Lahiri DK. Diversity of Molecular Factors in Alzheimer's Disease. Curr Alzheimer Res 2021; 17:205-207. [PMID: 32442077 DOI: 10.2174/156720501703200518081524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Debomoy K Lahiri
- Departments of Psychiatry, and of Medical & Molecular Genetics, Indiana University School of Medicine, Stark Neuroscience Research Institute, Indianapolis, IN 46202, United States
| |
Collapse
|
57
|
Needs HI, Protasoni M, Henley JM, Prudent J, Collinson I, Pereira GC. Interplay between Mitochondrial Protein Import and Respiratory Complexes Assembly in Neuronal Health and Degeneration. Life (Basel) 2021; 11:432. [PMID: 34064758 PMCID: PMC8151517 DOI: 10.3390/life11050432] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 12/14/2022] Open
Abstract
The fact that >99% of mitochondrial proteins are encoded by the nuclear genome and synthesised in the cytosol renders the process of mitochondrial protein import fundamental for normal organelle physiology. In addition to this, the nuclear genome comprises most of the proteins required for respiratory complex assembly and function. This means that without fully functional protein import, mitochondrial respiration will be defective, and the major cellular ATP source depleted. When mitochondrial protein import is impaired, a number of stress response pathways are activated in order to overcome the dysfunction and restore mitochondrial and cellular proteostasis. However, prolonged impaired mitochondrial protein import and subsequent defective respiratory chain function contributes to a number of diseases including primary mitochondrial diseases and neurodegeneration. This review focuses on how the processes of mitochondrial protein translocation and respiratory complex assembly and function are interlinked, how they are regulated, and their importance in health and disease.
Collapse
Affiliation(s)
- Hope I. Needs
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
| | - Margherita Protasoni
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| | - Jeremy M. Henley
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Julien Prudent
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
| | - Gonçalo C. Pereira
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| |
Collapse
|
58
|
Sharma C, Kim S, Nam Y, Jung UJ, Kim SR. Mitochondrial Dysfunction as a Driver of Cognitive Impairment in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22094850. [PMID: 34063708 PMCID: PMC8125007 DOI: 10.3390/ijms22094850] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is the most frequent cause of age-related neurodegeneration and cognitive impairment, and there are currently no broadly effective therapies. The underlying pathogenesis is complex, but a growing body of evidence implicates mitochondrial dysfunction as a common pathomechanism involved in many of the hallmark features of the AD brain, such as formation of amyloid-beta (Aβ) aggregates (amyloid plaques), neurofibrillary tangles, cholinergic system dysfunction, impaired synaptic transmission and plasticity, oxidative stress, and neuroinflammation, that lead to neurodegeneration and cognitive dysfunction. Indeed, mitochondrial dysfunction concomitant with progressive accumulation of mitochondrial Aβ is an early event in AD pathogenesis. Healthy mitochondria are critical for providing sufficient energy to maintain endogenous neuroprotective and reparative mechanisms, while disturbances in mitochondrial function, motility, fission, and fusion lead to neuronal malfunction and degeneration associated with excess free radical production and reduced intracellular calcium buffering. In addition, mitochondrial dysfunction can contribute to amyloid-β precursor protein (APP) expression and misprocessing to produce pathogenic fragments (e.g., Aβ1-40). Given this background, we present an overview of the importance of mitochondria for maintenance of neuronal function and how mitochondrial dysfunction acts as a driver of cognitive impairment in AD. Additionally, we provide a brief summary of possible treatments targeting mitochondrial dysfunction as therapeutic approaches for AD.
Collapse
Affiliation(s)
- Chanchal Sharma
- School of Life Sciences, Kyungpook National University, Daegu 41566, Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Sehwan Kim
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Korea; (S.K.); (Y.N.)
| | - Youngpyo Nam
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Korea; (S.K.); (Y.N.)
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea;
| | - Sang Ryong Kim
- School of Life Sciences, Kyungpook National University, Daegu 41566, Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Korea; (S.K.); (Y.N.)
- Correspondence: ; Tel.: +82-53-950-7362; Fax: +82-53-943-2762
| |
Collapse
|
59
|
Baglietto-Vargas D, Forner S, Cai L, Martini AC, Trujillo-Estrada L, Swarup V, Nguyen MMT, Do Huynh K, Javonillo DI, Tran KM, Phan J, Jiang S, Kramár EA, Nuñez-Diaz C, Balderrama-Gutierrez G, Garcia F, Childs J, Rodriguez-Ortiz CJ, Garcia-Leon JA, Kitazawa M, Shahnawaz M, Matheos DP, Ma X, Da Cunha C, Walls KC, Ager RR, Soto C, Gutierrez A, Moreno-Gonzalez I, Mortazavi A, Tenner AJ, MacGregor GR, Wood M, Green KN, LaFerla FM. Generation of a humanized Aβ expressing mouse demonstrating aspects of Alzheimer's disease-like pathology. Nat Commun 2021; 12:2421. [PMID: 33893290 PMCID: PMC8065162 DOI: 10.1038/s41467-021-22624-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/15/2021] [Indexed: 11/26/2022] Open
Abstract
The majority of Alzheimer's disease (AD) cases are late-onset and occur sporadically, however most mouse models of the disease harbor pathogenic mutations, rendering them better representations of familial autosomal-dominant forms of the disease. Here, we generated knock-in mice that express wildtype human Aβ under control of the mouse App locus. Remarkably, changing 3 amino acids in the mouse Aβ sequence to its wild-type human counterpart leads to age-dependent impairments in cognition and synaptic plasticity, brain volumetric changes, inflammatory alterations, the appearance of Periodic Acid-Schiff (PAS) granules and changes in gene expression. In addition, when exon 14 encoding the Aβ sequence was flanked by loxP sites we show that Cre-mediated excision of exon 14 ablates hAβ expression, rescues cognition and reduces the formation of PAS granules.
Collapse
Affiliation(s)
- David Baglietto-Vargas
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
- Department of Cell Biology, Genetic and Physiology, Faculty of Sciences, Instituto de Investigacion Biomedica de Malaga-IBIMA, Networking Research Center on Neurodegenerative Diseases (CIBERNED), University of Malaga, Malaga, Spain
| | - Stefania Forner
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Lena Cai
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Alessandra C Martini
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Laura Trujillo-Estrada
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Cell Biology, Genetic and Physiology, Faculty of Sciences, Instituto de Investigacion Biomedica de Malaga-IBIMA, Networking Research Center on Neurodegenerative Diseases (CIBERNED), University of Malaga, Malaga, Spain
| | - Vivek Swarup
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Marie Minh Thu Nguyen
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Kelly Do Huynh
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Dominic I Javonillo
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Kristine Minh Tran
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Jimmy Phan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Shan Jiang
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Enikö A Kramár
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Cristina Nuñez-Diaz
- Department of Cell Biology, Genetic and Physiology, Faculty of Sciences, Instituto de Investigacion Biomedica de Malaga-IBIMA, Networking Research Center on Neurodegenerative Diseases (CIBERNED), University of Malaga, Malaga, Spain
| | | | - Franklin Garcia
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Jessica Childs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Carlos J Rodriguez-Ortiz
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Division of Occupational and Environmental Medicine, Department of Medicine. Center for Occupational and Environmental Health (COEH), University of California, Irvine, CA, USA
| | - Juan Antonio Garcia-Leon
- Department of Cell Biology, Genetic and Physiology, Faculty of Sciences, Instituto de Investigacion Biomedica de Malaga-IBIMA, Networking Research Center on Neurodegenerative Diseases (CIBERNED), University of Malaga, Malaga, Spain
| | - Masashi Kitazawa
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Division of Occupational and Environmental Medicine, Department of Medicine. Center for Occupational and Environmental Health (COEH), University of California, Irvine, CA, USA
| | - Mohammad Shahnawaz
- The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dina P Matheos
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Xinyi Ma
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Celia Da Cunha
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Ken C Walls
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Rahasson R Ager
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Claudio Soto
- The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Antonia Gutierrez
- Department of Cell Biology, Genetic and Physiology, Faculty of Sciences, Instituto de Investigacion Biomedica de Malaga-IBIMA, Networking Research Center on Neurodegenerative Diseases (CIBERNED), University of Malaga, Malaga, Spain
| | - Ines Moreno-Gonzalez
- Department of Cell Biology, Genetic and Physiology, Faculty of Sciences, Instituto de Investigacion Biomedica de Malaga-IBIMA, Networking Research Center on Neurodegenerative Diseases (CIBERNED), University of Malaga, Malaga, Spain
- The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Andrea J Tenner
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Grant R MacGregor
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Marcelo Wood
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Kim N Green
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.
