51
|
Differences in Theophylline Clearance Between Patients With Chronic Hepatitis and Those With Liver Cirrhosis. Ther Drug Monit 2020; 42:829-834. [PMID: 32657910 DOI: 10.1097/ftd.0000000000000787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Theophylline, a xanthine derivative drug, is used for the treatment of respiratory diseases, such as asthma, and is primarily eliminated by hepatic metabolism. There is marked interindividual variability in theophylline clearance. Therefore, the aim of this study was to evaluate the influence of chronic hepatitis (CH), liver cirrhosis (LC), and other covariates on theophylline clearance by population pharmacokinetic (PPK) analysis. METHODS The authors retrospectively obtained 496 trough concentrations of theophylline at steady state from 226 adult patients with bronchial asthma. The liver functions of the patients were classified into 3 categories: normal hepatic function, CH, and LC. The PPK analysis was performed using the NONMEM program. CH, LC, age, smoking status, coadministration of clarithromycin (CAM), and sex were considered as covariates that affected theophylline clearance. RESULTS Theophylline clearance (CL/F per kg) was significantly influenced by CH, LC, smoking, and CAM. The final model of theophylline clearance was as follows: CL/F (L/h·kg) = 0.0484 × 1.40 × 0.861 × 0.889 × 0.557. Smoking is a well-known factor that markedly enhances CL/F through the induction of CYP1A enzymes, whereas CAM has been reported to inhibit CYP3A4. The final model for hepatic function showed that CL/F in CH and LC patients was 0.043 and 0.027 L/h/kg, respectively, and it was lower than that in patients with normal hepatic function. As theophylline clearance depends on intrinsic hepatic clearance, lower CL/F in patients with LC than in those with CH may be due to a decrease in the metabolic enzymatic capability of LC patients. CONCLUSIONS Differences exist in theophylline clearance between CH and LC patients as per the PPK analysis.
Collapse
|
52
|
de Andrés F, Altamirano-Tinoco C, Ramírez-Roa R, Montes-Mondragón CF, Dorado P, Peñas-Lledó EM, LLerena A. Relationships between CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 metabolic phenotypes and genotypes in a Nicaraguan Mestizo population. THE PHARMACOGENOMICS JOURNAL 2020; 21:140-151. [PMID: 33024249 DOI: 10.1038/s41397-020-00190-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/17/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022]
Abstract
Interethnic variability in the drug-metabolizing capacity of CYP450 enzymes may lead to discrepancies in the relationship between genotypes and phenotypes worldwide. The present study was aimed to analyze for the first time whether there is a relationship between clinically relevant CYP450 genetic polymorphisms and their drug oxidation capacity (metabolic phenotype) in a population of healthy Nicaraguan volunteers. Two hundred and twelve participants were genotyped for CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, and their actual metabolic phenotype (evaluated by the Metabolic Ratio, MR) was analyzed by using the CEIBA cocktail approach. The results showed the wide interindividual variability in all the studied enzymes and a significant difference (p < 0.004) in the activity of CYP1A2 between male and female subjects. The number of CYP2C19 (p < 0.0001) and CYP2D6 (p < 0.0001) active alleles were shown inversely correlated with their corresponding MR, although there were marked genotype-phenotype discrepancies. There was an actual enzyme capacity overlapping (MR) between genotypically Poor (gPMs) and Extensive Metabolizers (gEMs) of 3.14% subjects for CYP2D6 and 0.94% for CYP2C9. Similarly, there was an overlapping for metabolic phenotypes of 11.48% of genotypically ultrarapid metabolizers (gUMs) for CYP2C19 and 2.09% for CYP2D6 and gEMs. Therefore, the current approach for metabolic phenotype prediction based just on genotype does not predict properly for all individuals within this Nicaraguan Mestizo population, thus representing a potential barrier for the clinical implementation of personalized medicine in this region. However, it is necessary to improve the prediction of phenotype from genotype in order to improve the pharmacogenetic implementation in populations with specific ethnic backgrounds.
Collapse
Affiliation(s)
- Fernando de Andrés
- INUBE Extremadura Biosanitary University Research Institute, CICAB Clinical Research Centre, Badajoz University Hospital; University of Extremadura, Badajoz, Spain.,RIBEF Ibero American Network of Pharmacogenetics and Pharmacogenomics, León, Nicaragua
| | - Catalina Altamirano-Tinoco
- RIBEF Ibero American Network of Pharmacogenetics and Pharmacogenomics, León, Nicaragua.,UNAN Universidad Nacional Autónoma de Nicaragua, Facultad de Ciencias Médicas, León, Nicaragua
| | - Ronald Ramírez-Roa
- RIBEF Ibero American Network of Pharmacogenetics and Pharmacogenomics, León, Nicaragua. .,UNAN Universidad Nacional Autónoma de Nicaragua, Facultad de Ciencias Médicas, León, Nicaragua.
| | | | - Pedro Dorado
- INUBE Extremadura Biosanitary University Research Institute, CICAB Clinical Research Centre, Badajoz University Hospital; University of Extremadura, Badajoz, Spain.,RIBEF Ibero American Network of Pharmacogenetics and Pharmacogenomics, León, Nicaragua.,Faculty of Medicine, University of Extremadura, Badajoz, Spain
| | - Eva M Peñas-Lledó
- INUBE Extremadura Biosanitary University Research Institute, CICAB Clinical Research Centre, Badajoz University Hospital; University of Extremadura, Badajoz, Spain.,RIBEF Ibero American Network of Pharmacogenetics and Pharmacogenomics, León, Nicaragua.,Faculty of Medicine, University of Extremadura, Badajoz, Spain
| | - Adrián LLerena
- INUBE Extremadura Biosanitary University Research Institute, CICAB Clinical Research Centre, Badajoz University Hospital; University of Extremadura, Badajoz, Spain. .,RIBEF Ibero American Network of Pharmacogenetics and Pharmacogenomics, León, Nicaragua. .,Faculty of Medicine, University of Extremadura, Badajoz, Spain. .,CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
53
|
Haziza C, de La Bourdonnaye G, Donelli A, Poux V, Skiada D, Weitkunat R, Baker G, Picavet P, Lüdicke F. Reduction in Exposure to Selected Harmful and Potentially Harmful Constituents Approaching Those Observed Upon Smoking Abstinence in Smokers Switching to the Menthol Tobacco Heating System 2.2 for 3 Months (Part 1). Nicotine Tob Res 2020; 22:539-548. [PMID: 30722062 PMCID: PMC7164581 DOI: 10.1093/ntr/ntz013] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/30/2019] [Indexed: 12/11/2022]
Abstract
Introduction The Tobacco Heating System (THS) is a “heat-not-burn” tobacco product designed to generate significantly lower levels of harmful and potentially harmful constituents (HPHCs) and present lower risk of harm than cigarettes. This study assessed the exposure reduction to selected HPHCs in smokers switching to menthol Tobacco Heating System (mTHS) 2.2 compared with smokers continuing smoking menthol cigarettes (mCCs) and smoking abstinence (SA) for 5 days in a confined setting, followed by an 86-day ambulatory period. Methods A total of 160 healthy adult US smokers participated in this randomized, three-arm parallel group, controlled clinical study. Biomarkers of exposure to 16 HPHCs were measured in blood and 24-hour urine. Safety was monitored throughout the study. Information was also gathered on product evaluation, product use, subjective effects, and clinical risk markers (co-publication Part 2). Results Nicotine uptake was comparable in both exposure groups (mTHS:mCC ratio of 96% on day 90). On day 5, biomarker of exposure levels to other HPHCs were reduced by 51%–96% in the mTHS group compared with the mCC group, and these reductions were sustained for most biomarkers of exposure over ambulatory period. After 90 days of use, the level of satisfaction with mTHS and suppression of urge to smoke were comparable to mCC. Conclusion Switching from mCCs to mTHS significantly reduced the exposure to HPHCs to levels approaching those observed in subjects who abstained from smoking for the duration of the study. Implications This study compared the impact of switching to mTHS on biomarkers of exposure, relative to continued smoking or SA. Clinical Significance Trial Registration NCT01989156 (ClinicalTrials.gov).
Collapse
Affiliation(s)
| | | | - Andrea Donelli
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Valerie Poux
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Dimitra Skiada
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Rolf Weitkunat
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Gizelle Baker
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Patrick Picavet
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Frank Lüdicke
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| |
Collapse
|
54
|
Vecchierini MF, Kilic-Huck U, Quera-Salva MA. Melatonin (MEL) and its use in neurological diseases and insomnia: Recommendations of the French Medical and Research Sleep Society (SFRMS). Rev Neurol (Paris) 2020; 177:245-259. [PMID: 32921425 DOI: 10.1016/j.neurol.2020.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/29/2022]
Abstract
The French Medicine and Research Sleep Society had organized a consensus conference about sleep/wake circadian rhythms and their disorders. During this conference a subgroup of 11 sleep doctors/researchers looked specifically at the use of MEL in different pathologies. This article gives a summary of the main results of MEL therapy in some neurological diseases and insomnia approved by this consensus group. Exogenous MEL, which crosses the blood-brain barrier, has been used as a treatment in its two available forms: an immediate release form that principally shows a chronobiotic action and a long release form that mimics the physiological MEL secretion rhythm and is used to replace reduced physiological secretion. MEL secretion decreases frequently with age, mostly in elderly insomniacs and dementia patients. Results of level A studies show that MEL therapy, used as an add-on treatment, has beneficial effects in mild cognitive impairment (MCI) and Alzheimer patients with sleep disorders in improving sleep quality and in regulating the sleep/wake rhythm. MEL has to be prescribed as early as possible and for a long period, at a dose of 2 to 5 or 10 mg. It may have a beneficial effect on cognitive function in MCI but shows no effect in moderate to severe Alzheimer's disease. It should be emphasized that there are no serious side effects with MEL treatment. In these diseases, light therapy used 12 hours before melatonin treatment has a positive synergic effect. In REM sleep behavior disorder, immediate release MEL should be prescribed first as its side effect profile is much better than clonazepam shortly before bedtime. MEL has a good efficacy on clinical symptoms and PSG REM sleep without atonia episodes and is well tolerated. In Parkinson disease with sleep disorders and without REM sleep behavior disorder, MEL seems to improve subjective sleep quality but no conclusions can be drawn. There is insufficient scientific proof for using MEL as a prophylactic treatment in primary headache, migraine and cluster headache. In epileptic patients, MEL can be safely used to regulate the sleep/wake rhythm and to improve insomnia but more randomized controlled studies are necessary. In primary or no-comorbid insomnia, only a 2 mg dose of slow release MEL, 1 to 2 hours before bedtime, over a period of 3 to 12 weeks, is recommended. It decreases sleep onset latency, improves quality of sleep, morning alertness and quality of life without serious side effects and without withdrawal symptoms.
Collapse
Affiliation(s)
- M F Vecchierini
- Sleep Center, Hôtel-Dieu, Paris-Descartes University, 1, place du parvis Jean-Paul II, 75004 Paris, France.
| | - U Kilic-Huck
- Sleep Disorders Center Hôpitaux Universitaires de Strasbourg: Institut des neurosciences cellulaires et intégratives, CNRS-UPR 3212, 5, rue Blaise-Pascal, 67000 Strasbourg, France
| | - M A Quera-Salva
- Sleep disorders Unit, Departement of Physiology, Hôpital Raymond-Poincaré, université de Saclay, EA 4047 AP-HP Saclay University, 92380 Garches, France
| | | |
Collapse
|
55
|
Cornelis MC, Weintraub S, Morris MC. Caffeinated Coffee and Tea Consumption, Genetic Variation and Cognitive Function in the UK Biobank. J Nutr 2020; 150:2164-2174. [PMID: 32495843 PMCID: PMC7398783 DOI: 10.1093/jn/nxaa147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/25/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Coffee and tea are the major contributors of caffeine in the diet. Evidence points to the premise that caffeine may benefit cognition. OBJECTIVE We examined the associations of habitual regular coffee or tea and caffeine intake with cognitive function whilst additionally accounting for genetic variation in caffeine metabolism. METHODS We included white participants aged 37-73 y from the UK Biobank who provided biological samples and completed touchscreen questionnaires regarding sociodemographic factors, medical history, lifestyle, and diet. Habitual caffeine-containing coffee and tea intake was self-reported in cups/day and used to estimate caffeine intake. Between 97,369 and 445,786 participants with data also completed ≥1 of 7 self-administered cognitive functioning tests using a touchscreen system (2006-2010) or on home computers (2014). Multivariable regressions were used to examine the association between coffee, tea, or caffeine intake and cognition test scores. We also tested interactions between coffee, tea, or caffeine intake and a genetic-based caffeine-metabolism score (CMS) on cognitive function. RESULTS After multivariable adjustment, reaction time, Pairs Matching, Trail Making test B, and symbol digit substitution, performance significantly decreased with consumption of 1 or more cups of coffee (all tests P-trend < 0.0001). Tea consumption was associated with poor performance on all tests (P-trend < 0.0001). No statistically significant CMS × tea, CMS × coffee, or CMS × caffeine interactions were observed. CONCLUSIONS Our findings, based on the participants of the UK Biobank, provide little support for habitual consumption of regular coffee or tea and caffeine in improving cognitive function. On the contrary, we observed decrements in performance with intakes of these beverages which may be a result of confounding. Whether habitual caffeine intake affects cognitive function therefore remains to be tested.
