51
|
Kedhari Sundaram M, Raina R, Afroze N, Bajbouj K, Hamad M, Haque S, Hussain A. Quercetin modulates signaling pathways and induces apoptosis in cervical cancer cells. Biosci Rep 2019; 39:BSR20190720. [PMID: 31366565 PMCID: PMC6692570 DOI: 10.1042/bsr20190720] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/17/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer cells have the unique ability to overcome natural defense mechanisms, undergo unchecked proliferation and evade apoptosis. While chemotherapeutic drugs address this, they are plagued by a long list of side effects and have a poor success rate. This has spurred researchers to identify safer bioactive compounds that possess chemopreventive and therapeutic properties. A wide range of experimental as well as epidemiological data encourage the use of dietary agents to impede or delay different stages of cancer. In the present study, we have examined the anti-ancer property of ubiquitous phytochemical quercetin by using cell viability assay, flow cytometry, nuclear morphology, colony formation, scratch wound assay, DNA fragmentation and comet assay. Further, qPCR analysis of various genes involved in apoptosis, cell cycle regulation, metastasis and different signal transduction pathways was performed. Proteome profiler was used to quantitate the expression of several of these proteins. We find that quercetin decreases cell viability, reduces colony formation, promotes G2-M cell cycle arrest, induces DNA damage and encourages apoptosis. Quercetin induces apoptosis via activating both apoptotic pathways with a stronger effect of the extrinsic pathway relying on the combined power of TRAIL, FASL and TNF with up-regulation of caspases and pro-apoptotic genes. Quercetin could inhibit anti-apoptotic proteins by docking studies. Further, quercetin blocks PI3K, MAPK and WNT pathways. Anticancer effect of quercetin observed in cell-based assays were corroborated by molecular biology studies and yielded valuable mechanistic information. Quercetin appears to be a promising candidate with chemopreventive and chemotherapeutic potential and warrants further research.
Collapse
Affiliation(s)
| | - Ritu Raina
- School of Life Sciences, Manipal Academy of Higher Education, P.O. Box 345050, Dubai, United Arab Emirates
| | - Nazia Afroze
- School of Life Sciences, Manipal Academy of Higher Education, P.O. Box 345050, Dubai, United Arab Emirates
| | - Khuloud Bajbouj
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Department of Medical Laboratory Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, P.O. Box 345050, Dubai, United Arab Emirates
| |
Collapse
|
52
|
Rosa A, Caprioglio D, Isola R, Nieddu M, Appendino G, Falchi AM. Dietary zerumbone from shampoo ginger: new insights into its antioxidant and anticancer activity. Food Funct 2019; 10:1629-1642. [PMID: 30834410 DOI: 10.1039/c8fo02395f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The dietary sesquiterpene dienone zerumbone (ZER) selectively targets cancer cells, inducing mitochondrial dysfunction and apoptosis, and protects non-cancerous cells towards oxidative stress and insult. This study examines the in vitro effects of ZER on lipid peroxidation in biological systems (cholesterol and phospholipid membrane oxidation) and explores its antitumor action in terms of its ability to modulate cancer cell lipid profile. Evaluation of the antioxidant activity of ZER showed that this compound is unable to trap lipoperoxyl radicals per se. ZER significantly modulated the total lipid and fatty acid profiles in cancer cells, inducing marked changes in the phospholipid/cholesterol ratio, with significant decreases in the levels of oleic and palmitic acids and a marked increase of stearic acid. Cell-based fluorescent measurements of intracellular membranes and lipid droplets using the Nile Red staining technique showed that in cancer cells, ZER induced significant accumulation of cytosolic lipid droplets and altered cell membrane organization/protein dynamics, depolarizing the mitochondrial membranes and inducing apoptosis and alteration of nuclear morphology. The modulatory activity of ZER on the total lipid and fatty acid profiles and lipid droplets may therefore represent another possible mechanism of its anticancer properties.
Collapse
Affiliation(s)
- A Rosa
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Km 4.5 SS 554, 09042 Monserrato, CA, Italy.
| | | | | | | | | | | |
Collapse
|
53
|
Lupo G, Cambria MT, Olivieri M, Rocco C, Caporarello N, Longo A, Zanghì G, Salmeri M, Foti MC, Anfuso CD. Anti-angiogenic effect of quercetin and its 8-methyl pentamethyl ether derivative in human microvascular endothelial cells. J Cell Mol Med 2019; 23:6565-6577. [PMID: 31369203 PMCID: PMC6787496 DOI: 10.1111/jcmm.14455] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/03/2019] [Accepted: 05/17/2019] [Indexed: 12/27/2022] Open
Abstract
Angiogenesis is involved in many pathological states such as progression of tumours, retinopathy of prematurity and diabetic retinopathy. The latter is a more complex diabetic complication in which neurodegeneration plays a significant role and a leading cause of blindness. The vascular endothelial growth factor (VEGF) is a powerful pro‐angiogenic factor that acts through three tyrosine kinase receptors (VEGFR‐1, VEGFR‐2 and VEGFR‐3). In this work we studied the anti‐angiogenic effect of quercetin (Q) and some of its derivates in human microvascular endothelial cells, as a blood retinal barrier model, after stimulation with VEGF‐A. We found that a permethylated form of Q, namely 8MQPM, more than the simple Q, is a potent inhibitor of angiogenesis both in vitro and ex vivo. Our results showed that these compounds inhibited cell viability and migration and disrupted the formation of microvessels in rabbit aortic ring. The addition of Q and more significantly 8MQPM caused recoveries or completely re‐establish the transendothelial electrical resistance (TEER) to the control values and suppressed the activation of VEGFR2 downstream signalling molecules such as AKT, extracellular signal‐regulated kinase, and c‐Jun N‐terminal kinase. Taken together, these data suggest that 8MQPM might have an important role in the contrast of angiogenesis‐related diseases.
Collapse
Affiliation(s)
- Gabriella Lupo
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences (Biometec), School of Medicine, University of Catania, Catania, Italy
| | - Maria Teresa Cambria
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences (Biometec), School of Medicine, University of Catania, Catania, Italy
| | - Melania Olivieri
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences (Biometec), School of Medicine, University of Catania, Catania, Italy
| | - Concetta Rocco
- Institute of Biomolecular Chemistry of CNR, Catania, Italy
| | - Nunzia Caporarello
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences (Biometec), School of Medicine, University of Catania, Catania, Italy
| | - Anna Longo
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences (Biometec), School of Medicine, University of Catania, Catania, Italy
| | - Guido Zanghì
- Department of Surgery (CHIR), School of Medicine, University of Catania, Catania, Italy
| | - Mario Salmeri
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences (Biometec), School of Medicine, University of Catania, Catania, Italy
| | - Mario C Foti
- Institute of Biomolecular Chemistry of CNR, Catania, Italy
| | - Carmelina Daniela Anfuso
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences (Biometec), School of Medicine, University of Catania, Catania, Italy
| |
Collapse
|
54
|
Ghante MH, Jamkhande PG. Role of Pentacyclic Triterpenoids in Chemoprevention and Anticancer Treatment: An Overview on Targets and Underling Mechanisms. J Pharmacopuncture 2019; 22:55-67. [PMID: 31338244 PMCID: PMC6645347 DOI: 10.3831/kpi.201.22.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/06/2019] [Accepted: 05/20/2019] [Indexed: 12/22/2022] Open
Abstract
The incidences of cancer are continuously increasing worldwide, affecting life of millions of people. Several factors associated with the internal and external environment are responsible for this deadly disease. The key internal determinants like abnormal hormonal regulation, genetic mutations and external determinants such as lifestyle and occupational factors enhances onset of cancer. From the ancient time, plants were remained as the most trusted source of medicine for the treatment of diverse disease conditions. Extensive studies have been performed for the discovery of effective anticancer agent from the plant and still it is going on. Pentacyclic triterpenoids are biologically active phytochemicals having a different range of activities such as anti-inflammatory, hepatoprotective, anti-hypertensive, antiulcerogenic and anti-tumor. These compounds generally contain ursane, oleanane, lupane and friedelane as a chief skeleton of pentacyclic triterpenoids which are generally present in higher plants. Isoprene unit, phytochemical, with good antitumor/anticancer activity is required for the biosynthesis of pentacyclic triterpenoids. Mechanisms such as cytotoxicity, DNA polymerase inhibition, regulation of apoptosis, change in signal transductions, interfere with angiogenesis and dedifferentiation, antiproliferative activity and metastasis inhibition are might be responsible for their anticancer effect. Present review spotlights diverse targets, mechanisms and pathways of pentacyclic triterpenoids responsible for anticancer effect.
Collapse
Affiliation(s)
- Mahavir H Ghante
- Centre for Research in Pharmaceutical Sciences, Sharda Bhavan Education Society's Nanded Pharmacy College, Nanded 431605, Maharashtra, India
| | - Prasad G Jamkhande
- Centre for Research in Pharmaceutical Sciences, Sharda Bhavan Education Society's Nanded Pharmacy College, Nanded 431605, Maharashtra, India
| |
Collapse
|
55
|
Luteolin modulates gene expression related to steroidogenesis, apoptosis, and stress response in rat LC540 tumor Leydig cells. Cell Biol Toxicol 2019; 36:31-49. [DOI: 10.1007/s10565-019-09481-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 05/27/2019] [Indexed: 01/09/2023]
|
56
|
Wei W, Rasul A, Sadiqa A, Sarfraz I, Hussain G, Nageen B, Liu X, Watanabe N, Selamoglu Z, Ali M, Li X, Li J. Curcumol: From Plant Roots to Cancer Roots. Int J Biol Sci 2019; 15:1600-1609. [PMID: 31360103 PMCID: PMC6643219 DOI: 10.7150/ijbs.34716] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/02/2019] [Indexed: 02/06/2023] Open
Abstract
Natural products, an infinite treasure of bioactive scaffolds, have provided an excellent reservoir for the discovery of drugs since millennium. These naturally occurring, biologically active and therapeutically effective chemical entities have emerged as novel paradigm for the prevention of various diseases. This review aims to give an update on the sources as well as pharmacological profile of curcumol, a pharmacologically active sesquiterpenoid, which is an imperative bioactive constituent of several plants mainly from genus Curcuma. Curcumol has potential to fight against cancer, oxidative stress, neurodegeneration, microbial infections, and inflammation. Curcumol has been documented as potent inducer of apoptosis in numerous cancer cells via targeting key signaling pathways as MAPK/ERK, PI3K/Akt and NF-κB which are generally deregulated in several cancers. The reported data reveals multitarget activity of curcumol in cancer treatment suggesting its importance as anticancer drug in future. It is speculated that curcumol may provide an excellent opportunity for the cure of cancer but further investigations on mechanism of its action and preclinical trials are still mandatory to further validate the potential of this natural cancer killer in anticancer therapies.
