51
|
Microarray Analysis of Differentially-Expressed Genes Encoding CYP450 and Phase II Drug Metabolizing Enzymes in Psoriasis and Melanoma. Pharmaceutics 2016; 8:pharmaceutics8010004. [PMID: 26901218 PMCID: PMC4810080 DOI: 10.3390/pharmaceutics8010004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 01/21/2016] [Accepted: 01/29/2016] [Indexed: 12/22/2022] Open
Abstract
Cytochrome P450 drug metabolizing enzymes are implicated in personalized medicine for two main reasons. First, inter-individual variability in CYP3A4 expression is a confounding factor during cancer treatment. Second, inhibition or induction of CYP3A4 can trigger adverse drug–drug interactions. However, inflammation can downregulate CYP3A4 and other drug metabolizing enzymes and lead to altered metabolism of drugs and essential vitamins and lipids. Little is known about effects of inflammation on expression of CYP450 genes controlling drug metabolism in the skin. Therefore, we analyzed seven published microarray datasets, and identified differentially-expressed genes in two inflammatory skin diseases (melanoma and psoriasis). We observed opposite patterns of expression of genes regulating metabolism of specific vitamins and lipids in psoriasis and melanoma samples. Thus, genes controlling the turnover of vitamin D (CYP27B1, CYP24A1), vitamin A (ALDH1A3, AKR1B10), and cholesterol (CYP7B1), were up-regulated in psoriasis, whereas melanomas showed downregulation of genes regulating turnover of vitamin A (AKR1C3), and cholesterol (CYP39A1). Genes controlling abnormal keratinocyte differentiation and epidermal barrier function (CYP4F22, SULT2B1) were up-regulated in psoriasis. The up-regulated CYP24A1, CYP4F22, SULT2B1, and CYP7B1 genes are potential drug targets in psoriatic skin. Both disease samples showed diminished drug metabolizing capacity due to downregulation of the CYP1B1 and CYP3A5 genes. However, melanomas showed greater loss of drug metabolizing capacity due to downregulation of the CYP3A4 gene.
Collapse
|
52
|
Korkina L. Metabolic and redox barriers in the skin exposed to drugs and xenobiotics. Expert Opin Drug Metab Toxicol 2016; 12:377-88. [PMID: 26854731 DOI: 10.1517/17425255.2016.1149569] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
INTRODUCTION Growing exposure of human skin to environmental and occupational hazards, to numerous skin care/beauty products, and to topical drugs led to a biomedical concern regarding sustainability of cutaneous chemical defence that is essential for protection against intoxication. Since skin is the largest extra-hepatic drug/xenobiotic metabolising organ where redox-dependent metabolic pathways prevail, in this review, publications on metabolic processes leading to redox imbalance (oxidative stress) and its autocrine/endocrine impact to cutaneous drug/xenobiotic metabolism were scrutinised. AREAS COVERED Chemical and photo-chemical skin barriers contain metabolic and redox compartments: their protective and homeostatic functions. The review will examine the striking similarity of adaptive responses to exogenous chemical/photo-chemical stressors and endogenous toxins in cutaneous metabolic and redox system; the role(s) of xenobiotics/drugs and phase II enzymes in the endogenous antioxidant defence and maintenance of redox balance; redox regulation of interactions between metabolic and inflammatory responses in skin cells; skin diseases sharing metabolic and redox problems (contact dermatitis, lupus erythematosus, and vitiligo) EXPERT OPINION Due to exceptional the redox dependence of cutaneous metabolic pathways and interaction of redox active metabolites/exogenous antioxidants with drug/xenobiotic metabolism, metabolic tests of topical xenobiotics/drugs should be combined with appropriate redox analyses and performed on 3D human skin models.
Collapse
Affiliation(s)
- Liudmila Korkina
- a Scientific Direction, Centre for Innovative Biotechnological Investigations 'NANOLAB' , Moscow , Russia
| |
Collapse
|
53
|
Nguyen TT, Parat MO, Shaw PN, Hewavitharana AK, Hodson MP. Traditional Aboriginal Preparation Alters the Chemical Profile of Carica papaya Leaves and Impacts on Cytotoxicity towards Human Squamous Cell Carcinoma. PLoS One 2016; 11:e0147956. [PMID: 26829042 PMCID: PMC4734615 DOI: 10.1371/journal.pone.0147956] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/11/2016] [Indexed: 11/19/2022] Open
Abstract
Carica papaya leaf decoction, an Australian Aboriginal remedy, has been used widely for its healing capabilities against cancer, with numerous anecdotal reports. In this study we investigated its in vitro cytotoxicity on human squamous cell carcinoma cells followed by metabolomic profiling of Carica papaya leaf decoction and leaf juice/brewed leaf juice to determine the effects imparted by the long heating process typical of the Aboriginal remedy preparation. MTT assay results showed that in comparison with the decoction, the leaf juice not only exhibited a stronger cytotoxic effect on SCC25 cancer cells, but also produced a significant cancer-selective effect as shown by tests on non-cancerous human keratinocyte HaCaT cells. Furthermore, evidence from testing brewed leaf juice on these two cell lines suggested that the brewing process markedly reduced the selective effect of Carica papaya leaf on SCC25 cancer cells. To tentatively identify the compounds that contribute to the distinct selective anticancer activity of leaf juice, an untargeted metabolomic approach employing Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry followed by multivariate data analysis was applied. Some 90 and 104 peaks in positive and negative mode respectively were selected as discriminatory features from the chemical profile of leaf juice and >1500 putative compound IDs were obtained via database searching. Direct comparison of chromatographic and tandem mass spectral data to available reference compounds confirmed one feature as a match with its proposed authentic standard, namely pheophorbide A. However, despite pheophorbide A exhibiting cytotoxic activity on SCC25 cancer cells, it did not prove to be the compound contributing principally to the selective activity of leaf juice. With promising results suggesting stronger and more selective anticancer effects when compared to the Aboriginal remedy, Carica papaya leaf juice warrants further study to explore its activity on other cancer cell lines, as well as investigation to confirm the identity of compounds contributing to its selective effect, particularly those compounds altered by the long heating process applied during the traditional Aboriginal remedy preparation.
Collapse
Affiliation(s)
- Thao T. Nguyen
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Marie-Odile Parat
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul N. Shaw
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Mark P. Hodson
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
- Metabolomics Australia, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
54
|
Marto J, Ascenso A, Gonçalves LM, Gouveia LF, Manteigas P, Pinto P, Oliveira E, Almeida AJ, Ribeiro HM. Melatonin-based pickering emulsion for skin's photoprotection. Drug Deliv 2016; 23:1594-607. [PMID: 26755411 DOI: 10.3109/10717544.2015.1128496] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
CONTEXT Based on its antioxidant activity, melatonin was recently found to have a protection effect against photocarcinogenesis. OBJECTIVE This work aimed to develop an innovative sunscreen formulation based on the Pickering emulsions concept, stabilized by physical UV filters, modified starch and natural oils associated to melatonin as a key strategy for prevention against UV-induced skin damage. MATERIALS AND METHODS For this purpose, melatonin was incorporated in Pickering emulsions that were characterized using physicochemical, in vitro and in vivo testing. Physicochemical studies included physical and chemical stability by a thorough pharmaceutical control. The possible protective effects of melatonin against UV-induced cell damage in HaCaT cell lines were investigated in vitro. The safety assessment and the in vivo biological properties of the final formulations, including Human Repeat Insult Patch Test and sunscreen water resistance tests were also evaluated. RESULTS AND DISCUSSION These studies demonstrated that melatonin sunscreen Pickering emulsion was beneficial and presented a powerful protection against UVB-induced damage in HaCat cells, including inhibition of apoptosis. The inclusion of zinc oxide, titanium dioxide, green coffee oil and starch ensured a high SPF (50+) against UVA and UVB. CONCLUSION The combination of melatonin, multifunctional solid particles and green coffee oil, contributed to achieve a stable, effective and innovative sunscreen with a meaningful synergistic protection against oxidative stress.