Collapse
Affiliation(s)
- Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sandra Weintraub
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Martha Clare Morris
- Rush Institute for Healthy Aging, Rush University, Chicago, IL, USA,Address correspondence to MCC (e-mail: )
| |
Collapse
|
56
|
Recent Caffeine Drinking Associates with Cognitive Function in the UK Biobank. Nutrients 2020; 12:nu12071969. [PMID: 32630669 PMCID: PMC7399821 DOI: 10.3390/nu12071969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/16/2020] [Accepted: 06/29/2020] [Indexed: 11/17/2022] Open
Abstract
Clinical evidence points to the premise that caffeine may benefit cognition, but whether these findings extend to real life settings and amidst factors that impact caffeine metabolism is unclear. The aim of this study was to investigate the impact of recent caffeine drinking on cognitive ability while additionally accounting for lifestyle and genetic factors that impact caffeine metabolism. We included up to 434,900 UK Biobank participants aged 37–73 years, recruited in 2006–2010, who provided biological samples and completed touchscreen questionnaires regarding sociodemographic factors, medical history, lifestyle, and diet. Recent caffeine drinking (yes/no in the last hour) was recorded during a physical assessment. Participants completed at least one of four self-administered cognitive function tests using the touchscreen system: prospective memory (PM), pairs matching (Pairs), fluid intelligence (FI), and reaction time (RT). Multivariable regressions were used to examine the association between recent caffeine drinking and cognition test scores. We also tested interactions between recent caffeine drinking and a genetic caffeine-metabolism score (CMS) on cognitive function. Among white participants, recent caffeine drinking was associated with higher performance on RT but lower performance on FI, Pairs, and PM (p ≤ 0.004). Similar directions of associations for FI (p = 0.09), Pairs (p = 0.03), and PM (p = 0.34) were observed among non-white participants. No significant and consistent effect modification by age, sex, smoking, test time, habitual caffeine intake, or CMS was observed. Caffeine consumed shortly before tasks requiring shorter reaction times may improve task performance. Potential impairments in memory and reasoning tasks with recent caffeine drinking warrant further study.
Collapse
|
57
|
Wiernikowski JT, Bernhardt MB. Review of nutritional status, body composition, and effects of antineoplastic drug disposition. Pediatr Blood Cancer 2020; 67 Suppl 3:e28207. [PMID: 32083372 DOI: 10.1002/pbc.28207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/22/2022]
Abstract
The overall survival for children with cancer in high income countries is excellent. However, there are many disparities that may negatively affect survival, which are particularly problematic in low income countries, such as nutritional status at diagnosis and throughout therapy. Nutritional status as well as concomitant foods, supplements, and medications may play a role in overall exposure and response to chemotherapy. Emerging science around the microbiome may also play a role and should be further explored as a contributor to disease progression and therapeutic response. This article highlights some of these issues and proposes additional areas of research relevant to nutritional status and pharmacology that are needed in pediatric oncology.
Collapse
Affiliation(s)
- John T Wiernikowski
- Division of Paediatric Haematology/Oncology, Department of Paediatrics, McMaster Children's Hospital, McMaster University, Hamilton, Ontario, Canada
| | - Melanie Brooke Bernhardt
- Section of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
58
|
Yu EYW, Dai Y, Wesselius A, van Osch F, Brinkman M, van den Brandt P, Grant EJ, White E, Weiderpass E, Gunter M, Hemon B, Zeegers MP. Coffee consumption and risk of bladder cancer: a pooled analysis of 501,604 participants from 12 cohort studies in the BLadder Cancer Epidemiology and Nutritional Determinants (BLEND) international study. Eur J Epidemiol 2020; 35:523-535. [PMID: 31927701 DOI: 10.1007/s10654-019-00597-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023]
Abstract
Recent epidemiological studies have shown varying associations between coffee consumption and bladder cancer (BC). This research aims to elucidate the association between coffee consumption and BC risk by bringing together worldwide cohort studies on this topic. Coffee consumption in relation to BC risk was examined by pooling individual data from 12 cohort studies, comprising of 2601 cases out of 501,604 participants. Pooled multivariate hazard ratios (HRs), with corresponding 95% confidence intervals (CIs), were obtained using multilevel Weibull regression models. Furthermore, dose-response relationships were examined using generalized least squares regression models. The association between coffee consumption and BC risk showed interaction with sex (P-interaction < 0.001) and smoking (P-interaction = 0.001). Therefore, analyses were stratified by sex and smoking. After adjustment for potential confounders, an increased BC risk was shown for high (> 500 ml/day, equivalent to > 4 cups/day) coffee consumption compared to never consumers among male smokers (current smokers: HR = 1.75, 95% CI 1.27-2.42, P-trend = 0.002; former smokers: HR = 1.44, 95% CI 1.12-1.85, P-trend = 0.001). In addition, dose-response analyses, in male smokers also showed an increased BC risk for coffee consumption of more than 500 ml/day (4 cups/day), with the risk of one cup (125 ml) increment as 1.07 (95% CI 1.06-1.08). This research suggests that positive associations between coffee consumption and BC among male smokers but not never smokers and females. The inconsistent results between sexes and the absence of an association in never smokers indicate that the associations found among male smokers is unlikely to be causal and is possibly caused by residual confounding of smoking.
Collapse
Affiliation(s)
- Evan Y W Yu
- Department of Complex Genetics and Epidemiology, School of Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 40 (Room C5.570), 6229 ER, Maastricht, The Netherlands
| | - Yanan Dai
- Department of Complex Genetics and Epidemiology, School of Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 40 (Room C5.570), 6229 ER, Maastricht, The Netherlands
| | - Anke Wesselius
- Department of Complex Genetics and Epidemiology, School of Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 40 (Room C5.570), 6229 ER, Maastricht, The Netherlands.
| | - Frits van Osch
- Department of Complex Genetics and Epidemiology, School of Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 40 (Room C5.570), 6229 ER, Maastricht, The Netherlands
| | - Maree Brinkman
- Department of Complex Genetics and Epidemiology, School of Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 40 (Room C5.570), 6229 ER, Maastricht, The Netherlands
- Department of Clinical Studies and Nutritional Epidemiology, Nutrition Biomed Research Institute, Melbourne, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, VIC, 3004, Australia
| | - Piet van den Brandt
- Department of Epidemiology, Schools for Oncology and Developmental Biology and Public Health and Primary Care, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Eric J Grant
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Emily White
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Elisabete Weiderpass
- International Agency for Research on Cancer World Health Organization, Lyon, France
| | - Marc Gunter
- International Agency for Research on Cancer World Health Organization, Lyon, France
| | - Bertrand Hemon
- International Agency for Research on Cancer World Health Organization, Lyon, France
| | - Maurice P Zeegers
- Department of Complex Genetics and Epidemiology, School of Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 40 (Room C5.570), 6229 ER, Maastricht, The Netherlands
- CAPHRI School for Public Health and Primary Care, Maastricht University, Maastricht, The Netherlands
- School of Cancer Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
59
|
Siokas V, Kardaras D, Aloizou AM, Liampas I, Papageorgiou E, Drakoulis N, Tsatsakis A, Mitsias PD, Hadjigeorgiou GM, Tsironi EE, Dardiotis E. CYP1A2 rs762551 and ADORA2A rs5760423 Polymorphisms in Patients with Blepharospasm. J Mol Neurosci 2020; 70:1370-1375. [DOI: 10.1007/s12031-020-01553-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/13/2020] [Indexed: 02/08/2023]
|
60
|
Bosilkovska M, Tran CT, de La Bourdonnaye G, Taranu B, Benzimra M, Haziza C. Exposure to harmful and potentially harmful constituents decreased in smokers switching to Carbon-Heated Tobacco Product. Toxicol Lett 2020; 330:30-40. [PMID: 32380119 DOI: 10.1016/j.toxlet.2020.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/30/2020] [Accepted: 04/16/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND "Heat-not-burn" tobacco products are designed to heat processed tobacco instead of combusting it, thus significantly reducing the formation of harmful and potentially harmful constituents (HPHCs) found in cigarette smoke, and ultimately reducing the risk of smoking-related diseases. The Carbon-Heated Tobacco Product (CHTP), a heat-not-burn tobacco product similar in appearance and use ritual to cigarettes, has been developed for smokers who would otherwise continue smoking as an alternative to cigarettes. To evaluate reduced risk of harm potential of CHTP, it is critical to quantify exposure to HPHCs and consequent biological pathway disturbances involved in disease onset in smokers who switch to CHTP. METHODS In this 2-arm, parallel-group study, adult healthy smokers, not willing to quit, were randomized to switch to CHTP 1.2 (n = 80) or to continue using cigarettes (n = 40) for 5 days in confinement followed by 85 days in an ambulatory setting. Endpoints included biomarkers of exposure (BoExp) to HPHCs, and to nicotine, urinary excretion of mutagenic constituents (Ames assay), CYP1A2 activity, biomarkers of effect, and safety. RESULTS In switchers to CHTP, BoExp were 40%-95% lower compared to smokers after 5 days of product use, with sustained reductions (36%-93%) observed on Day 90. Urine mutagenicity and CYP1A2 activity were also lower in the CHTP group. Exposure to nicotine was higher in the CHTP group at Day 5, but was similar between the two groups at Day 90. Favorable changes in some biomarkers of effect were observed in the CHTP group showing reductions in white blood cell count, soluble intracellular adhesion molecule-1, and 11-dehydro-thromboxane B2, respectively, indicative of reduced inflammation, endothelial dysfunction, and platelet activation. CONCLUSIONS Switching from cigarettes to CHTP resulted in significantly reduced exposure to HPHCs and was associated with observed improvements in some biomarkers of effect representative of pathomechanistic pathways underlying the development of smoking-related diseases.
Collapse
Affiliation(s)
- Marija Bosilkovska
- Philip Morris International, Philip Morris Products, S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Cam Tuan Tran
- Philip Morris International, Philip Morris Products, S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Guillaume de La Bourdonnaye
- Philip Morris International, Philip Morris Products, S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Brindusa Taranu
- Philip Morris International, Philip Morris Products, S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Muriel Benzimra
- Philip Morris International, Philip Morris Products, S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Christelle Haziza
- Philip Morris International, Philip Morris Products, S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| |
Collapse
|
61
|
Li M, Feng L, Li X, Gao R, Wu Y. Influences of Smoking Status on Effectiveness of Cytochrome P450 Enzyme System Metabolized Medications in Reducing In-Hospital Death in 14 658 Patients With Acute Myocardial Infarction: Data From CPACS-3 Study. J Cardiovasc Pharmacol Ther 2020; 25:418-424. [PMID: 32338045 DOI: 10.1177/1074248420921304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND The benefit of cytochrome P450 (CYP450) enzyme system metabolized medications, especially clopidogrel, was reported more pronounced in smoking than nonsmoking patients, but limited evidence was available from Asian patients. We analyzed data from a large registry-based study of Chinese patients with acute myocardial infarction (AMI) to understand if the above finding could be reproduced. METHODS A total of 14 658 patients with AMI were prospectively recruited from 101 hospitals across China. Generalized estimating equation was applied to assess the association between CYP450 enzyme system metabolized medications (clopidogrel, statins, calcium channel blockers) and in-hospital death in smoking and nonsmoking patients, separately, adjusting for hospital clustering effects and propensity score of using the medication in question. RESULTS There were 86%, 93%, and 10% of study patients who received clopidogrel, statins, and calcium channel blockers during the hospitalization. Compared with patients not receiving clopidogrel, patients receiving the drug had a significantly lower risk of in-hospital death (adjusted relative risk [RR] = 0.61, 95% confidence interval [CI]: 0.40-0.91) in current smokers but an insignificant lower risk (adjusted RR = 0.85, 95% CI: 0.71-1.01) in nonsmokers, and the P for interaction was <.01. The corresponding adjusted RR was 0.45 (95% CI: 0.24-0.86) in current smokers and 0.94 (95% CI: 0.68-1.29) in nonsmokers (P for interaction <.01) for statins use and 1.00 (95% CI: 0.53-1.89) in current smokers and 0.66 (95% CI: 0.48-0.90) in nonsmokers (P for interaction = .23) for calcium channel blockers use. CONCLUSIONS Our study in a large cohort of Chinese patients with AMI found that the treatment effect in reducing risk of in-hospital death was significantly larger in smokers than in nonsmokers as for clopidogrel and statins but not for calcium channel blockers.