Collapse
Affiliation(s)
- Wei Wei
- Dental Hospital, Jilin University, Changchun 130021, China
| | - Azhar Rasul
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.,Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad (GCUF), 38000, Pakistan
| | - Ayesha Sadiqa
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad (GCUF), 38000, Pakistan
| | - Iqra Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad (GCUF), 38000, Pakistan
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University Faisalabad (GCUF), 38000, Pakistan
| | - Bushra Nageen
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad (GCUF), 38000, Pakistan
| | - Xintong Liu
- Dental Hospital, Jilin University, Changchun 130021, China
| | - Nobumoto Watanabe
- Bio-Active Compounds Discovery Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde, Campus 51240 Turkey
| | - Muhammad Ali
- Quaid-e-Azam University, Islamabad, 45320, Pakistan
| | - Xiaomeng Li
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Jiang Li
- Dental Hospital, Jilin University, Changchun 130021, China
| |
Collapse
|
57
|
Natural Compounds against Cancer, Inflammation, and Oxidative Stress. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9495628. [PMID: 31211143 PMCID: PMC6532317 DOI: 10.1155/2019/9495628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 12/28/2022]
|
58
|
Anti-cancer effects of polyphenols via targeting p53 signaling pathway: updates and future directions. Biotechnol Adv 2019; 38:107385. [PMID: 31004736 DOI: 10.1016/j.biotechadv.2019.04.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 02/06/2023]
Abstract
The anticancer effects of polyphenols are ascribed to several signaling pathways including the tumor suppressor gene tumor protein 53 (p53). Expression of endogenous p53 is silent in various types of cancers. A number of polyphenols from a wide variety of dietary sources could upregulate p53 expression in several cancer cell lines through distinct mechanisms of action. The aim of this review is to focus the significance of p53 signaling pathways and to provide molecular intuitions of dietary polyphenols in chemoprevention by monitoring p53 expression that have a prominent role in tumor suppression.
Collapse
|
59
|
Abdelhafez OM, Ahmed EY, Abdel Latif NA, Arafa RK, Abd Elmageed ZY, Ali HI. Design and molecular modeling of novel P38α MAPK inhibitors targeting breast cancer, synthesized from oxygen heterocyclic natural compounds. Bioorg Med Chem 2019; 27:1308-1319. [DOI: 10.1016/j.bmc.2019.02.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/30/2019] [Accepted: 02/14/2019] [Indexed: 01/06/2023]
|
60
|
Seely D, Ennis JE, McDonell E, Fazekas A, Zhao L, Asmis T, Auer RC, Fergusson D, Kanji S, Maziak DE, Ramsay T, Chamberland P, Spooner C, Threader J, Seely A. Intervention Development Process for a Pragmatic Randomized Controlled Trial: The Thoracic Peri-Operative Integrative Surgical Care Evaluation Trial. J Altern Complement Med 2019; 25:S112-S123. [PMID: 30870012 DOI: 10.1089/acm.2018.0419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Use of complementary therapies is high among people with cancer despite research gaps. The Thoracic Peri-Operative Integrative Surgical Care Evaluation (POISE) Trial will evaluate the impact of an integrative care intervention delivered by naturopathic doctors (NDs) in conjunction with usual care for patients undergoing surgery for lung, gastric, and esophageal cancer. OBJECTIVES To describe the multistep, multidisciplinary process of defining the integrative care intervention to be used in the Thoracic POISE trial using a principle-based approach that is pragmatic, holistic, safe, feasible, evidence driven, and consensus based. METHODS An Intervention Development Committee (IDC) made up of a multidisciplinary team of health care providers (NDs, surgeons, oncologists, nurses, dietitians, physiotherapists, pharmacists, and psychologists), researchers, and patients was established to oversee the process. Potential intervention components were identified through a clinical practice survey and expert opinion. Systematic literature reviews were conducted and scores assigned based on the following criteria: usage, safety, goals, feasibility/scalability, and evidence. The IDC selected an intervention to be piloted that consists of a standard palette including core and optional components. Safety, known risks, and interactions with pharmaceuticals were evaluated using industry and professional monographs, a scoping literature review, and consultations with hospital pharmacists. RESULTS The clinical practice survey and expert opinion identified 28 components for consideration. Following literature reviews, scoring, consensus from the IDC, and safety and interaction considerations, an intervention palette consisting of core and optional components was defined. The intervention options vary based on the patient's phase of treatment and symptom-specific needs. The intervention includes supplements, physical recommendations (exercise), nutritional counseling, and psychological support (audio scripts). CONCLUSION Through a multistep, multidisciplinary process an integrative care intervention was developed for the Thoracic POISE trial. The intervention will be piloted in a single-arm feasibility study, followed by a single-center randomized controlled trial (RCT), and finally a multicenter RCT.
Collapse
Affiliation(s)
- Dugald Seely
- 1 Canadian College of Naturopathic Medicine, Toronto, Canada.,2 Ottawa Integrative Cancer Centre, Ottawa, Canada.,3 Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Julie E Ennis
- 1 Canadian College of Naturopathic Medicine, Toronto, Canada.,2 Ottawa Integrative Cancer Centre, Ottawa, Canada
| | - Ellen McDonell
- 1 Canadian College of Naturopathic Medicine, Toronto, Canada.,2 Ottawa Integrative Cancer Centre, Ottawa, Canada
| | - Anna Fazekas
- 3 Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Linlu Zhao
- 2 Ottawa Integrative Cancer Centre, Ottawa, Canada
| | - Tim Asmis
- 4 Ottawa Hospital, General Campus, Ottawa, Canada
| | - Rebecca C Auer
- 3 Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada.,4 Ottawa Hospital, General Campus, Ottawa, Canada
| | - Dean Fergusson
- 3 Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Salmaan Kanji
- 3 Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada.,4 Ottawa Hospital, General Campus, Ottawa, Canada
| | | | - Tim Ramsay
- 3 Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | | | | | | | - Andrew Seely
- 3 Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada.,4 Ottawa Hospital, General Campus, Ottawa, Canada
| |
Collapse
|
61
|
Rezabakhsh A, Rahbarghazi R, Malekinejad H, Fathi F, Montaseri A, Garjani A. Quercetin alleviates high glucose-induced damage on human umbilical vein endothelial cells by promoting autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 56:183-193. [PMID: 30668339 DOI: 10.1016/j.phymed.2018.11.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/08/2018] [Accepted: 11/07/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Quercetin, a flavonoid antioxidant, has been found to exert therapeutic effects in diabetic condition. Autophagy represents a homeostatic cellular mechanism for the turnover of unfolds proteins and damaged organelles through a lysosome-dependent degradation manner. We speculated that quercetin could protect endothelial cells against high glucose-induced damage by promoting autophagic responses. METHODS HUVECs viability was evaluated by MTT method. Griess and TBARS assays were used to monitor the levels of NO and MDA, respectively. Intracellular ROS generation was determined in DCFDA-stained cells analyzed by flow cytometry. To investigate the role of quercetin in endothelial cell migratory behavior, we used a scratch test. The level of autophagy proteins LC3, Beclin-1 and P62 were measured by western blotting technique. RESULTS Our results showed that quercetin had the potential to increase cell survival after exposure to high glucose (P < 0.05). Total levels of oxidative stress markers were profoundly decreased and the activity of GSH was increased by quercetin (P < 0.05). High glucose suppressed HUVECs migration to the scratched area (P < 0.05). However, a significant stimulation in cell migration was observed after exposure to quercetin (P < 0.05). Based on data, autophagy was blocked at the late stage by high glucose concentration while quercetin enhanced autophagic response by reducing the P62 level coincided with the induction of Beclin-1 and LC3-II to LC3-I ratio (P < 0.05). All these beneficial effects were reversed by 3-methyladenine as an autophagy inhibitor. CONCLUSION Together, our data suggest that quercetin could protect HUVECs from high glucose induced-damage possibly by activation of the autophagy response.
Collapse
Affiliation(s)
- Aysa Rezabakhsh
- Emergency Medicine Research Team, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hassan Malekinejad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Farzaneh Fathi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azadeh Montaseri
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Garjani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
62
|
Mo'men YS, Hussein RM, Kandeil MA. Involvement of PI3K/Akt pathway in the protective effect of hesperidin against a chemically induced liver cancer in rats. J Biochem Mol Toxicol 2019; 33:e22305. [PMID: 30779474 DOI: 10.1002/jbt.22305] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/14/2018] [Accepted: 01/09/2019] [Indexed: 12/14/2022]
Abstract
Hesperidin is a flavanone glycoside that is found in the Citrus species and showed antioxidant, hepatoprotective as well as anticancer activity. This study investigated the effect of hesperidin on the PI3K/Akt pathway as a possible mechanism for its protective effect against diethylnitrosamine (DEN)-induced hepatocellular carcinoma (HCC). Adult Wistar rats were divided into Control group (received drug vehicle); DEN group (received 100 mg/L of DEN solution for 8 weeks), and hesperidin + DEN group (received 200 mg/kg body weight of hesperidin/day orally for 16 weeks + DEN solution as DEN group). Our findings showed that the administration of hesperidin significantly decreased the elevation in liver function enzymes, serum AFP level, and oxidative stress markers. Moreover, hesperidin administration suppressed DEN-induced upregulation of PI3K, Akt, CDK-2 protein expression, and preserved the integrity of the liver tissues from HCC formation. In conclusion, the hepatoprotective activity of hesperidin is mediated via its antioxidation and downregulation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Yomna S Mo'men
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Rasha M Hussein
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed A Kandeil
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
63
|
Nag S, Manna K, Saha KD. Tannic acid-stabilized gold nano-particles are superior to native tannic acid in inducing ROS-dependent mitochondrial apoptosis in colorectal carcinoma cells via the p53/AKT axis. RSC Adv 2019; 9:8025-8038. [PMID: 35547831 PMCID: PMC9087445 DOI: 10.1039/c9ra00808j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/22/2019] [Indexed: 12/19/2022] Open
Abstract
Tannic acid and AuNP-TA lead to death of colon cancer cells via the ROS/p53/Akt pathway, and AuNP-TA is more potent.