| | - Frank M LaFerla
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.
| |
Collapse
|
60
|
Paul S, Saha D, Bk B. Mitochondrial Dysfunction and Mitophagy Closely Cooperate in Neurological Deficits Associated with Alzheimer's Disease and Type 2 Diabetes. Mol Neurobiol 2021; 58:3677-3691. [PMID: 33797062 DOI: 10.1007/s12035-021-02365-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/19/2021] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) and type 2 diabetes (T2D) are known to be correlated in terms of their epidemiology, histopathology, and molecular and biochemical characteristics. The prevalence of T2D leading to AD is approximately 50-70%. Moreover, AD is often considered type III diabetes because of the common risk factors. Uncontrolled T2D may affect the brain, leading to memory and learning deficits in patients. In addition, metabolic disorders and impaired oxidative phosphorylation in AD and T2D patients suggest that mitochondrial dysfunction is involved in both diseases. The dysregulation of pathways involved in maintaining mitochondrial dynamics, biogenesis and mitophagy are responsible for exacerbating the impact of hyperglycemia on the brain and neurodegeneration under T2D conditions. The first section of this review describes the recent views on mitochondrial dysfunction that connect these two disease conditions, as the pathways are observed to overlap. The second section of the review highlights the importance of different mitochondrial miRNAs (mitomiRs) involved in the regulation of mitochondrial dynamics and their association with the pathogenesis of T2D and AD. Therefore, targeting mitochondrial biogenesis and mitophagy pathways, along with the use of mitomiRs, could be a potent therapeutic strategy for T2D-related AD. The last section of the review highlights the known drugs targeting mitochondrial function for the treatment of both disease conditions.
Collapse
Affiliation(s)
- Sangita Paul
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debarpita Saha
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Binukumar Bk
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
61
|
Mi Y, Qi G, Brinton RD, Yin F. Mitochondria-Targeted Therapeutics for Alzheimer's Disease: The Good, the Bad, the Potential. Antioxid Redox Signal 2021; 34:611-630. [PMID: 32143551 PMCID: PMC7891225 DOI: 10.1089/ars.2020.8070] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022]
Abstract
Significance: Alzheimer's disease (AD) is the leading cause of dementia. Thus far, 99.6% of clinical trials, including those targeting energy metabolism, have failed to exert disease-modifying efficacy. Altered mitochondrial function and disruption to the brain bioenergetic system have long-been documented as early events during the pathological progression of AD. Recent Advances: While therapeutic approaches that directly promote mitochondrial bioenergetic machinery or eliminate reactive oxygen species have exhibited limited translatability, emerging strategies targeting nonenergetic aspects of mitochondria provide novel therapeutic targets with the potential to modify AD risk and progression. Growing evidence also reveals a critical link between mitochondrial phenotype and neuroinflammation via metabolic reprogramming of glial cells. Critical Issues: Herein, we summarize major classes of mitochondrion-centered AD therapeutic strategies. In addition, the discrepancy in their efficacy when translated from preclinical models to clinical trials is addressed. Key factors that differentiate the responsiveness to bioenergetic interventions, including sex, apolipoprotein E genotype, and cellular diversity in the brain, are discussed. Future Directions: We propose that the future development of mitochondria-targeted AD therapeutics should consider the interactions between bioenergetics and other disease mechanisms, which may require cell-type-specific targeting to distinguish neurons and non-neuronal cells. Moreover, a successful strategy will likely include stratification by metabolic phenotype, which varies by sex and genetic risk profile and dynamically changes throughout the course of disease. As the network of mitochondrial integration expands across intracellular and systems level biology, assessment of intended, the good, versus unintended consequences, the bad, will be required to reach the potential of mitochondrial therapeutics.
Collapse
Affiliation(s)
- Yashi Mi
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Guoyuan Qi
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, Arizona, USA
- Department of Pharmacology, College of Medicine Tucson, Tucson, Arizona, USA
- Department of Neurology, College of Medicine Tucson, Tucson, Arizona, USA
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, Arizona, USA
| | - Fei Yin
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, Arizona, USA
- Department of Pharmacology, College of Medicine Tucson, Tucson, Arizona, USA
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
62
|
Leal NS, Martins LM. Mind the Gap: Mitochondria and the Endoplasmic Reticulum in Neurodegenerative Diseases. Biomedicines 2021; 9:biomedicines9020227. [PMID: 33672391 PMCID: PMC7926795 DOI: 10.3390/biomedicines9020227] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/16/2022] Open
Abstract
The way organelles are viewed by cell biologists is quickly changing. For many years, these cellular entities were thought to be unique and singular structures that performed specific roles. However, in recent decades, researchers have discovered that organelles are dynamic and form physical contacts. In addition, organelle interactions modulate several vital biological functions, and the dysregulation of these contacts is involved in cell dysfunction and different pathologies, including neurodegenerative diseases. Mitochondria–ER contact sites (MERCS) are among the most extensively studied and understood juxtapositioned interorganelle structures. In this review, we summarise the major biological and ultrastructural dysfunctions of MERCS in neurodegeneration, with a particular focus on Alzheimer’s disease as well as Parkinson’s disease, amyotrophic lateral sclerosis and frontotemporal dementia. We also propose an updated version of the MERCS hypothesis in Alzheimer’s disease based on new findings. Finally, we discuss the possibility of MERCS being used as possible drug targets to halt cell death and neurodegeneration.
Collapse
|
63
|
Zhu L, Zhou Q, He L, Chen L. Mitochondrial unfolded protein response: An emerging pathway in human diseases. Free Radic Biol Med 2021; 163:125-134. [PMID: 33347985 DOI: 10.1016/j.freeradbiomed.2020.12.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/20/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022]
Abstract
Mitochondrial unfolded protein response (UPRmt) is a mitochondria stress response, which the transcriptional activation programs of mitochondrial chaperone proteins and proteases are initiated to maintain proteostasis in mitochondria. Additionally, the activation of UPRmt delays aging and extends lifespan by maintaining mitochondrial proteostasis. Growing evidences suggests that UPRmt plays an important role in diverse human diseases, especially ageing-related diseases. Therefore, this review focuses on the role of UPRmt in ageing and ageing-related neurodegenerative diseases such as Alzheimer's disease, Huntington's disease and Parkinson's disease. The activation of UPRmt and the high expression of UPRmt components contribute to longevity extension. The activation of UPRmt may ameliorate Alzheimer's disease, Parkinson's disease and Huntington's disease. Besides, UPRmt is also involved in the occurrence and development of cancers and heart diseases. UPRmt contributes to the growth, invasive and metastasis of cancers. UPRmt has paradoxical roles in heart diseases. UPRmt not only protects against heart damage, but may sometimes aggravates the development of heart diseases. Considering the pleiotropic actions of UPRmt system, targeting UPRmt pathway may be a potent therapeutic avenue for neurodegenerative diseases, cancers and heart diseases.