Collapse
Affiliation(s)
- Min Li
- Clinical Epidemiology and EBM Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lin Feng
- Peking University Clinical Research Institute, Peking University Health Science Center, Beijing, China
| | - Xian Li
- The George Institute for Global Health at Peking University Health Science Center, Beijing, China
| | - Runlin Gao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yangfeng Wu
- Peking University Clinical Research Institute, Peking University Health Science Center, Beijing, China.,The George Institute for Global Health at Peking University Health Science Center, Beijing, China
| |
Collapse
|
62
|
Qian J, Chen Q, Ward SM, Duan E, Zhang Y. Impacts of Caffeine during Pregnancy. Trends Endocrinol Metab 2020; 31:218-227. [PMID: 31818639 PMCID: PMC7035149 DOI: 10.1016/j.tem.2019.11.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022]
Abstract
Epidemiological studies have revealed that caffeine consumption during pregnancy is associated with adverse gestational outcomes, yet the underlying mechanisms remain obscure. Recent animal studies with physiologically relevant dosages have begun to dissect adverse effects of caffeine during pregnancy with respect to oviduct contractility, embryo development, uterine receptivity, and placentation that jointly contribute to pregnancy complications. Interestingly, caffeine's effects are highly variable between individual animals under well-controlled experimental settings, suggesting the possibility of epigenetic regulation of these phenotypes, in addition to genetic variants. Moreover, caffeine exposure during sensitive windows of pregnancy may induce epigenetic changes in the developing fetus or even the germ cells to cause adult-onset diseases in subsequent generations. We discuss these research frontiers in light of emerging data.
Collapse
Affiliation(s)
- Jingjing Qian
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Sean M Ward
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | - Enkui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
63
|
Williams PT. Quantile-Specific Heritability may Account for Gene-Environment Interactions Involving Coffee Consumption. Behav Genet 2020; 50:119-126. [PMID: 31900678 DOI: 10.1007/s10519-019-09989-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
Estimated heritability of coffee intake ranges from 0.36 to 0.58, however, these point estimates assume that inherited effects are the same throughout the distribution of coffee intake, i.e., whether consumption is high or low relative to intake in the population. Quantile regression of 4788 child-parent pairs and 2380 siblings showed that offspring-parent and sibling concordance became progressively greater with increasing quantiles of coffee intake. Each cup/day increase in the parents' coffee intake was associated with an offspring increase of 0.020 ± 0.013 cup/day at the 10th percentile of the offsprings' coffee intake (slope ± SE, NS), 0.137 ± 0.034 cup/day at their 25th percentile (P = 5.2 × 10-5), 0.159 ± 0.029 cup/day at the 50th percentile (P = 5.8 × 10-8), 0.233 ± 0.049 cup/day at the 75th percentile (P = 1.8 × 10-6), and 0.284 ± 0.054 cup/day at the 90th percentile (P = 1.2 × 10-7). This quantile-specific heritability suggests that factors that distinguish heavier vs. lighter drinkers (smoking, male sex) will likely manifest differences in estimated heritability, as reported.
Collapse
Affiliation(s)
- Paul T Williams
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA.
| |
Collapse
|
64
|
Lu J, Shang X, Zhong W, Xu Y, Shi R, Wang X. New insights of CYP1A in endogenous metabolism: a focus on single nucleotide polymorphisms and diseases. Acta Pharm Sin B 2020; 10:91-104. [PMID: 31998606 PMCID: PMC6984740 DOI: 10.1016/j.apsb.2019.11.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 12/31/2022] Open
Abstract
Cytochrome P450 1A (CYP1A), one of the major CYP subfamily in humans, not only metabolizes xenobiotics including clinical drugs and pollutants in the environment, but also mediates the biotransformation of important endogenous substances. In particular, some single nucleotide polymorphisms (SNPs) for CYP1A genes may affect the metabolic ability of endogenous substances, leading to some physiological or pathological changes in humans. This review first summarizes the metabolism of endogenous substances by CYP1A, and then introduces the research progress of CYP1A SNPs, especially the research related to human diseases. Finally, the relationship between SNPs and diseases is discussed. In addition, potential animal models for CYP1A gene editing are summarized. In conclusion, CYP1A plays an important role in maintaining the health in the body.
Collapse
Key Words
- CYP, cytochrome P450
- CYP1A
- EOAs, cis-epoxyoctadecenoics
- Endogenous substances
- FSH, follicle stimulating hormone
- HODEs, hydroxyoctadecdienoic acids
- IQ, 2-amino-3-methylimidazo [4,5-f] quinoline
- KO, knockout
- LIF/STAT3, inhibiting leukemia inhibitory factor/signal transducer and activator of transcription 3
- Metabolism and disease
- PhIP, 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine
- SNPs
- SNPs, single nucleotide polymorphisms
- WT, wild type
- Xenobiotics
- t-RA, all-trans-retinoic acid
- t-ROH, all-trans-retinol
Collapse
Affiliation(s)
- Jian Lu
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xuyang Shang
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Weiguo Zhong
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
| | - Yuan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Rong Shi
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
65
|
Preconception Perceived Stress Is Associated with Reproductive Hormone Levels and Longer Time to Pregnancy. Epidemiology 2019; 30 Suppl 2:S76-S84. [PMID: 31569156 PMCID: PMC7536839 DOI: 10.1097/ede.0000000000001079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Women who experience pregnancy loss are especially prone to high stress, though the effects of stress on reproductive outcomes in this vulnerable population are unknown. We assessed relationships between perceived stress and hormones, anovulation, and fecundability among women with prior loss. METHODS One thousand two hundred fourteen women with 1-2 prior losses were followed for ≤6 cycles while attempting pregnancy and completed end-of-cycle stress assessments. For cycles 1 and 2, women also collected daily urine and completed daily perceived stress assessments. We assessed anovulation via. an algorithm based on human chorionic gonadotropin (hCG), pregnanediol-3-glucuronide (PdG), luteinizing hormone (LH), and fertility monitor readings. Pregnancy was determined via. hCG. Adjusted weighted linear mixed models estimated the effect of prospective phase-varying (menses, follicular, periovulatory, and luteal) perceived stress quartiles on estrone-1-glucuronide (E1G), PdG, and LH concentrations. Marginal structural models accounted for time-varying confounding by hormones and lifestyle factors affected by prior stress. Poisson and Cox regression estimated risk ratios and fecundability odds ratios of cycle-varying stress quartiles on anovulation and fecundability. Models were adjusted for age, race, body mass index (BMI), parity, and time-varying caffeine, alcohol, smoking, intercourse, and pelvic pain. RESULTS Women in the highest versus lowest stress quartile had lower E1G and PdG concentrations, a marginally higher risk of anovulation [1.28; 95% confidence interval (CI) = 1.00, 1.63], and lower fecundability (0.71; 95% CI = 0.55, 0.90). CONCLUSION Preconception perceived stress appears to adversely affect sex steroid synthesis and time to pregnancy. Mechanisms likely include the effects of stress on ovulatory function, but additional mechanisms, potentially during implantation, may also exist.
Collapse
|
66
|
Li X, Yu D, Jie H, Zhou H, Ye H, Ma G, Wan L, Li C, Shi H, Yin S. Cytochrome P450 1A2 Is Incapable of Oxidizing Bilirubin Under Physiological Conditions. Front Pharmacol 2019; 10:1220. [PMID: 31680983 PMCID: PMC6813656 DOI: 10.3389/fphar.2019.01220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/23/2019] [Indexed: 12/31/2022] Open
Abstract
Background: Bilirubin (BR) is metabolized mainly by uridine diphosphate (UDP)-glucuronosyltransferase 1A1 (UGT1A1) through glucuronidation in the liver. Some studies have shown that several subtypes of cytochrome P450 (CYP) enzymes, including CYP1A2, are upregulated by inducers and proposed to be alternative BR degradation enzymes. However, no information is available on the BR degradation ability of CYP in normal rats without manipulation by CYP inducers. Methods: Quantitative real-time polymerase chain reaction (QRT-PCR), western blot, immunofluorescence, and confocal microscopy were used to find expression of CYP1A2 in the brain and the liver. BR metabolites in microsomal fractions during development were examined by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (LC-MS/MS). Results: In the present study, we observed that CYP1A2 mRNA levels increased at postnatal days (P)14 and P30 with respect to the level at P7 both in liver and brain, this increment was especially pronounced in the brain at P14. The expression of CYP1A2 in the brainstem (BS) was higher than that in the cerebellum (CLL) and cortex (COR). Meanwhile, the CYP1A2 protein level was significantly higher in the COR than in the brainstem and CLL at P14. The levels of BR and its metabolites (m/z values 301, 315, 333 and biliverdin) were statistically unaltered by incubation with liver and brain microsomal fractions. Conclusion: Our results indicated that the region-specific expression of CYP1A2 increased during development, but CYP family enzymes were physiologically incapable of metabolizing BR. The ability of CYPs to oxidize BR may be triggered by CYP inducers.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Dongzhen Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Huiqun Jie
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Huiqun Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Haibo Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Guo Ma
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China
| | - Lili Wan
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chunyan Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Haibo Shi
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shankai Yin
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| |
Collapse
|
67
|
Qian J, Zhang Y, Qu Y, Zhang L, Shi J, Zhang X, Liu S, Kim BH, Hwang SJ, Zhou T, Chen Q, Ward SM, Duan E, Zhang Y. Caffeine consumption during early pregnancy impairs oviductal embryo transport, embryonic development and uterine receptivity in mice. Biol Reprod 2019; 99:1266-1275. [PMID: 29982366 DOI: 10.1093/biolre/ioy155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/03/2018] [Indexed: 12/14/2022] Open
Abstract
Caffeine consumption has been widely used as a central nervous system stimulant. Epidemiological studies, however, have suggested that maternal caffeine exposure during pregnancy is associated with increased abnormalities, including decreased fertility, delayed conception, early spontaneous abortions, and low birth weight. The mechanisms underlying the negative outcomes of caffeine consumption, particularly during early pregnancy, remain unclear. In present study, we found that pregnant mice treated with moderate (5 mg/kg) or high (30 mg/kg) dosage of caffeine (intraperitoneally or orally) during preimplantation resulted in retention of early embryos in the oviduct, defective embryonic development, and impaired embryo implantation. Transferring normal blastocysts into the uteri of caffeine-treated pseudopregnant females also showed abnormal embryo implantation, thus indicating impaired uterine receptivity by caffeine administration. The remaining embryos that managed to implant after caffeine treatment also showed increased embryo resorption rate and abnormal development at mid-term stage, and decreased weight at birth. In addition to a dose-dependent effect, significant variations between individual mice under the same caffeine dosage were also observed, suggesting different sensitivities to caffeine, similar to that observed in human populations. Collectively, our data revealed that caffeine exposure during early pregnancy impaired oviductal embryo transport, embryonic development, and uterine receptivity, which are responsible for abnormal implantation and pregnancy loss. The study raises the concern of caffeine consumption during early stages of pregnancy.
Collapse
Affiliation(s)
- Jingjing Qian
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yunfang Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA.,University of Chinese Academy of Sciences, Beijing, China
| | - Yongcun Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liwen Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Junchao Shi
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Xudong Zhang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Shichao Liu
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Bo Hyun Kim
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Sung Jin Hwang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Qi Chen
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Enkui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
68
|
San R, Yue W, Hasi S. Effects of CYP1A enzyme specific inhibitor on pharmacokinetics of para-acetaminophen in Bactrian camel. J Vet Sci 2019; 20:e12. [PMID: 31161735 PMCID: PMC6538516 DOI: 10.4142/jvs.2019.20.e12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/31/2019] [Accepted: 02/08/2019] [Indexed: 11/20/2022] Open
Abstract
The effects of CYP1A enzyme on the pharmacokinetics of p-acetaminophen were studied in Bactrian camel. Twelve Bactrian camels were divided into 2 groups, then given a single dose of p-acetaminophen only or with the enzyme inhibitor lomefloxacin. Blood samples were collected after different intervals, and p-acetaminophen concentration was determined by high-performance liquid chromatography. Pharmacokinetic parameters were analyzed by Phoenix WinNonLin v.7.0. The results show that lomefloxacin can significantly inhibit Bactrian camel CYP1A enzyme, as evidenced by the prolonged elimination half-life, increased maximum plasma concentration and area under the curve values and the shortened time to peak concentration for p-acetaminophenol in the substrate with inhibitor group. The results lay a foundation for revealing the particular characteristics of the CYP1A enzyme in Bactrian camels.