Collapse
Affiliation(s)
- Joana Marto
- a Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon , Portugal and
| | - Andreia Ascenso
- a Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon , Portugal and
| | - Lídia M Gonçalves
- a Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon , Portugal and
| | - Luís F Gouveia
- a Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon , Portugal and
| | - Patrícia Manteigas
- a Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon , Portugal and
| | - Pedro Pinto
- a Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon , Portugal and
| | | | - António J Almeida
- a Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon , Portugal and
| | - Helena M Ribeiro
- a Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon , Portugal and
| |
Collapse
|
55
|
Piotrowska A, Wierzbicka J, Nadkarni S, Brown G, Kutner A, Żmijewski MA. Antiproliferative Activity of Double Point Modified Analogs of 1,25-Dihydroxyvitamin D₂ Against Human Malignant Melanoma Cell Lines. Int J Mol Sci 2016; 17:E76. [PMID: 26760999 PMCID: PMC4730320 DOI: 10.3390/ijms17010076] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 12/16/2015] [Accepted: 12/21/2015] [Indexed: 02/07/2023] Open
Abstract
Vitamin D is a lipid soluble steroid hormone with pleiotropic biological properties, including regulation of cell proliferation, differentiation and apoptosis. As to these desirable anticancer actions, 1,25-dihydroxyvitamins D and analogs have been reported to inhibit the proliferation and to induce differentiation of a wide variety of cancer cell types, including human malignant melanoma. However, there is a need for novel and more efficacious vitamin D analogs, and how best to design such is still an open issue. A series of double point modified (DPM) analogs of 1,25-dihydroxyvitamin D₂ (1,25(OH)₂D₂) induced differentiation of the vitamin D receptor (VDR) positive A375 and VDR negative SK-MEL 188b human malignant melanoma cell lines. Surprisingly, the dose of 1,25(OH)₂D₂ required to inhibit the proliferation of the A375 melanoma cell line by was several fold lower than that required in the case of 1,25(OH)₂D₃. To evaluate the impact of the modification in the side chain (additional 22-hydroxyl) and in the A-ring (5,6-trans modification), the regular side-chain of vitamin D₂ or D₃ was retained in the structure of our analogs. As expected, 5,6-trans modification was advantageous to enhancing the anti-proliferative activity of analogs, but not as a single point modification (SPM). Very unexpectedly, the additional 22-hydroxyl in the side-chain reduced significantly the anti-proliferative activity of both the natural and 5,6-trans series analogs. Finally, an induction of pigmentation in melanoma SK-MEL 188b cells was observed to sensitized cells to the effect of vitamin D analogs.
Collapse
Affiliation(s)
- Anna Piotrowska
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, 1a Debinki, Gdańsk 80-211, Poland.
| | - Justyna Wierzbicka
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, 1a Debinki, Gdańsk 80-211, Poland.
| | - Sharmin Nadkarni
- Pharmaceutical Research Institute, 8 Rydygiera, Warsaw 01-793, Poland.
| | - Geoffrey Brown
- School of Immunity and Infection, University of Birmingham, Vincent Drive, Edgbaston, Birmingham, West Midlands B15 2TT, UK.
| | - Andrzej Kutner
- Pharmaceutical Research Institute, 8 Rydygiera, Warsaw 01-793, Poland.
| | - Michał A Żmijewski
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, 1a Debinki, Gdańsk 80-211, Poland.
| |
Collapse
|
56
|
Protective Effects of Triphala on Dermal Fibroblasts and Human Keratinocytes. PLoS One 2016; 11:e0145921. [PMID: 26731545 PMCID: PMC4711708 DOI: 10.1371/journal.pone.0145921] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/10/2015] [Indexed: 12/23/2022] Open
Abstract
Human skin is body’s vital organ constantly exposed to abiotic oxidative stress. This can have deleterious effects on skin such as darkening, skin damage, and aging. Plant-derived products having skin-protective effects are well-known traditionally. Triphala, a formulation of three fruit products, is one of the most important rasayana drugs used in Ayurveda. Several skin care products based on Triphala are available that claim its protective effects on facial skin. However, the skin protective effects of Triphala extract (TE) and its mechanistic action on skin cells have not been elucidated in vitro. Gallic acid, ellagic acid, and chebulinic acid were deduced by LC-MS as the major constituents of TE. The identified key compounds were docked with skin-related proteins to predict their binding affinity. The IC50 values for TE on human dermal fibroblasts (HDF) and human keratinocytes (HaCaT) were 204.90 ± 7.6 and 239.13 ± 4.3 μg/mL respectively. The antioxidant capacity of TE was 481.33 ± 1.5 mM Trolox equivalents in HaCaT cells. Triphala extract inhibited hydrogen peroxide (H2O2) induced RBC haemolysis (IC50 64.95 μg/mL), nitric oxide production by 48.62 ± 2.2%, and showed high reducing power activity. TE also rescued HDF from H2O2-induced damage; inhibited H2O2 induced cellular senescence and protected HDF from DNA damage. TE increased collagen-I, involucrin and filaggrin synthesis by 70.72 ± 2.3%, 67.61 ± 2.1% and 51.91 ± 3.5% in HDF or HaCaT cells respectively. TE also exhibited anti-tyrosinase and melanin inhibition properties in a dose-dependent manner. TE increased the mRNA expression of collagen-I, elastin, superoxide dismutase (SOD-2), aquaporin-3 (AQP-3), filaggrin, involucrin, transglutaminase in HDF or HaCaT cells, and decreased the mRNA levels of tyrosinase in B16F10 cells. Thus, Triphala exhibits protective benefits on skin cells in vitro and can be used as a potential ingredient in skin care formulations.
Collapse
|
57
|
Manna PR, Stetson CL, Slominski AT, Pruitt K. Role of the steroidogenic acute regulatory protein in health and disease. Endocrine 2016; 51:7-21. [PMID: 26271515 PMCID: PMC4707056 DOI: 10.1007/s12020-015-0715-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/03/2015] [Indexed: 01/10/2023]
Abstract
Steroid hormones are an important class of regulatory molecules that are synthesized in steroidogenic cells of the adrenal, ovary, testis, placenta, brain, and skin, and influence a spectrum of developmental and physiological processes. The steroidogenic acute regulatory protein (STAR) predominantly mediates the rate-limiting step in steroid biosynthesis, i.e., the transport of the substrate of all steroid hormones, cholesterol, from the outer to the inner mitochondrial membrane. At the inner membrane, cytochrome P450 cholesterol side chain cleavage enzyme cleaves the cholesterol side chain to form the first steroid, pregnenolone, which is converted by a series of enzymes to various steroid hormones in specific tissues. Both basic and clinical evidence have demonstrated the crucial involvement of the STAR protein in the regulation of steroid biosynthesis. Multiple levels of regulation impinge on STAR action. Recent findings demonstrate that hormone-sensitive lipase, through its action on the hydrolysis of cholesteryl esters, plays an important role in regulating STAR expression and steroidogenesis which involve the liver X receptor pathway. Activation of the latter influences macrophage cholesterol efflux that is a key process in the prevention of atherosclerotic cardiovascular disease. Appropriate regulation of steroid hormones is vital for proper functioning of many important biological activities, which are also paramount for geriatric populations to live longer and healthier. This review summarizes the current level of understanding on tissue-specific and hormone-induced regulation of STAR expression and steroidogenesis, and provides insights into a number of cholesterol and/or steroid coupled physiological and pathophysiological consequences.