Collapse
Affiliation(s)
- Sayoni Nag
- Cancer Biology and Inflammatory Disorder Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Krishnendu Manna
- Cancer Biology and Inflammatory Disorder Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Krishna Das Saha
- Cancer Biology and Inflammatory Disorder Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| |
Collapse
|
64
|
Sulforaphane from Cruciferous Vegetables: Recent Advances to Improve Glioblastoma Treatment. Nutrients 2018; 10:nu10111755. [PMID: 30441761 PMCID: PMC6267435 DOI: 10.3390/nu10111755] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023] Open
Abstract
Sulforaphane (SFN), an isothiocyanate (ITC) derived from cruciferous vegetables, particularly broccoli and broccoli sprouts, has been widely investigated due to its promising health-promoting properties in disease, and low toxicity in normal tissue. Although not yet fully understood, many mechanisms of anticancer activity at each step of cancer development have been attributed to this ITC. Given the promising data available regarding SFN, this review aimed to provide an overview on the potential activities of SFN related to the cellular mechanisms involved in glioblastoma (GBM) progression. GBM is the most frequent malignant brain tumor among adults and is currently an incurable disease due mostly to its highly invasive phenotype, and the poor efficacy of the available therapies. Despite all efforts, the median overall survival of GBM patients remains approximately 1.5 years under therapy. Therefore, there is an urgent need to provide support for translating the progress in understanding the molecular background of GBM into more complex, but promising therapeutic strategies, in which SFN may find a leading role.
Collapse
|
65
|
de Alencar MVOB, Islam MT, de Lima RMT, Paz MFCJ, dos Reis AC, da Mata AMOF, Filho JWGDO, Cerqueira GS, Ferreira PMP, e Sousa JMDC, Mubarak MS, Melo-Cavalcante AADC. Phytol as an anticarcinogenic and antitumoral agent: An in vivo study in swiss mice with DMBA-Induced breast cancer. IUBMB Life 2018; 71:200-212. [DOI: 10.1002/iub.1952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/03/2018] [Accepted: 09/06/2018] [Indexed: 12/17/2022]
Affiliation(s)
| | - Muhammad Torequl Islam
- Department for Management of Science and Technology Development; Ton Duc Thang University; Ho Chi Minh City Vietnam
- Faculty of Pharmacy; Ton Duc Thang University; Ho Chi Minh City Vietnam
| | | | | | | | | | | | | | - Paulo Michel Pinheiro Ferreira
- Postgraduate Program in Biotechnology (RENORBIO); Federal University of Piauí; Teresina Piauí Brazil
- Postgraduate Program in Pharmaceutical Sciences; Federal University of Piauí; Teresina Piauí Brazil
- Department of Biophysics and Physiology; Laboratory of Experimental Cancerology, Federal University of Piauí; Teresina Piauí Brazil
| | - João Marcelo de Castro e Sousa
- Postgraduate Program in Pharmaceutical Sciences; Federal University of Piauí; Teresina Piauí Brazil
- Department of Biological Sciences; Federal University of Piauí; Picos Piauí Brazil
| | | | - Ana Amélia de Carvalho Melo-Cavalcante
- Postgraduate Program in Biotechnology (RENORBIO); Federal University of Piauí; Teresina Piauí Brazil
- Postgraduate Program in Pharmaceutical Sciences; Federal University of Piauí; Teresina Piauí Brazil
| |
Collapse
|
66
|
Nafees S, Mehdi SH, Zafaryab M, Zeya B, Sarwar T, Rizvi MA. Synergistic Interaction of Rutin and Silibinin on Human Colon Cancer Cell Line. Arch Med Res 2018; 49:226-234. [PMID: 30314650 DOI: 10.1016/j.arcmed.2018.09.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/14/2018] [Indexed: 12/11/2022]
Abstract
AIM OF THE STUDY Rutin and Silibinin are active flavonoid compounds, well-known for possessing multiple biological activities. We have studied how Rutin and Silibinin in combination modulate wide range intracellular signaling cascades as evidenced by in-vitro research. Data obtained from preclinical studies provide evidence to be supportive to bridge basic and translational studies. METHODS In this study, cytotoxic effect of Rutin and Silibinin individually and in combination on the viability of colon cancer cell line (HT-29) was revealed using the MTT assay. Mechanism involved in the cytotoxic effect were then investigated in terms of apoptosis using comet assay, DNA fragmentation and fluorescent microscopy analyses. The apoptosis associated proteins viz; Caspase-3, 8, 9, Bax, Bcl-2, p53, inflammation associated proteins viz; NFκB, IKK-α IKK-β and MAPK pathway associated proteins viz; p38 and MK-2 were determined by western-blot and Real Time-PCR analysis. RESULTS Results suggest that Rutin and Silibinin produce anticancer effects via induction of apoptosis as well as regulating the expressions of genes related to apoptosis, inflammation and MAPK pathway proteins more effectively in combination than individually. CONCLUSION Our study supports the viability of developing Rutin and Silibinin in combination as a novel therapeutic prodrug for colon cancer treatment and may have a promising role in the development of new anticancer drugs in the future.
Collapse
Affiliation(s)
- Sana Nafees
- Department of Biosciences, Jamia Millia Islamia, New Delhi.
| | | | | | - Bushra Zeya
- Department of Biosciences, Jamia Millia Islamia, New Delhi
| | - Tarique Sarwar
- Department of Biosciences, Jamia Millia Islamia, New Delhi
| | | |
Collapse
|
67
|
Afriza D, Suriyah WH, Ichwan SJA. In silicoanalysis of molecular interactions between the anti-apoptotic protein survivin and dentatin, nordentatin, and quercetin. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1742-6596/1073/3/032001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
68
|
Zafar M, Sarfraz I, Rasul A, Jabeen F, Samiullah K, Hussain G, Riaz A, Ali M. Tubeimoside-1, Triterpenoid Saponin, as a Potential Natural Cancer Killer. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Nature, an expert craftsman of molecules, has generated extensive array of bioactive molecular entities. It persists as an inexhaustible resource for discovery of drugs and supplied enormous scaffold diversification for development into effectual drugs to treat multiple pathological conditions. This review provides an update on the sources, biological, and pharmacological effects of nature's gift, a triterpenoid saponin, tubeimoside-1 which is a major bioactive constituent of the bulb of Bolbostemma paniculatum. Tubeimoside-1 is known to possess various pharmacological properties such as anti-cancer, anti-HIV, and anti-inflammatory. Recently, anti-proliferative potential of tubeimoside-1 has been widely studied. The present review article seeks to cover the recent developments of tubeimoside-1′s pharmacological position in the arena of herbal drugs, providing an insight into its current status in therapeutic pursuits. This anti-cancer triterpenoid saponin fight cancer progression by induction of apoptosis, cell cycle arrest, and inhibiting metastasis by specifically targeting multiple signaling pathways those are usually deregulated in various cancers. The reported data recommend tubeimoside-1′s mutitarget activity in preference to single effect that may perform an imperative role towards developing tubeimoside-1 into potential pharmacological drug.
Collapse
Affiliation(s)
- Muhammad Zafar
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, 38000 Faisalabad, Pakistan
| | - Iqra Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, 38000 Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, 38000 Faisalabad, Pakistan
| | - Faiza Jabeen
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, 38000 Faisalabad, Pakistan
| | - Khizar Samiullah
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, 38000 Faisalabad, Pakistan
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University Faisalabad, 38000 Faisalabad, Pakistan
| | - Ammara Riaz
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, 38000 Faisalabad, Pakistan
| | - Muhammad Ali
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, 38000 Faisalabad, Pakistan
| |
Collapse
|
69
|
Sherif IO, Al-Gayyar MMH. Oleuropein potentiates anti-tumor activity of cisplatin against HepG2 through affecting proNGF/NGF balance. Life Sci 2018; 198:87-93. [PMID: 29476769 DOI: 10.1016/j.lfs.2018.02.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 12/20/2022]
Abstract
AIMS Oleuropein is considered as a new chemotherapeutic agent in human hepatocellular carcinoma (HCC) while, its exact underlying molecular mechanism still not yet explored. In addition, cisplatin is a standard anticancer drug against solid tumors with toxic side effects. Therefore, we conducted this study to assess antitumor activity of oleuropein either alone or in combination with cisplatin against HepG2, human HCC cell lines, via targeting pro-NGF/NGF signaling pathway. MAIN METHODS HepG2 cells were treated with cisplatin (20, 50, 100 μM) and oleuropein (100, 200, 300 and 400 μM) as well as some of the cells were treated with 50 μM cisplatin and different concentrations of oleuropein. Gene expressions of nerve growth factor (NGF), matrix metalloproteinase-7 (MMP-7) and caspase-3 were evaluated by real time-PCR. In addition, protein levels of NGF and pro-form of NGF (pro-NGF) were measured by ELISA while, nitric oxide (NO) content was determined colorimetrically. KEY FINDINGS Cisplatin treatment showed a significant elevation of NO content and pro-NGF protein level with a marked reduction of NGF protein level in addition to the upregulation of caspase-3 along with downregulation of MMP-7 gene expressions in a dose-dependent manner. However, the combination of 50 μM cisplatin and 200 μM oleuropein showed the most potent effect on the molecular level when compared with oleuropein or cisplatin alone. SIGNIFICANCE Our results showed for the first time that the anti-tumor activity of oleuropein against HCC could be attributed to influencing the pro-NGF/NGF balance via affecting MMP-7 activity without affecting the gene expression of NGF. Concurrent treatment with both oleuropein and cisplatin could lead to more effective chemotherapeutic combination against HCC.
Collapse
Affiliation(s)
- Iman O Sherif
- Emergency Hospital, Mansoura University, Mansoura 35516, Egypt
| | - Mohammed M H Al-Gayyar
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia.
| |
Collapse
|
70
|
Xu J, Wise JTF, Wang L, Schumann K, Zhang Z, Shi X. Dual Roles of Oxidative Stress in Metal Carcinogenesis. J Environ Pathol Toxicol Oncol 2018; 36:345-376. [PMID: 29431065 DOI: 10.1615/jenvironpatholtoxicoloncol.2017025229] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It has been well established that environmental and occupational exposure to heavy metal causes cancer in several organs. Although the exact mechanism of heavy metal carcinogenesis remains elusive, metal-generated reactive oxygen species (ROS) are essential. ROS can play two roles in metal carcinogenesis; two stages in the process of metal carcinogenesis differ in the amounts of ROS activating a dual redox-mediated mechanism. In the early stage of metal carcinogenesis, ROS acts in an oncogenic role. However, in the late stage of metal carcinogenesis, ROS plays an antioncogenic role. Similarly, NF-E2-related factor 2 (Nrf2) also has two different roles, which makes it a key molecule for separating metal carcinogenesis into two different stages. In the early stage, inducible Nrf2 fights against elevated ROS to decrease cell transformation by its antioxidant protection property. In the late stage, constitutively activated Nrf2 manipulates reduced ROS to perform a comfortable environment for apoptosis resistance through an oncogenic role. Interestingly, a cunning carcinogenic mechanism takes advantage of the dual role of Nrf2 to implement the dual role of ROS through a series of redox adaption mechanisms. In this review, we discuss the paradox in the rationales behind the two opposite ROS roles and focus on their potential pharmacological application. The dual role of ROS represents a 'double-edged sword' with many possible novel ROS-mediated strategies in cancer therapy in metal carcinogenesis.