Collapse
Affiliation(s)
- Li Zhu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China
| | - Qionglin Zhou
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China
| | - Lu He
- Department of Pharmacy, The First Affiliated Hospital, University of South China, Hengyang, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
64
|
Evangelisti A, Butler H, del Monte F. The Heart of the Alzheimer's: A Mindful View of Heart Disease. Front Physiol 2021; 11:625974. [PMID: 33584340 PMCID: PMC7873884 DOI: 10.3389/fphys.2020.625974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose of Review: This review summarizes the current evidence for the involvement of proteotoxicity and protein quality control systems defects in diseases of the central nervous and cardiovascular systems. Specifically, it presents the commonalities between the pathophysiology of protein misfolding diseases in the heart and the brain. Recent Findings: The involvement of protein homeostasis dysfunction has been for long time investigated and accepted as one of the leading pathophysiological causes of neurodegenerative diseases. In cardiovascular diseases instead the mechanistic focus had been on the primary role of Ca2+ dishomeostasis, myofilament dysfunction as well as extracellular fibrosis, whereas no attention was given to misfolding of proteins as a pathogenetic mechanism. Instead, in the recent years, several contributions have shown protein aggregates in failing hearts similar to the ones found in the brain and increasing evidence have highlighted the crucial importance that proteotoxicity exerts via pre-amyloidogenic species in cardiovascular diseases as well as the prominent role of the cellular response to misfolded protein accumulation. As a result, proteotoxicity, unfolding protein response (UPR), and ubiquitin-proteasome system (UPS) have recently been investigated as potential key pathogenic pathways and therapeutic targets for heart disease. Summary: Overall, the current knowledge summarized in this review describes how the misfolding process in the brain parallels in the heart. Understanding the folding and unfolding mechanisms involved early through studies in the heart will provide new knowledge for neurodegenerative proteinopathies and may prepare the stage for targeted and personalized interventions.
Collapse
Affiliation(s)
| | - Helen Butler
- School of Medicine, Department of Molecular and Cellular Biology and Pathobiology, Medical University of South Carolina, Charleston, SC, United States
| | - Federica del Monte
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
65
|
Luo B, Ma Y, Zhou Y, Zhang N, Luo Y. Human ClpP protease, a promising therapy target for diseases of mitochondrial dysfunction. Drug Discov Today 2021; 26:968-981. [PMID: 33460621 DOI: 10.1016/j.drudis.2021.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/02/2020] [Accepted: 01/08/2021] [Indexed: 02/05/2023]
Abstract
Human caseinolytic protease P (HsClpP), an ATP-dependent unfolding peptidase protein in the mitochondrial matrix, controls protein quality, regulates mitochondrial metabolism, and maintains the integrity and enzyme activity of the mitochondrial respiratory chain (RC). Studies show that abnormalities in HsClpP lead to mitochondrial dysfunction and various human diseases. In this review, we provide a comprehensive overview of the structure and biological function of HsClpP, and the involvement of its dysexpression or mutation in mitochondria for a panel of important human diseases. We also summarize the structural types and binding modes of known HsClpP modulators. Finally, we discuss the challenges and future directions of HsClpP targeting as promising approach for the treatment of human diseases of mitochondrial origin.
Collapse
Affiliation(s)
- Baozhu Luo
- National Center for Birth Defect Monitoring, West China Second University Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Ma
- Radiation therapy and chemotherapy for gynecological cancer, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - YuanZheng Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Nannan Zhang
- National Center for Birth Defect Monitoring, West China Second University Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China.
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
66
|
Loeffler DA. Modifiable, Non-Modifiable, and Clinical Factors Associated with Progression of Alzheimer's Disease. J Alzheimers Dis 2021; 80:1-27. [PMID: 33459643 DOI: 10.3233/jad-201182] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is an extensive literature relating to factors associated with the development of Alzheimer's disease (AD), but less is known about factors which may contribute to its progression. This review examined the literature with regard to 15 factors which were suggested by PubMed search to be positively associated with the cognitive and/or neuropathological progression of AD. The factors were grouped as potentially modifiable (vascular risk factors, comorbidities, malnutrition, educational level, inflammation, and oxidative stress), non-modifiable (age at clinical onset, family history of dementia, gender, Apolipoprotein E ɛ4, genetic variants, and altered gene regulation), and clinical (baseline cognitive level, neuropsychiatric symptoms, and extrapyramidal signs). Although conflicting results were found for the majority of factors, a positive association was found in nearly all studies which investigated the relationship of six factors to AD progression: malnutrition, genetic variants, altered gene regulation, baseline cognitive level, neuropsychiatric symptoms, and extrapyramidal signs. Whether these or other factors which have been suggested to be associated with AD progression actually influence the rate of decline of AD patients is unclear. Therapeutic approaches which include addressing of modifiable factors associated with AD progression should be considered.
Collapse
Affiliation(s)
- David A Loeffler
- Beaumont Research Institute, Department of Neurology, Beaumont Health, Royal Oak, MI, USA
| |
Collapse
|
67
|
Pérez MJ, Ivanyuk D, Panagiotakopoulou V, Di Napoli G, Kalb S, Brunetti D, Al-Shaana R, Kaeser SA, Fraschka SAK, Jucker M, Zeviani M, Viscomi C, Deleidi M. Loss of function of the mitochondrial peptidase PITRM1 induces proteotoxic stress and Alzheimer's disease-like pathology in human cerebral organoids. Mol Psychiatry 2021; 26:5733-5750. [PMID: 32632204 PMCID: PMC8758476 DOI: 10.1038/s41380-020-0807-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/17/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022]
Abstract
Mutations in pitrilysin metallopeptidase 1 (PITRM1), a mitochondrial protease involved in mitochondrial precursor processing and degradation, result in a slow-progressing syndrome characterized by cerebellar ataxia, psychotic episodes, and obsessive behavior, as well as cognitive decline. To investigate the pathogenetic mechanisms of mitochondrial presequence processing, we employed cortical neurons and cerebral organoids generated from PITRM1-knockout human induced pluripotent stem cells (iPSCs). PITRM1 deficiency strongly induced mitochondrial unfolded protein response (UPRmt) and enhanced mitochondrial clearance in iPSC-derived neurons. Furthermore, we observed increased levels of amyloid precursor protein and amyloid β in PITRM1-knockout neurons. However, neither cell death nor protein aggregates were observed in 2D iPSC-derived cortical neuronal cultures. On the other hand, over time, cerebral organoids generated from PITRM1-knockout iPSCs spontaneously developed pathological features of Alzheimer's disease (AD), including the accumulation of protein aggregates, tau pathology, and neuronal cell death. Single-cell RNA sequencing revealed a perturbation of mitochondrial function in all cell types in PITRM1-knockout cerebral organoids, whereas immune transcriptional signatures were substantially dysregulated in astrocytes. Importantly, we provide evidence of a protective role of UPRmt and mitochondrial clearance against impaired mitochondrial presequence processing and proteotoxic stress. Here, we propose a novel concept of PITRM1-linked neurological syndrome whereby defects of mitochondrial presequence processing induce an early activation of UPRmt that, in turn, modulates cytosolic quality control pathways. Thus, our work supports a mechanistic link between mitochondrial function and common neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- María José Pérez
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany ,grid.10392.390000 0001 2190 1447Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Dina Ivanyuk
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany ,grid.10392.390000 0001 2190 1447Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Vasiliki Panagiotakopoulou
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany ,grid.10392.390000 0001 2190 1447Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Gabriele Di Napoli
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany ,grid.10392.390000 0001 2190 1447Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Stefanie Kalb
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany ,grid.10392.390000 0001 2190 1447Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Dario Brunetti
- grid.4708.b0000 0004 1757 2822Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Rawaa Al-Shaana
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany ,grid.10392.390000 0001 2190 1447Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Stephan A. Kaeser
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany ,grid.10392.390000 0001 2190 1447Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Sabine Anne-Kristin Fraschka
- DFG NGS Competence Center Tübingen, 72076 Tübingen, Germany ,grid.10392.390000 0001 2190 1447Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Mathias Jucker
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany ,grid.10392.390000 0001 2190 1447Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Massimo Zeviani
- grid.462573.10000 0004 0427 1414MRC-Mitochondrial Biology Unit, Cambridge, CB2 0XY UK
| | - Carlo Viscomi
- grid.462573.10000 0004 0427 1414MRC-Mitochondrial Biology Unit, Cambridge, CB2 0XY UK
| | - Michela Deleidi
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany. .,Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
68
|
Hoffman TE, Hanneman WH, Moreno JA. Network Simulations Reveal Molecular Signatures of Vulnerability to Age-Dependent Stress and Tau Accumulation. Front Mol Biosci 2020; 7:590045. [PMID: 33195439 PMCID: PMC7606936 DOI: 10.3389/fmolb.2020.590045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/30/2020] [Indexed: 01/02/2023] Open
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia and one of the most common causes of death worldwide. As an age-dependent multifactorial disease, the causative triggers of AD are rooted in spontaneous declines in cellular function and metabolic capacity with increases in protein stressors such as the tau protein. This multitude of age-related processes that cause neurons to change from healthy states to ones vulnerable to the damage seen in AD are difficult to simultaneously investigate and even more difficult to quantify. Here we aimed to diminish these gaps in our understanding of neuronal vulnerability in AD development by using simulation methods to theoretically quantify an array of cellular stress responses and signaling molecules. This temporally-descriptive molecular signature was produced using a novel multimethod simulation approach pioneered by our laboratory for biological research; this methodology combines hierarchical agent-based processes and continuous equation-based modeling in the same interface, all while maintaining intrinsic distributions that emulate natural biological stochasticity. The molecular signature was validated for a normal organismal aging trajectory using experimental longitudinal data from Caenorhabditis elegans and rodent studies. In addition, we have further predicted this aging molecular signature for cells impacted by the pathogenic tau protein, giving rise to distinct stress response conditions needed for cytoprotective aging. Interestingly, our simulation experiments showed that oxidative stress signaling (via daf-16 and skn-1 activities) does not substantially protect cells from all the early stressors of aging, but that it is essential in preventing a late-life degenerative cellular phenotype. Together, our simulation experiments aid in elucidating neurodegenerative triggers in the onset of AD for different genetic conditions. The long-term goal of this work is to provide more detailed diagnostic and prognostic tools for AD development and progression, and to provide more comprehensive preventative measures for this disease.