Collapse
Affiliation(s)
- Pulak R Manna
- Department of Immunology and Molecular Microbiology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| | - Cloyce L Stetson
- Department of Dermatology, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Andrzej T Slominski
- Department of Dermatology, VA Medical Center, University of Alabama Birmingham, Birmingham, AL, 35294, USA
| | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| |
Collapse
|
58
|
Son HH, Lee DY, Seo HS, Jeong J, Moon JY, Lee JE, Chung BC, Kim E, Choi MH. Hair sterol signatures coupled to multivariate data analysis reveal an increased 7β-hydroxycholesterol production in cognitive impairment. J Steroid Biochem Mol Biol 2016; 155:9-17. [PMID: 26385606 DOI: 10.1016/j.jsbmb.2015.09.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 09/10/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
Abstract
Altered cholesterol metabolism could be associated with cognitive impairment. The quantitative profiling of 19 hair sterols was developed using gas chromatography-mass spectrometry coupled to multivariate data analysis. The limit of quantification of all sterols ranged from 5 to 20 ng/g, while the calibration linearity was higher than 0.98. The precision (% CV) and accuracy (% bias) ranged from 3.2% to 9.8% and from 83.2% to 119.4%, respectively. Among the sterols examined, 8 were quantitatively detected from two strands of 3-cm-long scalp hair samples of female participants, including mild cognitive impairment (MCI, n=15), Alzheimer's disease (AD, n=31), and healthy controls (HC, n=36). The cognitive impairment (MCI or AD) was correlated with a higher metabolic rate than that of HCs based on 7β-hydroxycholesterol (P<0.005). Significant negative correlations (r=-0.822) were detected between Mini-Mental State Examination (MMSE) scores and hair sample metabolic ratios of 7β-hydroxycholesterol to cholesterol, which is an accepted, sensitive, and specific tool for discriminating HCs from individuals with MCI or AD. In conclusion, improved diagnostic values can be obtained using hair sterol signatures coupled with MMSE scores. This method may prove useful for predictive diagnosis in population screening of cognitive impairment.
Collapse
Affiliation(s)
- Hyun-Hwa Son
- Materials and Life Science Research Division, Korea Institute of Science and Technology, Seoul 136-791, South Korea
| | - Do-Yup Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 136-702, South Korea
| | - Hong Seog Seo
- Cardiovascular Center, Korea University Guro Hospital, Seoul 152-703, South Korea
| | - Jihyeon Jeong
- Department of Psychiatry, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Ju-Yeon Moon
- Materials and Life Science Research Division, Korea Institute of Science and Technology, Seoul 136-791, South Korea
| | - Jung-Eun Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 136-702, South Korea
| | - Bong Chul Chung
- Materials and Life Science Research Division, Korea Institute of Science and Technology, Seoul 136-791, South Korea
| | - Eosu Kim
- Department of Psychiatry, Yonsei University College of Medicine, Seoul 120-752, South Korea.
| | - Man Ho Choi
- Materials and Life Science Research Division, Korea Institute of Science and Technology, Seoul 136-791, South Korea.
| |
Collapse
|
59
|
Goswami S, Haldar C. Melatonin as a possible antidote to UV radiation induced cutaneous damages and immune-suppression: An overview. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 153:281-8. [DOI: 10.1016/j.jphotobiol.2015.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/08/2015] [Accepted: 10/13/2015] [Indexed: 12/20/2022]
|
60
|
Elentner A, Ortner D, Clausen B, Gonzalez FJ, Fernández-Salguero PM, Schmuth M, Dubrac S. Skin response to a carcinogen involves the xenobiotic receptor pregnane X receptor. Exp Dermatol 2015; 24:835-40. [PMID: 26013842 PMCID: PMC6334296 DOI: 10.1111/exd.12766] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2015] [Indexed: 12/20/2022]
Abstract
Skin is in daily contact with potentially harmful molecules from the environment such as cigarette smoke, automobile emissions, industrial soot and groundwater. Pregnane X receptor (PXR) is a transcription factor expressed in liver and intestine that is activated by xenobiotic chemicals including drugs and environmental pollutants. Topical application of the tumor initiator 7,12-dimethylbenz(a)anthracene (DMBA) enhances Pxr, Cyp1a1, Cyp1b1 and Cyp3a11, but not Ahr expression in the skin. Surprisingly, DMBA-induced Pxr upregulation is largely impaired in Langerin(+) cell-depleted skin, suggesting that DMBA mainly triggers Pxr in Langerin(+) cells. Furthermore, PXR deficiency protects from DNA damage in epidermal cells but to a lesser extent than aryl hydrocarbon receptor (AHR) deficiency. Interestingly, skin exposure to low doses of DMBA induces migration of PXR-deficient but not of wild-type and AHR-deficient Langerhans cells (LCs). PXR-humanized mice show a marked increase in DNA damage to epidermal cells after topical application of DMBA, demonstrating relevance of these findings in human tissue. This is the first report suggesting that carcinogens might trigger PXR in epidermal cells, particularly in LCs, thus leading to DNA damage. Further studies are required to better delineate the role of PXR in cutaneous carcinogenesis.
Collapse
Affiliation(s)
- Andreas Elentner
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Ortner
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria
| | - Björn Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes, Gutenberg-University Mainz, Mainz, Germany
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pedro M. Fernández-Salguero
- Department of Biochemistry, Molecular Biology and Genetic, Faculty of Sciences, University of Extremadura, Badajoz, Spain
| | - Matthias Schmuth
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
61
|
Slominski AT, Manna PR, Tuckey RC. On the role of skin in the regulation of local and systemic steroidogenic activities. Steroids 2015; 103:72-88. [PMID: 25988614 PMCID: PMC4631694 DOI: 10.1016/j.steroids.2015.04.006] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/21/2015] [Accepted: 04/21/2015] [Indexed: 01/08/2023]
Abstract
The mammalian skin is a heterogeneous organ/tissue covering our body, showing regional variations and endowed with neuroendocrine activities. The latter is represented by its ability to produce and respond to neurotransmitters, neuropeptides, hormones and neurohormones, of which expression and phenotypic activities can be modified by ultraviolet radiation, chemical and physical factors, as well as by cytokines. The neuroendocrine contribution to the responses of skin to stress is served, in part, by local synthesis of all elements of the hypothalamo-pituitary-adrenal axis. Skin with subcutis can also be classified as a steroidogenic tissue because it expresses the enzyme, CYP11A1, which initiates steroid synthesis by converting cholesterol to pregnenolone, as in other steroidogenic tissues. Pregnenolone, or steroidal precursors from the circulation, are further transformed in the skin to corticosteroids or sex hormones. Furthermore, in the skin CYP11A1 acts on 7-dehydrocholesterol with production of 7-dehydropregnolone, which can be further metabolized to other Δ7steroids, which after exposure to UVB undergo photochemical transformation to vitamin D like compounds with a short side chain. Vitamin D and lumisterol, produced in the skin after exposure to UVB, are also metabolized by CYP11A1 to several hydroxyderivatives. Vitamin D hydroxyderivatives generated by action of CYP11A1 are biologically active and are subject to further hydroxylations by CYP27B1, CYP27A1 and CP24A. Establishment of which intermediates are produced in the epidermis in vivo and whether they circulate on the systemic level represent a future research challenge. In summary, skin is a neuroendocrine organ endowed with steroid/secosteroidogenic activities.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, VA Medical Center, Birmingham, AL, USA.
| | - Pulak R Manna
- Department of immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Robert C Tuckey
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
62
|
Up-regulation of steroid biosynthesis by retinoid signaling: Implications for aging. Mech Ageing Dev 2015; 150:74-82. [PMID: 26303142 DOI: 10.1016/j.mad.2015.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/14/2015] [Accepted: 08/15/2015] [Indexed: 11/24/2022]
Abstract
Retinoids (vitamin A and its derivatives) are critical for a spectrum of developmental and physiological processes, in which steroid hormones also play indispensable roles. The StAR protein predominantly regulates steroid biosynthesis in steroidogenic tissues. We have reported that regulation of retinoid, especially atRA and 9-cis RA, responsive StAR transcription is largely mediated by an LXR-RXR/RAR heterodimeric motif in the mouse StAR promoter. Herein we demonstrate that retinoids are capable of enhancing StAR protein, P-StAR, and steroid production in granulosa, adrenocortical, glial, and epidermal cells. Whereas transient expression of RARα and RXRα enhanced 9-cis RA induced StAR gene transcription, silencing of RXRα with siRNA, decreased StAR and steroid levels. An oligonucleotide probe encompassing an LXR-RXR/RAR motif bound to adrenocortical and epidermal keratinocyte nuclear proteins in EMSAs. ChIP studies revealed association of RARα and RXRα with the StAR proximal promoter. Further studies demonstrated that StAR mRNA levels decreased in diseased and elderly men and women skin tissues and that atRA could restore steroidogenesis in epidermal keratinocytes of aged individuals. These findings provide novel insights into the relevance of retinoid signaling in the up-regulation of steroid biosynthesis in various target tissues, and indicate that retinoid therapy may have important implications in age-related complications and diseases.
