51
|
Zhang Z, He J, Shi T, Tang N, Zhang S, Wen S, Liu X, Zhao M, Wang D, Chen W. Associations between polychlorinated dibenzo-dioxins and polychlorinated dibenzo-furans exposure and oxidatively generated damage to DNA and lipid. CHEMOSPHERE 2019; 227:237-246. [PMID: 30991198 DOI: 10.1016/j.chemosphere.2019.04.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Polychlorinated dibenzo-dioxins and polychlorinated dibenzo-furans (PCDD/Fs) have been reported to induce reactive oxygen species and oxidative stress, but the dose-response relationships have not been explored in molecular epidemiological studies. In this study, a total of 602 participants were recruited, comprising of 215 foundry workers, 171 incineration workers and 216 residents living more than 5 km away from the plants as the reference group. Individual PCDD/Fs exposures were estimated according to PCDD/Fs levels of working and living ambient air and daily foods. Urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-iso-prostaglandin-F2α (8-isoPGF2α) were determined to reflect oxidatively generated damage to DNA and lipid. Generalized linear models were used to access the associations between PCDD/Fs exposure and oxidative stress biomarkers. We found that PCDD/Fs exposure and urinary oxidative stress biomarkers of workers were all higher than those of the reference group. Significantly positive exposure-response relationships between individual PCDD/Fs exposures and urinary 8-oxodG and 8-iso-PGF2α were found. Each 1-unit increase in ln-transformed levels of PCDD/Fs exposure generated a 0.78 nmol/mmol creatinine increase in ln-transformed 8-oxodG and a 0.50 ng/mmol creatinine increase in ln-transformed 8-isoPGF2α in foundry workers, a 0.49 nmol/mmol creatinine increase in ln-transformed 8-oxodG and a 0.26 ng/mmol creatinine increase in ln-transformed 8-isoPGF2α in incineration workers, compared with the reference group. And such associations were not modified by tobacco use. Our findings could help to understand the dose-response relationships between PCDD/Fs and oxidatively generated damage to DNA and lipid, and provide an epidemiologic basis for conducting research on the carcinogenesis and other toxicity mechanisms of PCDD/Fs.
Collapse
Affiliation(s)
- Zhuang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jintong He
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Zhuhai Center for Chronic Disease Control, Zhuhai, Guangdong, 519060, China
| | - Tingming Shi
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, 430079, China
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Sukun Zhang
- South China Institute of Environmental Sciences (SCIES), Ministry of Environmental Protection (MEP), Guangzhou, 510655, China
| | - Sheng Wen
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, 430079, China
| | - Xiao Liu
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, 430079, China
| | - Ming Zhao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Dongming Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
52
|
Leśków A, Nawrocka M, Łątkowska M, Tarnowska M, Galas N, Matejuk A, Całkosiński I. Can contamination of the environment by dioxins cause craniofacial defects? Hum Exp Toxicol 2019; 38:1014-1023. [DOI: 10.1177/0960327119855121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cleft lip and cleft palate also known as orofacial cleft is a congenital malformation involving the partial or total lack of anatomical continuity of craniofacial tissue. The most common environmental factors that may cause orofacial clefts include pharmaceuticals, alcohol, addictive drugs, and tobacco smoke. Living in the area of industrial factories, garbage, ironworks, crematoria, wastewater treatment plants, and plastic waste landfills also has a significant impact on the development of the craniofacial defects. Some of the main factors causing the formation of congenital craniofacial defects are dioxins, of which emission to the environment is an important environmental and health problem. Dioxins are a diverse group of organic chemical compounds, derivatives of oxanthrene and fumarates, which are organoleptically imperceptible. Acting mainly through induction of inflammation, they influence a number of metabolic processes, including the process of bone mineralization and embryonic development. In this work, we highlight the problem of orofacial cleft including the impact of dioxin on development of this defect and the recommended prevention.
Collapse
Affiliation(s)
- A Leśków
- Department of Nervous System Diseases, Faculty of Health Sciences, Wroclaw Medical University, Wroclaw, Poland
| | - M Nawrocka
- Department of Nervous System Diseases, Faculty of Health Sciences, Wroclaw Medical University, Wroclaw, Poland
| | - M Łątkowska
- Department of Nervous System Diseases, Faculty of Health Sciences, Wroclaw Medical University, Wroclaw, Poland
| | - M Tarnowska
- Department of Nervous System Diseases, Faculty of Health Sciences, Wroclaw Medical University, Wroclaw, Poland
| | - N Galas
- Department of Nervous System Diseases, Faculty of Health Sciences, Wroclaw Medical University, Wroclaw, Poland
| | - A Matejuk
- Department of Nervous System Diseases, Faculty of Health Sciences, Wroclaw Medical University, Wroclaw, Poland
| | - I Całkosiński
- Department of Nervous System Diseases, Faculty of Health Sciences, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
53
|
Brehm E, Flaws JA. Transgenerational Effects of Endocrine-Disrupting Chemicals on Male and Female Reproduction. Endocrinology 2019; 160:1421-1435. [PMID: 30998239 PMCID: PMC6525581 DOI: 10.1210/en.2019-00034] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/12/2019] [Indexed: 12/17/2022]
Abstract
Endocrine-disrupting chemicals are known to interfere with normal reproductive function and hormone signaling. Phthalates, bisphenol A, pesticides, and environmental contaminants such as polychlorinated biphenyls and dioxins are known endocrine-disrupting chemicals that have been shown to negatively affect both male and female reproduction. Exposure to these chemicals occurs on a daily basis owing to these compounds being found in plastics, personal care products, and pesticides. Recently, studies have shown that these chemicals may cause transgenerational effects on reproduction in both males and females. This is of concern because exposure to these chemicals prenatally or during adult life can negatively impact the reproductive health of future generations. This mini-review summarizes the endocrine-disrupting chemicals that humans are exposed to on a daily basis and what is known about the transgenerational effects that these chemicals may have on male and female reproduction.