Collapse
Affiliation(s)
- Ren San
- College of Veterinary Medicine, Inner Mongolia Agricultural University/Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot 010018, China
| | - Weidong Yue
- College of Veterinary Medicine, Inner Mongolia Agricultural University/Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot 010018, China
| | - Surong Hasi
- College of Veterinary Medicine, Inner Mongolia Agricultural University/Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot 010018, China.,Inner Mongolia institute of Camel Research, Badain Jaran 750300, China.
| |
Collapse
|
69
|
Monien BH, Sachse B, Niederwieser B, Abraham K. Detection of N-Acetyl-S-[3′-(4-methoxyphenyl)allyl]-l-Cys (AMPAC) in Human Urine Samples after Controlled Exposure to Fennel Tea: A New Metabolite of Estragole and trans-Anethole. Chem Res Toxicol 2019; 32:2260-2267. [DOI: 10.1021/acs.chemrestox.9b00287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Bernhard H. Monien
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Benjamin Sachse
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Bela Niederwieser
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Klaus Abraham
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| |
Collapse
|
70
|
Development and validation of a UPLC-MS/MS method for quantification of doxofylline and its metabolites in human plasma. J Pharm Biomed Anal 2019; 174:220-225. [DOI: 10.1016/j.jpba.2019.05.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023]
|
71
|
Lüdicke F, Picavet P, Baker G, Haziza C, Poux V, Lama N, Weitkunat R. Effects of Switching to the Tobacco Heating System 2.2 Menthol, Smoking Abstinence, or Continued Cigarette Smoking on Biomarkers of Exposure: A Randomized, Controlled, Open-Label, Multicenter Study in Sequential Confinement and Ambulatory Settings (Part 1). Nicotine Tob Res 2019; 20:161-172. [PMID: 28177489 PMCID: PMC5896533 DOI: 10.1093/ntr/ntw287] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/25/2016] [Indexed: 12/02/2022]
Abstract
Introduction The menthol Tobacco Heating System 2.2 (mTHS) is a newly developed candidate modified-risk tobacco product intended to reduce exposure to the harmful and potentially harmful constituents (HPHCs) of conventional cigarette (CC) smoke. This study examined the impact of switching to mTHS on biomarkers of exposure to HPHCs relative to menthol CCs (mCCs) and smoking abstinence (SA). Methods In this three-arm, parallel-group study, 160 Japanese adult smokers (23–65 years; smoking ≥10 mCCs per day) were randomized to mTHS (n = 78), mCC (n = 42), or SA (n = 40) for 5 days in confinement and 85 days in ambulatory settings. Endpoints included biomarkers of exposure to HPHCs, human puffing topography, safety, and subjective effects of smoking measures. Results After 5 days of product use, the concentrations of carboxyhemoglobin, 3-hydroxypropylmercapturic acid, monohydroxybutenyl mercapturic acid, and S-phenylmercapturic acid were 55%, 49%, 87%, and 89% lower (p < .001), respectively, in the mTHS group than in the mCC group. Other biomarkers of exposure (measured as secondary endpoints) were 50%–94% lower in the mTHS group than in the mCC group on day 5. These reductions in the mTHS group were maintained at day 90, similar to the SA group. Switching to mTHS was associated with changes in human puffing topography (shorter puff intervals and more frequent puffs). The urge-to-smoke and smoking satisfaction levels on day 90 were similar in the mTHS and the mCC groups. Conclusion Switching from mCCs to mTHS significantly reduced exposure to HPHCs relative to continuing smoking mCCs with concentrations similar to those observed following SA in Japanese adult smokers. Implications This randomized study compared the impact of switching to a modified-risk tobacco product candidate mTHS on biomarkers of exposure to HPHCs of cigarette smoke relative to continuing smoking cigarettes or abstaining from smoking in sequential confinement and ambulatory settings. The study showed that switching to mTHS was associated with significant biomarker reductions within 5 days in confinement, these reductions being maintained throughout the ambulatory setting up to day 90. The results provide evidence that switching to mTHS reduces real-life exposure to HPHCs in adult smokers.
Collapse
Affiliation(s)
- Frank Lüdicke
- Philip Morris Products S.A., PMI Research and Development, Neuchâtel, Switzerland
| | - Patrick Picavet
- Philip Morris Products S.A., PMI Research and Development, Neuchâtel, Switzerland
| | - Gizelle Baker
- Philip Morris Products S.A., PMI Research and Development, Neuchâtel, Switzerland
| | - Christelle Haziza
- Philip Morris Products S.A., PMI Research and Development, Neuchâtel, Switzerland
| | - Valerie Poux
- Philip Morris Products S.A., PMI Research and Development, Neuchâtel, Switzerland
| | - Nicola Lama
- Philip Morris Products S.A., PMI Research and Development, Neuchâtel, Switzerland
| | - Rolf Weitkunat
- Philip Morris Products S.A., PMI Research and Development, Neuchâtel, Switzerland
| |
Collapse
|
72
|
Ogasawara K, MacGorman K, Liu L, Chen J, Carayannopoulos LN, Zhou S, Palmisano M, Li Y. Drug-Drug Interaction Study to Assess the Effect of Cytochrome P450 Inhibition and Induction on the Pharmacokinetics of the Novel Cereblon Modulator Avadomide (CC-122) in Healthy Adult Subjects. J Clin Pharmacol 2019; 59:1620-1631. [PMID: 31172535 PMCID: PMC6851786 DOI: 10.1002/jcph.1453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/20/2019] [Indexed: 11/22/2022]
Abstract
Avadomide (CC‐122) is a novel immunomodulatory drug that binds to cereblon, a member of the Cullin 4‐RING E3 ubiquitin ligase complex. Avadomide has multiple pharmacologic activities including potent immune modulation, antiangiogenic, antitumor, and antiproliferative activity and is being evaluated as an oncology treatment for hematologic malignancies and advanced solid tumors. In vitro study has indicated that cytochrome P450 (CYP) 3A and CYP1A2 appear to be the major enzymes involved in the oxidative metabolism of avadomide. The effects of CYP3A inhibition/induction and CYP1A2 inhibition on the pharmacokinetics of avadomide in healthy adult subjects were assessed in 3 parts of an open‐label, nonrandomized, 2‐period, single‐sequence crossover study. Following a single oral dose of 3 mg, avadomide exposure when coadministered with the CYP1A2 inhibitor fluvoxamine was 154.81% and 107.59% of that when administered alone, for area under the plasma concentration‐time curve from time 0 to infinity (AUC0‐inf) and maximum observed plasma concentration (Cmax), respectively. Avadomide exposures, when coadministered with the CYP3A inhibitor itraconazole, were 100.0% and 93.64% of that when administered alone, for AUC0‐inf and Cmax, respectively. Avadomide exposures when coadministered with the CYP3A inducer rifampin were 62.83% and 88.17% of that when administered alone, for AUC0‐inf and Cmax, respectively. Avadomide was well tolerated when administered as a single oral dose of 3 mg alone or coadministered with fluvoxamine, itraconazole, or rifampin. These results should serve as the basis for avadomide dose recommendations when it is coadministered with strong CYP3A and CYP1A2 inhibitors and with rifampin.
Collapse
Affiliation(s)
- Ken Ogasawara
- Translational Development and Clinical Pharmacology, Celgene Corporation, Summit, NJ, USA
| | - Kimberly MacGorman
- Translational Development and Clinical Pharmacology, Celgene Corporation, Summit, NJ, USA
| | - Liangang Liu
- Biostatistics and Statistical Programming, Celgene Corporation, Berkeley Heights, NJ, USA
| | - Jian Chen
- Non-Clinical Development, Celgene Corporation, Summit, NJ, USA
| | | | - Simon Zhou
- Translational Development and Clinical Pharmacology, Celgene Corporation, Summit, NJ, USA
| | - Maria Palmisano
- Translational Development and Clinical Pharmacology, Celgene Corporation, Summit, NJ, USA
| | - Yan Li
- Translational Development and Clinical Pharmacology, Celgene Corporation, Summit, NJ, USA
| |
Collapse
|
73
|
The association between coffee consumption and bladder cancer in the bladder cancer epidemiology and nutritional determinants (BLEND) international pooled study. Cancer Causes Control 2019; 30:859-870. [PMID: 31147895 PMCID: PMC8985651 DOI: 10.1007/s10552-019-01191-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/25/2019] [Indexed: 01/01/2023]
Abstract
Background Inconsistent results for coffee consumption and bladder cancer (BC) risk have been shown in epidemiological studies. This research aims to increase the understanding of the association between coffee consumption and BC risk by bringing together worldwide case–control studies on this topic. Methods Data were collected from 13 case–control comprising of 5,911 cases and 16,172 controls. Pooled multivariate odds ratios (ORs), with corresponding 95% confidence intervals (CIs), were obtained using multilevel logistic regression models. Furthermore, linear dose–response relationships were examined using fractional polynomial models. Results No association of BC risk was observed with coffee consumption among smokers. However, after adjustment for age, gender, and smoking, the risk was significantly increased for never smokers (ever vs. never coffee consumers: ORmodel2 1.30, 95% CI 1.06–1.59; heavy (> 4 cups/day) coffee consumers vs. never coffee consumers: ORmodel2 1.52, 95% CI 1.18–1.97, p trend = 0.23). In addition, dose–response analyses, in both the overall population and among never smokers, also showed a significant increased BC risk for coffee consumption of more than four cups per day. Among smokers, a significant increased BC risk was shown only after consumption of more than six cups per day. Conclusion This research suggests that positive associations between coffee consumption and BC among never smokers but not smokers.
Collapse
|
74
|
Mealey KL, Martinez SE, Villarino NF, Court MH. Personalized medicine: going to the dogs? Hum Genet 2019; 138:467-481. [PMID: 31032534 DOI: 10.1007/s00439-019-02020-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/19/2019] [Indexed: 12/13/2022]
Abstract
Interindividual variation in drug response occurs in canine patients just as it does in human patients. Although canine pharmacogenetics still lags behind human pharmacogenetics, significant life-saving discoveries in the field have been made over the last 20 years, but much remains to be done. This article summarizes the available published data about the presence and impact of genetic polymorphisms on canine drug transporters, drug-metabolizing enzymes, drug receptors/targets, and plasma protein binding while comparing them to their human counterparts when applicable. In addition, precision medicine in cancer treatment as an application of canine pharmacogenetics and pertinent considerations for canine pharmacogenetics testing is reviewed. The field is poised to transition from single pharmacogene-based studies, pharmacogenetics, to pharmacogenomic-based studies to enhance our understanding of interindividual variation of drug response in dogs. Advances made in the field of canine pharmacogenetics will not only improve the health and well-being of dogs and dog breeds, but may provide insight into individual drug efficacy and toxicity in human patients as well.
Collapse
Affiliation(s)
- Katrina L Mealey
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99163, USA.
| | - Stephanie E Martinez
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99163, USA
| | - Nicolas F Villarino
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99163, USA
| | - Michael H Court
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99163, USA
| |
Collapse
|
75
|
Caffeine and caffeine metabolites in relation to hypertension in U.S. adults. Eur J Clin Nutr 2019; 74:77-86. [PMID: 31019247 DOI: 10.1038/s41430-019-0430-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/26/2019] [Accepted: 04/05/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND/OBJECTIVES Most studies assessing the association between coffee consumption and hypertension ascertained caffeine intake in terms of number of cups per days, and yield mixed results. Although the inter-individuals variability in the caffeine metabolism is known, the relation of caffeine metabolites with hypertension remains unsettled. We examined the association of caffeine and 13 direct and indirect caffeine metabolites with hypertension in U.S. adults. METHODS Using data from 2009-2010 National Health and Nutrition Examination Survey, we included 2278 individuals aged 18 to 80 years. Urinary methyluric acids (MU) and methylxanthines (MX) products of caffeine metabolism were measured using high performance liquid chromatography-electrospray ionization-tandem quadrupole mass spectrometry. We used multivariate logistic regression to model hypertension (systolic blood pressure ≥130 mmHg or diastolic blood pressure ≥80 mmHg) as functions of urinary coffee metabolites. RESULTS The odds of hypertension decreased across quartiles of 3-MU, 7-MU, 3-MX and 7-MX, with 7-MU being the more powerful metabolite. Compared with adults in the bottom quartile of 7-MU, the odds of hypertension decreased by 81% (95% CI: -90 to -22%) in those in the upper quartile. In contrast, the odds ratio for being hypertensive from the bottom to the upper quartile were 4.47 (95% CI: 1.21-16.50) for 1,3-dimethyluric acid, 4.45 (95% CI: 1.48-13.39) for 1,3-dimethylxanthine, and 5.08 (95% CI: 1.11-23.36) for 1,7-dimethylxanthine. Neither insulin resistance nor abdominal obesity were moderators in these associations. CONCLUSIONS Final metabolites of caffeine (namely 3-MU, 7-MU, 3-MX and 7-MX), but not caffeine, significantly reduce the odds for hypertension in this population.