Collapse
Affiliation(s)
- Jie Xu
- Department of Anesthesiology, Beijing Chao Yang Hospital, Capital Medical University, No. 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing 100020, China
| | - James T F Wise
- Division of Nutritional Sciences, Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Lei Wang
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Kortney Schumann
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Zhuo Zhang
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Xianglin Shi
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
71
|
Biocompatible zinc oxide nanocrystals stabilized via hydroxyethyl cellulose for mitigation of diabetic complications. Int J Biol Macromol 2018; 107:748-754. [DOI: 10.1016/j.ijbiomac.2017.09.056] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/04/2017] [Accepted: 09/15/2017] [Indexed: 01/09/2023]
|
72
|
van Breda SGJ, de Kok TMCM. Smart Combinations of Bioactive Compounds in Fruits and Vegetables May Guide New Strategies for Personalized Prevention of Chronic Diseases. Mol Nutr Food Res 2017; 62. [PMID: 29108107 DOI: 10.1002/mnfr.201700597] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/19/2017] [Indexed: 12/24/2022]
Abstract
There is ample scientific evidence suggesting that the health benefits of eating the right amounts of a variety of vegetables and fruit are the consequence of the combined action of different phytochemicals. The present review provides an update of the scientific literature on additive and synergistic effects of mixtures of phytochemicals. Most research has been carried out in in vitro systems in which synergistic or additive effects have been established on the level of cell proliferation, apoptosis, antioxidant capacity, and tumor incidence, accompanied by changes in gene and protein expression in relevant pathways underlying molecular mechanisms of disease prevention. The number of human dietary intervention studies investigating complex mixtures of phytochemicals is relatively small, but showing promising results. These studies have demonstrated that combining transcriptomic data with phenotypic markers provide insight into the relevant cellular processes which contribute to the antioxidant response of complex mixtures of phytochemicals. Future studies should be designed as short-term studies testing different combinations of vegetables and fruit, in which markers for disease outcome as well as molecular ('omics)-markers and genetic variability between subjects are included. This will create new opportunities for food innovation and the development of more personalized strategies for prevention of chronic diseases.
Collapse
Affiliation(s)
- Simone G J van Breda
- Department of Toxicogenomics, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Theo M C M de Kok
- Department of Toxicogenomics, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
73
|
Mechanisms of cancer cell killing by sea cucumber-derived compounds. Invest New Drugs 2017; 35:820-826. [PMID: 28920157 PMCID: PMC5694523 DOI: 10.1007/s10637-017-0505-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/24/2017] [Indexed: 12/29/2022]
Abstract
The aim of cancer therapy is to specifically eradicate tumor cells while causing minimal damage to normal tissues and minimal side-effects. Because of this, the use of natural substances with low toxicity is a good option. Sea cucumbers are one of many potential marine animals that contain valuable nutrients and medicinal properties. The medicinal value of sea cucumbers is attributed to the presence of bioactive agents with promising biological and pharmacological properties that include cytotoxic activity, induction of apoptosis, cell cycle arrest, inhibition of tumor growth, anti-metastatic and anti-angiogenic properties, and inhibition of drug resistance. This review discusses the mechanisms of cancer cell death induced by sea cucumber-derived compounds with regard to exploring the potential use of these marine natural products for cancer therapy.
Collapse
|
74
|
Radu IC, Hudita A, Zaharia C, Stanescu PO, Vasile E, Iovu H, Stan M, Ginghina O, Galateanu B, Costache M, Langguth P, Tsatsakis A, Velonia K, Negrei C. Poly(HydroxyButyrate-co-HydroxyValerate) (PHBHV) Nanocarriers for Silymarin Release as Adjuvant Therapy in Colo-rectal Cancer. Front Pharmacol 2017; 8:508. [PMID: 28824432 PMCID: PMC5539237 DOI: 10.3389/fphar.2017.00508] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/19/2017] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to address one of the major challenges of the actual era of nanomedicine namely, the bioavailability of poorly water soluble drugs such as Silymarin. We developed new, biodegradable, and biocompatible nanosized shuttles for Silymarin targeted delivery in colon-cancer cells. The design of these 100 nm sized carrier nanoparticles was based on natural polymers and their biological properties such as cellular uptake potential, cytotoxicity and 3D penetrability were tested using a colon cancer cell line (HT-29) as the in vitro culture model. Comparative scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements demonstrated that the Silymarin loaded Poly(3-HydroxyButyrate-co-3-HydroxyValerate) (PHBHV) nanocarriers significantly decreased HT-29 cells viability after 6 and 24 h of treatment. Moreover, in vivo-like toxicity studies on multicellular tumor spheroids showed that the Silymarin loaded PHBHV nanocarriers are able to penetrate 3D micro tumors and significantly reduce their size.
Collapse
Affiliation(s)
- Ionut-Cristian Radu
- Advanced Polymer Materials Group, University Politehnica of BucharestBucharest, Romania
| | - Ariana Hudita
- Department of Biochemistry and Molecular Biology, University of BucharestBucharest, Romania
| | - Catalin Zaharia
- Advanced Polymer Materials Group, University Politehnica of BucharestBucharest, Romania
| | - Paul O Stanescu
- Advanced Polymer Materials Group, University Politehnica of BucharestBucharest, Romania
| | - Eugenia Vasile
- Department of Bioresources and Polymer Science, University Politehnica of BucharestBucharest, Romania
| | - Horia Iovu
- Advanced Polymer Materials Group, University Politehnica of BucharestBucharest, Romania
| | - Miriana Stan
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and PharmacyBucharest, Romania
| | - Octav Ginghina
- Department of Surgery, Sf. Ioan Emergency Clinical HospitalBucharest, Romania.,Department II, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy BucharestBucharest, Romania
| | - Bianca Galateanu
- Department of Biochemistry and Molecular Biology, University of BucharestBucharest, Romania.,Research Institute of University of Bucharest, University of BucharestBucharest, Romania
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of BucharestBucharest, Romania
| | - Peter Langguth
- Department of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, Johannes Gutenberg-UniversityMainz, Germany
| | - Aristidis Tsatsakis
- Department of Toxicology and Forensic Sciences, Faculty of Medicine, University of CreteHeraklion, Greece
| | - Kelly Velonia
- Department of Materials Science and Technology, University of CreteHeraklion, Greece
| | - Carolina Negrei
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and PharmacyBucharest, Romania
| |
Collapse
|
75
|
Huerta-Rey M, Anselme C, Cherqui A, Decocq G. Exploration Through the Venoms from Hymenoptera as Potential Therapeutic Agents in Cancer Therapy. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.507.515] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
76
|
Deoxyelephantopin and Isodeoxyelephantopin as Potential Anticancer Agents with Effects on Multiple Signaling Pathways. Molecules 2017. [PMID: 28635648 PMCID: PMC6152668 DOI: 10.3390/molecules22061013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cancer is the 2nd leading cause of death worldwide. The development of drugs to target only one specific signaling pathway has limited therapeutic success. Developing chemotherapeutics to target multiple signaling pathways has emerged as a new prototype for cancer treatment. Deoxyelephantopin (DET) and isodeoxyelephantopin (IDET) are sesquiterpene lactone components of “Elephantopus scaber and Elephantopus carolinianus”, traditional Chinese medicinal herbs that have long been used as folk medicines to treat liver diseases, diabetes, diuresis, bronchitis, fever, diarrhea, dysentery, cancer, and inflammation. Recently, the anticancer activity of DET and IDET has been widely investigated. Here, our aim is to review the current status of DET and IDET, and discuss their anticancer activity with specific emphasis on molecular targets and mechanisms used by these compounds to trigger apoptosis pathways which may help to further design and conduct research to develop them as lead therapeutic drugs for cancer treatments. The literature has shown that DET and IDET induce apoptosis through multiple signaling pathways which are deregulated in cancer cells and suggested that by targeting multiple pathways simultaneously, these compounds could selectively kill cancer cells. This review suggests that DET and IDET hold promising anticancer activity but additional studies and clinical trials are needed to validate and understand their therapeutic effect to develop them into potent therapeutics for the treatment of cancer.
Collapse
|
77
|
Maryam R, Faegheh S, Majid AS, Kazem NK. Effect of quercetin on secretion and gene expression of leptin in breast cancer. J TRADIT CHIN MED 2017. [DOI: 10.1016/s0254-6272(17)30067-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
78
|
Fan MJ, Yeh PH, Lin JP, Huang AC, Lien JC, Lin HY, Chung JG. Anthocyanins from black rice ( Oryza sativa) promote immune responses in leukemia through enhancing phagocytosis of macrophages in vivo. Exp Ther Med 2017; 14:59-64. [PMID: 28672893 PMCID: PMC5488472 DOI: 10.3892/etm.2017.4467] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/26/2017] [Indexed: 12/26/2022] Open
Abstract
Rice is a staple food in numerous countries around the world. Anthocyanins found in black rice have been reported to reduce the risk of certain diseases, but the effects of crude extract of anthocyanins from Asia University-selected purple glutinous indica rice (AUPGA) on immune responses have not yet been demonstrated. The current study aimed to investigate whether AUPGA treatment could affect immune responses in murine leukemia cells in vivo. Murine acute myelomonocytic leukemia WEHI-3 cells were intraperitoneally injected into normal BALB/c mice to generate leukemia mice. A total of 50 mice were randomly divided into five groups (n=10 in each group) and were fed a diet supplemented with AUPGA at 0, 20, 50 or 100 mg/kg for three weeks. All mice were weighed and the blood, liver and spleen were collected for further experiments. The results indicated that AUPGA did not significantly affect animal body weight, but significantly increased spleen weight (P<0.05) and decreased liver weight (P<0.05) when compared with the control group. AUPGA significantly increased the T cell (CD3) population at treatments of 20 and 100 mg/kg (P<0.05). However, it only significantly increased the B cell (CD19) population at a treatment of 20 mg/kg (P<0.05). Furthermore, AUPGA at 50 and 100 mg/kg significantly increased the monocyte (CD11b) population and the level of macrophages (Mac-3; P<0.05 for both). AUPGA at 50 and 100 mg/kg significantly promoted macrophage phagocytosis in peripheral blood mononuclear cells (P<0.05), and all doses of AUPGA treatment significantly promoted macrophage phagocytotic activity in the peritoneum (P<0.05). AUPGA treatment significantly decreased natural killer cell activity from splenocytes (P<0.05). Finally, AUPGA treatment at 20 mg/kg treatment significantly promoted T cell proliferation (P<0.05), and treatment at 50 and 100 mg/kg significantly decreased B cell proliferation compared with the control group (P<0.05).