Collapse
Affiliation(s)
- Emily Brehm
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois 61802
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois 61802
- Correspondence: Jodi A. Flaws, PhD, Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Room 3223, Urbana, Illinois 61802. E-mail: .
| |
Collapse
|
54
|
Chen Y, Sha R, Xu L, Xia Y, Liu Y, Li X, Xie HQ, Tang N, Zhao B. 2,3,7,8-Tetrachlorodibenzo-p-dioxin promotes migration ability of primary cultured rat astrocytes via aryl hydrocarbon receptor. J Environ Sci (China) 2019; 76:368-376. [PMID: 30528028 DOI: 10.1016/j.jes.2018.05.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 06/09/2023]
Abstract
Emerging evidence showed that 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) could induce expression of certain reactivation-associated genes in astrocytes, however, the consequent cellular effects and molecular mechanisms are still unclear. During the process of astrocyte reactivation, migration is a critical cellular event. In the present study, we employed wound-healing assay and Transwell® motility assay to explore the effects of TCDD on cell migration in primary cultured rat cortical astrocytes. We found that upon TCDD treatments at relative low concentrations (10-10 and/or 10-9 mol/L), the ability of primary astrocytes to migrate horizontally and vertically was promoted. In line with this cellular effect, the mRNA expression of two pro-migratory genes, including cell division cycle 42 (CDC42) and matrix metalloproteinase 2 (MMP2) was induced by TCDD treatment. Dioxin exerts its toxic effects mainly through aryl hydrocarbon receptor (AhR) pathway. So the role of AhR pathway in the pro-migratory effects of TCDD was examined using an AhR antagonist, CH223191. We found that application of CH223191 significantly reversed the pro-migratory effects of TCDD. Interestingly, the basal ability of horizontal migration as well as basal levels of CDC42 and MMP2 expression were dramatically reduced suggesting a possible physiological role of AhR in maintaining the endogenous migration ability of the primary astrocytes. These findings support the notion that dioxin promotes astrocyte reactivation at molecular and cellular levels.
Collapse
Affiliation(s)
- Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China.
| | - Rui Sha
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Yingjie Xia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Yiyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Xuejun Li
- Department of Occupational and Environmental Health, s, Tianjin Medical University, Tianjin 300070, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China.
| | - Naijun Tang
- Department of Occupational and Environmental Health, s, Tianjin Medical University, Tianjin 300070, China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
55
|
Dornbos P, Warren M, Crawford RB, Kaminski NE, Threadgill DW, LaPres JJ. Characterizing Serpinb2 as a Modulator of TCDD-Induced Suppression of the B Cell. Chem Res Toxicol 2018; 31:1248-1259. [PMID: 30339366 DOI: 10.1021/acs.chemrestox.8b00225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
2,3,7,8-Tetrachlordibenzo- p-dioxin (TCDD) is an environmental pollutant that can cause various toxic effects, including chloracne, metabolic syndrome, and immune suppression. Most of the toxicity associated with TCDD is mediated through activation of the aryl hydrocarbon receptor (AHR). Recent research has suggested the presence of a wide-range of interindividual variability in TCDD-mediated suppression of the Immunoglobulin-M (IgM) response across the human population. In an attempt to identify putative modifiers of AHR-mediated immunosuppression beyond the AHR, B cells were isolated from a panel of genetically diverse mouse strain to scan for modulators that drive interstrain differences in TCDD-mediated suppression of the IgM response. Results implicated a region of mouse Chromosome 1 near a gene encoding serine peptidase inhibitor, clade B, member 2 ( Serpinb2) whose human ortholog is plasminogen activator inhibitor 2 (PAI2). Further downstream analyses indicated that Serpinb2 is dysregulated by TCDD and, furthermore, that B cells from Serpinb2 -/- mice are significantly more sensitive to TCDD-mediated suppression as compared to littermate controls. This study suggests a protective role of Serpinb2 within TCDD-mediated immunosuppression and, furthermore, a novel function of Serpinb2-related activity in the IgM response.
Collapse
Affiliation(s)
- Peter Dornbos
- Department of Biochemistry and Molecular Biology , Michigan State University , East Lansing , Michigan 48824 , United States.,Institute for Integrative Toxicology , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Melanie Warren
- Interdisciplinary Program in Toxicology , Texas A&M University , College Station , Texas 77843 , United States
| | - Robert B Crawford
- Department of Pharmacology and Toxicology , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Norbert E Kaminski
- Institute for Integrative Toxicology , Michigan State University , East Lansing , Michigan 48824 , United States.,Department of Pharmacology and Toxicology , Michigan State University , East Lansing , Michigan 48824 , United States
| | - David W Threadgill
- Interdisciplinary Program in Toxicology , Texas A&M University , College Station , Texas 77843 , United States
| | - John J LaPres
- Department of Biochemistry and Molecular Biology , Michigan State University , East Lansing , Michigan 48824 , United States.,Institute for Integrative Toxicology , Michigan State University , East Lansing , Michigan 48824 , United States
| |
Collapse
|
56
|
Akahane M, Matsumoto S, Kanagawa Y, Mitoma C, Uchi H, Yoshimura T, Furue M, Imamura T. Long-Term Health Effects of PCBs and Related Compounds: A Comparative Analysis of Patients Suffering from Yusho and the General Population. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 74:203-217. [PMID: 29256109 DOI: 10.1007/s00244-017-0486-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 11/27/2017] [Indexed: 05/08/2023]
Abstract
Yusho, which refers to a mass poisoning caused by the ingestion of rice bran oil contaminated with polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins, and polychlorinated dibenzofurans, was first reported in October 1968 in Japan. Yusho patients suffer from various symptoms; however, after 40 years, some emerging symptoms have been attributed to aging. The prevalence of symptoms and diseases among Yusho patients and the general population was compared in this study. The data obtained from the survey among Yusho patients (1131 patients) by the Ministry of Health, Labour, and Welfare of Japan in 2008 were compared with the data from a survey conducted among the general population. When selecting the comparison group, the age and residential area (prefecture) were taken into account to match the baseline characteristics of Yusho patients. A logistic regression analysis was performed to identify the association between Yusho and the prevalence of symptoms and was adjusted for various potential confounding factors (age, sex, body mass index, cigarette smoking, frequency of drinking, and walking time). Skin pigmentation and acneiform eruption were found to be characteristic symptoms of Yusho and were more prevalent in these patients. Other symptoms and diseases associated with Yusho included orthostatic hypotension, hypohidrosis, dysgeusia, Basedow's disease, hoarseness, cardiac insufficiency, tachycardia, eczema, and hair loss. Symptoms related to aging, such as general fatigue, arthralgia, and numbness in the extremities, were significantly higher in Yusho patients after adjusting for age and lifestyle. This study demonstrated that, 40 years after the outbreak of Yusho, the prevalence of various symptoms and diseases in Yusho patients, including age-related diseases, was higher than that in the general population.