Collapse
|
76
|
Pu X, Gao Y, Li R, Li W, Tian Y, Zhang Z, Xu F. Biomarker Discovery for Cytochrome P450 1A2 Activity Assessment in Rats, Based on Metabolomics. Metabolites 2019; 9:metabo9040077. [PMID: 31003543 PMCID: PMC6523085 DOI: 10.3390/metabo9040077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/17/2022] Open
Abstract
Cytochrome P450 1A2 (CYP1A2) is one of the major CYP450 enzymes (CYPs) in the liver, and participates in the biotransformation of various xenobiotics and endogenous signaling molecules. The expression and activity of CYP1A2 show large individual differences, due to genetic and environmental factors. In order to discover non-invasive serum biomarkers associated with hepatic CYP1A2, mass spectrometry-based, untargeted metabolomics were first conducted, in order to dissect the metabolic differences in the serum and liver between control rats and β-naphthoflavone (an inducer of CYP1A2)-treated rats. Real-time reverse transcription polymerase chain reaction and pharmacokinetic analysis of phenacetin and paracetamol were performed, in order to determine the changes of mRNA levels and activity of CYP1A2 in these two groups, respectively. Branched-chain amino acids phenylalanine and tyrosine were ultimately focalized, as they were detected in both the serum and liver with the same trends. These findings were further confirmed by absolute quantification via a liquid chromatography–tandem mass spectrometry (LC-MS/MS)-based targeted metabolomics approach. Furthermore, the ratio of phenylalanine to tyrosine concentration was also found to be highly correlated with CYP1A2 activity and gene expression. This study demonstrates that metabolomics can be a potentially useful tool for biomarker discovery associated with CYPs. Our findings contribute to explaining interindividual variations in CYP1A2-mediated drug metabolism.
Collapse
Affiliation(s)
- Xiao Pu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Yiqiao Gao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Ruiting Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Wei Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Yuan Tian
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
77
|
CYP1A2 Genetic Polymorphism Is Associated With Treatment Remission to Antidepressant Venlafaxine in Han Chinese Population. Clin Neuropharmacol 2019; 42:32-36. [PMID: 30875344 DOI: 10.1097/wnf.0000000000000322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
78
|
Landolt HP, Holst SC, Valomon A. Clinical and Experimental Human Sleep-Wake Pharmacogenetics. Handb Exp Pharmacol 2019; 253:207-241. [PMID: 30443785 DOI: 10.1007/164_2018_175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sleep and wakefulness are highly complex processes that are elegantly orchestrated by fine-tuned neurochemical changes among neuronal and non-neuronal ensembles, nuclei, and networks of the brain. Important neurotransmitters and neuromodulators regulating the circadian and homeostatic facets of sleep-wake physiology include melatonin, γ-aminobutyric acid, hypocretin, histamine, norepinephrine, serotonin, dopamine, and adenosine. Dysregulation of these neurochemical systems may cause sleep-wake disorders, which are commonly classified into insomnia disorder, parasomnias, circadian rhythm sleep-wake disorders, central disorders of hypersomnolence, sleep-related movement disorders, and sleep-related breathing disorders. Sleep-wake disorders can have far-reaching consequences on physical, mental, and social well-being and health and, thus, need be treated with effective and rational therapies. Apart from behavioral (e.g., cognitive behavioral therapy for insomnia), physiological (e.g., chronotherapy with bright light), and mechanical (e.g., continuous positive airway pressure treatment of obstructive sleep apnea) interventions, pharmacological treatments often are the first-line clinical option to improve disturbed sleep and wake states. Nevertheless, not all patients respond to pharmacotherapy in uniform and beneficial fashion, partly due to genetic differences. The improved understanding of the neurochemical mechanisms regulating sleep and wakefulness and the mode of action of sleep-wake therapeutics has provided a conceptual framework, to search for functional genetic variants modifying individual drug response phenotypes. This article will summarize the currently known genetic polymorphisms that modulate drug sensitivity and exposure, to partly determine individual responses to sleep-wake pharmacotherapy. In addition, a pharmacogenetic strategy will be outlined how based upon classical and opto-/chemogenetic strategies in animals, as well as human genetic associations, circuit mechanisms regulating sleep-wake functions in humans can be identified. As such, experimental human sleep-wake pharmacogenetics forms a bridge spanning basic research and clinical medicine and constitutes an essential step for the search and development of novel sleep-wake targets and therapeutics.
Collapse
Affiliation(s)
- Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.
- Zürich Center for Interdisciplinary Sleep Research (ZiS), University of Zürich, Zürich, Switzerland.
| | - Sebastian C Holst
- Neurobiology Research Unit and Neuropharm, Department of Neurology, Rigshospitalet, Copenhagen, Denmark
| | - Amandine Valomon
- Wisconsin Institute for Sleep and Consciousness, University of Wisconsin Madison, Madison, WI, USA
| |
Collapse
|
79
|
The Impact of Coffee and Its Selected Bioactive Compounds on the Development and Progression of Colorectal Cancer In Vivo and In Vitro. Molecules 2018; 23:molecules23123309. [PMID: 30551667 PMCID: PMC6321559 DOI: 10.3390/molecules23123309] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 12/18/2022] Open
Abstract
Coffee is one of the most popular beverages worldwide. Coffee contains bioactive compounds that affect the human body such as caffeine, caffeic acid, chlorogenic acids, trigonelline, diterpenes, and melanoidins. Some of them have demonstrated potential anticarcinogenic effects in animal models and in human cell cultures, and may play a protective role against colorectal cancer. Colorectal cancer (CRC) is the third leading cause of cancer-related mortality in the USA and other countries. Dietary patterns, as well as the consumption of beverages, may reduce the risk of CRC incidence. In this review, we focus on published epidemiological studies concerning the association of coffee consumption and the risk of development of colorectal cancer, and provide a description of selected biologically active compounds in coffee that have been investigated as potential cancer-combating compounds: Caffeine, caffeic acid (CA), chlorogenic acids (CGAs), and kahweol in relation to colorectal cancer progression in in vitro settings. We review the impact of these substances on proliferation, viability, invasiveness, and metastasis, as well as on susceptibility to chemo- and radiotherapy of colorectal cancer cell lines cultured in vitro.
Collapse
|
80
|
Tian DD, Natesan S, White JR, Paine MF. Effects of Common CYP1A2 Genotypes and Other Key Factors on Intraindividual Variation in the Caffeine Metabolic Ratio: An Exploratory Analysis. Clin Transl Sci 2018; 12:39-46. [PMID: 30387917 PMCID: PMC6342244 DOI: 10.1111/cts.12598] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 10/18/2018] [Indexed: 11/29/2022] Open
Abstract
The caffeine metabolic ratio is an established marker for cytochrome P450 (CYP) 1A2 activity. Optimal sample size calculation for clinical pharmacokinetic xenobiotic–caffeine interaction studies requires robust estimates of interindividual and intraindividual variation in this ratio. Compared with interindividual variation, factors contributing to intraindividual variation are less defined. An exploratory analysis involving healthy nonsmoking non‐naïve caffeine drinkers (1–3 cups/day; 12 men, 12 women) administered caffeine (160 mg) on five occasions evaluated the effects of CYP1A2 induction status (based on genotype) and other factors on intraindividual variation in CYP1A2 activity. Results were compared with those from previous studies. Regardless of whether a hyperinducer (CYP1A2*1A/*1F or CYP1A2*1F/*1F) or normal metabolizer (CYP1A2*1A/*1A,CYP1A2*1C/*1F, or CYP1A2*1C*1F/*1C*1F), sex, age, oral contraceptive use by women, and smoking status, intraindividual variation was ≤30%. A value of 30% is proposed for optimal design of pharmacokinetic xenobiotic–caffeine interaction studies. Prospective studies are needed for confirmation.
Collapse
Affiliation(s)
- Dan-Dan Tian
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Senthil Natesan
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - John R White
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Mary F Paine
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| |
Collapse
|
81
|
Reyes CM, Cornelis MC. Caffeine in the Diet: Country-Level Consumption and Guidelines. Nutrients 2018; 10:nu10111772. [PMID: 30445721 PMCID: PMC6266969 DOI: 10.3390/nu10111772] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022] Open
Abstract
Coffee, tea, caffeinated soda, and energy drinks are important sources of caffeine in the diet but each present with other unique nutritional properties. We review how our increased knowledge and concern with regard to caffeine in the diet and its impact on human health has been translated into food-based dietary guidelines (FBDG). Using the Food and Agriculture Organization list of 90 countries with FBDG as a starting point, we found reference to caffeine or caffeine-containing beverages (CCB) in 81 FBDG and CCB consumption data (volume sales) for 56 of these countries. Tea and soda are the leading CCB sold in African and Asian/Pacific countries while coffee and soda are preferred in Europe, North America, Latin America, and the Caribbean. Key themes observed across FBDG include (i) caffeine-intake upper limits to avoid risks, (ii) CCB as replacements for plain water, (iii) CCB as added-sugar sources, and (iv) health benefits of CCB consumption. In summary, FBDG provide an unfavorable view of CCB by noting their potential adverse/unknown effects on special populations and their high sugar content, as well as their diuretic, psycho-stimulating, and nutrient inhibitory properties. Few FBDG balanced these messages with recent data supporting potential benefits of specific beverage types.
Collapse
Affiliation(s)
- Celine Marie Reyes
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
82
|
Zheng H, Wang L, Zeng S, Chen J, Wang H, Yu J, Gong X, Jiang H, Yang X, Qi X, Wang Y, Lu L, Hu M, Zhu L, Liu Z. Age-related changes in hepatic expression and activity of drug metabolizing enzymes in male wild-type and breast cancer resistance protein knockout mice. Biopharm Drug Dispos 2018; 39:344-353. [PMID: 30016542 DOI: 10.1002/bdd.2151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/20/2018] [Accepted: 07/02/2018] [Indexed: 11/06/2022]
Abstract
This study aimed to reveal age-related changes in the expression and activity of seven hepatic drug metabolizing enzymes (DMEs) in male wild-type and breast cancer resistance protein knockout (Bcrp1-/- ) FVB mice. The protein expression of four cytochrome P450 (Cyps) (Cyp3a11, 2d22, 2e1, and 1a2), and three UDP-glucuronosyltransferases (Ugts) (Ugt1a1, 1a6a, and 1a9) in liver microsomes of wild-type and Bcrp1-/- FVB mice at different ages were determined using a validated ultra high performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) method. The activities and mRNA levels of these DMEs were measured using the probe substrates method and real-time PCR, respectively. In the liver of wild-type FVB mice, Cyp3a11, 2d22, 2e1, 1a2, Ugt1a1, and 1a6a displayed maximum protein levels at 6-9 weeks of age. Cyp1a2, Ugt1a1, 1a6a, and 1a9 showed maximum activities at 6-9 weeks of age, whereas Cyp3a11, 2d22, and 2e1 showed maximum activities in 1-3-week-old mice. Additionally, most of the DMEs showed maximum mRNA levels in 17-week-old mice liver. Compared with wild-type FVB mice, the protein levels of these DMEs showed no significant changes in Bcrp1-/- FVB mice liver. However, the activity of Cyp2e1 was increased and that of Cyp2d22 was decreased. In conclusion, the seven hepatic DMEs in FVB mice liver showed significant alterations in an isoform-specific manner with increased age. Although the protein levels of these DMEs showed no significant changes, the activities of Cyp2e1 and 2d22 were changed in Bcrp1-/- mice.