Collapse
Affiliation(s)
- Ming-Jen Fan
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan, R.O.C.,Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan, R.O.C
| | - Ping-Hsuan Yeh
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan, R.O.C
| | - Jing-Pin Lin
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - An-Cheng Huang
- Department of Nursing, St. Mary's Junior College of Medicine, Nursing and Management, Yilan 266, Taiwan, R.O.C
| | - Jin-Cherng Lien
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Hui-Yi Lin
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Jing-Gung Chung
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan, R.O.C.,Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan, R.O.C
| |
Collapse
|
79
|
Ratovitski EA. Anticancer Natural Compounds as Epigenetic Modulators of Gene Expression. Curr Genomics 2017; 18:175-205. [PMID: 28367075 PMCID: PMC5345332 DOI: 10.2174/1389202917666160803165229] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/24/2015] [Accepted: 11/29/2015] [Indexed: 11/30/2022] Open
Abstract
Accumulating evidence shows that hallmarks of cancer include: "genetic and epigenetic alterations leading to inactivation of cancer suppressors, overexpression of oncogenes, deregulation of intracellular signaling cascades, alterations of cancer cell metabolism, failure to undergo cancer cell death, induction of epithelial to mesenchymal transition, invasiveness, metastasis, deregulation of immune response and changes in cancer microenvironment, which underpin cancer development". Natural compounds as bioactive ingredients isolated from natural sources (plants, fungi, marine life forms) have revolutionized the field of anticancer therapeutics and rapid developments in preclinical studies are encouraging. Natural compounds could affect the epigenetic molecular mechanisms that modulate gene expression, as well as DNA damage and repair mechanisms. The current review will describe the latest achievements in using naturally produced compounds targeting epigenetic regulators and modulators of gene transcription in vitro and in vivo to generate novel anticancer therapeutics.
Collapse
Affiliation(s)
- Edward A. Ratovitski
- Head and Neck Cancer Research Division, Department of Otolaryngology/Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
80
|
García-Gutiérrez N, Maldonado-Celis ME, Rojas-López M, Loarca-Piña GF, Campos-Vega R. The fermented non-digestible fraction of spent coffee grounds induces apoptosis in human colon cancer cells (SW480). J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
81
|
Cortez AP, Menezes EGP, Benfica PL, Santos APD, Cleres LM, Ribeiro HDO, Lima EM, Kato MJ, Valadares MC. Grandisin induces apoptosis in leukemic K562 cells. BRAZ J PHARM SCI 2017. [DOI: 10.1590/s2175-97902017000115210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
82
|
Parra Pessoa I, Lopes Neto JJ, Silva de Almeida T, Felipe Farias D, Vieira LR, Lima de Medeiros J, Augusti Boligon A, Peijnenburg A, Castelar I, Fontenele Urano Carvalho A. Polyphenol Composition, Antioxidant Activity and Cytotoxicity of Seeds from Two Underexploited Wild Licania Species: L. rigida and L. tomentosa. Molecules 2016; 21:molecules21121755. [PMID: 28009846 PMCID: PMC6273337 DOI: 10.3390/molecules21121755] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 11/29/2022] Open
Abstract
Studies have shown the benefit of antioxidants in the prevention or treatment of human diseases and promoted a growing interest in new sources of plant antioxidants for pharmacological use. This study aimed to add value to two underexploited wild plant species (Licania rigida) and L. tomentosa) from Brazilian flora. Thus, the phenolic compounds profile of their seed ethanol extract and derived fractions were elucidated by HPLC, the antioxidant capacity was assessed by in vitro chemical tests and the cytotoxicity determined using the human carcinoma cell lines MCF-7 and Caco-2. Eleven phenolic compounds were identified in the extracts of each species. The extracts and fractions showed excellent antioxidant activity in the DPPH assay (SC50, ranging from 9.15 to 248.8 µg/mL). The aqueous fraction of L. rigida seeds was most effective in preventing lipid peroxidation under basal conditions (IC50 60.80 µg/mL) whereas, in the presence of stress inducer, the methanolic fraction of L. tomentosa performed best (IC50 8.55 µg/mL). None of the samples showed iron chelating capacity. Ethanolic seed extracts of both species did not reveal any cytotoxicity against MCF-7 and Caco-2 cells. Both plant species showed a promising phenolic profile with potent antioxidant capacity and deserve attention to be sustainably explored.
Collapse
Affiliation(s)
- Igor Parra Pessoa
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, 60020-181 Fortaleza, CE, Brazil.
| | - José Joaquim Lopes Neto
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, 60020-181 Fortaleza, CE, Brazil.
| | - Thiago Silva de Almeida
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, 60020-181 Fortaleza, CE, Brazil.
| | - Davi Felipe Farias
- Department of Molecular Biology, Federal University of Paraíba, 58051-900 João Pessoa, PB, Brazil.
| | - Leonardo Rogério Vieira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, 60020-181 Fortaleza, CE, Brazil.
| | - Jackeline Lima de Medeiros
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, 60020-181 Fortaleza, CE, Brazil.
| | - Aline Augusti Boligon
- Health Sciences Center, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil.
| | - Ad Peijnenburg
- RIKILT, Wageningen University and Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands.
| | - Ivan Castelar
- Department of Finance, Federal University of Ceará, 60020-181 Fortaleza, CE, Brazil.
| | | |
Collapse
|
83
|
Comparison of cytotoxicity between extracts of Clinacanthus nutans (Burm. f.) Lindau leaves from different locations and the induction of apoptosis by the crude methanol leaf extract in D24 human melanoma cells. Altern Ther Health Med 2016; 16:368. [PMID: 27646974 PMCID: PMC5029048 DOI: 10.1186/s12906-016-1348-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/10/2016] [Indexed: 01/15/2023]
Abstract
BACKGROUND Clinacanthus nutans (Burm. f.) Lindau leaves are widely used by cancer patients and the leaf extracts possess cytotoxic and antiproliferative effects on several human cancer cell lines. However, the effect of C. nutans leaf extract on human melanoma, which is the least common but most fatal form of skin cancer and one of the most common cancers diagnosed in both sexes worldwide, is unknown. There is also limited information on whether the bioactivity of extracts differs between C. nutans leaves grown in different geographical locations with varying environmental conditions. METHODS The present study, for the first time, compared and demonstrated the cytotoxicity of the crude methanol extracts of C. nutans leaves from 11 different locations in Malaysia, Thailand and Vietnam, with diverse environmental conditions against D24 melanoma cells through WST-8 assay. The percentage of apoptotic cells following treatment with the most active extract was determined in a dose- and time-dependent manner by a cytofluorometric double staining technique. Biochemical and morphological changes in the treated and untreated cells were examined by fluorescence and transmission electron microscopy techniques, respectively, to further affirm the induction of apoptosis. RESULTS The leaves of plants grown at higher elevations and lower air temperatures were more cytotoxic to the D24 melanoma cells than those grown at lower elevations and higher air temperatures, with the leaf extract from Chiang Dao, Chiang Mai, Thailand exhibited the highest cytotoxicity (24 h EC50: 0.95 mg/mL and 72 h EC50: 0.77 mg/mL). This most active crude extract induced apoptotic cell death in the D24 cells in a dose- and time-dependent manner. Typical biochemical and morphological characteristics of apoptosis were also observed in the treated D24 cells. CONCLUSIONS The results, showing the cytotoxicity of C. nutans and the induction of apoptosis in D24 cells, are significant and useful to facilitate the development of C. nutans as a potential novel chemotherapeutic agent for the management of skin melanoma.
Collapse
|
84
|
Khan M, Maryam A, Mehmood T, Zhang Y, Ma T. Enhancing Activity of Anticancer Drugs in Multidrug Resistant Tumors by Modulating P-Glycoprotein through Dietary Nutraceuticals. Asian Pac J Cancer Prev 2016; 16:6831-9. [PMID: 26514453 DOI: 10.7314/apjcp.2015.16.16.6831] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Multidrug resistance is a principal mechanism by which tumors become resistant to structurally and functionally unrelated anticancer drugs. Resistance to chemotherapy has been correlated with overexpression of p-glycoprotein (p-gp), a member of the ATP-binding cassette (ABC) superfamily of membrane transporters. P-gp mediates resistance to a broad-spectrum of anticancer drugs including doxorubicin, taxol, and vinca alkaloids by actively expelling the drugs from cells. Use of specific inhibitors/blocker of p-gp in combination with clinically important anticancer drugs has emerged as a new paradigm for overcoming multidrug resistance. The aim of this paper is to review p-gp regulation by dietary nutraceuticals and to correlate this dietary nutraceutical induced-modulation of p-gp with activity of anticancer drugs.