Collapse
Affiliation(s)
- Timothy E Hoffman
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - William H Hanneman
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Julie A Moreno
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
69
|
Rao CV, Farooqui M, Madhavaram A, Zhang Y, Asch AS, Yamada HY. GSK3-ARC/Arg3.1 and GSK3-Wnt signaling axes trigger amyloid-β accumulation and neuroinflammation in middle-aged Shugoshin 1 mice. Aging Cell 2020; 19:e13221. [PMID: 32857910 PMCID: PMC7576275 DOI: 10.1111/acel.13221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/30/2020] [Accepted: 07/26/2020] [Indexed: 12/13/2022] Open
Abstract
The cerebral amyloid‐β accumulation that begins in middle age is considered the critical triggering event in the pathogenesis of late‐onset Alzheimer's disease (LOAD). However, the molecular mechanism remains elusive. The Shugoshin 1 (Sgo1−/+) mouse model, a model for mitotic cohesinopathy‐genomic instability that is observed in human AD at a higher rate, showed spontaneous accumulation of amyloid‐β in the brain at old age. With the model, novel insights into the molecular mechanism of LOAD development are anticipated. In this study, the initial appearance of cerebral amyloid‐β accumulation was determined as 15‐18 months of age (late middle age) in the Sgo1−/+ model. The amyloid‐β accumulation was associated with unexpected GSK3α/β inactivation, Wnt signaling activation, and ARC/Arg3.1 accumulation, suggesting involvement of both the GSK3‐Arc/Arg3.1 axis and the GSK3‐Wnt axis. As observed in human AD brains, neuroinflammation with IFN‐γ expression occurred with amyloid‐β accumulation and was pronounced in the aged (24‐month‐old) Sgo1−/+ model mice. AD‐relevant protein panels (oxidative stress defense, mitochondrial energy metabolism, and β‐oxidation and peroxisome) analysis indicated (a) early increases in Pdk1 and Phb in middle‐aged Sgo1−/+ brains, and (b) misregulations in 32 proteins among 130 proteins tested in old age. Thus, initial amyloid‐β accumulation in the Sgo1−/+ model is suggested to be triggered by GSK3 inactivation and the resulting Wnt activation and ARC/Arg3.1 accumulation. The model displayed characteristics and affected pathways similar to those of human LOAD including neuroinflammation, demonstrating its potential as a study tool for the LOAD development mechanism and for preclinical AD drug research and development.
Collapse
Affiliation(s)
- Chinthalapally V. Rao
- Hematology/Oncology Section Department of Medicine Center for Cancer Prevention and Drug Development University of Oklahoma Health Sciences Center (OUHSC Oklahoma City Oklahoma USA
| | - Mudassir Farooqui
- Department of Neurology University of Iowa Hospitals and Clinics Iowa City Iowa USA
| | - Avanish Madhavaram
- Biology/Exercise and Sports Science University of North Carolina Chapel Hill North Carolina USA
| | - Yuting Zhang
- Hematology/Oncology Section Department of Medicine Center for Cancer Prevention and Drug Development University of Oklahoma Health Sciences Center (OUHSC Oklahoma City Oklahoma USA
| | - Adam S. Asch
- Hematology/Oncology Section Department of Medicine Stephenson Cancer Center University of Oklahoma Health Sciences Center (OUHSC Oklahoma City Oklahoma USA
| | - Hiroshi Y. Yamada
- Hematology/Oncology Section Department of Medicine Center for Cancer Prevention and Drug Development University of Oklahoma Health Sciences Center (OUHSC Oklahoma City Oklahoma USA
| |
Collapse
|
70
|
Muñoz-Carvajal F, Sanhueza M. The Mitochondrial Unfolded Protein Response: A Hinge Between Healthy and Pathological Aging. Front Aging Neurosci 2020; 12:581849. [PMID: 33061907 PMCID: PMC7518384 DOI: 10.3389/fnagi.2020.581849] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Aging is the time-dependent functional decline that increases the vulnerability to different forms of stress, constituting the major risk factor for the development of neurodegenerative diseases. Dysfunctional mitochondria significantly contribute to aging phenotypes, accumulating particularly in post-mitotic cells, including neurons. To cope with deleterious effects, mitochondria feature different mechanisms for quality control. One such mechanism is the mitochondrial unfolded protein response (UPRMT), which corresponds to the transcriptional activation of mitochondrial chaperones, proteases, and antioxidant enzymes to repair defective mitochondria. Transcription of target UPRMT genes is epigenetically regulated by Histone 3-specific methylation. Age-dependency of this regulation could explain a differential UPRMT activity in early developmental stages or aged organisms. At the same time, precise tuning of mitochondrial stress responses is crucial for maintaining neuronal homeostasis. However, compared to other mitochondrial and stress response programs, the role of UPRMT in neurodegenerative disease is barely understood and studies in this topic are just emerging. In this review, we document the reported evidence characterizing the evolutionarily conserved regulation of the UPRMT and summarize the recent advances in understanding the role of the pathway in neurodegenerative diseases and aging.
Collapse
Affiliation(s)
- Francisco Muñoz-Carvajal
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Fondap Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Mario Sanhueza
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| |
Collapse
|
71
|
Does proteostasis get lost in translation? Implications for protein aggregation across the lifespan. Ageing Res Rev 2020; 62:101119. [PMID: 32603841 DOI: 10.1016/j.arr.2020.101119] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/05/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
Abstract
Protein aggregation is a phenomenon of major relevance in neurodegenerative and neuromuscular disorders, cataracts, diabetes and many other diseases. Research has unveiled that proteins also aggregate in multiple tissues during healthy aging yet, the biological and biomedical relevance of this apparently asymptomatic phenomenon remains to be understood. It is known that proteome homeostasis (proteostasis) is maintained by a balanced protein synthesis rate, high protein synthesis accuracy, efficient protein folding and continual tagging of damaged proteins for degradation, suggesting that protein aggregation during healthy aging may be associated with alterations in both protein synthesis and the proteostasis network (PN) pathways. In particular, dysregulation of protein synthesis and alterations in translation fidelity are hypothesized to lead to the production of misfolded proteins which could explain the occurrence of age-related protein aggregation. Nevertheless, some data on this topic is controversial and the biological mechanisms that lead to widespread protein aggregation remain to be elucidated. We review the recent literature about the age-related decline of proteostasis, highlighting the need to build an integrated view of protein synthesis rate, fidelity and quality control pathways in order to better understand the proteome alterations that occur during aging and in age-related diseases.