Collapse
Affiliation(s)
- Haihui Zheng
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Liping Wang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | | | | | - Haojia Wang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jia Yu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xia Gong
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Huangyu Jiang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xia Yang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xiaoxiao Qi
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Ying Wang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Linlin Lu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Ming Hu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 1441 Moursund Street, Houston, TX, 77030, USA
| | - Lijun Zhu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), China
| |
Collapse
|
83
|
Braam W, Ehrhart F, Maas APHM, Smits MG, Curfs L. Low maternal melatonin level increases autism spectrum disorder risk in children. RESEARCH IN DEVELOPMENTAL DISABILITIES 2018; 82:79-89. [PMID: 29501372 DOI: 10.1016/j.ridd.2018.02.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/05/2018] [Accepted: 02/17/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND It is assumed that autism spectrum disorder (ASD) is caused by a combination of de novo inherited variation and common variation as well as environmental factors. It often co-occurs with intellectual disability (ID). Almost eight hundred potential causative genetic variations have been found in ASD patients. However, not one of them is responsible for more than 1% of ASD cases. Low melatonin levels are a frequent finding in ASD patients. Melatonin levels are negatively correlated with severity of autistic impairments, it is important for normal neurodevelopment and is highly effective in protecting DNA from oxidative damage. Melatonin deficiency could be a major factor, and well a common heritable variation, that increases the susceptibility to environmental risk factors for ASD. ASD is already present at birth. As the fetus does not produce melatonin, low maternal melatonin levels may be involved. METHODS We measured 6-sulfatoxymelatonin in urine of 60 mothers of a child with ASD and controls. RESULTS 6-sulfatoxymelatonin levels were significantly lower in mothers with an ASD child than in controls (p = 0.012). CONCLUSIONS Low parental melatonin levels could be one of the contributors to ASD and possibly ID etiology. Our findings need to be duplicated on a larger scale. If our hypothesis is correct, this could lead to policies to detect future parents who are at risk and to treatment strategies to ASD and intellectual disability risk.
Collapse
Affiliation(s)
- Wiebe Braam
- 's Heeren Loo, Department Advisium, Wekerom, The Netherlands; Governor Kremers Centre, Maastricht University Medical Centre, The Netherlands.
| | - Friederike Ehrhart
- Governor Kremers Centre, Maastricht University Medical Centre, The Netherlands; Department of Bioinformatics - BiGCaT, Maastricht University, Maastricht, The Netherlands
| | - Anneke P H M Maas
- Governor Kremers Centre, Maastricht University Medical Centre, The Netherlands; Department of Special Education, Radboud University, Nijmegen, The Netherlands
| | - Marcel G Smits
- Governor Kremers Centre, Maastricht University Medical Centre, The Netherlands; Multidisciplinary expert centre for sleep-wake disturbances and chronobiology, Gelderse Vallei Hospital, Ede, The Netherlands
| | - Leopold Curfs
- Governor Kremers Centre, Maastricht University Medical Centre, The Netherlands
| |
Collapse
|
84
|
The Acute Effects of Caffeinated Black Coffee on Cognition and Mood in Healthy Young and Older Adults. Nutrients 2018; 10:nu10101386. [PMID: 30274327 PMCID: PMC6213082 DOI: 10.3390/nu10101386] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 11/23/2022] Open
Abstract
Cognitive and mood benefits of coffee are often attributed to caffeine. However, emerging evidence indicates behavioural effects of non-caffeine components within coffee, suggesting the potential for direct or synergistic effects of these compounds when consumed with caffeine in regular brewed coffee. The current randomised, placebo-controlled, double-blind, counterbalanced-crossover study compared the effects of regular coffee, decaffeinated coffee, and placebo on measures of cognition and mood. Age and sex effects were explored by comparing responses of older (61–80 years, N = 30) and young (20–34 years, N = 29) males and females. Computerised measures of episodic memory, working memory, attention, and subjective state were completed at baseline and 30 min post-drink. Regular coffee produced the expected effects of decreased reaction time and increased alertness when compared to placebo. When compared to decaffeinated coffee, increased digit vigilance accuracy and decreased tiredness and headache ratings were observed. Decaffeinated coffee also increased alertness when compared to placebo. Higher jittery ratings following regular coffee in young females and older males represented the only interaction of sex and age with treatment. These findings suggest behavioural activity of coffee beyond its caffeine content, raising issues with the use of decaffeinated coffee as a placebo and highlighting the need for further research into its psychoactive effects.
Collapse
|
85
|
Southward K, Rutherfurd-Markwick K, Badenhorst C, Ali A. The Role of Genetics in Moderating the Inter-Individual Differences in the Ergogenicity of Caffeine. Nutrients 2018; 10:E1352. [PMID: 30248915 PMCID: PMC6213712 DOI: 10.3390/nu10101352] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 12/17/2022] Open
Abstract
Caffeine use is widespread among athletes following its removal from the World Anti-Doping Agency banned list, with approximately 75% of competitive athletes using caffeine. While literature supports that caffeine has a small positive ergogenic effect for most forms of sports and exercise, there exists a significant amount of inter-individual difference in the response to caffeine ingestion and the subsequent effect on exercise performance. In this narrative review, we discuss some of the potential mechanisms and focus on the role that genetics has in these differences. CYP1A2 and ADORA2A are two of the genes which are thought to have the largest impact on the ergogenicity of caffeine. CYP1A2 is responsible for the majority of the metabolism of caffeine, and ADORA2A has been linked to caffeine-induced anxiety. The effects of CYP1A2 and ADORA2A genes on responses to caffeine will be discussed in detail and an overview of the current literature will be presented. The role of these two genes may explain a large portion of the inter-individual variance reported by studies following caffeine ingestion. Elucidating the extent to which these genes moderate responses to caffeine during exercise will ensure caffeine supplementation programs can be tailored to individual athletes in order to maximize the potential ergogenic effect.
Collapse
Affiliation(s)
- Kyle Southward
- School of Sport, Exercise and Nutrition, Massey University, North Shore Mail Centre, Private Bag 102 904, Auckland 0745, New Zealand.
| | - Kay Rutherfurd-Markwick
- School of Health Sciences, Massey University, Auckland 0745, New Zealand.
- Centre for Metabolic Health Research, Massey University, Auckland 0745, New Zealand.
| | - Claire Badenhorst
- School of Sport, Exercise and Nutrition, Massey University, North Shore Mail Centre, Private Bag 102 904, Auckland 0745, New Zealand.
- Centre for Metabolic Health Research, Massey University, Auckland 0745, New Zealand.
| | - Ajmol Ali
- School of Sport, Exercise and Nutrition, Massey University, North Shore Mail Centre, Private Bag 102 904, Auckland 0745, New Zealand.
- Centre for Metabolic Health Research, Massey University, Auckland 0745, New Zealand.
| |
Collapse
|
86
|
Alghamdi BS. The neuroprotective role of melatonin in neurological disorders. J Neurosci Res 2018; 96:1136-1149. [PMID: 29498103 PMCID: PMC6001545 DOI: 10.1002/jnr.24220] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/08/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022]
Abstract
Melatonin is a neurohormone secreted from the pineal gland and has a wide-ranging regulatory and neuroprotective role. It has been reported that melatonin level is disturbed in some neurological conditions such as stroke, Alzheimer's disease, and Parkinson's disease, which indicates its involvement in the pathophysiology of these diseases. Its properties qualify it to be a promising potential therapeutic neuroprotective agent, with no side effects, for some neurological disorders. This review discusses and localizes the effect of melatonin in the pathophysiology of some diseases.
Collapse
Affiliation(s)
- B. S. Alghamdi
- Department of Physiology, Faculty of MedicineKing Abdulaziz UniversityJeddahKSA
- Neuroscience Unit, Faculty of MedicineKing Abdulaziz UniversityJeddahKSA
| |
Collapse
|
87
|
Klaunig JE, Li X, Wang Z. Role of xenobiotics in the induction and progression of fatty liver disease. Toxicol Res (Camb) 2018; 7:664-680. [PMID: 30090613 PMCID: PMC6062016 DOI: 10.1039/c7tx00326a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/09/2018] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease is a major cause of chronic liver pathology in humans. Fatty liver disease involves the accumulation of hepatocellular fat in hepatocytes that can progress to hepatitis. Steatohepatitis is categorized into alcoholic (ASH) or non-alcoholic (NASH) steatohepatitis based on the etiology of the insult. Both pathologies involve an initial steatosis followed by a progressive inflammation of the liver and eventual hepatic fibrosis (steatohepatitis) and cirrhosis. The involvement of pharmaceuticals and other chemicals in the initiation and progression of fatty liver disease has received increased study. This review will examine not only how xenobiotics initiate hepatic steatosis and steatohepatitis but also how the presence of fatty liver may modify the metabolism and pathologic effects of xenobiotics. The feeding of a high fat diet results in changes in the expression of nuclear receptors that are involved in adaptive and adverse liver effects following xenobiotic exposure. High fat diets also modulate cellular and molecular pathways involved in inflammation, metabolism, oxidative phosphorylation and cell growth. Understanding the role of hepatic steatosis and steatohepatitis on the sequelae of toxic and pathologic changes seen following xenobiotic exposure has importance in defining proper and meaningful human risk characterization of the drugs and other chemical agents.
Collapse
Affiliation(s)
- James E Klaunig
- Indiana University , School of Public Health , Bloomington , Indiana , USA .
| | - Xilin Li
- Indiana University , School of Public Health , Bloomington , Indiana , USA .
| | - Zemin Wang
- Indiana University , School of Public Health , Bloomington , Indiana , USA .
| |
Collapse
|
88
|
Mora C, Zonca V, Riva MA, Cattaneo A. Blood biomarkers and treatment response in major depression. Expert Rev Mol Diagn 2018; 18:513-529. [DOI: 10.1080/14737159.2018.1470927] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Cristina Mora
- Biological Psychiatry Unit, IRCCS Fatebenefratelli S. Giovanni di Dio, Brescia, Italy
| | - Valentina Zonca
- Biological Psychiatry Unit, IRCCS Fatebenefratelli S. Giovanni di Dio, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Marco A. Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Fatebenefratelli S. Giovanni di Dio, Brescia, Italy
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, King’s College, London, UK
| |
Collapse
|
89
|
A Prospective Investigation of Coffee Drinking and Bladder Cancer Incidence in the United States. Epidemiology 2018; 28:685-693. [PMID: 28768299 DOI: 10.1097/ede.0000000000000676] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND In 1991, coffee was classified as a group 2B carcinogen, possibly carcinogenic to humans, based on limited epidemiologic evidence of a positive association with bladder cancer. In 2016, the International Agency for Research on Cancer downgraded this classification due to lack of evidence from prospective studies particularly for never smokers. METHODS Baseline coffee drinking was assessed with a food frequency questionnaire in the NIH-AARP prospective cohort study. Among 469,047 US adults, who were cancer free at baseline, 6,012 bladder cancer cases (5,088 men and 924 women) were identified during >6.3 million person-years of follow-up. Multivariable-adjusted Cox proportional hazards models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI), with non-coffee drinkers as the reference group. RESULTS Coffee drinking was positively associated with bladder cancer in models adjusted for age and sex (HR for ≥4 cups/d relative to coffee nondrinkers = 1.91, 95% CI = 1.70, 2.14; P trend < 0.0001). However, the association was substantially attenuated after adjustment for cigarette smoking and other potential confounders (HR for ≥4 cups/d relative to coffee nondrinkers = 1.18, 95% CI = 1.05, 1.33; P trend = 0.0007). Associations were further attenuated after additional adjustment for lifetime smoking patterns among the majority of the cohort with this available data (P trend = 0.16). There was no evidence of an association among never smokers (P trend = 0.84). CONCLUSIONS Positive associations between coffee drinking and bladder cancer among ever smokers but not never smokers suggest that residual confounding from imperfect measurement of smoking or unmeasured risk factors may be an explanation for our positive findings.
Collapse
|
90
|
Xiong S, Li L. The effect of CYP1A2 gene polymorphism on the metabolism of theophylline. Exp Ther Med 2018; 15:109-114. [PMID: 29387184 PMCID: PMC5769306 DOI: 10.3892/etm.2017.5396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/18/2017] [Indexed: 01/24/2023] Open
Abstract
This aim of the study was to investigate the effect of CYP1A2 gene polymorphism on the metabolism of theophylline in minority and Han nationality. A total of 50 cases of Han (Han group) and 50 minority nationalities (ethnic groups) treated with theophylline were selected for the study. The genotype and allele frequencies of the two groups of CYP1A2 gene, G-3113A and G-3860A, were compared to determine the rate of theophylline clearance. The results showed that there was no significant difference in the concentration of the homeostasis and the rate of the theophylline removal rate (P>0.05). There was no significant difference in the genotype and allele frequencies of the CYP1A2 gene, G-3113A and G-3860A apolymorphic site. This study employed a logarithm to determine theophylline clearance in order to correlate it with the normal distribution. The results showed that the theophylline clearance of the two groups of CYP1A2 G-3113A gene loci A allele carriers (AA+GA genotype) was significantly lower than that of the G allele carriers (GG genotype), and a significant difference between the groups was identified (P<0.05). There was no significant difference in the theophylline clearance rates in the two groups for the CYP1A2 gene, G-3860A apolymorphic site (P>0.05). Compared to the GG genotype of the CYP1A2 gene, the G-3113A site AA and GA genotype patients had a low clearance rate in the theophylline, whereas there was no correlation between teh genotypes of the CYP1A2 gene, G-3860A and the rate of theophylline clearance.