Collapse
Affiliation(s)
- Manabu Akahane
- Department of Public Health, Health Management and Policy, Faculty of Medicine, Nara Medical University, Shijo 840, Kashihara, Nara, Japan.
| | - Shinya Matsumoto
- Department of Public Health, Health Management and Policy, Faculty of Medicine, Nara Medical University, Shijo 840, Kashihara, Nara, Japan
| | - Yoshiyuki Kanagawa
- Department of Public Health, Health Management and Policy, Faculty of Medicine, Nara Medical University, Shijo 840, Kashihara, Nara, Japan
| | - Chikage Mitoma
- Research and Clinical Center for Yusho and Dioxin, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, Japan
| | - Hiroshi Uchi
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, Japan
| | - Takesumi Yoshimura
- Emergency Life-Saving Technique Academy of Kyushu, Ooura 3-8-1, Yahatanishi-ku, Kitakyushu, Fukuoka, Japan
| | - Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, Japan
| | - Tomoaki Imamura
- Department of Public Health, Health Management and Policy, Faculty of Medicine, Nara Medical University, Shijo 840, Kashihara, Nara, Japan
| |
Collapse
|
57
|
Dornbos P, Crawford RB, Kaminski NE, Hession SL, LaPres JJ. The Influence of Human Interindividual Variability on the Low-Dose Region of Dose-Response Curve Induced by 2,3,7,8-Tetrachlorodibenzo-p-Dioxin in Primary B Cells. Toxicol Sci 2016; 153:352-60. [PMID: 27473338 PMCID: PMC5036619 DOI: 10.1093/toxsci/kfw128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The influence of interindividual variability is not typically assessed in traditional toxicological studies. Given that chemical exposures occur in heterogeneous populations, this knowledge gap has the potential to cause undue harm within the realms of public health and industrial and municipal finances. A recent report from the National Research Council (NRC) suggests that when accounting for interindividual variation in responses, traditionally assumed nonlinear dose-response relationships (DRRs) for noncancer-causing endpoints would better be explained with a linear relationship within the low-dose region. To address this knowledge gap and directly test the NRC's assumption, this study focused on assessing the DRR between 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD) exposure and immune suppression in a cohort of unique human donors. Human B cells were isolated from 51 individual donors and treated with logarithmically increasing concentrations of TCDD (0-30 nM TCDD). Two endpoints sensitive to TCDD were assessed: (1) number of IgM-secreting B cells and (2) quantity of IgM secreted. The results show that TCDD significantly suppressed both the number of IgM-secreting B cells and the quantity of IgM secreted (P < .05). Statistical model comparisons indicate that the low-dose region of the two DRRs is best explained with a nonlinear relationship. Rather than assuming low-dose linearity for all noncancer-causing DRRs, our study suggests the need to consider the specific mode of action of toxicants and pharmaceuticals during risk-management decision making.
Collapse
Affiliation(s)
- Peter Dornbos
- *Department of Biochemistry and Molecular Biology Institute for Integrative Toxicology
| | | | - Norbert E Kaminski
- Department of Pharmacology and Toxicology Institute for Integrative Toxicology
| | | | - John J LaPres
- *Department of Biochemistry and Molecular Biology Institute for Integrative Toxicology Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan
| |
Collapse
|
58
|
Sidorova YA, Perepechaeva ML, Pivovarova EN, Markel AL, Lyakhovich VV, Grishanova AY. Menadione Suppresses Benzo(α)pyrene-Induced Activation of Cytochromes P450 1A: Insights into a Possible Molecular Mechanism. PLoS One 2016; 11:e0155135. [PMID: 27167070 PMCID: PMC4864395 DOI: 10.1371/journal.pone.0155135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/25/2016] [Indexed: 12/31/2022] Open
Abstract
Oxidative reactions that are catalyzed by cytochromes P450 1A (CYP1A) lead to formation of carcinogenic derivatives of arylamines and polycyclic aromatic hydrocarbons (PAHs), such as the widespread environmental pollutant benzo(α)pyrene (BP). These compounds upregulate CYP1A at the transcriptional level via an arylhydrocarbon receptor (AhR)-dependent signaling pathway. Because of the involvement of AhR-dependent genes in chemically induced carcinogenesis, suppression of this signaling pathway could prevent tumor formation and/or progression. Here we show that menadione (a water-soluble analog of vitamin K3) inhibits BP-induced expression and enzymatic activity of both CYP1A1 and CYP1A2 in vivo (in the rat liver) and BP-induced activity of CYP1A1 in vitro. Coadministration of BP and menadione reduced DNA-binding activity of AhR and increased DNA-binding activity of transcription factors Oct-1 and CCAAT/enhancer binding protein (C/EBP), which are known to be involved in negative regulation of AhR-dependent genes, in vivo. Expression of another factor involved in downregulation of CYP1A—pAhR repressor (AhRR)—was lower in the liver of the rats treated with BP and menadione, indicating that the inhibitory effect of menadione on CYP1A is not mediated by this protein. Furthermore, menadione was well tolerated by the animals: no signs of acute toxicity were detected by visual examination or by assessment of weight gain dynamics or liver function. Taken together, our results suggest that menadione can be used in further studies on animal models of chemically induced carcinogenesis because menadione may suppress tumor formation and possibly progression.
Collapse
Affiliation(s)
- Yulia A. Sidorova
- Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
- * E-mail:
| | | | - Elena N. Pivovarova
- Federal research center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Arkady L. Markel
- Federal research center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | | | | |
Collapse
|
59
|
Pernomian L, da Silva CHTP. Current basis for discovery and development of aryl hydrocarbon receptor antagonists for experimental and therapeutic use in atherosclerosis. Eur J Pharmacol 2015; 764:118-123. [PMID: 26142084 DOI: 10.1016/j.ejphar.2015.06.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/25/2015] [Accepted: 06/29/2015] [Indexed: 12/11/2022]
Abstract
The important role played by aryl hydrocarbon receptor activation in the pathophysiology of atherosclerosis induced by cigarette smoke exposure has spurred the clinical interest in the development of aryl hydrocarbon receptor antagonists with atheroprotective efficacy. A few aryl hydrocarbon receptor antagonists were developed but the lack of structural information regarding the receptor ligand binding domain resulted in several limitations in the pharmacological properties of these compounds including partial agonism, allosterism, non-selectivity, cytotoxicity and susceptibility to bioactivation. These limitations make the progress of preclinical and clinical assays with the available aryl hydrocarbon receptor antagonists difficult. There is a great interest in developing pure, competitive, selective, nontoxic and resistant to bioactivation aryl hydrocarbon receptor antagonists. Current technology permits the development of pharmacologically ideal antagonists based on the chemical features of the aryl hydrocarbon receptor ligand binding domain. According to these characteristics, chlorinated derivatives of trans-stilbene meta-substituted with electrophilic aromatic directing groups would be effective prototypes for pure, competitive, selective, nontoxic and resistant to bioactivation antagonists for such receptor.