Collapse
|
72
|
Chen Q, Samidurai A, Thompson J, Hu Y, Das A, Willard B, Lesnefsky EJ. Endoplasmic reticulum stress-mediated mitochondrial dysfunction in aged hearts. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165899. [PMID: 32698045 DOI: 10.1016/j.bbadis.2020.165899] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/04/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022]
Abstract
Aging impairs the mitochondrial electron transport chain (ETC), especially in interfibrillar mitochondria (IFM). Mitochondria are in close contact with the endoplasmic reticulum (ER). Induction of ER stress leads to ETC injury in adult heart mitochondria. We asked if ER stress contributes to the mitochondrial dysfunction during aging. Subsarcolemmal mitochondria (SSM) and IFM were isolated from 3, 18, and 24 mo. C57Bl/6 mouse hearts. ER stress progressively increased with age, especially in 24 mo. mice that manifest mitochondrial dysfunction. OXPHOS was decreased in 24 mo. IFM oxidizing complex I and complex IV substrates. Proteomic analysis showed that the content of multiple complex I subunits was decreased in IFM from 24 mo. hearts, but remained unchanged in in 18 mo. IFM without a decrease in OXPHOS. Feeding 24 mo. old mice with 4-phenylbutyrate (4-PBA) for two weeks attenuated the ER stress and improved mitochondrial function. These results indicate that ER stress contributes to the mitochondrial dysfunction in aged hearts. Attenuation of ER stress is a potential approach to improve mitochondrial function in aged hearts.
Collapse
Affiliation(s)
- Qun Chen
- Department of Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Arun Samidurai
- Department of Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Jeremy Thompson
- Department of Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Ying Hu
- Department of Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Anindita Das
- Department of Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Belinda Willard
- Proteomics Core, Cleveland Clinic, Cleveland, OH 44106, United States of America
| | - Edward J Lesnefsky
- Department of Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States of America; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, United States of America; Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, United States of America; McGuire Department of Veterans Affairs Medical Center, Richmond, VA 23249, United States of America.
| |
Collapse
|
73
|
Wang W, Zhao F, Ma X, Perry G, Zhu X. Mitochondria dysfunction in the pathogenesis of Alzheimer's disease: recent advances. Mol Neurodegener 2020; 15:30. [PMID: 32471464 PMCID: PMC7257174 DOI: 10.1186/s13024-020-00376-6] [Citation(s) in RCA: 580] [Impact Index Per Article: 145.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases, characterized by impaired cognitive function due to progressive loss of neurons in the brain. Under the microscope, neuronal accumulation of abnormal tau proteins and amyloid plaques are two pathological hallmarks in affected brain regions. Although the detailed mechanism of the pathogenesis of AD is still elusive, a large body of evidence suggests that damaged mitochondria likely play fundamental roles in the pathogenesis of AD. It is believed that a healthy pool of mitochondria not only supports neuronal activity by providing enough energy supply and other related mitochondrial functions to neurons, but also guards neurons by minimizing mitochondrial related oxidative damage. In this regard, exploration of the multitude of mitochondrial mechanisms altered in the pathogenesis of AD constitutes novel promising therapeutic targets for the disease. In this review, we will summarize recent progress that underscores the essential role of mitochondria dysfunction in the pathogenesis of AD and discuss mechanisms underlying mitochondrial dysfunction with a focus on the loss of mitochondrial structural and functional integrity in AD including mitochondrial biogenesis and dynamics, axonal transport, ER-mitochondria interaction, mitophagy and mitochondrial proteostasis.
Collapse
Affiliation(s)
- Wenzhang Wang
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH, 44106, USA.
| | - Fanpeng Zhao
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Xiaopin Ma
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA.
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH, 44106, USA.
| |
Collapse
|
74
|
Monzio Compagnoni G, Di Fonzo A, Corti S, Comi GP, Bresolin N, Masliah E. The Role of Mitochondria in Neurodegenerative Diseases: the Lesson from Alzheimer's Disease and Parkinson's Disease. Mol Neurobiol 2020; 57:2959-2980. [PMID: 32445085 DOI: 10.1007/s12035-020-01926-1] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/22/2020] [Indexed: 12/15/2022]
Abstract
Although the pathogenesis of neurodegenerative diseases is still widely unclear, various mechanisms have been proposed and several pieces of evidence are supportive for an important role of mitochondrial dysfunction. The present review provides a comprehensive and up-to-date overview about the role of mitochondria in the two most common neurodegenerative disorders: Alzheimer's disease (AD) and Parkinson's disease (PD). Mitochondrial involvement in AD is supported by clinical features like reduced glucose and oxygen brain metabolism and by numerous microscopic and molecular findings, including altered mitochondrial morphology, impaired respiratory chain function, and altered mitochondrial DNA. Furthermore, amyloid pathology and mitochondrial dysfunction seem to be bi-directionally correlated. Mitochondria have an even more remarkable role in PD. Several hints show that respiratory chain activity, in particular complex I, is impaired in the disease. Mitochondrial DNA alterations, involving deletions, point mutations, depletion, and altered maintenance, have been described. Mutations in genes directly implicated in mitochondrial functioning (like Parkin and PINK1) are responsible for rare genetic forms of the disease. A close connection between alpha-synuclein accumulation and mitochondrial dysfunction has been observed. Finally, mitochondria are involved also in atypical parkinsonisms, in particular multiple system atrophy. The available knowledge is still not sufficient to clearly state whether mitochondrial dysfunction plays a primary role in the very initial stages of these diseases or is secondary to other phenomena. However, the presented data strongly support the hypothesis that whatever the initial cause of neurodegeneration is, mitochondrial impairment has a critical role in maintaining and fostering the neurodegenerative process.