Collapse
Affiliation(s)
- Shijuan Xiong
- Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Lingling Li
- Department of Pharmacy, Chengdu Women and Children's Center Hospital, Chengdu, Sichuan 610091, P.R. China
| |
Collapse
|
91
|
Fujimaki M, Saiki S, Li Y, Kaga N, Taka H, Hatano T, Ishikawa KI, Oji Y, Mori A, Okuzumi A, Koinuma T, Ueno SI, Imamichi Y, Ueno T, Miura Y, Funayama M, Hattori N. Serum caffeine and metabolites are reliable biomarkers of early Parkinson disease. Neurology 2018; 90:e404-e411. [PMID: 29298852 PMCID: PMC5791797 DOI: 10.1212/wnl.0000000000004888] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/29/2017] [Indexed: 12/29/2022] Open
Abstract
Objective To investigate the kinetics and metabolism of caffeine in serum from patients with Parkinson disease (PD) and controls using liquid chromatography–mass spectrometry. Methods Levels of caffeine and its 11 metabolites in serum from 108 patients with PD and 31 age-matched healthy controls were examined by liquid chromatography–mass spectrometry. Mutations in caffeine-associated genes were screened by direct sequencing. Results Serum levels of caffeine and 9 of its downstream metabolites were significantly decreased even in patients with early PD, unrelated to total caffeine intake or disease severity. No significant genetic variations in CYP1A2 or CYP2E1, encoding cytochrome P450 enzymes primarily involved in metabolizing caffeine in humans, were detected compared with controls. Likewise, caffeine concentrations in patients with PD with motor complications were significantly decreased compared with those without motor complications. No associations between disease severity and single nucleotide variants of the ADORA2A gene encoding adenosine 2A receptor were detected, implying a dissociation of receptor sensitivity changes and phenotype. The profile of serum caffeine and metabolite levels was identified as a potential diagnostic biomarker by receiver operating characteristic curve analysis. Conclusion Absolute lower levels of caffeine and caffeine metabolite profiles are promising diagnostic biomarkers for early PD. This is consistent with the neuroprotective effect of caffeine previously revealed by epidemiologic and experimental studies. Classification of evidence This study provides Class III evidence that decreased serum levels of caffeine and its metabolites identify patients with PD.
Collapse
Affiliation(s)
- Motoki Fujimaki
- From the Department of Neurology (M.F., S.S., Y.L., T.H., K.-I.I., Y.O., A.M., A.O., T.K., S.-I.U., Y.I., M.F., N.H.), Research Institute for Diseases of Old Age (M.F., N.H.), and Laboratory of Proteomics and Biomolecular Science (N.K., H.T., T.U., Y.M.), Juntendo University School of Medicine, Tokyo, Japan
| | - Shinji Saiki
- From the Department of Neurology (M.F., S.S., Y.L., T.H., K.-I.I., Y.O., A.M., A.O., T.K., S.-I.U., Y.I., M.F., N.H.), Research Institute for Diseases of Old Age (M.F., N.H.), and Laboratory of Proteomics and Biomolecular Science (N.K., H.T., T.U., Y.M.), Juntendo University School of Medicine, Tokyo, Japan.
| | - Yuanzhe Li
- From the Department of Neurology (M.F., S.S., Y.L., T.H., K.-I.I., Y.O., A.M., A.O., T.K., S.-I.U., Y.I., M.F., N.H.), Research Institute for Diseases of Old Age (M.F., N.H.), and Laboratory of Proteomics and Biomolecular Science (N.K., H.T., T.U., Y.M.), Juntendo University School of Medicine, Tokyo, Japan
| | - Naoko Kaga
- From the Department of Neurology (M.F., S.S., Y.L., T.H., K.-I.I., Y.O., A.M., A.O., T.K., S.-I.U., Y.I., M.F., N.H.), Research Institute for Diseases of Old Age (M.F., N.H.), and Laboratory of Proteomics and Biomolecular Science (N.K., H.T., T.U., Y.M.), Juntendo University School of Medicine, Tokyo, Japan
| | - Hikari Taka
- From the Department of Neurology (M.F., S.S., Y.L., T.H., K.-I.I., Y.O., A.M., A.O., T.K., S.-I.U., Y.I., M.F., N.H.), Research Institute for Diseases of Old Age (M.F., N.H.), and Laboratory of Proteomics and Biomolecular Science (N.K., H.T., T.U., Y.M.), Juntendo University School of Medicine, Tokyo, Japan
| | - Taku Hatano
- From the Department of Neurology (M.F., S.S., Y.L., T.H., K.-I.I., Y.O., A.M., A.O., T.K., S.-I.U., Y.I., M.F., N.H.), Research Institute for Diseases of Old Age (M.F., N.H.), and Laboratory of Proteomics and Biomolecular Science (N.K., H.T., T.U., Y.M.), Juntendo University School of Medicine, Tokyo, Japan
| | - Kei-Ichi Ishikawa
- From the Department of Neurology (M.F., S.S., Y.L., T.H., K.-I.I., Y.O., A.M., A.O., T.K., S.-I.U., Y.I., M.F., N.H.), Research Institute for Diseases of Old Age (M.F., N.H.), and Laboratory of Proteomics and Biomolecular Science (N.K., H.T., T.U., Y.M.), Juntendo University School of Medicine, Tokyo, Japan
| | - Yutaka Oji
- From the Department of Neurology (M.F., S.S., Y.L., T.H., K.-I.I., Y.O., A.M., A.O., T.K., S.-I.U., Y.I., M.F., N.H.), Research Institute for Diseases of Old Age (M.F., N.H.), and Laboratory of Proteomics and Biomolecular Science (N.K., H.T., T.U., Y.M.), Juntendo University School of Medicine, Tokyo, Japan
| | - Akio Mori
- From the Department of Neurology (M.F., S.S., Y.L., T.H., K.-I.I., Y.O., A.M., A.O., T.K., S.-I.U., Y.I., M.F., N.H.), Research Institute for Diseases of Old Age (M.F., N.H.), and Laboratory of Proteomics and Biomolecular Science (N.K., H.T., T.U., Y.M.), Juntendo University School of Medicine, Tokyo, Japan
| | - Ayami Okuzumi
- From the Department of Neurology (M.F., S.S., Y.L., T.H., K.-I.I., Y.O., A.M., A.O., T.K., S.-I.U., Y.I., M.F., N.H.), Research Institute for Diseases of Old Age (M.F., N.H.), and Laboratory of Proteomics and Biomolecular Science (N.K., H.T., T.U., Y.M.), Juntendo University School of Medicine, Tokyo, Japan
| | - Takahiro Koinuma
- From the Department of Neurology (M.F., S.S., Y.L., T.H., K.-I.I., Y.O., A.M., A.O., T.K., S.-I.U., Y.I., M.F., N.H.), Research Institute for Diseases of Old Age (M.F., N.H.), and Laboratory of Proteomics and Biomolecular Science (N.K., H.T., T.U., Y.M.), Juntendo University School of Medicine, Tokyo, Japan
| | - Shin-Ichi Ueno
- From the Department of Neurology (M.F., S.S., Y.L., T.H., K.-I.I., Y.O., A.M., A.O., T.K., S.-I.U., Y.I., M.F., N.H.), Research Institute for Diseases of Old Age (M.F., N.H.), and Laboratory of Proteomics and Biomolecular Science (N.K., H.T., T.U., Y.M.), Juntendo University School of Medicine, Tokyo, Japan
| | - Yoko Imamichi
- From the Department of Neurology (M.F., S.S., Y.L., T.H., K.-I.I., Y.O., A.M., A.O., T.K., S.-I.U., Y.I., M.F., N.H.), Research Institute for Diseases of Old Age (M.F., N.H.), and Laboratory of Proteomics and Biomolecular Science (N.K., H.T., T.U., Y.M.), Juntendo University School of Medicine, Tokyo, Japan
| | - Takashi Ueno
- From the Department of Neurology (M.F., S.S., Y.L., T.H., K.-I.I., Y.O., A.M., A.O., T.K., S.-I.U., Y.I., M.F., N.H.), Research Institute for Diseases of Old Age (M.F., N.H.), and Laboratory of Proteomics and Biomolecular Science (N.K., H.T., T.U., Y.M.), Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshiki Miura
- From the Department of Neurology (M.F., S.S., Y.L., T.H., K.-I.I., Y.O., A.M., A.O., T.K., S.-I.U., Y.I., M.F., N.H.), Research Institute for Diseases of Old Age (M.F., N.H.), and Laboratory of Proteomics and Biomolecular Science (N.K., H.T., T.U., Y.M.), Juntendo University School of Medicine, Tokyo, Japan
| | - Manabu Funayama
- From the Department of Neurology (M.F., S.S., Y.L., T.H., K.-I.I., Y.O., A.M., A.O., T.K., S.-I.U., Y.I., M.F., N.H.), Research Institute for Diseases of Old Age (M.F., N.H.), and Laboratory of Proteomics and Biomolecular Science (N.K., H.T., T.U., Y.M.), Juntendo University School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- From the Department of Neurology (M.F., S.S., Y.L., T.H., K.-I.I., Y.O., A.M., A.O., T.K., S.-I.U., Y.I., M.F., N.H.), Research Institute for Diseases of Old Age (M.F., N.H.), and Laboratory of Proteomics and Biomolecular Science (N.K., H.T., T.U., Y.M.), Juntendo University School of Medicine, Tokyo, Japan.
| |
Collapse
|
92
|
Tornio A, Backman JT. Cytochrome P450 in Pharmacogenetics: An Update. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2018; 83:3-32. [PMID: 29801580 DOI: 10.1016/bs.apha.2018.04.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Interindividual variability in drug disposition is a major cause of lack of efficacy and adverse effects of drug therapies. The majority of hepatically cleared drugs are metabolized by cytochrome P450 (CYP) enzymes, mainly in families CYP1, CYP2, and CYP3. Genes encoding these enzymes are highly variable with allele distribution showing considerable differences between populations. Genetic variability of especially CYP2C9, CYP2C19, CYP2D6, and CYP3A5 is known to have clear clinical impact on drugs that are metabolized by these enzymes. CYP1A2, CYP2A6, CYP2B6, CYP2C8, and CYP3A4 all show variability that affects pharmacokinetics of drugs as well, but so far the evidence regarding their clinical implications is not as conclusive. In this review, we provide an up-to-date summary of the pharmacogenetics of the major human drug-metabolizing CYP enzymes, focusing on clinically significant examples.
Collapse
Affiliation(s)
- Aleksi Tornio
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Janne T Backman
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
93
|
Koonrungsesomboon N, Khatsri R, Wongchompoo P, Teekachunhatean S. The impact of genetic polymorphisms on CYP1A2 activity in humans: a systematic review and meta-analysis. THE PHARMACOGENOMICS JOURNAL 2017; 18:760-768. [DOI: 10.1038/s41397-017-0011-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/21/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022]
|
94
|
Al-Ahmad MM, Amir N, Dhanasekaran S, John A, Abdulrazzaq YM, Ali BR, Bastaki SMA. Genetic polymorphisms of cytochrome P450-1A2 (CYP1A2) among Emiratis. PLoS One 2017; 12:e0183424. [PMID: 28934216 PMCID: PMC5608188 DOI: 10.1371/journal.pone.0183424] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/03/2017] [Indexed: 02/05/2023] Open
Abstract
Cytochrome P450 1A2 (CYP1A2) is one of the CYP450 mixed-function oxidase system that is of clinical importance due to the large number of drug interactions associated with its induction and inhibition. In addition, significant inter-individual differences in the elimination of drugs metabolized by CYP1A2 enzyme have been observed which are largely due to the highly polymorphic nature of CYP1A2 gene. However, there are limited studies on CYP1A2 phenotypes and CYP1A2 genotypes among Emiratis and thus this study was carried out to fill this gap. Five hundred and seventy six non-smoker Emirati subjects were asked to consume a soft drink containing caffeine (a non-toxic and reliable probe for predicting CYP1A2 phenotype) and then provide a buccal swab along with a spot urine sample. Taq-Man Real Time PCR was used to determine the CYP1A2 genotype of each individual. Phenotyping was carried out by analyzing the caffeine metabolites using High Performance Liquid Chromatography (HPLC) analysis. We found that 1.4%, 16.3% and 82.3% of the Emirati subjects were slow, intermediate and rapid CYP1A2 metabolizers, respectively. In addition, we found that 1.4% of the subjects were homozygote for derived alleles while 16.1% were heterozygote and 82.5% were homozygote for the ancestral allele. The genotype frequency of the ancestral allele, CYP1A2*1A/*1A, is the highest in this population, followed by CYP1A2 *1A/*1C and CYP1A2 *1A/*1K genotypes, with frequencies of 0.825, 0.102 and 0.058, respectively. The degree of phenotype/genotype concordance was equal to 81.6%. The CYP1A2*1C/*1C and CYP1A2*3/*3 genotypes showed significantly the lowest enzyme phenotypic activity. The frequency of slow activity CYP1A2 enzyme alleles is very low among Emiratis which correlates with the presence of low frequencies of derived alleles in CYP1A2 gene.