Collapse
Affiliation(s)
- Muhammad Khan
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, P.R. China E-mail :
| | | | | | | | | |
Collapse
|
85
|
Chandrika BB, Steephan M, Kumar TRS, Sabu A, Haridas M. Hesperetin and Naringenin sensitize HER2 positive cancer cells to death by serving as HER2 Tyrosine Kinase inhibitors. Life Sci 2016; 160:47-56. [PMID: 27449398 DOI: 10.1016/j.lfs.2016.07.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/08/2016] [Accepted: 07/18/2016] [Indexed: 11/24/2022]
Abstract
AIM Aberrant human epidermal growth factor receptor-2 (HER2) expression and constitutive mutant activation of its tyrosine kinase domain account for tumor aggression and therapy resistance in many types of cancers with major share in breast cancer cases. HER2 specific treatment modalities still face challenges owing to the side effects and acquired resistance of available therapeutics. Recently, the anti-proliferative and pro-apoptotic potential of phytochemicals, especially of flavonoids have become increasingly appreciated as powerful chemo preventive agents. Consequently, the major goal of our study is to identify flavonoids capable of inhibiting HER2 Tyrosine Kinase (HER2-TK) activity and validate their anti-tumor activity against HER2 positive tumors. MAIN METHODS Molecular docking studies for identifying flavonoids binding at HER2 kinase domain, ADP-Glo™ Kinase Assay for determining kinase activity, MTT assay to measure growth inhibition, various apoptotic assays and cell cycle analysis by FACS were performed. KEY FINDINGS Among the flavonoids screened, Naringenin (NG) and Hesperetin (HP) possessed high glide scores from molecular docking studies of enzyme-inhibitor mode. The interaction analysis revealed their ability to establish stable and strong interaction at the ATP binding site of HER2-TK. These compounds also inhibited in vitro HER2-TK activity suggesting their role as HER2 inhibitors. The study also unraveled the anti-proliferative, pro-apoptotic and anti-cancerous activity of these flavonoids against HER2 positive breast cancer cell line. SIGNIFICANCE The study identified two citrus fruit flavonoids, NG and HP as HER2-TK inhibitors and this is the first report on their potential to target preferentially and sensitize HER2 positive cancer cells to cell death.
Collapse
Affiliation(s)
- Bhavya Balan Chandrika
- Inter University Centre for Bioscience and Department of Biotechnology & Microbiology, Kannur University Thalassery Campus, Kannur 670 661, Kerala, India.
| | - Mathew Steephan
- Govt Brennen College, Kannur University, Kannur 670 661, Kerala, India
| | | | - A Sabu
- Inter University Centre for Bioscience and Department of Biotechnology & Microbiology, Kannur University Thalassery Campus, Kannur 670 661, Kerala, India
| | - M Haridas
- Inter University Centre for Bioscience and Department of Biotechnology & Microbiology, Kannur University Thalassery Campus, Kannur 670 661, Kerala, India.
| |
Collapse
|
86
|
Mohan V, Agarwal R, Singh RP. A novel alkaloid, evodiamine causes nuclear localization of cytochrome-c and induces apoptosis independent of p53 in human lung cancer cells. Biochem Biophys Res Commun 2016; 477:1065-1071. [PMID: 27402273 DOI: 10.1016/j.bbrc.2016.07.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 12/14/2022]
Abstract
Lung cancer is the most frequently diagnosed malignancy that contributes to high proportion of deaths globally among patients who die due to cancer. Chemotherapy remains the common mode of treatment for lung cancer patients though with limited success. We assessed the biological effects and associated molecular changes of evodiamine, a plant alkaloid, on human lung cancer A549 and H1299 cells along with other epithelial cancer and normal lung SAEC cells. Our data showed that 20-40 μM evodiamine treatment for 24-48 h strongly (up to 73%, P < 0.001) reduced the growth and survival of these cancer cells. However, it also moderately inhibited growth and survival of SAEC cells. A strong inhibition (P < 0.001) was observed on clonogenicity of A549 cells. Further, evodiamine increased (4-fold) mitochondrial membrane depolarization with 6-fold increase in apoptosis and a slight increase in Bax/Bcl-2 ratio. It increased the cytochrome-c release from mitochondria into the cytosol as well as nucleus. Cytosolic cytochrome-c activated cascade of caspase-9 and caspase-3 intrinsic pathway, however, DR5 and caspase-8 extrinsic pathway was also activated which could be due to nuclear cytochrome-c. Pan-caspase inhibitor (z-VAD.fmk) partially reversed evodiamine induced apoptosis. An increase in p53 as well as its serine 15 phosphorylation was also observed. Pifithrin-α, a p53 inhibitor, slightly inhibited growth of A549 cells and under p53 inhibitory condition evodiamine-induced apoptosis could not be reversed. Together these findings suggest that evodiamine is a strong inducer of apoptosis in lung epithelial cancer cells independent of their p53 status and that could involve both intrinsic as well as extrinsic pathway of apoptosis. Thus evodiamine could be a potential anticancer agent against lung cancer.
Collapse
Affiliation(s)
- Vijay Mohan
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Aurora, CO, USA
| | - Rana P Singh
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India; Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
87
|
Pratheeshkumar P, Son YO, Divya SP, Wang L, Turcios L, Roy RV, Hitron JA, Kim D, Dai J, Asha P, Zhang Z, Shi X. Quercetin inhibits Cr(VI)-induced malignant cell transformation by targeting miR-21-PDCD4 signaling pathway. Oncotarget 2016; 8:52118-52131. [PMID: 28881718 PMCID: PMC5581017 DOI: 10.18632/oncotarget.10130] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/03/2016] [Indexed: 12/16/2022] Open
Abstract
Hexavalent chromium [Cr(VI)] is an important human carcinogen associated with pulmonary diseases and lung cancer. Inhibition of Cr(VI)-induced carcinogenesis by a dietary antioxidant is a novel approach. Quercetin is one of the most abundant dietary flavonoids widely present in many fruits and vegetables, possesses potent antioxidant and anticancer properties. MicroRNA-21 (miR-21) is a key oncomiR significantly elevated in the majority of human cancers that exerts its oncogenic activity by targeting the tumor suppressor gene programmed cell death 4 (PDCD4). The present study examined the effect of quercetin on the inhibition of Cr(VI)-induced malignant cell transformation and the role of miR-21-PDCD4 signaling involved. Our results showed that quercetin decreased ROS generation induced by Cr(VI) exposure in BEAS-2B cells. Chronic Cr(VI) exposure induced malignant cell transformation, increased miR-21 expression and caused inhibition of PDCD4, which were significantly inhibited by the treatment of quercetin in a dose dependent manner. Nude mice injected with BEAS-2B cells chronically exposed to Cr(VI) in the presence of quercetin showed reduced tumor incidence compared to Cr(VI) alone treated group. Stable knockdown of miR-21 and overexpression of PDCD4 or catalase in BEAS-2B cells suppressed Cr(VI)-induced malignant transformation and tumorigenesis. Taken together, these results demonstrate that quercetin is able to protect BEAS-2B cells from Cr(VI)-induced carcinogenesis by targeting miR-21-PDCD4 signaling.
Collapse
Affiliation(s)
- Poyil Pratheeshkumar
- Center for Research on Environmental Disease, University of Kentucky, Lexington, KY, USA.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Young-Ok Son
- Center for Research on Environmental Disease, University of Kentucky, Lexington, KY, USA.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Sasidharan Padmaja Divya
- Center for Research on Environmental Disease, University of Kentucky, Lexington, KY, USA.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Lei Wang
- Center for Research on Environmental Disease, University of Kentucky, Lexington, KY, USA.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Lilia Turcios
- Department of Surgery, University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Ram Vinod Roy
- Center for Research on Environmental Disease, University of Kentucky, Lexington, KY, USA.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - John Andrew Hitron
- Center for Research on Environmental Disease, University of Kentucky, Lexington, KY, USA.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Donghern Kim
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Jin Dai
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Padmaja Asha
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, India
| | - Zhuo Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Xianglin Shi
- Center for Research on Environmental Disease, University of Kentucky, Lexington, KY, USA.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
88
|
Esposito G, Gigli S, Seguella L, Nobile N, D'Alessandro A, Pesce M, Capoccia E, Steardo L, Cirillo C, Cuomo R, Sarnelli G. Rifaximin, a non-absorbable antibiotic, inhibits the release of pro-angiogenic mediators in colon cancer cells through a pregnane X receptor-dependent pathway. Int J Oncol 2016; 49:639-45. [PMID: 27279570 DOI: 10.3892/ijo.2016.3550] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/03/2016] [Indexed: 11/05/2022] Open
Abstract
Activation of intestinal human pregnane X receptor (PXR) has recently been proposed as a promising strategy for the chemoprevention of inflammation-induced colon cancer. The present study was aimed at evaluating the effect of rifaximin, a non-absorbable antibiotic, in inhibiting angiogenesis in a model of human colorectal epithelium and investigating the role of PXR in its mechanism of action. Caco-2 cells were treated with rifaximin (0.1, 1.0 and 10.0 µM) in the presence or absence of ketoconazole (10 µM) and assessed for cell proliferation, migration and expression of proliferating cell nuclear antigen (PCNA). The release of vascular endothelial growth factor (VEGF) and nitric oxide (NO), expression of Akt, mechanistic target of rapamycin (mTOR), p38 mitogen activated protein kinases (MAPK), nuclear factor κB (NF-κB) and metalloproteinase-2 and -9 (MMP-2 and -9) were also evaluated. Treatment with rifaximin 0.1, 1.0 and 10.0 µM caused significant and concentration-dependent reduction of cell proliferation, cell migration and PCNA expression in the Caco-2 cells vs. untreated cells. Treatment downregulated VEGF secretion, NO release, VEGFR-2 expression, MMP-2 and MMP-9 expression vs. untreated cells. Rifaximin treatment also resulted in a concentration-dependent decrease in the phosphorylation of Akt, mTOR, p38MAPK and inhibition of hypoxia-inducible factor 1-α (HIF-1α), p70S6K and NF-κB. Ketoconazole (PXR antagonist) treatment inhibited these effects. These findings demonstrated that rifaximin causes PXR-mediated inhibition of angiogenic factors in Caco-2 cell line and may be a promising anticancer tool.
Collapse
Affiliation(s)
- Giuseppe Esposito
- Department of Physiology and Pharmacology, 'Vittorio Erspamer', La Sapienza University of Rome, I-00185 Rome, Italy
| | - Stefano Gigli
- Department of Physiology and Pharmacology, 'Vittorio Erspamer', La Sapienza University of Rome, I-00185 Rome, Italy
| | - Luisa Seguella
- Department of Physiology and Pharmacology, 'Vittorio Erspamer', La Sapienza University of Rome, I-00185 Rome, Italy
| | - Nicola Nobile
- Department of Physiology and Pharmacology, 'Vittorio Erspamer', La Sapienza University of Rome, I-00185 Rome, Italy
| | - Alessandra D'Alessandro
- Department of Clinical Medicine and Surgery, 'Federico II' University of Naples, I-80131 Naples, Italy
| | - Marcella Pesce
- Department of Clinical Medicine and Surgery, 'Federico II' University of Naples, I-80131 Naples, Italy
| | - Elena Capoccia
- Department of Physiology and Pharmacology, 'Vittorio Erspamer', La Sapienza University of Rome, I-00185 Rome, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology, 'Vittorio Erspamer', La Sapienza University of Rome, I-00185 Rome, Italy
| | - Carla Cirillo
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, 3000 Leuven, Belgium
| | - Rosario Cuomo
- Department of Clinical Medicine and Surgery, 'Federico II' University of Naples, I-80131 Naples, Italy
| | - Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, 'Federico II' University of Naples, I-80131 Naples, Italy
| |
Collapse
|
89
|
Khoogar R, Kim BC, Morris J, Wargovich MJ. Chemoprevention in gastrointestinal physiology and disease. Targeting the progression of cancer with natural products: a focus on gastrointestinal cancer. Am J Physiol Gastrointest Liver Physiol 2016; 310:G629-44. [PMID: 26893159 PMCID: PMC4867331 DOI: 10.1152/ajpgi.00201.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 02/11/2016] [Indexed: 01/31/2023]
Abstract
The last decade has witnessed remarkable progress in the utilization of natural products for the prevention and treatment of human cancer. Many agents now in the pipeline for clinical trial testing have evolved from our understanding of how human nutritional patterns account for widespread differences in cancer risk. In this review, we have focused on many of these promising agents arguing that they may provide a new strategy for cancer control: natural products once thought to be only preventive in their mode of action now are being explored for efficacy in tandem with cancer therapeutics. Natural products may reduce off-target toxicity of therapeutics while making cancers more amenable to therapy. On the horizon is the use of certain natural products, in their own right, as mitigants of late-stage cancer, a new frontier for small-molecule natural product drug discovery.