Collapse
Affiliation(s)
- Giacomo Monzio Compagnoni
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy. .,Department of Neurology, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy. .,Department of Neurology, Khurana Laboratory, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Alessio Di Fonzo
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Neuroscience Section, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Giacomo P Comi
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Neuroscience Section, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Nereo Bresolin
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Neuroscience Section, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Eliezer Masliah
- Division of Neuroscience and Laboratory of Neurogenetics, National Institute on Aging, National Institute of Health, Bethesda, MD, USA
| |
Collapse
|
75
|
Shen G, Liu W, Xu L, Wang LL. Mitochondrial Unfolded Protein Response and Its Roles in Stem Cells. Stem Cells Dev 2020; 29:627-637. [PMID: 32070227 DOI: 10.1089/scd.2019.0278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Gerong Shen
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Liu
- Department of Prosthetics, Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lvwan Xu
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin-lin Wang
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
76
|
Granat L, Hunt RJ, Bateman JM. Mitochondrial retrograde signalling in neurological disease. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190415. [PMID: 32362256 DOI: 10.1098/rstb.2019.0415] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuronal mitochondrial dysfunction causes primary mitochondrial diseases and likely contributes to neurodegenerative diseases including Parkinson's and Alzheimer's disease. Mitochondrial dysfunction has also been documented in neurodevelopmental disorders such as tuberous sclerosis complex and autism spectrum disorder. Only symptomatic treatments exist for neurodevelopmental disorders, while neurodegenerative diseases are largely untreatable. Altered mitochondrial function activates mitochondrial retrograde signalling pathways, which enable signalling to the nucleus to reprogramme nuclear gene expression. In this review, we discuss the role of mitochondrial retrograde signalling in neurological diseases. We summarize how mitochondrial dysfunction contributes to neurodegenerative disease and neurodevelopmental disorders. Mitochondrial signalling mechanisms that have relevance to neurological disease are discussed. We then describe studies documenting retrograde signalling pathways in neurons and glia, and in animal models of neuronal mitochondrial dysfunction and neurological disease. Finally, we suggest how specific retrograde signalling pathways can be targeted to develop novel treatments for neurological diseases. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Lucy Granat
- Maurice Wohl Clinical Neuroscience Institute, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Rachel J Hunt
- Maurice Wohl Clinical Neuroscience Institute, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Joseph M Bateman
- Maurice Wohl Clinical Neuroscience Institute, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
77
|
Molenaars M, Daniels EG, Meurs A, Janssens GE, Houtkooper RH. Mitochondrial cross-compartmental signalling to maintain proteostasis and longevity. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190414. [PMID: 32362258 DOI: 10.1098/rstb.2019.0414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lifespan in eukaryotic species can be prolonged by shifting from cellular states favouring growth to those favouring maintenance and stress resistance. For instance, perturbations in mitochondrial oxidative phosphorylation (OXPHOS) can shift cells into this latter state and extend lifespan. Because mitochondria rely on proteins synthesized from nuclear as well as mitochondrial DNA, they need to constantly send and receive messages from other compartments of the cell in order to function properly and maintain homeostasis, and lifespan extension is often dependent on this cross-compartmental signalling. Here, we describe the mechanisms of bi-directional mitochondrial cross-compartmental signalling resulting in proteostasis and longevity. These proteostasis mechanisms are highly context-dependent, governed by the origin and extent of stress. Furthermore, we discuss the translatability of these mechanisms and explore therapeutic developments, such as the antibiotic studies targeting mitochondria or mitochondria-derived peptides as therapies for age-related diseases such as neurodegeneration and cancer. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Marte Molenaars
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Eileen G Daniels
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Amber Meurs
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
78
|
Sang Z, Wang K, Shi J, Cheng X, Zhu G, Wei R, Ma Q, Yu L, Zhao Y, Tan Z, Liu W. Apigenin-rivastigmine hybrids as multi-target-directed liagnds for the treatment of Alzheimer’s disease. Eur J Med Chem 2020; 187:111958. [DOI: 10.1016/j.ejmech.2019.111958] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/07/2019] [Accepted: 12/08/2019] [Indexed: 12/14/2022]
|
79
|
Shen Y, Ding M, Xie Z, Liu X, Yang H, Jin S, Xu S, Zhu Z, Wang Y, Wang D, Xu L, Zhou X, Wang P, Bi J. Activation of Mitochondrial Unfolded Protein Response in SHSY5Y Expressing APP Cells and APP/PS1 Mice. Front Cell Neurosci 2020; 13:568. [PMID: 31969805 PMCID: PMC6960128 DOI: 10.3389/fncel.2019.00568] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/09/2019] [Indexed: 01/16/2023] Open
Abstract
Alzheimer disease (AD) is the most common form of dementia. Amyloid β-peptide (Aβ) deposition is a major neuropathologic feature of AD. When unfolded or misfolded proteins accumulate in mitochondria, the unfolded protein responses (UPRmt) is initiated. Numerous lines of evidence show that AD pathogenesis involves mitochondrial dysfunction. However little is known about whether the UPRmt is engaged in the process of AD development. In this study, we investigated the UPRmt in mouse and cell models of AD. We found that UPRmt was activated in the brain of 3 and 9 months old APP/PS1 mice, and in the SHSY5Y cells after exposure to Aβ25–35, Aβ25–35 triggered UPRmt in SHSY5Y cells could be attenuated upon administration of simvastatin or siRNA for HMGCS-1 to inhibit the mevalonate pathway, and or upon knocking down Serine palmitoyltransferase long chain subunit 1 (SPTLC-1) to lower sphingolipid biosynthesis. We observed that inhibition of UPRmt aggravated cytotoxic effects of Aβ25–35 in SHSY5Y cells. Our research suggests that the UPRmt activation and two pathways necessary for this response, and further provides evidence for the cytoprotective effect of UPRmt during the AD process.
Collapse
Affiliation(s)
- Yang Shen
- Medicine School, Shandong University, Jinan, China
| | - Mao Ding
- Medicine School, Shandong University, Jinan, China
| | - Zhaohong Xie
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, China
| | | | - Hui Yang
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, China
| | - Suqin Jin
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, China
| | - Shunliang Xu
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, China
| | - Zhengyu Zhu
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, China
| | - Yun Wang
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, China
| | - Dewei Wang
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, China
| | - Linlin Xu
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, China
| | - Xiaoyan Zhou
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, China
| | - Ping Wang
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, China
| | - Jianzhong Bi
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
80
|
Cai H, Han B, Hu Y, Zhao X, He Z, Chen X, Sun H, Yuan J, Li Y, Yang X, Kong W, Kong WJ. Metformin attenuates the D‑galactose‑induced aging process via the UPR through the AMPK/ERK1/2 signaling pathways. Int J Mol Med 2020; 45:715-730. [PMID: 31922237 PMCID: PMC7015132 DOI: 10.3892/ijmm.2020.4453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022] Open
Abstract
Age‑related hearing loss, also termed central presbycusis, is a progressive neurodegenerative disease; it is a devastating disorder that severely affects the quality of life of elderly individuals. Substantial evidence has indicated that oxidative stress and associated protein folding dysfunction have a marked influence on neurodegenerative diseases. In this study, we aimed to cells to investigate whether metformin protects against age‑related pathologies and to elucidate the underlying mechanisms; specifically, we focused on the role of unfolded protein response (UPR) via the AMPK/ERK1/2 signaling pathways. For this purpose, the biguanide compound, metformin, a medication widely used in the treatment of type 2 diabetes, was administered to rats in a model of mimetic aging. In addition, senescent PC12 were treated with metformin. Although it has been well established that UPR signaling is activated in response to cellular stress and is associated with the pathogenesis of neuronal deterioration, the detailed functions of the UPR in the auditory cortex remain unclear. We found that metformin treatment markedly affected the UPR and the AMPK/ERK1/2 signaling pathway, and maintained the auditory brainstem response (ABR) threshold during the aging process. The results indicated that the regulation of the UPR and AMPK/ERK1/2 signaling pathway by metformin significantly attenuated hearing loss, cell apoptosis and age‑related neurodegeneration. Reversing these harmful effects through the use of metformin suggests its involvement in restoring the antioxidant status and protein homeostasis related to the underlying pathology of presbycusis. The findings of this study may provide a better approach for the treatment of age‑related neurodegeneration diseases.
Collapse
Affiliation(s)
- Hua Cai
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Baoai Han
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yujuan Hu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xueyan Zhao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zuhong He
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xubo Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Haiying Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jie Yuan
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yongqin Li
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiuping Yang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wei-Jia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
81
|
Chakravorty A, Jetto CT, Manjithaya R. Dysfunctional Mitochondria and Mitophagy as Drivers of Alzheimer's Disease Pathogenesis. Front Aging Neurosci 2019; 11:311. [PMID: 31824296 PMCID: PMC6880761 DOI: 10.3389/fnagi.2019.00311] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022] Open
Abstract
Neurons are highly specialized post-mitotic cells that are inherently dependent on mitochondria owing to their high bioenergetic demand. Mitochondrial dysfunction is therefore associated with various age-related neurodegenerative disorders such as Alzheimer's disease (AD), wherein accumulation of damaged and dysfunctional mitochondria has been reported as an early symptom further contributing to disease progression. In AD, impairment of mitochondrial function causes bioenergetic deficiency, intracellular calcium imbalance and oxidative stress, thereby aggravating the effect of Aβ and tau pathologies, leading to synaptic dysfunction, cognitive impairment and memory loss. Although there are reports suggesting intricate parallelism between mitochondrial dysfunction and AD pathologies such as Aβ aggregation and hyperphosphorylated tau accumulation, the factors that drive the pathogenesis of either are unclear. In addition, emerging evidence suggest that mitochondrial quality control (QC) mechanisms such as mitophagy are impaired in AD. As an important mitochondrial QC mechanism, mitophagy plays a critical role in maintaining neuronal health and function. Studies show that various proteins involved in mitophagy, mitochondrial dynamics, and mitochondrial biogenesis are affected in AD. Compromised mitophagy may also be attributed to impairment in autophagosome-lysosome fusion and defects in lysosomal acidification. Therapeutic interventions aiming to restore mitophagy functions can be used as a strategy for ameliorating AD pathogenesis. Recent evidence implicates the role of microglial activation via mitophagy induction in reducing amyloid plaque load. This review summarizes the current developments in the field of mitophagy and mitochondrial dysfunction in AD.