Collapse
|
63
|
Functionalized PHB granules provide the basis for the efficient side-chain cleavage of cholesterol and analogs in recombinant Bacillus megaterium. Microb Cell Fact 2015. [PMID: 26215140 PMCID: PMC4517628 DOI: 10.1186/s12934-015-0300-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Cholesterol, the precursor of all steroid hormones, is the most abundant steroid in vertebrates and exhibits highly hydrophobic properties, rendering it a difficult substrate for aqueous microbial biotransformations. In the present study, we developed a Bacillus megaterium based whole-cell system that allows the side-chain cleavage of this sterol and investigated the underlying physiological basis of the biocatalysis. Results CYP11A1, the side-chain cleaving cytochrome P450, was recombinantly expressed in the Gram-positive soil bacterium B. megaterium combined with the required electron transfer proteins. By applying a mixture of 2-hydroxypropyl-β-cyclodextrin and Quillaja saponin as solubilizing agents, the zoosterols cholesterol and 7-dehydrocholesterol, as well as the phytosterol β-sitosterol could be efficiently converted to pregnenolone or 7-dehydropregnenolone. Fluorescence-microscopic analysis revealed that cholesterol accumulates in the carbon and energy storage-serving poly(3-hydroxybutyrate) (PHB) bodies and that the membrane proteins CYP11A1 and its redox partner adrenodoxin reductase (AdR) are likewise localized to their surrounding phospholipid/protein monolayer. The capacity to store cholesterol was absent in a mutant strain devoid of the PHB-producing polymerase subunit PhaC, resulting in a drastically decreased cholesterol conversion rate, while no effect on the expression of the recombinant proteins could be observed. Conclusion We established a whole-cell system based on B. megaterium, which enables the conversion of the steroid hormone precursor cholesterol to pregnenolone in substantial quantities. We demonstrate that the microorganism’s PHB granules, aggregates of bioplastic coated with a protein/phospholipid monolayer, are crucial for the high conversion rate by serving as substrate storage. This microbial system opens the way for an industrial conversion of the abundantly available cholesterol to any type of steroid hormones, which represent one of the biggest groups of drugs for the treatment of a wide variety of diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0300-y) contains supplementary material, which is available to authorized users.
Collapse
|
64
|
Slominski AT, Li W, Kim TK, Semak I, Wang J, Zjawiony JK, Tuckey RC. Novel activities of CYP11A1 and their potential physiological significance. J Steroid Biochem Mol Biol 2015; 151:25-37. [PMID: 25448732 PMCID: PMC4757911 DOI: 10.1016/j.jsbmb.2014.11.010] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/31/2014] [Accepted: 11/10/2014] [Indexed: 01/08/2023]
Abstract
CYP11A1, found only in vertebrates, catalyzes the first step of steroidogenesis where cholesterol is converted to pregnenolone. The purified enzyme, also converts desmosterol and plant sterols including campesterol and β-sitosterol, to pregnenolone. Studies, initially with purified enzyme, reveal that 7-dehydrocholesterol (7DHC), ergosterol, lumisterol 3, and vitamins D3 and D2 also serve as substrates for CYP11A1, with 7DHC being better and vitamins D3 and D2 being poorer substrates than cholesterol. Adrenal glands, placenta, and epidermal keratinocytes can also carry out these conversions and 7-dehydropregnenolone has been detected in the epidermis, adrenal glands, and serum, and 20-hydroxyvitamin D3 was detected in human serum and the epidermis. Thus, this metabolism does appear to occur in vivo, although its quantitative importance and physiological role remain to be established. CYP11A1 action on 7DHC in vivo is further supported by detection of Δ(7)steroids in Smith-Lemli-Opitz syndrome patients. The activity of CYP11A1 is affected by the structure of the substrate with sterols having steroidal or Δ(7)-steroidal structures undergoing side chain cleavage following hydroxylations at C22 and C20. In contrast, metabolism of vitamin D involves sequential hydroxylations that start at C20 but do not lead to cleavage. Molecular modeling using the crystal structure of CYP11A1 predicts that other intermediates of cholesterol synthesis could also serve as substrates for CYP11A1. Finally, CYP11A1-derived secosteroidal hydroxy-derivatives and Δ(7)steroids are biologically active when administered in vitro in a manner dependent on the structure of the compound and the lineage of the target cells, suggesting physiological roles for these metabolites. This article is part of a special issue entitled 'SI: Steroid/Sterol signaling'.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Pathology and Laboratory Medicine, University of Tennessee HSC, Memphis, TN, USA; Division of Rheumatology of the Department of Medicine, University of Tennessee HSC, Memphis, TN, USA.
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee HSC, Memphis, TN, USA
| | - Tae-Kang Kim
- Department of Pathology and Laboratory Medicine, University of Tennessee HSC, Memphis, TN, USA
| | - Igor Semak
- Department of Biochemistry, Belarusian State University, Minsk, Belarus
| | - Jin Wang
- Department of Pharmaceutical Sciences, University of Tennessee HSC, Memphis, TN, USA
| | - Jordan K Zjawiony
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677-1848, USA
| | - Robert C Tuckey
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
65
|
Zabul P, Wozniak M, Slominski AT, Preis K, Gorska M, Korozan M, Wieruszewski J, Zmijewski MA, Zabul E, Tuckey R, Kuban-Jankowska A, Mickiewicz W, Knap N. A Proposed Molecular Mechanism of High-Dose Vitamin D3 Supplementation in Prevention and Treatment of Preeclampsia. Int J Mol Sci 2015; 16:13043-64. [PMID: 26068234 PMCID: PMC4490485 DOI: 10.3390/ijms160613043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/31/2015] [Accepted: 06/01/2015] [Indexed: 12/02/2022] Open
Abstract
A randomized prospective clinical study performed on a group of 74 pregnant women (43 presenting with severe preeclampsia) proved that urinary levels of 15-F(2t)-isoprostane were significantly higher in preeclamptic patients relative to the control (3.05 vs. 2.00 ng/mg creatinine). Surprisingly enough, plasma levels of 25-hydroxyvitamin D3 in both study groups were below the clinical reference range with no significant difference between the groups. In vitro study performed on isolated placental mitochondria and placental cell line showed that suicidal self-oxidation of cytochrome P450scc may lead to structural disintegration of heme, potentially contributing to enhancement of oxidative stress phenomena in the course of preeclampsia. As placental cytochrome P450scc pleiotropic activity is implicated in the metabolism of free radical mediated arachidonic acid derivatives as well as multiple Vitamin D3 hydroxylations and progesterone synthesis, we propose that Vitamin D3 might act as a competitive inhibitor of placental cytochrome P450scc preventing the production of lipid peroxides or excess progesterone synthesis, both of which may contribute to the etiopathogenesis of preeclampsia. The proposed molecular mechanism is in accord with the preliminary clinical observations on the surprisingly high efficacy of high-dose Vitamin D3 supplementation in prevention and treatment of preeclampsia.