Collapse
Affiliation(s)
- Larissa Pernomian
- Computational Laboratory of Pharmaceutical Chemistry, Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Universidade de São Paulo (USP), Avenida do Café s/n, 14040-903 Ribeirão Preto, SP, Brazil.
| | - Carlos H T P da Silva
- Computational Laboratory of Pharmaceutical Chemistry, Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Universidade de São Paulo (USP), Avenida do Café s/n, 14040-903 Ribeirão Preto, SP, Brazil
| |
Collapse
|
60
|
Xu X, Zeng X, Boezen HM, Huo X. E-waste environmental contamination and harm to public health in China. Front Med 2015; 9:220-8. [PMID: 25808646 DOI: 10.1007/s11684-015-0391-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/02/2015] [Indexed: 02/05/2023]
Abstract
The adverse effects of electronic waste (e-waste) on the human body have stirred up concern in recent years. China is one of the countries that confront serious pollution and human exposure of e-waste, and the majority of the population is exposed to potentially hazardous substances that are derived from informal e-waste recycling processes. This study reviews recent reports on human exposure to e-waste in China, with particular focus on exposure routes (e.g., inhalation and ingestion) and several toxicities of human (e.g., endocrine system, respiratory system, reproductive system, developmental toxicity, neurotoxicity, and genetic toxicity). Pieces of evidence that associate e-waste exposure with human health effects in China are assessed. The role of toxic heavy metals (e.g., lead, cadmium, chromium, mercury, and nickel) and organic pollutants (e.g., polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyl (PCBs), polycyclic aromatic hydrocarbons (PAHs), polybrominated biphenyls (PBBs), polyhalogenated aromatic hydrocarbons (PHAHs), bisphenol A (BPA)) on human health is also briefly discussed.
Collapse
Affiliation(s)
- Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, China
| | | | | | | |
Collapse
|
61
|
Environmental carcinogens and mutational pathways in atherosclerosis. Int J Hyg Environ Health 2015; 218:293-312. [DOI: 10.1016/j.ijheh.2015.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 01/26/2015] [Accepted: 01/29/2015] [Indexed: 02/07/2023]
|
62
|
Vallejo M, Fresnedo San Román M, Ortiz I, Irabien A. Overview of the PCDD/Fs degradation potential and formation risk in the application of advanced oxidation processes (AOPs) to wastewater treatment. CHEMOSPHERE 2015; 118:44-56. [PMID: 24974140 DOI: 10.1016/j.chemosphere.2014.05.077] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/23/2014] [Accepted: 05/26/2014] [Indexed: 06/03/2023]
Abstract
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) are a family of unintentionally produced persistent organic pollutants (POPs) that have received considerable public and scientific attention due to the toxicity of some of their congeners, more specifically those with chlorine substitution in the 2,3,7,8 positions. The environmental management and control of PCDD/Fs is addressed at a global level through the Stockholm Convention that establishes that POPs should be destroyed or irreversibly transformed in order to reduce or eliminate their release to the environment. Several technologies, including advanced oxidation processes (AOPs) such as photolysis, photocatalysis and Fenton oxidation, have been considered as effective methods for destroying PCDD/Fs in polluted waters. Nevertheless, during the remediation of wastewaters it is critical that the treatment technologies applied do not lead to the formation of by-products that are themselves POPs, especially if PCDD/Fs precursors or chlorine are present in the reaction medium. Despite the high effectiveness of AOPs in the oxidation of major contaminants, scarce references deal with the monitoring of PCDD/Fs in the course of the oxidation process, revealing that a detailed assessment of non-combustion technologies with respect to PCDD/Fs formation is still lacking. This study reports a review of the state of the art related to the potential remediation and/or formation of PCDD/Fs as a result of the application of AOPs for the treatment of polluted waters, warning on the correct selection of the operating conditions.
Collapse
Affiliation(s)
- Marta Vallejo
- Departamento de Ingenierías Química y Biomolecular, ETSIIyT, Universidad de Cantabria, Avda. de los Castros, 39005 Santander, Spain
| | - M Fresnedo San Román
- Departamento de Ingenierías Química y Biomolecular, ETSIIyT, Universidad de Cantabria, Avda. de los Castros, 39005 Santander, Spain
| | - Inmaculada Ortiz
- Departamento de Ingenierías Química y Biomolecular, ETSIIyT, Universidad de Cantabria, Avda. de los Castros, 39005 Santander, Spain.
| | - Angel Irabien
- Departamento de Ingenierías Química y Biomolecular, ETSIIyT, Universidad de Cantabria, Avda. de los Castros, 39005 Santander, Spain
| |
Collapse
|
63
|
Chemopreventive and chemotherapeutic effects of genistein, a soy isoflavone, upon cancer development and progression in preclinical animal models. Lab Anim Res 2014; 30:143-50. [PMID: 25628724 PMCID: PMC4306701 DOI: 10.5625/lar.2014.30.4.143] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/04/2014] [Accepted: 12/09/2014] [Indexed: 12/13/2022] Open
Abstract
Genistein is one of isoflavones mostly derived in a leguminous plant. It is well known as one of phytoestrogens that have structures similar to the principal mammalian estrogen. It has diverse biological functions including chemopreventive properties against cancers. Anticancer efficacies of genistein have been related with the epidemiological observations indicating that the incidence of some cancers is much lower in Asia, where diets are rich in soyfoods, than Western countries. This review deals with in vivo anticancer activities of genistein identified in animal studies being divided into its effects on carcinogenesis and cancer progression. Because animal studies have advantages in designing the experiments to suit the goals, they imply diverse information on the anticancer activity of genistein. The in vivo animal studies have adopted the specific animal models according to a developmental stage of cancer to prove the anticancer efficacies of genistein against diverse types of cancer. The numerous previous studies insist that genistein effectively inhibits carcinogenesis in the DMBA-induced animal cancer models by reducing the incidence of adenocarcinoma and cancer progression in the transgenic and xenograft animal models by suppressing the tumor growth and metastatic transition. Although the protective effect of genistein against cancer has been controversial, genistein may be a candidate for chemoprevention of carcinogenesis and cancer progression and may deserve to be the central compound supporting the epidemiological evidence.