Collapse
Affiliation(s)
- Roxane Khoogar
- 1Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; and
| | - Byung-Chang Kim
- 2Center for Colorectal Center, Center for Cancer Prevention and Detection, Research Institute and Hospital, National Cancer Center, Ilsan-ro, Illsandong-gu, Goyang-si Gyeonggi-do, Republic of Korea
| | - Jay Morris
- 1Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; and
| | - Michael J. Wargovich
- 1Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; and
| |
Collapse
|
90
|
Bailon-Moscoso N, Romero Benavides JC, Ramirez Orellana MI, Ojeda K, Granda G, Ratoviski EA, Ostrosky-Wegman P. Cytotoxic and genotoxic effects of extracts fromAnnona montanaM. fruit. FOOD AGR IMMUNOL 2016. [DOI: 10.1080/09540105.2016.1148121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
91
|
Sarnelli G, Gigli S, Capoccia E, Iuvone T, Cirillo C, Seguella L, Nobile N, D'Alessandro A, Pesce M, Steardo L, Cuomo R, Esposito G. Palmitoylethanolamide Exerts Antiproliferative Effect and Downregulates VEGF Signaling in Caco-2 Human Colon Carcinoma Cell Line Through a Selective PPAR-α-Dependent Inhibition of Akt/mTOR Pathway. Phytother Res 2016; 30:963-70. [PMID: 26929026 DOI: 10.1002/ptr.5601] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 01/17/2023]
Abstract
Palmitoylethanolamide (PEA) is a nutraceutical compound that has been demonstrated to improve intestinal inflammation. We aimed at evaluating its antiproliferative and antiangiogenic effects in human colon adenocarcinoma Caco-2 cell line. Caco-2 cells were treated with increasing concentrations of PEA (0.001, 0.01 and 0.1 μM) in the presence of peroxisome proliferator-activated receptor-a (PPAR-α) or PPAR-γ antagonists. Cell proliferation was evaluated by performing a MTT assay. Vascular endothelial growth factor (VEGF) release was estimated by ELISA, while the expression of VEGF receptor and the activation of the Akt/mammalian target of rapamycin (mTOR) pathway were evaluated by western blot analysis. PEA caused a significant and concentration-dependent decrease of Caco-2 cell proliferation at 48 h. PEA administration significantly reduced in a concentration-dependent manner VEGF secretion and VEGF receptor expression. Inhibition of Akt phosphorylation and a downstream decrease of phospho-mTOR and of p-p70S6K were observed as compared with untreated cells. PPAR-α, but not PPAR-γ antagonist, reverted all effects of PEA. PEA is able to decrease cell proliferation and angiogenesis. The antiangiogenic effect of PEA depends on the specific inhibition of the AkT/mTOR axis, through the activation of PPAR-α pathway. If supported by in vivo models, our data pave the way to PEA co-administration to the current chemotherapeutic regimens for colon carcinoma. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, 'Federico II' University of Naples, Naples, Italy
| | - Stefano Gigli
- Department of Physiology and Pharmacology 'Vittorio Erspamer', La Sapienza University of Rome, Rome, Italy
| | - Elena Capoccia
- Department of Physiology and Pharmacology 'Vittorio Erspamer', La Sapienza University of Rome, Rome, Italy
| | - Teresa Iuvone
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Carla Cirillo
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Luisa Seguella
- Department of Physiology and Pharmacology 'Vittorio Erspamer', La Sapienza University of Rome, Rome, Italy
| | - Nicola Nobile
- Department of Physiology and Pharmacology 'Vittorio Erspamer', La Sapienza University of Rome, Rome, Italy
| | - Alessandra D'Alessandro
- Department of Clinical Medicine and Surgery, 'Federico II' University of Naples, Naples, Italy
| | - Marcella Pesce
- Department of Clinical Medicine and Surgery, 'Federico II' University of Naples, Naples, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology 'Vittorio Erspamer', La Sapienza University of Rome, Rome, Italy
| | - Rosario Cuomo
- Department of Clinical Medicine and Surgery, 'Federico II' University of Naples, Naples, Italy
| | - Giuseppe Esposito
- Department of Physiology and Pharmacology 'Vittorio Erspamer', La Sapienza University of Rome, Rome, Italy
| |
Collapse
|
92
|
Zhang Z, Li C, Shang L, Zhang Y, Zou R, Zhan Y, Bi B. Sulforaphane induces apoptosis and inhibits invasion in U251MG glioblastoma cells. SPRINGERPLUS 2016; 5:235. [PMID: 27026929 PMCID: PMC4771656 DOI: 10.1186/s40064-016-1910-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/17/2016] [Indexed: 12/18/2022]
Abstract
In recent studies, sulforaphane (SFN) has been seen to demonstrate antioxidant and anti-tumor activities. In the present study, the viability inhibition effects of SFN in U251MG glioblastoma cells were analyzed by MTS. Morphology changes were observed by microscope. Apoptotic effects of SFN were evaluated by annexin V binding capacity with flow cytometric analysis. Invasion inhibition effects of SFN were tested by the invasion assay. The molecular mechanisms of apoptotic effects and invasion inhibition effects of SFN were detected by western blot and gelatin zymography. The results indicated that SFN has potent apoptotic effects and invasion inhibition effects against U251MG glioblastoma cells. These effects are both dose dependent. Taken together, SFN possessed apoptotic activity on U251MG cells indicated by increased annexin V-binding capacity, Bad, Bax, cytochrome C expression, and decreased Bcl-2 and survivin expressions. SFN inhibited invasion in U251MG cells via upregulation of E-cadherin and downregulation of MMP-2, MMP-9 and Galectin-3.
Collapse
Affiliation(s)
- Zhen Zhang
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100 China
| | - Chunliu Li
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100 China
| | - Li Shang
- Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | | | - Rong Zou
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100 China
| | - Yan Zhan
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100 China
| | | |
Collapse
|
93
|
Chen X, Dong XS, Gao HY, Jiang YF, Jin YL, Chang YY, Chen LY, Wang JH. Suppression of HSP27 increases the anti‑tumor effects of quercetin in human leukemia U937 cells. Mol Med Rep 2015; 13:689-96. [PMID: 26648539 PMCID: PMC4686121 DOI: 10.3892/mmr.2015.4600] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 10/21/2015] [Indexed: 12/17/2022] Open
Abstract
Quercetin, a natural flavonoid, inhibits the growth of leukemia cells and induces apoptosis. Heat shock protein 27 (HSP27) has been reported to promote the development of leukemia by protecting tumor cells from apoptosis through various mechanisms. The present study investigated the effects of small hairpin (sh)RNA-mediated HSP27 knockdown on the anti-cancer effects of quercetin in U937 human leukemia cells. Cells were transfected with recombinant lentiviral vector pCMV-G-NR-U6-shHSP27 (shHSP27), which expressed shRNA specifically targeting the HSP27 gene, alone or in combination with quercetin. The results showed that shHSP27 and quercetin synergistically inhibited U937 cell proliferation and induced apoptosis by decreasing the Bcl2-to-Bax ratio. Furthermore, this combined treatment significantly suppressed the infiltration of tumor cells and the expression of angiogenesis-associated proteins HIF1α and VEGF. Compared with shHSP27 or quercetin alone, shHSP27 plus quercetin markedly decreased the protein expression of cyclinD1 and thus blocked the cell cycle at G1 phase. The Notch/AKT/mTOR signaling pathway is important in tumor aggressiveness; quercetin plus shHSP27 significantly decreased Notch 1 expression and the phosphorylation levels of the downstream signaling proteins AKT and mTOR. The inhibitory effects of quercetin plus shHSP27 on this pathway may thus have been responsible for the cell cycle arrest, inhibition of proliferations and infiltration as well as enhancement of apoptosis. Therefore, these findings collectively suggested that suppression of HSP27 expression amplified the anti-cancer effects of quercetin in U937 human leukemia cells, and that quercetin in combination with shHSP27 represents a promising therapeutic strategy for human leukemia.
Collapse
Affiliation(s)
- Xi Chen
- Department of Hematology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xiu-Shuai Dong
- Department of Hematology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Hai-Yan Gao
- Department of Hematology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yong-Fang Jiang
- Department of Hematology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Ying-Lan Jin
- Department of Hematology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yu-Ying Chang
- Department of Hematology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Li-Yan Chen
- Department of Hematology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jing-Hua Wang
- Department of Hematology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
94
|
Systematic Review of the Use of Phytochemicals for Management of Pain in Cancer Therapy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:506327. [PMID: 26576425 PMCID: PMC4630373 DOI: 10.1155/2015/506327] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/01/2015] [Indexed: 12/23/2022]
Abstract
Pain in cancer therapy is a common condition and there is a need for new options in therapeutic management. While phytochemicals have been proposed as one pain management solution, knowledge of their utility is limited. The objective of this study was to perform a systematic review of the biomedical literature for the use of phytochemicals for management of cancer therapy pain in human subjects. Of an initial database search of 1,603 abstracts, 32 full-text articles were eligible for further assessment. Only 7 of these articles met all inclusion criteria for this systematic review. The average relative risk of phytochemical versus control was 1.03 [95% CI 0.59 to 2.06]. In other words (although not statistically significant), patients treated with phytochemicals were slightly more likely than patients treated with control to obtain successful management of pain in cancer therapy. We identified a lack of quality research literature on this subject and thus were unable to demonstrate a clear therapeutic benefit for either general or specific use of phytochemicals in the management of cancer pain. This lack of data is especially apparent for psychotropic phytochemicals, such as the Cannabis plant (marijuana). Additional implications of our findings are also explored.