Collapse
Affiliation(s)
- Piotr Zabul
- Department of Obstetrics & Gynecology, the Sw. Wojciech Specialist Hospital, Independent Public Complex of Integrated Health Care Units in Gdansk, 50 Al. Jana Pawła II St., Gdansk 80-462, Poland; E-Mail:
| | - Michal Wozniak
- Department of Medical Chemistry, Medical University of Gdansk, 1 Debinki St., Gdansk 80-211, Poland; E-Mails: (M.W.); (M.G.); (J.W.); (A.K.-J.); (W.M.)
| | - Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, VA Medical Center, Birmingham, AL 35294, USA; E-Mail:
| | - Krzysztof Preis
- Department of Obstetrics & Gynecology, Medical University of Gdansk, 1A Kliniczna St., Gdansk 80-402, Poland; E-Mail:
| | - Magdalena Gorska
- Department of Medical Chemistry, Medical University of Gdansk, 1 Debinki St., Gdansk 80-211, Poland; E-Mails: (M.W.); (M.G.); (J.W.); (A.K.-J.); (W.M.)
| | - Marek Korozan
- Department of Obstetrics & Gynecology, the Sw. Wojciech Specialist Hospital, Independent Public Complex of Integrated Health Care Units in Gdansk, 50 Al. Jana Pawła II St., Gdansk 80-462, Poland; E-Mail:
| | - Jan Wieruszewski
- Department of Medical Chemistry, Medical University of Gdansk, 1 Debinki St., Gdansk 80-211, Poland; E-Mails: (M.W.); (M.G.); (J.W.); (A.K.-J.); (W.M.)
| | - Michal A. Zmijewski
- Department of Histology, Medical University of Gdansk, 1 Debinki St., Gdansk 80-211, Poland; E-Mail:
| | - Ewa Zabul
- Department of Anesthesiology & Intensive Care, Medical University of Gdansk, 1 Debinki St., Gdansk 80-211, Poland; E-Mail:
| | - Robert Tuckey
- School of Chemistry and Biochemistry, the University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; E-Mail:
| | - Alicja Kuban-Jankowska
- Department of Medical Chemistry, Medical University of Gdansk, 1 Debinki St., Gdansk 80-211, Poland; E-Mails: (M.W.); (M.G.); (J.W.); (A.K.-J.); (W.M.)
| | - Wieslawa Mickiewicz
- Department of Medical Chemistry, Medical University of Gdansk, 1 Debinki St., Gdansk 80-211, Poland; E-Mails: (M.W.); (M.G.); (J.W.); (A.K.-J.); (W.M.)
| | - Narcyz Knap
- Department of Medical Chemistry, Medical University of Gdansk, 1 Debinki St., Gdansk 80-211, Poland; E-Mails: (M.W.); (M.G.); (J.W.); (A.K.-J.); (W.M.)
| |
Collapse
|
66
|
Wasiewicz T, Szyszka P, Cichorek M, Janjetovic Z, Tuckey RC, Slominski AT, Zmijewski MA. Antitumor effects of vitamin D analogs on hamster and mouse melanoma cell lines in relation to melanin pigmentation. Int J Mol Sci 2015; 16:6645-67. [PMID: 25811927 PMCID: PMC4424981 DOI: 10.3390/ijms16046645] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/05/2015] [Accepted: 03/12/2015] [Indexed: 12/30/2022] Open
Abstract
Deregulated melanogenesis is involved in melanomagenesis and melanoma progression and resistance to therapy. Vitamin D analogs have anti-melanoma activity. While the hypercalcaemic effect of the active form of Vitamin D (1,25(OH)2D3) limits its therapeutic use, novel Vitamin D analogs with a modified side chain demonstrate low calcaemic activity. We therefore examined the effect of secosteroidal analogs, both classic (1,25(OH)2D3 and 25(OH)D3), and novel relatively non-calcemic ones (20(OH)D3, calcipotriol, 21(OH)pD, pD and 20(OH)pL), on proliferation, colony formation in monolayer and soft-agar, and mRNA and protein expression by melanoma cells. Murine B16-F10 and hamster Bomirski Ab cell lines were shown to be effective models to study how melanogenesis affects anti-melanoma treatment. Novel Vitamin D analogs with a short side-chain and lumisterol-like 20(OH)pL efficiently inhibited rodent melanoma growth. Moderate pigmentation sensitized rodent melanoma cells towards Vitamin D analogs, and altered expression of key genes involved in Vitamin D signaling, which was opposite to the effect on heavily pigmented cells. Interestingly, melanogenesis inhibited ligand-induced Vitamin D receptor translocation and ligand-induced expression of VDR and CYP24A1 genes. These findings indicate that melanogenesis can affect the anti-melanoma activity of Vitamin D analogs in a complex manner.
Collapse
Affiliation(s)
- Tomasz Wasiewicz
- Department of Histology, Medical University of Gdańsk, Dębinki 1a, 80-211 Gdańsk, Poland.
| | - Paulina Szyszka
- Department of Histology, Medical University of Gdańsk, Dębinki 1a, 80-211 Gdańsk, Poland.
- Department of Endocrinology and Internal Medicine, Medical University of Gdańsk, Dębinki 1a, 80-211 Gdańsk, Poland.
| | - Miroslawa Cichorek
- Department of Embryology, Medical University of Gdańsk, Dębinki 1a, 80-211 Gdańsk, Poland.
| | - Zorica Janjetovic
- Department of Dermatology, University of Alabama Birmingham, VA Medical Center, Birmingham, AL 35294, USA.
| | - Robert C Tuckey
- School of Chemistry and Biochemistry, the University of Western Australia, Crawley, Perth, WA 6009, Australia.
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama Birmingham, VA Medical Center, Birmingham, AL 35294, USA.
| | - Michal A Zmijewski
- Department of Histology, Medical University of Gdańsk, Dębinki 1a, 80-211 Gdańsk, Poland.
| |
Collapse
|
67
|
Kim TK, Lin Z, Tidwell WJ, Li W, Slominski AT. Melatonin and its metabolites accumulate in the human epidermis in vivo and inhibit proliferation and tyrosinase activity in epidermal melanocytes in vitro. Mol Cell Endocrinol 2015; 404:1-8. [PMID: 25168391 PMCID: PMC4344443 DOI: 10.1016/j.mce.2014.07.024] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/10/2014] [Accepted: 07/17/2014] [Indexed: 01/20/2023]
Abstract
Melatonin and its metabolites including 6-hydroxymelatonin (6(OH)M), N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK) and 5-methoxytryptamine (5MT) are endogenously produced in human epidermis. This production depends on race, gender and age. The highest melatonin levels are in African-Americans. In each racial group they are highest in young African-Americans [30-50 years old (yo)], old Caucasians (60-90 yo) and Caucasian females. AFMK levels are the highest in African-Americans, while 6(OH)M and 5MT levels are similar in all groups. Testing of their phenotypic effects in normal human melanocytes show that melatonin and its metabolites (10(-5) M) inhibit tyrosinase activity and cell growth, and inhibit DNA synthesis in a dose dependent manner with 10(-9) M being the lowest effective concentration. In melanoma cells, they inhibited cell growth but had no effect on melanogenesis, except for 5MT which enhanced L-tyrosine induced melanogenesis. In conclusion, melatonin and its metabolites [6(OH)M, AFMK and 5MT] are produced endogenously in human epidermis and can affect melanocyte and melanoma behavior.
Collapse
Affiliation(s)
- Tae-Kang Kim
- Departments of Pathology and Laboratory Medicine, Division of Rheumatology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Zongtao Lin
- Departments of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - William J Tidwell
- Departments of Pathology and Laboratory Medicine, Division of Rheumatology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - We Li
- Departments of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Andrzej T Slominski
- Departments of Pathology and Laboratory Medicine, Division of Rheumatology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Dermatology. University of Alabama Birmingham, Birmingham, AL 35294.
| |
Collapse
|
68
|
Zhu G, Janjetovic Z, Slominski A. On the role of environmental humidity on cortisol production by epidermal keratinocytes. Exp Dermatol 2015; 23:15-7. [PMID: 24372648 DOI: 10.1111/exd.12275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2013] [Indexed: 11/28/2022]
Abstract
Evidence is accumulating that skin can act as an independent steroidogenic organ. It can respond to various stresses including UV light, trauma and oncogenesis by upregulating glucocorticoid production via elements of the local hypothalamic-pituitary-adrenal (HPA) axis. Recent data by Takei and collaborators provided in this issue of Experimental Dermatology included dryness to the list of stressors stimulating cutaneous cortisol synthesis with a possible involvement of IL-1β as a mediator of this regulation. Thus, the last decade of research has not only documented that skin can produce cortisol, but that levels of its production change in response to environmental stress. The role of this regulated steroidogenic system in physiological or pathological outcomes requires further studies with focus on cutaneous homeostasis, formation of epidermal barrier, antimicrobial activity and display of immune (both pro- and anti-inflammatory) properties.