Collapse
|
64
|
Prokopec SD, Watson JD, Pohjanvirta R, Boutros PC. Identification of reference proteins for Western blot analyses in mouse model systems of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity. PLoS One 2014; 9:e110730. [PMID: 25329058 PMCID: PMC4201576 DOI: 10.1371/journal.pone.0110730] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 09/24/2014] [Indexed: 01/15/2023] Open
Abstract
Western blotting is a well-established, inexpensive and accurate way of measuring protein content. Because of technical variation between wells, normalization is required for valid interpretation of results across multiple samples. Typically this involves the use of one or more endogenous controls to adjust the measured levels of experimental molecules. Although some endogenous controls are widely used, validation is required for each experimental system. This is critical when studying transcriptional-modulators, such as toxicants like 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).To address this issue, we examined hepatic tissue from 192 mice representing 47 unique combinations of strain, sex, Ahr-genotype, TCDD dose and treatment time. We examined 7 candidate reference proteins in each animal and assessed consistency of protein abundance through: 1) TCDD-induced fold-difference in protein content from basal levels, 2) inter- and intra- animal stability, and 3) the ability of each candidate to reduce instability of the other candidates. Univariate analyses identified HPRT as the most stable protein. Multivariate analysis indicated that stability generally increased with the number of proteins used, but gains from using >3 proteins were small. Lastly, by comparing these new data to our previous studies of mRNA controls on the same animals, we were able to show that the ideal mRNA and protein control-genes are distinct, and use of only 2–3 proteins provides strong stability, unlike in mRNA studies in the same cohort, where larger control-gene batteries were needed.
Collapse
Affiliation(s)
- Stephenie D. Prokopec
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - John D. Watson
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Raimo Pohjanvirta
- Laboratory of Toxicology, National Institute for Health and Welfare, Kuopio, Finland
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Paul C. Boutros
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
65
|
L'Héritier F, Marques M, Fauteux M, Gaudreau L. Defining molecular sensors to assess long-term effects of pesticides on carcinogenesis. Int J Mol Sci 2014; 15:17148-61. [PMID: 25257533 PMCID: PMC4200861 DOI: 10.3390/ijms150917148] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/11/2014] [Accepted: 09/22/2014] [Indexed: 12/04/2022] Open
Abstract
The abundance of dioxins and dioxin-like pollutants has massively increased in the environment due to human activity. These chemicals are particularly persistent and accumulate in the food chain, which raises major concerns regarding long-term exposure to human health. Most dioxin-like pollutants activate the aryl hydrocarbon receptor (AhR) transcription factor, which regulates xenobiotic metabolism enzymes that belong to the cytochrome P450 1A family (that includes CYP1A1 and CYP1B1). Importantly, a crosstalk exists between estrogen receptor α (ERα) and AhR. More specifically, ERα represses the expression of the CYP1A1 gene, which encodes an enzyme that converts 17β-estradiol into 2-hydroxyestradiol. However, (ERα) does not repress the CYP1B1 gene, which encodes an enzyme that converts 17β-estradiol into 4-hydroxyestradiol, one of the most genotoxic estrogen metabolites. In this review, we discuss how chronic exposure to xenobiotic chemicals, such as pesticides, might affect the expression of genes regulated by the AhR–ERα crosstalk. Here, we focus on recent advances in the understanding of molecular mechanisms that mediate this crosstalk repression, and particularly on how ERα represses the AhR target gene CYP1A1, and could subsequently promote breast cancer. Finally, we propose that genes implicated in this crosstalk could constitute important biomarkers to assess long-term effects of pesticides on human health.
Collapse
Affiliation(s)
- Fanny L'Héritier
- Département de Biologie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC J1K 2R1, Canada.
| | - Maud Marques
- Département de Biologie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC J1K 2R1, Canada.
| | - Myriam Fauteux
- Département de Biologie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC J1K 2R1, Canada.
| | - Luc Gaudreau
- Département de Biologie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC J1K 2R1, Canada.
| |
Collapse
|
66
|
Kim S, Sundaramoorthi H, Jagadeeswaran P. Dioxin-induced thrombocyte aggregation in zebrafish. Blood Cells Mol Dis 2014; 54:116-22. [PMID: 25129381 DOI: 10.1016/j.bcmd.2014.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/18/2014] [Accepted: 07/18/2014] [Indexed: 10/24/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a canonical member of a group of dioxins which are byproducts of industrial combustion and are dangerous environmental pollutants. TCDD has been shown to cause several abnormalities in humans and wildlife, and recently, some dioxins have been found to activate platelets. However, TCDD-mediated platelet activation pathways are elusive and virtually nothing is known about TCDD activation of fish thrombocytes. To investigate TCDD effect on thrombocyte function, we tested zebrafish blood in presence of TCDD using a thrombocyte functional assay. We found that TCDD activated thrombocytes. Further experiments showed that thrombocytes of fish treated with TCDD formed both aggregates and filopodia. To investigate the mechanism of TCDD-mediated activation of thrombocytes we used inhibitors for Gq, cyclooxygenase-1, aryl hydrocarbon receptor (AHR), c-src, Akt, and ERK1/2. We found that TCDD induces AHR which activates c-src and signals the activation of Akt and ERK1/2 which are ultimately involved in generation of thromboxane A2. Furthermore, we found that ADP potentiates TCDD action, which led to the discovery that ADP itself activates AHR in the absence of TCDD. Taken together, these results resolved the pathway of TCDD activation of thrombocytes and led to the finding that ADP is an activator of AHR.