Collapse
Affiliation(s)
- Anushka Chakravorty
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Cuckoo Teresa Jetto
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
82
|
Mitochondrial Dysfunction in Alzheimer’s Disease and Progress in Mitochondria-Targeted Therapeutics. Curr Behav Neurosci Rep 2019. [DOI: 10.1007/s40473-019-00179-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
83
|
TDP-43 induces mitochondrial damage and activates the mitochondrial unfolded protein response. PLoS Genet 2019; 15:e1007947. [PMID: 31100073 PMCID: PMC6524796 DOI: 10.1371/journal.pgen.1007947] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 01/08/2019] [Indexed: 02/07/2023] Open
Abstract
Mutations in or dys-regulation of the TDP-43 gene have been associated with TDP-43 proteinopathy, a spectrum of neurodegenerative diseases including Frontotemporal Lobar Degeneration (FTLD) and Amyotrophic Lateral Sclerosis (ALS). The underlying molecular and cellular defects, however, remain unclear. Here, we report a systematic study combining analyses of patient brain samples with cellular and animal models for TDP-43 proteinopathy. Electron microscopy (EM) analyses of patient samples revealed prominent mitochondrial impairment, including abnormal cristae and a loss of cristae; these ultrastructural changes were consistently observed in both cellular and animal models of TDP-43 proteinopathy. In these models, increased TDP-43 expression induced mitochondrial dysfunction, including decreased mitochondrial membrane potential and elevated production of reactive oxygen species (ROS). TDP-43 expression suppressed mitochondrial complex I activity and reduced mitochondrial ATP synthesis. Importantly, TDP-43 activated the mitochondrial unfolded protein response (UPRmt) in both cellular and animal models. Down-regulating mitochondrial protease LonP1 increased mitochondrial TDP-43 levels and exacerbated TDP-43-induced mitochondrial damage as well as neurodegeneration. Together, our results demonstrate that TDP-43 induced mitochondrial impairment is a critical aspect in TDP-43 proteinopathy. Our work has not only uncovered a previously unknown role of LonP1 in regulating mitochondrial TDP-43 levels, but also advanced our understanding of the pathogenic mechanisms for TDP-43 proteinopathy. Our study suggests that blocking or reversing mitochondrial damage may provide a potential therapeutic approach to these devastating diseases. TDP-43 proteinopathy is a group of fatal neurological diseases. Here, we report a systematic examination of the role of mitochondrial damage in TDP-43 proteinopathy using patient brain tissues, as well as cellular and animal models. Our data show that TDP-43 induces severe mitochondrial damage, accompanied by activation of UPRmt in both cellular and animal models of TDP-43 proteinopathy. LonP1, one of the key mitochondrial proteases in UPRmt, protects against TDP-43 induced cytotoxicity and neurodegeneration. Our study uncovers LonP1 as a modifier gene for TDP-43 proteinopathy and suggests protecting against or reversing mitochondrial damage as a potential therapeutic approach to these neurodegenerative disorders.
Collapse
|
84
|
Fu Z, Liu F, Liu C, Jin B, Jiang Y, Tang M, Qi X, Guo X. Mutant huntingtin inhibits the mitochondrial unfolded protein response by impairing ABCB10 mRNA stability. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1428-1435. [PMID: 30802639 DOI: 10.1016/j.bbadis.2019.02.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/04/2019] [Accepted: 02/18/2019] [Indexed: 12/21/2022]
Abstract
Numerous studies have shown that mitochondrial dysfunction contributes to consequential phenotypes of Huntington's disease (HD), a fatal and inherited neurodegenerative disease caused by the expanded CAG repeats in the N-terminus of the huntingtin (Htt) gene. To maintain proper function, mitochondria develop a dedicated protein quality control mechanism by activating a stress response termed the mitochondrial unfolded protein response (UPRmt). Defects in the UPRmt have been linked to aging and are also associated with neurodegenerative diseases. However, little is known about the role of the UPRmt in HD. In this study, we find that ABCB10, a mitochondrial transporter involved in the UPRmt pathway, is downregulated in HD mouse striatal cells, HD patient fibroblasts, and HD R6/2 mice. Deletion of ABCB10 causes increased mitochondrial reactive oxygen species (ROS) production and cell death, whereas overexpression of ABCB10 reduces these aberrant events. Moreover, the mitochondrial chaperone HSP60 and mitochondrial protease Clpp, two well-established markers of the UPRmt, are reduced in the in vitro ABCB10-deficienct HD models. CHOP, a key transcription factor of HSP60 and Clpp, is regulated by ABCB10 in HD mouse striatal cells. Furthermore, we find that mutant huntingtin (mtHtt) inhibits the mtUPR by impairing ABCB10 mRNA stability. These findings demonstrate a suppression of the UPRmt by mtHtt, suggesting that disturbance of mitochondrial protein quality control may contribute to the pathogenesis of HD.
Collapse
Affiliation(s)
- Zixing Fu
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Fang Liu
- Department of Anatomy, College of Basic Medicine, Guilin Medical University, Guilin 541004, China
| | - Chunyue Liu
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Beifang Jin
- Department of Anatomy, College of Basic Medicine, Guilin Medical University, Guilin 541004, China
| | - Yueqing Jiang
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Xin Qi
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Center for Mitochondrial Disease, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Xing Guo
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, Jiangsu, China.
| |
Collapse
|
85
|
Melber A, Haynes CM. UPR mt regulation and output: a stress response mediated by mitochondrial-nuclear communication. Cell Res 2018; 28:281-295. [PMID: 29424373 PMCID: PMC5835775 DOI: 10.1038/cr.2018.16] [Citation(s) in RCA: 328] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mitochondrial network is not only required for the production of energy, essential cofactors and amino acids, but also serves as a signaling hub for innate immune and apoptotic pathways. Multiple mechanisms have evolved to identify and combat mitochondrial dysfunction to maintain the health of the organism. One such pathway is the mitochondrial unfolded protein response (UPRmt), which is regulated by the mitochondrial import efficiency of the transcription factor ATFS-1 in C. elegans and potentially orthologous transcription factors in mammals (ATF4, ATF5, CHOP). Upon mitochondrial dysfunction, import of ATFS-1 into mitochondria is reduced, allowing it to be trafficked to the nucleus where it promotes the expression of genes that promote survival and recovery of the mitochondrial network. Here, we discuss recent findings underlying UPRmt signal transduction and how this adaptive transcriptional response may interact with other mitochondrial stress response pathways.
Collapse
Affiliation(s)
- Andrew Melber
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Cole M Haynes
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
86
|
Sorrentino V, Romani M, Mouchiroud L, Beck JS, Zhang H, D'Amico D, Moullan N, Potenza F, Schmid AW, Rietsch S, Counts SE, Auwerx J. Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity. Nature 2017; 552:187-193. [PMID: 29211722 PMCID: PMC5730497 DOI: 10.1038/nature25143] [Citation(s) in RCA: 441] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease is a common and devastating disease characterized by aggregation of the amyloid-β peptide. However, we know relatively little about the underlying molecular mechanisms or how to treat patients with Alzheimer's disease. Here we provide bioinformatic and experimental evidence of a conserved mitochondrial stress response signature present in diseases involving amyloid-β proteotoxicity in human, mouse and Caenorhabditis elegans that involves the mitochondrial unfolded protein response and mitophagy pathways. Using a worm model of amyloid-β proteotoxicity, GMC101, we recapitulated mitochondrial features and confirmed that the induction of this mitochondrial stress response was essential for the maintenance of mitochondrial proteostasis and health. Notably, increasing mitochondrial proteostasis by pharmacologically and genetically targeting mitochondrial translation and mitophagy increases the fitness and lifespan of GMC101 worms and reduces amyloid aggregation in cells, worms and in transgenic mouse models of Alzheimer's disease. Our data support the relevance of enhancing mitochondrial proteostasis to delay amyloid-β proteotoxic diseases, such as Alzheimer's disease.