Collapse
Affiliation(s)
- Guo Zhu
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | |
Collapse
|
69
|
Slominski AT, Brozyna A, Jozwicki W, Tuckey RC. Vitamin D as an adjuvant in melanoma therapy. Melanoma Manag 2015; 2:1-4. [PMID: 26052430 DOI: 10.2217/mmt.14.36] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Andrzej T Slominski
- Department of Pathology & Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA ; Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anna Brozyna
- Department of Tumor Pathology & Pathomorphology, Oncology Center - Prof. Franciszek Łukaszczyk Memorial Hospital, The Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Wojciech Jozwicki
- Department of Tumor Pathology & Pathomorphology, Oncology Center - Prof. Franciszek Łukaszczyk Memorial Hospital, The Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Robert C Tuckey
- School of Chemistry & Biochemistry, the University of Western Australia, Crawley, Australia
| |
Collapse
|
70
|
Slominski A, Kim TK, Brożyna AA, Janjetovic Z, Brooks DLP, Schwab LP, Skobowiat C, Jóźwicki W, Seagroves TN. The role of melanogenesis in regulation of melanoma behavior: melanogenesis leads to stimulation of HIF-1α expression and HIF-dependent attendant pathways. Arch Biochem Biophys 2014; 563:79-93. [PMID: 24997364 PMCID: PMC4221528 DOI: 10.1016/j.abb.2014.06.030] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/30/2014] [Accepted: 06/24/2014] [Indexed: 12/20/2022]
Abstract
To study the effect of melanogenesis on HIF-1α expression and attendant pathways, we used stable human and hamster melanoma cell lines in which the amelanotic vs. melanotic phenotypes are dependent upon the concentration of melanogenesis precursors in the culture media. The induction of melanin pigmentation led to significant up-regulation of HIF-1α, but not HIF-2α, protein in melanized cells for both lines. Similar upregulation of nuclear HIF-1α was observed in excisions of advanced melanotic vs. amelanotic melanomas. In cultured cells, melanogenesis also significantly stimulated expression of classical HIF-1-dependent target genes involved in angiogenesis and cellular metabolism, including glucose metabolism and stimulation of activity of key enzymes in the glycolytic pathway. Several other stress related genes containing putative HRE consensus sites were also upregulated by melanogenesis, concurrently with modulation of expression of HIF-1-independent genes encoding for steroidogenic enzymes, cytokines and growth factors. Immunohistochemical studies using a large panel of pigmented lesions revealed that higher levels of HIF-1α and GLUT-1 were detected in advanced melanomas in comparison to melanocytic nevi or thin melanomas localized to the skin. However, the effects on overall or disease free survival in melanoma patients were modest or absent for GLUT-1 or for HIF-1α, respectively. In conclusion, induction of the melanogenic pathway leads to robust upregulation of HIF-1-dependent and independent pathways in cultured melanoma cells, suggesting a key role for melanogenesis in regulation of cellular metabolism.
Collapse
Affiliation(s)
- A Slominski
- Department of Pathology and Laboratory Medicine, University of Tennessee HSC, Memphis, TN, USA; Department of Medicine, Division of Rheumatology, University of Tennessee HSC, Memphis, TN, USA; Center for Cancer Research, University of Tennessee HSC, Memphis, TN, USA.
| | - T-K Kim
- Department of Pathology and Laboratory Medicine, University of Tennessee HSC, Memphis, TN, USA; Center for Cancer Research, University of Tennessee HSC, Memphis, TN, USA
| | - A A Brożyna
- Department of Tumor Pathology and Pathomorphology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, The Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Z Janjetovic
- Department of Pathology and Laboratory Medicine, University of Tennessee HSC, Memphis, TN, USA; Center for Cancer Research, University of Tennessee HSC, Memphis, TN, USA
| | - D L P Brooks
- Department of Pathology and Laboratory Medicine, University of Tennessee HSC, Memphis, TN, USA; Center for Cancer Research, University of Tennessee HSC, Memphis, TN, USA
| | - L P Schwab
- Department of Pathology and Laboratory Medicine, University of Tennessee HSC, Memphis, TN, USA; Center for Cancer Research, University of Tennessee HSC, Memphis, TN, USA
| | - C Skobowiat
- Department of Pathology and Laboratory Medicine, University of Tennessee HSC, Memphis, TN, USA; Center for Cancer Research, University of Tennessee HSC, Memphis, TN, USA
| | - W Jóźwicki
- Department of Tumor Pathology and Pathomorphology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, The Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - T N Seagroves
- Department of Pathology and Laboratory Medicine, University of Tennessee HSC, Memphis, TN, USA; Center for Cancer Research, University of Tennessee HSC, Memphis, TN, USA
| |
Collapse
|
71
|
Slominski AT, Kim TK, Li W, Yi AK, Postlethwaite A, Tuckey RC. The role of CYP11A1 in the production of vitamin D metabolites and their role in the regulation of epidermal functions. J Steroid Biochem Mol Biol 2014; 144 Pt A:28-39. [PMID: 24176765 PMCID: PMC4002668 DOI: 10.1016/j.jsbmb.2013.10.012] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/30/2013] [Accepted: 10/17/2013] [Indexed: 01/08/2023]
Abstract
Research over the last decade has revealed that CYP11A1 can hydroxylate the side chain of vitamin D3 at carbons 17, 20, 22 and 23 to produce at least 10 metabolites, with 20(OH)D3, 20,23(OH)2D3, 20,22(OH)2D3, 17,20(OH)2D3 and 17,20,23(OH)3D3 being the main products. However, CYP11A1 does not act on 25(OH)D3. The placenta, adrenal glands and epidermal keratinocytes have been shown to metabolize vitamin D3 via this CYP11A1-mediated pathway that is modified by the activity of CYP27B1, with 20(OH)D3 (the major metabolite), 20,23(OH)2D3, 1,20(OH)2D3, 1,20,23(OH)3D3 and 17,20,23(OH)3D3 being detected, defining these secosteroids as endogenous regulators/natural products. This is supported by the detection of a mono-hydroxyvitamin D3 with the retention time of 20(OH)D3 in human serum. In new work presented here we demonstrate that the CYP11A1-initiated pathways also occurs in Caco-2 colon cells. Our previous studies show that 20(OH)D3 and 20,23(OH)2D3 are non-calcemic at pharmacological doses, dependent in part on their lack of a C1α hydroxyl group. In epidermal keratinocytes, 20(OH)D3, 20(OH)D2 and 20,23(OH)2D3 inhibited cell proliferation, stimulated differentiation and inhibited NF-κB activity with potencies comparable to 1,25(OH)2D3, acting as partial agonists on the VDR. 22(OH)D3 and 20,22(OH)2D3, as well as secosteroids with a short or no side chain, showed antiproliferative and prodifferentiation effects, however, with lower potency than 20(OH)D3 and 20,23(OH)2D3. The CYP11A1-derived secosteroids also inhibited melanocyte proliferation while having no effect on melanogenesis, and showed anti-melanoma activities in terms of inhibiting proliferation and the ability to grow in soft agar. Furthermore, 20(OH)D3 and 20,23(OH)2D3 showed anti-fibrosing effects in vitro, and also in vivo for the former. New data presented here shows that 20(OH)D3 inhibits LPS-induced production of TNFα in the J774 line, TNFα and IL-6 in peritoneal macrophages and suppresses the production of proinflammatory Th1/Th17-related cytokines, while promoting the production of the anti-inflammatory cytokine IL-10 in vivo. In summary, CYP11A1 initiates new pathways of vitamin D metabolism in a range of tissues and products could have important physiological roles at the local or systemic level. In the skin, CYP11A1-derived secosteroids could serve both as endogenous regulators of skin functions and as excellent candidates for treatment of hyperproliferative and inflammatory skin disorders, and skin cancer. This article is part of a Special Issue entitled '16th Vitamin D Workshop'.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Pathology and Laboratory Medicine, Memphis, TN, USA; Division of Rheumatology and Connective Tissue Diseases of the Department of Medicine, Memphis, TN, USA; Center for Adult Cancer Research, University of Tennessee HSC, Memphis, TN, USA.