Collapse
Affiliation(s)
- Seongcheol Kim
- Department of Biological Sciences, University of North Texas, 1510 Chestnut, Denton TX 76203, USA
| | - Hemalatha Sundaramoorthi
- Department of Biological Sciences, University of North Texas, 1510 Chestnut, Denton TX 76203, USA
| | - Pudur Jagadeeswaran
- Department of Biological Sciences, University of North Texas, 1510 Chestnut, Denton TX 76203, USA.
| |
Collapse
|
67
|
Mandl M, Depping R. Hypoxia-inducible aryl hydrocarbon receptor nuclear translocator (ARNT) (HIF-1β): is it a rare exception? Mol Med 2014; 20:215-20. [PMID: 24849811 DOI: 10.2119/molmed.2014.00032] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/12/2014] [Indexed: 12/29/2022] Open
Abstract
The aryl hydrocarbon receptor nuclear translocator (ARNT), also designated as hypoxia-inducible factor (HIF)-1β, plays a pivotal role in the adaptive responses to (micro-)environmental stresses such as dioxin exposure and oxygen deprivation (hypoxia). ARNT belongs to the group of basic helix-loop-helix (bHLH)-Per-ARNT-Sim (PAS) transcription factors, which act as heterodimers. ARNT serves as a common binding partner for the aryl hydrocarbon receptor (AhR) as well as HIF-α subunits. HIF-α proteins are regulated in an oxygen-dependent manner, whereas ARNT is generally regarded as constitutively expressed, meaning that neither the arnt mRNA nor the protein level is influenced by hypoxia (despite the name HIF-1β). However, there is emerging evidence that tumor cells derived from different entities are able to upregulate ARNT, especially under low oxygen tension in a cell-specific manner. The objective of this review is therefore to highlight and summarize current knowledge regarding the hypoxia-dependent upregulation of ARNT, which is in sharp contrast to the general point of view described in the literature. Elucidating the mechanism behind this rare cellular attribute will help us to gain new insights into HIF biology and might provide new strategies for anti-cancer therapeutics. In conclusion, putative treatment effects on ARNT should be taken into account while studying the HIF pathway. This step is of great importance when ARNT is intended to serve as a loading control or as a reference.
Collapse
Affiliation(s)
- Markus Mandl
- University of Lübeck, Center for Structural and Cell Biology in Medicine, Institute of Physiology, Lübeck, Germany
| | - Reinhard Depping
- University of Lübeck, Center for Structural and Cell Biology in Medicine, Institute of Physiology, Lübeck, Germany
| |
Collapse
|
68
|
Dioxins and polychlorinated biphenyls contamination in poultry liver related to food safety – A review. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.09.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
69
|
Moskalev A, Shaposhnikov M, Snezhkina A, Kogan V, Plyusnina E, Peregudova D, Melnikova N, Uroshlev L, Mylnikov S, Dmitriev A, Plusnin S, Fedichev P, Kudryavtseva A. Mining gene expression data for pollutants (dioxin, toluene, formaldehyde) and low dose of gamma-irradiation. PLoS One 2014; 9:e86051. [PMID: 24475070 PMCID: PMC3901678 DOI: 10.1371/journal.pone.0086051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/04/2013] [Indexed: 12/28/2022] Open
Abstract
General and specific effects of molecular genetic responses to adverse environmental factors are not well understood. This study examines genome-wide gene expression profiles of Drosophila melanogaster in response to ionizing radiation, formaldehyde, toluene, and 2,3,7,8-tetrachlorodibenzo-p-dioxin. We performed RNA-seq analysis on 25,415 transcripts to measure the change in gene expression in males and females separately. An analysis of the genes unique to each treatment yielded a list of genes as a gene expression signature. In the case of radiation exposure, both sexes exhibited a reproducible increase in their expression of the transcription factors sugarbabe and tramtrack. The influence of dioxin up-regulated metabolic genes, such as anachronism, CG16727, and several genes with unknown function. Toluene activated a gene involved in the response to the toxins, Cyp12d1-p; the transcription factor Fer3's gene; the metabolic genes CG2065, CG30427, and CG34447; and the genes Spn28Da and Spn3, which are responsible for reproduction and immunity. All significantly differentially expressed genes, including those shared among the stressors, can be divided into gene groups using Gene Ontology Biological Process identifiers. These gene groups are related to defense response, biological regulation, the cell cycle, metabolic process, and circadian rhythms. KEGG molecular pathway analysis revealed alteration of the Notch signaling pathway, TGF-beta signaling pathway, proteasome, basal transcription factors, nucleotide excision repair, Jak-STAT signaling pathway, circadian rhythm, Hippo signaling pathway, mTOR signaling pathway, ribosome, mismatch repair, RNA polymerase, mRNA surveillance pathway, Hedgehog signaling pathway, and DNA replication genes. Females and, to a lesser extent, males actively metabolize xenobiotics by the action of cytochrome P450 when under the influence of dioxin and toluene. Finally, in this work we obtained gene expression signatures pollutants (dioxin, toluene), low dose of gamma-irradiation and common molecular pathways for different kind of stressors.