Collapse
|
95
|
Bailon-Moscoso N, González-Arévalo G, Velásquez-Rojas G, Malagon O, Vidari G, Zentella-Dehesa A, Ratovitski EA, Ostrosky-Wegman P. Phytometabolite Dehydroleucodine Induces Cell Cycle Arrest, Apoptosis, and DNA Damage in Human Astrocytoma Cells through p73/p53 Regulation. PLoS One 2015; 10:e0136527. [PMID: 26309132 PMCID: PMC4550445 DOI: 10.1371/journal.pone.0136527] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/04/2015] [Indexed: 12/01/2022] Open
Abstract
Accumulating evidence supports the idea that secondary metabolites obtained from medicinal plants (phytometabolites) may be important contributors in the development of new chemotherapeutic agents to reduce the occurrence or recurrence of cancer. Our study focused on Dehydroleucodine (DhL), a sesquiterpene found in the provinces of Loja and Zamora-Chinchipe. In this study, we showed that DhL displayed cytostatic and cytotoxic activities on the human cerebral astrocytoma D384 cell line. With lactone isolated from Gynoxys verrucosa Wedd, a medicinal plant from Ecuador, we found that DhL induced cell death in D384 cells by triggering cell cycle arrest and inducing apoptosis and DNA damage. We further found that the cell death resulted in the increased expression of CDKN1A and BAX proteins. A marked induction of the levels of total TP73 and phosphorylated TP53, TP73, and γ-H2AX proteins was observed in D384 cells exposed to DhL, but no increase in total TP53 levels was detected. Overall these studies demonstrated the marked effect of DhL on the diminished survival of human astrocytoma cells through the induced expression of TP73 and phosphorylation of TP73 and TP53, suggesting their key roles in the tumor cell response to DhL treatment.
Collapse
Affiliation(s)
- Natalia Bailon-Moscoso
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D. F., Mexico
- Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja, Ecuador
| | | | | | - Omar Malagon
- Departamento de Química Aplicada, Universidad Técnica Particular de Loja, Loja, Ecuador
- Dipartimento di Chimica Organica, University of Pavia, Pavia, Italy
| | - Giovanni Vidari
- Dipartimento di Chimica Organica, University of Pavia, Pavia, Italy
| | - Alejandro Zentella-Dehesa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D. F., Mexico
- Departamento de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición“Salvador Zubirán”, México, D. F., Mexico
| | - Edward A. Ratovitski
- Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja, Ecuador
- Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Patricia Ostrosky-Wegman
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D. F., Mexico
- * E-mail:
| |
Collapse
|
96
|
Petchsak P, Sripanidkulchai B. Momordica cochinchinensis Aril Extract Induced Apoptosis in Human MCF-7 Breast Cancer Cells. Asian Pac J Cancer Prev 2015. [DOI: 10.7314/apjcp.2015.16.13.5507] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
97
|
Abstract
Reactive oxygen species (ROS) play a major role in carcinogenesis: pro-oxidant agents like tobacco smoke, asbestos or N-nitrosamines, are known as mutagenic and carcinogenic, and cancer cells show increased levels of ROS and redox deregulation. However, pro-oxidant molecules can also act as selective cytotoxic agents against cancer cells by achieving toxic levels of ROS. Although polyphenols are well-known as potent antioxidants, a pro-oxidant effect has been associated with their pro-apoptotic effect in various types of tumor cells. The aim of the present review is to present the main evidences of the pro-oxidant-related cytotoxic activity of naturally occurring polyphenols and their underlying mechanisms.
Collapse
|
98
|
Khan M, Maryam A, Qazi JI, Ma T. Targeting Apoptosis and Multiple Signaling Pathways with Icariside II in Cancer Cells. Int J Biol Sci 2015. [PMID: 26221076 PMCID: PMC4515820 DOI: 10.7150/ijbs.11595] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer is the second leading cause of deaths worldwide. Despite concerted efforts to improve the current therapies, the prognosis of cancer remains dismal. Highly selective or specific blocking of only one of the signaling pathways has been associated with limited or sporadic responses. Using targeted agents to inhibit multiple signaling pathways has emerged as a new paradigm for anticancer treatment. Icariside II, a flavonol glycoside, is one of the major components of Traditional Chinese Medicine Herba epimedii and possesses multiple biological and pharmacological properties including anti-inflammatory, anti-osteoporosis, anti-oxidant, anti-aging, and anticancer activities. Recently, the anticancer activity of Icariside II has been extensively investigated. Here, in this review, our aim is to give our perspective on the current status of Icariside II, and discuss its natural sources, anticancer activity, molecular targets and the mechanisms of action with specific emphasis on apoptosis pathways which may help the further design and conduct of preclinical and clinical trials. Icariside II has been found to induce apoptosis in various human cancer cell lines of different origin by targeting multiple signaling pathways including STAT3, PI3K/AKT, MAPK/ERK, COX-2/PGE2 and β-Catenin which are frequently deregulated in cancers, suggesting that this collective activity rather than just a single effect may play an important role in developing Icariside II into a potential lead compound for anticancer therapy. This review suggests that Icariside II provides a novel opportunity for treatment of cancers, but additional investigations and clinical trials are still required to fully understand the mechanism of therapeutic effects to further validate it in anti-tumor therapy.
Collapse
Affiliation(s)
- Muhammad Khan
- 1. College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Amara Maryam
- 1. College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Javed Iqbal Qazi
- 2. Department of Zoology, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Tonghui Ma
- 1. College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
99
|
Dastjerdi MN, Kavoosi F, Valiani A, Esfandiari E, Sanaei M, Sobhanian S, Hakemi MG, Mobarakian M. Inhibitory Effect of Genistein on PLC/PRF5 Hepatocellular Carcinoma Cell Line. Int J Prev Med 2015; 6:54. [PMID: 26180625 PMCID: PMC4498311 DOI: 10.4103/2008-7802.158914] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/07/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Natural compounds including flavonoids like genistein (GE) are able to inhibit cell proliferation and induce apoptosis. GE is the main representative of these groups. GE inhibits carcinogenic tumors such as colon, stomach, lung, and pancreas tumors. The aim of the present study was to analyze the apoptotic effect of GE in the hepatocellular carcinoma (HCC) PLC/PRF5 cell line. METHODS Cells were treated with various doses of GE (1, 5, 10, 25, 50, 75, and 100 μM/L) at different times (24, 48, and 72 h) and the MTT assay was commonly used. Furthermore, cells were treated with single dose of GE (25 μM) at different times and flow cytometry was performed. RESULTS GE inhibited the growth of liver cancer cells significantly with a time- and dose-dependent manner. The percentage of living cells in GE treatment groups with a concentration of 25 μM at different times were 53, 48 and 47%, respectively (P < 0.001). Result of flow cytometry demonstrated that GE at a 25 μM concentration induces apoptosis significantly in a time-dependent manner. The percentage of apoptotic cells at different times were 44, 56, and 60%, respectively (P < 0.001). CONCLUSIONS GE can significantly inhibit the growth of HCC cells and plays a significant role in apoptosis of this cell line.
Collapse
Affiliation(s)
- Mehdi Nikbakht Dastjerdi
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Fraidoon Kavoosi
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Ali Valiani
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Ebrahim Esfandiari
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Masume Sanaei
- Department of Anatomical Sciences, Medical School, Jahrom University of Medical Sciences, Jahrom, I.R. Iran
| | - Saeed Sobhanian
- School of Nursing, Jahrom University of Medical Sciences, Jahrom, I.R. Iran
| | - Mazdak Ganjalikhani Hakemi
- Cellular and Molecular Immunology Research Center, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Maryam Mobarakian
- Department Plant Protection, College of Agriculture, Lorestan University, Khoramabad, Lorestan, Iran
| |
Collapse
|
100
|
Divya SP, Wang X, Pratheeshkumar P, Son YO, Roy RV, Kim D, Dai J, Hitron JA, Wang L, Asha P, Shi X, Zhang Z. Blackberry extract inhibits UVB-induced oxidative damage and inflammation through MAP kinases and NF-κB signaling pathways in SKH-1 mice skin. Toxicol Appl Pharmacol 2015; 284:92-99. [PMID: 25680589 PMCID: PMC4374016 DOI: 10.1016/j.taap.2015.02.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/29/2015] [Accepted: 02/04/2015] [Indexed: 12/17/2022]
Abstract
Extensive exposure of solar ultraviolet-B (UVB) radiation to skin induces oxidative stress and inflammation that play a crucial role in the induction of skin cancer. Photochemoprevention with natural products represents a simple but very effective strategy for the management of cutaneous neoplasia. In this study, we investigated whether blackberry extract (BBE) reduces chronic inflammatory responses induced by UVB irradiation in SKH-1 hairless mice skin. Mice were exposed to UVB radiation (100 mJ/cm(2)) on alternate days for 10 weeks, and BBE (10% and 20%) was applied topically a day before UVB exposure. Our results show that BBE suppressed UVB-induced hyperplasia and reduced infiltration of inflammatory cells in the SKH-1 hairless mice skin. BBE treatment reduced glutathione (GSH) depletion, lipid peroxidation (LPO), and myeloperoxidase (MPO) in mouse skin by chronic UVB exposure. BBE significantly decreased the level of pro-inflammatory cytokines IL-6 and TNF-α in UVB-exposed skin. Likewise, UVB-induced inflammatory responses were diminished by BBE as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, BBE also reduced inflammatory mediators such as cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and inducible nitric oxide synthase (iNOS) levels in UVB-exposed skin. Treatment with BBE inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mouse skin. Immunohistochemistry analysis revealed that topical application of BBE inhibited the expression of 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxodG), cyclobutane pyrimidine dimers (CPD), proliferating cell nuclear antigen (PCNA), and cyclin D1 in UVB-exposed skin. Collectively, these data indicate that BBE protects from UVB-induced oxidative damage and inflammation by modulating MAP kinase and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Sasidharan Padmaja Divya
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Xin Wang
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Poyil Pratheeshkumar
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Young-Ok Son
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Ram Vinod Roy
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Donghern Kim
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Jin Dai
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - John Andrew Hitron
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Lei Wang
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Padmaja Asha
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, India
| | - Xianglin Shi
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Zhuo Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| |
Collapse
|