| | - Tae-Kang Kim
- Department of Pathology and Laboratory Medicine, Memphis, TN, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, Memphis, TN, USA
| | | | - Arnold Postlethwaite
- Division of Rheumatology and Connective Tissue Diseases of the Department of Medicine, Memphis, TN, USA; Veteran Administration, Memphis, TN, USA
| | - Robert C Tuckey
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
72
|
Slominski AT, Kleszczyński K, Semak I, Janjetovic Z, Zmijewski MA, Kim TK, Slominski RM, Reiter RJ, Fischer TW. Local melatoninergic system as the protector of skin integrity. Int J Mol Sci 2014; 15:17705-32. [PMID: 25272227 PMCID: PMC4227185 DOI: 10.3390/ijms151017705] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/09/2014] [Accepted: 09/16/2014] [Indexed: 12/22/2022] Open
Abstract
The human skin is not only a target for the protective actions of melatonin, but also a site of melatonin synthesis and metabolism, suggesting an important role for a local melatoninergic system in protection against ultraviolet radiation (UVR) induced damages. While melatonin exerts many effects on cell physiology and tissue homeostasis via membrane bound melatonin receptors, the strong protective effects of melatonin against the UVR-induced skin damage including DNA repair/protection seen at its high (pharmocological) concentrations indicate that these are mainly mediated through receptor-independent mechanisms or perhaps through activation of putative melatonin nuclear receptors. The destructive effects of the UVR are significantly counteracted or modulated by melatonin in the context of a complex intracutaneous melatoninergic anti-oxidative system with UVR-enhanced or UVR-independent melatonin metabolites. Therefore, endogenous intracutaneous melatonin production, together with topically-applied exogenous melatonin or metabolites would be expected to represent one of the most potent anti-oxidative defense systems against the UV-induced damage to the skin. In summary, we propose that melatonin can be exploited therapeutically as a protective agent or as a survival factor with anti-genotoxic properties or as a “guardian” of the genome and cellular integrity with clinical applications in UVR-induced pathology that includes carcinogenesis and skin aging.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Pathology and Laboratory Medicine, Cancer Research Building, University of Tennessee HSC, 930 Madison Avenue, Memphis, TN 38163, USA.
| | - Konrad Kleszczyński
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| | - Igor Semak
- Department of Biochemistry, Belarusian State University, Minsk 220030, Belarus.
| | - Zorica Janjetovic
- Department of Pathology and Laboratory Medicine, Cancer Research Building, University of Tennessee HSC, 930 Madison Avenue, Memphis, TN 38163, USA.
| | - Michał A Zmijewski
- Department of Histology, Medical University of Gdańsk, Gdańsk 80-211, Poland.
| | - Tae-Kang Kim
- Department of Pathology and Laboratory Medicine, Cancer Research Building, University of Tennessee HSC, 930 Madison Avenue, Memphis, TN 38163, USA.
| | - Radomir M Slominski
- Department of Pathology and Laboratory Medicine, Cancer Research Building, University of Tennessee HSC, 930 Madison Avenue, Memphis, TN 38163, USA.
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA.
| | - Tobias W Fischer
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| |
Collapse
|
73
|
Salucci S, Burattini S, Curzi D, Buontempo F, Martelli AM, Zappia G, Falcieri E, Battistelli M. Antioxidants in the prevention of UVB-induced keratynocyte apoptosis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 141:1-9. [PMID: 25305749 DOI: 10.1016/j.jphotobiol.2014.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/05/2014] [Accepted: 09/06/2014] [Indexed: 01/03/2023]
Abstract
Skin cells can respond to UVB-induced damage by counteracting it through antioxidant activation and DNA repair mechanisms or, when damage is massive by undergoing programmed cell death. Antioxidant factors, and, in particular, food compounds, have attracted much interest because of their potential use in new protective strategies for degenerative skin disorders. Melatonin, creatine and hydroxytyrosol show a variety of pharmacological and clinical benefits including anti-oxidant and anti-inflammatory activities. Here, the potential protective actions of antioxidant compounds against UVB-induced apoptosis were investigated in human keratinocytes. The cells were pre-treated with antioxidants before UVB exposure and their effect evaluated by means of ultrastructural and molecular analyses. After UVB radiation typical morphological apoptotic features and in situ DNA fragmentation after TUNEL reaction, appeared. A significant numerical decrease of apoptotic patterns could be observed when antioxidants were administrated before cell death induction. Moreover, both the intrinsic and extrinsic apoptotic pathways appeared activated after UVB radiation, and their down-regulation has been shown when antioxidants were added to cells before death induction. In conclusion, these compounds are able to prevent apoptotic cell death in human keratinocytes exposed to UVB, suggesting, for these molecules, an important role in preventing skin damage.
Collapse
Affiliation(s)
- Sara Salucci
- DiSTeVA, University of Urbino Carlo Bo, Urbino 61029, Italy
| | | | - Davide Curzi
- DiSTeVA, University of Urbino Carlo Bo, Urbino 61029, Italy
| | - Francesca Buontempo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | | | - Elisabetta Falcieri
- DiSTeVA, University of Urbino Carlo Bo, Urbino 61029, Italy; IGM, CNR, Rizzoli Orthopaedic Institute, Bologna 40136, Italy
| | | |
Collapse
|
74
|
Slominski AT, Kim TK, Takeda Y, Janjetovic Z, Brozyna AA, Skobowiat C, Wang J, Postlethwaite A, Li W, Tuckey RC, Jetten AM. RORα and ROR γ are expressed in human skin and serve as receptors for endogenously produced noncalcemic 20-hydroxy- and 20,23-dihydroxyvitamin D. FASEB J 2014; 28:2775-89. [PMID: 24668754 PMCID: PMC4062828 DOI: 10.1096/fj.13-242040] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/10/2014] [Indexed: 08/01/2023]
Abstract
RORα and RORγ are expressed in human skin cells that produce the noncalcemic 20-hydroxyvitamin D3 [20(OH)D3] and 20,23-dihydroxyvitamin D3 [20,23(OH)2D3]. Chinese hamster ovary (CHO) cells stably expressing a Tet-on RORα or RORγ expression vector and a ROR-responsive element (RORE)-LUC reporter, and a mammalian 2-hybrid model examining the interaction between the ligand binding domain (LBD) of RORα or RORγ with an LBD-interacting LXXLL-peptide, were used to study ROR-antagonist activities. These assays revealed that 20(OH)D3 and 20,23(OH)2D3 function as antagonists of RORα and RORγ. Moreover, 20(OH)D3 inhibited the activation of the promoter of the Bmal1 and G6pase genes, targets of RORα, and 20(OH)D3 and 20,23(OH)2D3 inhibited Il17 promoter activity in Jurkat cells overexpressing RORα or RORγ. Molecular modeling using crystal structures of the LBDs of RORα and RORγ revealed docking scores for 20(OH)D3, 20,23(OH)2D3 and 1,25(OH)2D3 similar to those of the natural ligands, predicting good binding to the receptor. Notably, 20(OH)D3, 20,23(OH)2D3, and 1,25(OH)2D3 inhibited RORE-mediated activation of a reporter in keratinocytes and melanoma cells and inhibited IL-17 production by immune cells. Our study identifies a novel signaling pathway, in which 20(OH)D3 and 20,23(OH)2D3 act as antagonists or inverse agonists of RORα and RORγ, that opens new possibilities for local (skin) or systemic regulation.-Slominski, A. T., Kim, T.-K., Takeda, Y., Janjetovic, Z., Broz˙yna, A. A., Skobowiat, C., Wang, J., Postlethwaite, A., Li, W., Tuckey, R. C., Jetten, A. M. RORα and ROR γ are expressed in human skin and serve as receptors for endogenously produced noncalcemic 20-hydroxy- and 20,23-dihydroxyvitamin D.