Collapse
Affiliation(s)
- Alexey Moskalev
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of RAS, Syktyvkar, Russia
- Ecological Department, Syktyvkar State University, Syktyvkar, Russia
- Laboratory of Genetics of Aging and Longevity, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Mikhail Shaposhnikov
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of RAS, Syktyvkar, Russia
- Ecological Department, Syktyvkar State University, Syktyvkar, Russia
| | - Anastasia Snezhkina
- Group of Postgenomic Studies, Engelhardt Institute of Molecular Biology of RAS, Moscow, Russia
| | - Valeria Kogan
- Laboratory of Genetics of Aging and Longevity, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Quantum Pharmaceuticals, Moscow, Russia
| | - Ekaterina Plyusnina
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of RAS, Syktyvkar, Russia
- Ecological Department, Syktyvkar State University, Syktyvkar, Russia
| | - Darya Peregudova
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of RAS, Syktyvkar, Russia
| | - Nataliya Melnikova
- Group of Postgenomic Studies, Engelhardt Institute of Molecular Biology of RAS, Moscow, Russia
| | - Leonid Uroshlev
- Group of Postgenomic Studies, Engelhardt Institute of Molecular Biology of RAS, Moscow, Russia
- Department of Computational Systems Biology, Vavilov Institute of General Genetics, Moscow, Russia
| | - Sergey Mylnikov
- Department of Genetics, St. Petersburg State University, St. Petersburg, Russia
| | - Alexey Dmitriev
- Group of Postgenomic Studies, Engelhardt Institute of Molecular Biology of RAS, Moscow, Russia
| | - Sergey Plusnin
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of RAS, Syktyvkar, Russia
- Ecological Department, Syktyvkar State University, Syktyvkar, Russia
| | - Peter Fedichev
- Laboratory of Genetics of Aging and Longevity, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Quantum Pharmaceuticals, Moscow, Russia
| | - Anna Kudryavtseva
- Group of Postgenomic Studies, Engelhardt Institute of Molecular Biology of RAS, Moscow, Russia
| |
Collapse
|
70
|
2,3,7,8-Tetrachlorodibenzo-p-dioxin induces apoptosis by disruption of intracellular calcium homeostasis in human neuronal cell line SHSY5Y. Apoptosis 2014; 17:1170-81. [PMID: 22986482 DOI: 10.1007/s10495-012-0760-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The persistent xenobiotic agent 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces neurotoxic effects that alters neurodevelopment and behavior both during development and adulthood. There are many ongoing efforts to determine the molecular mechanisms of TCDD-mediated neurotoxicity, the signaling pathways involved and its molecular targets in neurons. In this work, we have used SHSY5Y human neuroblastoma cells to characterize the TCDD-induced toxicity. TCDD produces a loss of viability linked to an increased caspase-3 activity, PARP-1 fragmentation, DNA laddering, nuclear fragmentation and hypodiploid (apoptotic) DNA content, in a similar way than staurosporine, a prototypical molecule of apoptosis induction. In addition, TCDD produces a decrease of mitochondrial membrane potential and an increase of intracellular calcium concentration (P < 0.05). Finally, based on the high lipophilic properties of the dioxin, we test the TCDD effect on the membrane integrity using sarcoplasmic reticulum vesicles as a model. TCDD produces calcium efflux through the membrane and an anisotropy decrease (P < 0.05) that reflects an increase in membrane fluidity. Altogether these results support the hypothesis that TCDD toxicity in SHSY5Y neuroblastoma cells provokes the disruption of calcium homeostasis, probably affecting membrane structural integrity, leading to an apoptotic process.
Collapse
|
71
|
Pierre S, Chevallier A, Teixeira-Clerc F, Ambolet-Camoit A, Bui LC, Bats AS, Fournet JC, Fernandez-Salguero P, Aggerbeck M, Lotersztajn S, Barouki R, Coumoul X. Aryl hydrocarbon receptor-dependent induction of liver fibrosis by dioxin. Toxicol Sci 2013; 137:114-24. [PMID: 24154488 DOI: 10.1093/toxsci/kft236] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The contribution of environmental pollutants to liver fibrosis is an important and poorly explored issue. In vitro studies suggest that the environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other aryl hydrocarbon receptor (AhR) ligands induce several genes that are known to be upregulated during liver fibrosis. Our aim was to determine whether exposure to such pollutants can lead to liver fibrosis and to characterize the mechanisms of action. Mice were treated for 2, 14, or 42 days, once a week with 25 µg/kg of TCDD. Gene and protein expression, in vitro and in vivo, as well as liver histology were investigated for each treatment. Treatment of mice with TCDD for 2 weeks modified the hepatic expression of markers of fibrosis such as collagen 1A1 and α-smooth muscle actin. This is not observed in AhR knockout mice. Following 6 weeks of treatment, histological features of murine hepatic fibrosis became apparent. In parallel, the levels of inflammatory cytokines (interleukin-1 beta, tumor necrosis factor α) and of markers of activated fibroblasts(fibroblast-specific protein 1) were found to be upregulated. Interestingly, we also found increased expression of genes of the TGF-β pathway and a concomitant decrease of miR-200a levels. Because the transcription factors of the Snail family were shown to be involved in liver fibrosis, we studied their regulation by TCDD. Two members of the Snail family were increased, whereas their negative targets, the epithelial marker E-cadherin and Claudin 1, were decreased. Further, the expression of mesenchymal markers was increased. Finally, we confirmed that Snai2 is a direct transcriptional target of TCDD in the human hepatocarcinoma cell line, HepG2. The AhR ligand, TCDD, induces hepatic fibrosis by directly regulating profibrotic pathways.
Collapse
Affiliation(s)
- Stéphane Pierre
- * INSERM UMR-S 747, Toxicologie Pharmacologie et Signalisation Cellulaire, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Prokopec SD, Buchner NB, Fox NS, Chong LC, Mak DY, Watson JD, Petronis A, Pohjanvirta R, Boutros PC. Validating reference genes within a mouse model system of 2,3,7,8-tetrachlorodibenzo- p -dioxin (TCDD) toxicity. Chem Biol Interact 2013; 205:63-71. [DOI: 10.1016/j.cbi.2013.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 05/23/2013] [Accepted: 06/10/2013] [Indexed: 01/26/2023]
|
73
|
2,3,7,8-TCDD induces neurotoxicity and neuronal apoptosis in the rat brain cortex and PC12 cell line through the down-regulation of the Wnt/β-catenin signaling pathway. Neurotoxicology 2013; 37:63-73. [DOI: 10.1016/j.neuro.2013.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 04/12/2013] [Accepted: 04/16/2013] [Indexed: 02/02/2023]
|
74
|
Ng GHB, Gong Z. GFP transgenic medaka (Oryzias latipes) under the inducible cyp1a promoter provide a sensitive and convenient biological indicator for the presence of TCDD and other persistent organic chemicals. PLoS One 2013; 8:e64334. [PMID: 23700472 PMCID: PMC3659123 DOI: 10.1371/journal.pone.0064334] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/12/2013] [Indexed: 11/17/2022] Open
Abstract
Persistent organic pollutants (POPs) are resistant to environmental degradation and can cause multitude of health problems. Cytochrome P450 1A (Cyp1a) is often up-regulated by POPs through the activation of aryl hydrocarbon receptor (AhR) pathway and is thus usually used as a biomarker for xenobiotics exposure. To develop a convenient in vivo tool to monitor xenobiotic contamination in the water, we have established GFP transgenic medaka using the inducible cyp1a promoter, Tg(cyp1a:gfp). Here we tested Tg(cyp1a:gfp) medaka at three different stages, prehatching embryos, newly hatched fry and adult with 2,3,7,8-tetrachlorodiebnzo-p-dioxin (TCDD), a dioxin. While GFP induction was observed in all three stages, newly hatched fry were the most sensitive with the lowest observed effective concentration of 0.005 nM or 16.1 ng/L. The highly sensitive organs included the kidney, liver and intestine. With high concentrations of TCDD, several other organs such as the olfactory pit, tail fin, gills, lateral line neuromast cells and blood vessels also showed GFP expression. In addition, Tg(cyp1a:gfp) medaka fry also responded to two other AhR agonists, 3-methylcholanthrene and benzo[a]pyrene, for GFP induction, but no significant GFP induction was observed towards several other chemicals tested, indicating the specificity of this transgenic line. The GFP inducibility of Tg(cyp1a:gfp) medaka at both fry and adult stages may be useful for development of high-throughput assays as well as online water monitoring system to detect xenobiotic toxicity.