Collapse
Affiliation(s)
- Vincenzo Sorrentino
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Mario Romani
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Laurent Mouchiroud
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - John S Beck
- Department of Translational Science and Molecular Medicine, Department of Family Medicine, Michigan State University, Grand Rapids, Michigan 49503, USA
| | - Hongbo Zhang
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Davide D'Amico
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Norman Moullan
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Francesca Potenza
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Adrien W Schmid
- Proteomics Core Facility, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Solène Rietsch
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Scott E Counts
- Department of Translational Science and Molecular Medicine, Department of Family Medicine, Michigan State University, Grand Rapids, Michigan 49503, USA
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
87
|
Shpilka T, Haynes CM. The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat Rev Mol Cell Biol 2017; 19:109-120. [DOI: 10.1038/nrm.2017.110] [Citation(s) in RCA: 323] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
88
|
Abstract
Mitochondria are essential organelles for many aspects of cellular homeostasis, including energy harvesting through oxidative phosphorylation. Alterations of mitochondrial function not only impact on cellular metabolism but also critically influence whole-body metabolism, health, and life span. Diseases defined by mitochondrial dysfunction have expanded from rare monogenic disorders in a strict sense to now also include many common polygenic diseases, including metabolic, cardiovascular, neurodegenerative, and neuromuscular diseases. This has led to an intensive search for new therapeutic and preventive strategies aimed at invigorating mitochondrial function by exploiting key components of mitochondrial biogenesis, redox metabolism, dynamics, mitophagy, and the mitochondrial unfolded protein response. As such, new findings linking mitochondrial function to the progression or outcome of this ever-increasing list of diseases has stimulated the discovery and development of the first true mitochondrial drugs, which are now entering the clinic and are discussed in this review.
Collapse
Affiliation(s)
- Vincenzo Sorrentino
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| | - Keir J Menzies
- Interdisciplinary School of Health Sciences, University of Ottawa Brain and Mind Research Institute and Centre for Neuromuscular Disease, Ottawa K1H 8M5, Canada;
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
89
|
Aivazidis S, Coughlan CM, Rauniyar AK, Jiang H, Liggett LA, Maclean KN, Roede JR. The burden of trisomy 21 disrupts the proteostasis network in Down syndrome. PLoS One 2017; 12:e0176307. [PMID: 28430800 PMCID: PMC5400264 DOI: 10.1371/journal.pone.0176307] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/07/2017] [Indexed: 12/27/2022] Open
Abstract
Down syndrome (DS) is a genetic disorder caused by trisomy of chromosome 21. Abnormalities in chromosome number have the potential to lead to disruption of the proteostasis network (PN) and accumulation of misfolded proteins. DS individuals suffer from several comorbidities, and we hypothesized that disruption of proteostasis could contribute to the observed pathology and decreased cell viability in DS. Our results confirm the presence of a disrupted PN in DS, as several of its elements, including the unfolded protein response, chaperone system, and proteasomal degradation exhibited significant alterations compared to euploid controls in both cell and mouse models. Additionally, when cell models were treated with compounds that promote disrupted proteostasis, we observed diminished levels of cell viability in DS compared to controls. Collectively our findings provide a cellular-level characterization of PN dysfunction in DS and an improved understanding of the potential pathogenic mechanisms contributing to disrupted cellular physiology in DS. Lastly, this study highlights the future potential of designing therapeutic strategies that mitigate protein quality control dysfunction.
Collapse
Affiliation(s)
- Stefanos Aivazidis
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States of America
| | - Christina M. Coughlan
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, United States of America
- The Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States of America
| | - Abhishek K. Rauniyar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States of America
| | - Hua Jiang
- The Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States of America
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - L. Alexander Liggett
- The Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States of America
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Kenneth N. Maclean
- The Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States of America
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - James R. Roede
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States of America
- * E-mail:
| |
Collapse
|
90
|
Monjas L, Arce MP, León R, Egea J, Pérez C, Villarroya M, López MG, Gil C, Conde S, Rodríguez-Franco MI. Enzymatic and solid-phase synthesis of new donepezil-based L- and d -glutamic acid derivatives and their pharmacological evaluation in models related to Alzheimer's disease and cerebral ischemia. Eur J Med Chem 2017; 130:60-72. [DOI: 10.1016/j.ejmech.2017.02.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/09/2017] [Accepted: 02/12/2017] [Indexed: 12/25/2022]
|
91
|
Kelly SC, He B, Perez SE, Ginsberg SD, Mufson EJ, Counts SE. Locus coeruleus cellular and molecular pathology during the progression of Alzheimer's disease. Acta Neuropathol Commun 2017; 5:8. [PMID: 28109312 PMCID: PMC5251221 DOI: 10.1186/s40478-017-0411-2] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 01/08/2017] [Indexed: 01/30/2023] Open
Abstract
A major feature of Alzheimer’s disease (AD) is the loss of noradrenergic locus coeruleus (LC) projection neurons that mediate attention, memory, and arousal. However, the extent to which the LC projection system degenerates during the initial stages of AD is still under investigation. To address this question, we performed tyrosine hydroxylase (TH) immunohistochemistry and unbiased stereology of noradrenergic LC neurons in tissue harvested postmortem from subjects who died with a clinical diagnosis of no cognitive impairment (NCI), amnestic mild cognitive impairment (aMCI, a putative prodromal AD stage), or mild/moderate AD. Stereologic estimates of total LC neuron number revealed a 30% loss during the transition from NCI to aMCI, with an additional 25% loss of LC neurons in AD. Decreases in noradrenergic LC neuron number were significantly associated with worsening antemortem global cognitive function as well as poorer performance on neuropsychological tests of episodic memory, semantic memory, working memory, perceptual speed, and visuospatial ability. Reduced LC neuron numbers were also associated with increased postmortem neuropathology. To examine the cellular and molecular pathogenic processes underlying LC neurodegeneration in aMCI, we performed single population microarray analysis. These studies revealed significant reductions in select functional classes of mRNAs regulating mitochondrial respiration, redox homeostasis, and neuritic structural plasticity in neurons accessed from both aMCI and AD subjects compared to NCI. Specific gene expression levels within these functional classes were also associated with global cognitive deterioration and neuropathological burden. Taken together, these observations suggest that noradrenergic LC cellular and molecular pathology is a prominent feature of prodromal disease that contributes to cognitive dysfunction. Moreover, they lend support to a rational basis for targeting LC neuroprotection as a disease modifying strategy.
Collapse
|
92
|
Counts SE, Mufson EJ. Regulator of Cell Cycle (RGCC) Expression During the Progression of Alzheimer's Disease. Cell Transplant 2016; 26:693-702. [PMID: 27938491 DOI: 10.3727/096368916x694184] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Unscheduled cell cycle reentry of postmitotic neurons has been described in cases of mild cognitive impairment (MCI) and Alzheimer's disease (AD) and may form a basis for selective neuronal vulnerability during disease progression. In this regard, the multifunctional protein regulator of cell cycle (RGCC) has been implicated in driving G1/S and G2/M phase transitions through its interactions with cdc/cyclin-dependent kinase 1 (cdk1) and is induced by p53, which mediates apoptosis in neurons. We tested whether RGCC levels were dysregulated in frontal cortex samples obtained postmortem from subjects who died with a clinical diagnosis of no cognitive impairment (NCI), MCI, or AD. RGCC mRNA and protein levels were upregulated by ∼50%-60% in MCI and AD compared to NCI, and RGCC protein levels were associated with poorer antemortem global cognitive performance in the subjects examined. To test whether RGCC might regulate neuronal cell cycle reentry and apoptosis, we differentiated neuronotypic PC12 cultures with nerve growth factor (NGF) followed by NGF withdrawal to induce abortive cell cycle activation and cell death. Experimental reduction of RGCC levels increased cell survival and reduced levels of the cdk1 target cyclin B1. RGCC may be a candidate cell cycle target for neuroprotection during the onset of AD.
Collapse
|