Collapse
MESH Headings
- ARNTL Transcription Factors/genetics
- ARNTL Transcription Factors/metabolism
- Animals
- CHO Cells
- Calcifediol/analogs & derivatives
- Calcifediol/metabolism
- Cell Line, Tumor
- Cells, Cultured
- Cricetulus
- Dihydroxycholecalciferols/metabolism
- Female
- Glucose-6-Phosphatase/antagonists & inhibitors
- Glucose-6-Phosphatase/genetics
- Humans
- Interleukin-17/genetics
- Interleukin-17/metabolism
- Jurkat Cells
- Keratinocytes/metabolism
- Melanoma/genetics
- Melanoma/metabolism
- Mice
- Mice, Inbred DBA
- Nuclear Receptor Subfamily 1, Group F, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Promoter Regions, Genetic/genetics
- Skin/metabolism
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Pathology and Laboratory Medicine, Department of Medicine, and
| | | | - Yukimasa Takeda
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | | | - Anna A Brozyna
- Department of Tumor Pathology and Pathomorphology, Oncology Center, Professor Franciszek Łukaszczyk Memorial Hospital, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | | | - Jin Wang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Arnold Postlethwaite
- Department of Medicine, and Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA; and
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Robert C Tuckey
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia, Australia
| | - Anton M Jetten
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA;
| |
Collapse
|
75
|
Slominski AT, Manna PR, Tuckey RC. Cutaneous glucocorticosteroidogenesis: securing local homeostasis and the skin integrity. Exp Dermatol 2014; 23:369-374. [PMID: 24888781 PMCID: PMC4046116 DOI: 10.1111/exd.12376] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2014] [Indexed: 12/15/2022]
Abstract
Human skin has the ability to synthesize glucocorticoids de novo from cholesterol or from steroid intermediates of systemic origin. By interacting with glucocorticoid receptors, they regulate skin immune functions as well as functions and phenotype of the epidermal, dermal and adnexal compartments. Most of the biochemical (enzyme and transporter activities) and regulatory (neuropeptides mediated activation of cAMP and protein kinase A dependent pathways) principles of steroidogenesis in the skin are similar to those operating in classical steroidogenic organs. However, there are also significant differences determined by the close proximity of synthesis and action (even within the same cells) allowing para-, auto- or intracrine modes of regulation. We also propose that ultraviolet light B (UVB) can regulate the availability of 7-dehydrocholesterol for transformation to cholesterol with its further metabolism to steroids, oxysterols or ∆7 steroids, because of its transformation to vitamin D3. In addition, UVB can rearrange locally produced ∆7 steroids to the corresponding secosteroids with a short- or no-side chain. Thus, different mechanisms of regulation occur in the skin that can be either stochastic or structuralized. We propose that local glucocorticosteroidogenic systems and their regulators, in concert with cognate receptors operate to stabilize skin homeostasis and prevent or attenuate skin pathology.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Pathology and Laboratory Medicine, University of Tennessee, Health Science Center, Memphis, TN, USA
- Department of Medicine, Division of Rheumatology and Connective Tissue Diseases, University of Tennessee, Health Science Center, Memphis, TN, USA
| | - Pulak R Manna
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Robert C Tuckey
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
76
|
Chen J, Wang J, Kim TK, Tieu EW, Tang EKY, Lin Z, Kovacic D, Miller DD, Postlethwaite A, Tuckey RC, Slominski AT, Li W. Novel vitamin D analogs as potential therapeutics: metabolism, toxicity profiling, and antiproliferative activity. Anticancer Res 2014; 34:2153-2163. [PMID: 24778017 PMCID: PMC4015637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
AIM To discover novel [20(OH)D3] analogs as antiproliferative therapeutics. MATERIALS AND METHODS We studied in vitro liver microsome stability, in vivo toxicity using mice, vitamin D receptor (VDR) translocation, in vitro antiproliferative effect, CYP enzyme metabolism. RESULTS 20S- and 20R(OH)D3 had reasonable half-lives of 50 min and 30 min (average) respectively in liver microsomes. They were non-hypercalcemic at a high dose of 60 μg/kg. Three new 20(OH)D3 analogs were designed, synthesized and tested. They showed higher or comparable potency for inhibition of proliferation of normal keratinocytes and in the induction of VDR translocation from cytoplasm to nucleus, compared to 1,25(OH)2D3. These new analogs demonstrated different degrees of metabolism through a range of vitamin D-metabolizing CYP enzymes. CONCLUSION Their lack of calcemic toxicity at high doses and their high biological activity suggest that this novel 20(OH)D3 scaffold may represent a promising platform for further development of therapeutically-useful agents.
Collapse
Affiliation(s)
- Jianjun Chen
- Department of Pharmaceutical Science, University of Tennessee Health Science Center, 847 Monroe Avenue, Memphis, TN 38163, U.S.A.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Slominski AT, Carlson JA. Melanoma resistance: a bright future for academicians and a challenge for patient advocates. Mayo Clin Proc 2014; 89:429-33. [PMID: 24684870 PMCID: PMC4050658 DOI: 10.1016/j.mayocp.2014.02.009] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 02/19/2014] [Indexed: 11/25/2022]
Affiliation(s)
- Andrzej T Slominski
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Sciences Center, Memphis, TN; Department of Medicine, University of Tennessee Health Sciences Center, Memphis, TN.
| | - J Andrew Carlson
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, NY
| |
Collapse
|
78
|
Nejati R, Kovacic D, Slominski A. Neuro-immune-endocrine functions of the skin: an overview. ACTA ACUST UNITED AC 2014; 8:581-583. [PMID: 24587812 DOI: 10.1586/17469872.2013.856690] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Reza Nejati
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, 930 Madison Avenue, 5th Floor, Memphis, TN, USA
| | - Diane Kovacic
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, 930 Madison Avenue, 5th Floor, Memphis, TN, USA
| | - Andrzej Slominski
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, 930 Madison Avenue, 5th Floor, Memphis, TN, USA and Department of Medicine, Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA, Tel.: +1 901 448 3741
| |
Collapse
|
79
|
Nejati R, Skobowiat C, Slominski AT. Commentary on the practical guide for the study of sebaceous glands. Exp Dermatol 2013; 22:629-30. [PMID: 24079730 PMCID: PMC3806073 DOI: 10.1111/exd.12221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2013] [Indexed: 11/30/2022]
Abstract
For many years, the function of the sebaceous gland (SG) was underestimated and suggested by Albert M. Kligman as a remnant of human development, a 'living fossil with a past but no future'. However, the last two decades of studies and the discovery of neuro-endocrine pathways in skin have determined the importance of the SG in cutaneous biology and homeostasis. SGs play their role in cutaneous homeostasis by contribution to local steroidogenic pathways, antimicrobial activity and display of immune (both pro- and anti-inflammatory) properties. Despite several important manuscripts and reviews regarding SG biology and function, there was an urgent need for a high-quality methodological guide through SG identification and quantitative evaluation. In this issue of Experimental Dermatology, Hinde et al. present a practical guide to SG research - outlining methods, defining immunohistochemical markers and providing guidance to both novice and more experienced SG researchers.
Collapse
Affiliation(s)
- Reza Nejati
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Cezary Skobowiat
- Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
- Division of Rheumatology and Connective Tissue Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Andrzej T. Slominski
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
- Division of Rheumatology and Connective Tissue Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|