Collapse
Affiliation(s)
- Mohammad M. Al-Ahmad
- Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Naheed Amir
- Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Subramanian Dhanasekaran
- Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Anne John
- Department of Pathology, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Yousef M. Abdulrazzaq
- Department of Pediatrics, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Bassam R. Ali
- Department of Pathology, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Salim M. A. Bastaki
- Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
- * E-mail:
| |
Collapse
|
95
|
de Andrés F, Sosa-Macías M, Ramos BPL, Naranjo MEG, LLerena A. CYP450 Genotype/Phenotype Concordance in Mexican Amerindian Indigenous Populations–Where to from Here for Global Precision Medicine? ACTA ACUST UNITED AC 2017; 21:509-519. [DOI: 10.1089/omi.2017.0101] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fernando de Andrés
- CICAB Clinical Research Centre, Extremadura University Hospital and Medical School, Badajoz, Spain
- Department of Analytical Chemistry and Food Technology, Faculty of Pharmacy, University of Castilla-La Mancha, Albacete, Spain
| | | | | | - María-Eugenia G. Naranjo
- CICAB Clinical Research Centre, Extremadura University Hospital and Medical School, Badajoz, Spain
| | - Adrián LLerena
- CICAB Clinical Research Centre, Extremadura University Hospital and Medical School, Badajoz, Spain
| |
Collapse
|
96
|
Sridhar J, Goyal N, Liu J, Foroozesh M. Review of Ligand Specificity Factors for CYP1A Subfamily Enzymes from Molecular Modeling Studies Reported to-Date. Molecules 2017; 22:molecules22071143. [PMID: 28698457 PMCID: PMC6152251 DOI: 10.3390/molecules22071143] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/01/2017] [Accepted: 07/03/2017] [Indexed: 02/03/2023] Open
Abstract
The cytochrome P450 (CYP) family 1A enzymes, CYP1A1 and CYP1A2, are two of the most important enzymes implicated in the metabolism of endogenous and exogenous compounds through oxidation. These enzymes are also known to metabolize environmental procarcinogens into carcinogenic species, leading to the advent of several types of cancer. The development of selective inhibitors for these P450 enzymes, mitigating procarcinogenic oxidative effects, has been the focus of many studies in recent years. CYP1A1 is mainly found in extrahepatic tissues while CYP1A2 is the major CYP enzyme in human liver. Many molecules have been found to be metabolized by both of these enzymes, with varying rates and/or positions of oxidation. A complete understanding of the factors that govern the specificity and potency for the two CYP 1A enzymes is critical to the development of effective inhibitors. Computational molecular modeling tools have been used by several research groups to decipher the specificity and potency factors of the CYP1A1 and CYP1A2 substrates. In this review, we perform a thorough analysis of the computational studies that are ligand-based and protein-ligand complex-based to catalog the various factors that govern the specificity/potency toward these two enzymes.
Collapse
Affiliation(s)
- Jayalakshmi Sridhar
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA 70125, USA.
| | - Navneet Goyal
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA 70125, USA.
| | - Jiawang Liu
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA 70125, USA.
| | - Maryam Foroozesh
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA 70125, USA.
| |
Collapse
|
97
|
Abstract
Bleeding complications are a common concern with the use of anticoagulant agents. In many situations, reversing of neutralizing their effects may be warranted. Prothrombin complex concentrate replaces coagulation factors lowered by warfarin, as does fresh frozen plasma, but in a more concentrated form. Protamine negates the effect of heparin and combines chemically with heparin molecules to form an inactive salt. It also partially reverses the effects of low-molecular-weight heparin. Recombinant activated factor VII is a nonspecific procoagulant that activates the extrinsic clotting pathway, resulting in thrombin generation, but does not directly neutralize the activity of any of the new oral anticoagulants.
Collapse
Affiliation(s)
- Joseph Meltzer
- Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Joseph R Guenzer
- Department of Anesthesiology, University of Utah Medical School, 30 North 1900 East, Room 3C444, Salt Lake City, UT 84132-2501, USA
| |
Collapse
|
98
|
Ren Y, Liu F, Shi X, Geng T, Yuan D, Wang L, Kang L, Jin T, Chen C. Investigation of the major cytochrome P450 1A2 genetic variant in a healthy Tibetan population in China. Mol Med Rep 2017; 16:573-580. [PMID: 28560456 PMCID: PMC5482113 DOI: 10.3892/mmr.2017.6645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 03/07/2017] [Indexed: 11/18/2022] Open
Abstract
The cytochrome P450 (CYP) 1A2 gene is involved in the metabolism of several carcinogens and clinically important drugs, generating a high potential for pharmacokinetic interactions. Since no data are available for Tibetan aborigines, the present study aimed to investigate the distribution of variant CYP1A2 alleles in a population living in Tibetan region of China. Genotyping analyses of CYP1A2 were conducted in 96 unrelated, healthy volunteers of Tibetan ancestry using direct sequencing assays. A total of 14 different CYP1A2 polymorphisms, including two novel variants (1690G>A and 2896C>T) in the intron region and a novel non-synonymous one (795G>C, Gln265His) were detected. CYP1A2*1A (6.77%), CYP1A2*1B (58.33%) and CYP1A2*1F (14.58%) were the most frequent defective alleles identified in the sample. The frequencies of the prevalent genotypes CYP1A2*1A/*1B, *1B/*1B, *1B/*1F were 13.54%, 16.67% and 29.17%, respectively. In addition, the novel non-synonymous variant 795G>C (Gln265His) was predicted to be benign by PolyPhen-2 and SIFT tools. The present study provides useful information on the pattern of CYP1A2 polymorphisms in Chinese Tibetan population. The current results may have potential benefits for the development of personalized medicine in the Tibetan population.
Collapse
Affiliation(s)
- Yongchao Ren
- Qiannan Institute for Food and Drug Control, Duyun, Guizhou 558000, P.R. China
| | - Fang Liu
- The Reproductive Centre, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - Xugang Shi
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of the Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| | - Tingting Geng
- National Engineering Research Center for Miniaturized Detection Systems, Xi'an, Shaanxi 710069, P.R. China
| | - Dongya Yuan
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of the Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| | - Li Wang
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of the Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| | - Longli Kang
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of the Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| | - Tianbo Jin
- School of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Chao Chen
- School of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| |
Collapse
|
99
|
Population Pharmacokinetics and Pharmacogenetics Analysis of Rilpivirine in HIV-1-Infected Individuals. Antimicrob Agents Chemother 2016; 61:AAC.00899-16. [PMID: 27799217 DOI: 10.1128/aac.00899-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/22/2016] [Indexed: 12/16/2022] Open
Abstract
Rilpivirine (RPV), the latest nonnucleoside reverse transcriptase inhibitor active against HIV-1, is prescribed in a standard dosage of 25 mg once a day in combination with emtricitabine (FTC) and tenofovir disoproxil fumarate (TDF). The aim of this observational study was to characterize the RPV pharmacokinetic profile, to quantify interpatient variability, and to identify potential factors that could influence drug exposure. RPV concentration data were collected from HIV-infected patients as part of routine therapeutic drug monitoring performed in our center (Laboratory of Clinical Pharmacology). A population pharmacokinetic analysis was performed with NONMEM by comparing various structural models. The influence of demographic and clinical covariates, as well as frequent genetic polymorphisms in 5 genes (CYP3A4*22, CYP3A5*3, CYP2C19*2, CYP2C19*17, UGT1A1*28, and UGT1A4*2), on RPV elimination was explored. A total of 325 plasma concentration measurements were obtained from 249 HIV-positive patients. Plasma concentrations ranged from 12 to 255 ng/ml. A one-compartment model with zero-order absorption best characterized RPV pharmacokinetics. The average RPV clearance (CL) was 11.7 liters/h, the average volume of distribution was 401 liters, and the mean absorption time was 4 h. The interinterindividual variability (IIV) for CL was estimated to be 33%. None of the available demographic or genetic covariates showed any influence on RPV pharmacokinetics, but 29% of the patients were predicted to present minimal concentrations below the recently identified target cutoff value of 50 ng/ml. The variability in RPV pharmacokinetics appears to be lower than that for most other antiretroviral drugs. However, under the standard regimen of 25 mg daily, a significant number of patients might be underdosed. It remains to be investigated whether the underexposure has an impact on the development of resistance while patients are on maintenance therapy.
Collapse
|
100
|
Cornelis MC, Kacprowski T, Menni C, Gustafsson S, Pivin E, Adamski J, Artati A, Eap CB, Ehret G, Friedrich N, Ganna A, Guessous I, Homuth G, Lind L, Magnusson PK, Mangino M, Pedersen NL, Pietzner M, Suhre K, Völzke H, Bochud M, Spector TD, Grabe HJ, Ingelsson E. Genome-wide association study of caffeine metabolites provides new insights to caffeine metabolism and dietary caffeine-consumption behavior. Hum Mol Genet 2016; 25:5472-5482. [PMID: 27702941 DOI: 10.1093/hmg/ddw334] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 09/28/2016] [Indexed: 12/23/2022] Open
Abstract
Caffeine is the most widely consumed psychoactive substance in the world and presents with wide interindividual variation in metabolism. This variation may modify potential adverse or beneficial effects of caffeine on health. We conducted a genome-wide association study (GWAS) of plasma caffeine, paraxanthine, theophylline, theobromine and paraxanthine/caffeine ratio among up to 9,876 individuals of European ancestry from six population-based studies. A single SNP at 6p23 (near CD83) and several SNPs at 7p21 (near AHR), 15q24 (near CYP1A2) and 19q13.2 (near CYP2A6) met GW-significance (P < 5 × 10-8) and were associated with one or more metabolites. Variants at 7p21 and 15q24 associated with higher plasma caffeine and lower plasma paraxanthine/caffeine (slow caffeine metabolism) were previously associated with lower coffee and caffeine consumption behavior in GWAS. Variants at 19q13.2 associated with higher plasma paraxanthine/caffeine (slow paraxanthine metabolism) were also associated with lower coffee consumption in the UK Biobank (n = 94 343, P < 1.0 × 10-6). Variants at 2p24 (in GCKR), 4q22 (in ABCG2) and 7q11.23 (near POR) that were previously associated with coffee consumption in GWAS were nominally associated with plasma caffeine or its metabolites. Taken together, we have identified genetic factors contributing to variation in caffeine metabolism and confirm an important modulating role of systemic caffeine levels in dietary caffeine consumption behavior. Moreover, candidate genes identified encode proteins with important clinical functions that extend beyond caffeine metabolism.
Collapse
Affiliation(s)
- Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Tim Kacprowski
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Cristina Menni
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas Hospital, London, UK
| | - Stefan Gustafsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Edward Pivin
- Division of Chronic Diseases, University Institute of Social and Preventive Medicine (IUMSP), University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Jerzy Adamski
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Anna Artati
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Chin B Eap
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Lausanne, Switzerland
- School of Pharmaceutical Sciences, University of Geneve, University of Lausanne, Geneva, Switzerland
| | - Georg Ehret
- Cardiology, Department of Specialties of Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, USA
| | - Nele Friedrich
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Germany
| | - Andrea Ganna
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, USA
| | - Idris Guessous
- Division of Chronic Diseases, University Institute of Social and Preventive Medicine (IUMSP), University Hospital of Lausanne (CHUV), Lausanne, Switzerland
- Department of Community Medicine and Primary Care and Emergency Medicine, Unit of Population Epidemiology, Geneva University Hospitals, Geneva, Switzerland
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Patrik K Magnusson
- Karolinska Institutet, Department of Medical Epidemiology and Biostatistics, Stockholm, Sweden
| | - Massimo Mangino
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas Hospital, London, UK
| | - Nancy L Pedersen
- Karolinska Institutet, Department of Medical Epidemiology and Biostatistics, Stockholm, Sweden
| | - Maik Pietzner
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Germany
| | - Karsten Suhre
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Murielle Bochud
- Division of Chronic Diseases, University Institute of Social and Preventive Medicine (IUMSP), University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Tim D Spector
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas Hospital, London, UK
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Erik Ingelsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, USA
| |
Collapse
|