Collapse
Affiliation(s)
- Grace Hwee Boon Ng
- Department of Biological Sciences, NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | | |
Collapse
|
75
|
Xie HQ, Xu HM, Fu HL, Hu Q, Tian WJ, Pei XH, Zhao B. AhR-mediated effects of dioxin on neuronal acetylcholinesterase expression in vitro. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:613-8. [PMID: 23426015 PMCID: PMC3673198 DOI: 10.1289/ehp.1206066] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/19/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Deficits in cognitive functioning have been reported in humans exposed to dioxins and dioxin-like compounds. Evidence suggests that dioxins induce cholinergic dysfunction mediated by hypothyroidism. However, little is known about direct effects of dioxins on the cholinergic system. OBJECTIVES We investigated the action of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on acetylcholinesterase (AChE), a key enzyme in cholinergic neurotransmission. METHODS We used SK-N-SH human-derived neuronal cells to evaluate the effect of dioxin exposure on AChE. RESULTS We consistently found a significant decrease in enzymatic activity of AChE in cultured neurons treated with TCDD. We also found that, unlike organophosphate pesticides that directly act on the catalytic center of AChE, the suppressive effect of dioxin was through transcriptional regulation. The addition of CH223191, an inhibitor of the aryl hydrocarbon receptor (AhR)-dependent pathway, counteracted the TCDD-induced suppression of AChE, suggesting involvement of the AhR-dependent pathway. The existence of putative dioxin-responsive element (DRE) consensus sequences in the human ACHE promoter region further supported this hypothesis. Consistent with the absence of DRE elements in mouse or rat ACHE promoter regions, suppression of AChE by TCDD did not occur in rat neuronal cells, indicating a potential species-specific effect. CONCLUSIONS In SK-N-SH cells, dioxin suppressed the activity of neuronal AChE via AhR-mediated transcriptional down-regulation. This is the first study to report direct interference by dioxin with the cholinergic neurotransmission system.
Collapse
Affiliation(s)
- Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
76
|
Xu G, Duan Z, Chen G, Nie X, Liu J, Zhang Y, Li Y, Wan C, Jiang J. Role of mitogen-activated protein kinase cascades in 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced apoptosis in neuronal pheochromocytoma cells. Hum Exp Toxicol 2013; 32:1278-91. [PMID: 23584357 DOI: 10.1177/0960327113482595] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) are involved in neuronal death caused by many cytotoxins. Conventional MAPKs consist of three family members: extracellular signal-regulated kinase-1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and p38. It has been originally shown that ERK1/2 is important for cell survival, whereas JNK and p38 are deemed stress responsive and thus involved in apoptosis. However, information describing the role of MAPKs in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced neurotoxicity is insufficient. The aim of this study was to identify the role of MAPK cascades in TCDD-induced neurotoxicity using differentiated pheochromocytoma (PC12) cells as a model for neuronal cells. Cell viability assay, terminal deoxynucleotidyl transferase dUTP nick-end labeling assay and flow cytometry analysis showed that TCDD attenuated cell viability with a dose- and time-dependent manner and significantly induced apoptosis in primary cortical neurons and PC12 cells. Western blot analysis indicated that TCDD markedly activated the expression of ERK1/2, JNK and p38 in TCDD-treated PC12 cells. Furthermore, PD98059 (ERK1/2 inhibitor), SP600125 (JNK inhibitor) and SB202190 (p38 inhibitor) notably blocked the effect of TCDD on cell apoptosis. Based on the findings above, it is concluded that the activation of MAPK signaling pathways may be associated with TCDD-mediated neuronal apoptosis.
Collapse
Affiliation(s)
- G Xu
- 1Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR, Lee DH, Shioda T, Soto AM, vom Saal FS, Welshons WV, Zoeller RT, Myers JP. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 2012; 33:378-455. [PMID: 22419778 PMCID: PMC3365860 DOI: 10.1210/er.2011-1050] [Citation(s) in RCA: 2054] [Impact Index Per Article: 158.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 02/07/2012] [Indexed: 02/08/2023]
Abstract
For decades, studies of endocrine-disrupting chemicals (EDCs) have challenged traditional concepts in toxicology, in particular the dogma of "the dose makes the poison," because EDCs can have effects at low doses that are not predicted by effects at higher doses. Here, we review two major concepts in EDC studies: low dose and nonmonotonicity. Low-dose effects were defined by the National Toxicology Program as those that occur in the range of human exposures or effects observed at doses below those used for traditional toxicological studies. We review the mechanistic data for low-dose effects and use a weight-of-evidence approach to analyze five examples from the EDC literature. Additionally, we explore nonmonotonic dose-response curves, defined as a nonlinear relationship between dose and effect where the slope of the curve changes sign somewhere within the range of doses examined. We provide a detailed discussion of the mechanisms responsible for generating these phenomena, plus hundreds of examples from the cell culture, animal, and epidemiology literature. We illustrate that nonmonotonic responses and low-dose effects are remarkably common in studies of natural hormones and EDCs. Whether low doses of EDCs influence certain human disorders is no longer conjecture, because epidemiological studies show that environmental exposures to EDCs are associated with human diseases and disabilities. We conclude that when nonmonotonic dose-response curves occur, the effects of low doses cannot be predicted by the effects observed at high doses. Thus, fundamental changes in chemical testing and safety determination are needed to protect human health.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Tufts University, Center for Regenerative and Developmental Biology, Department of Biology, 200 Boston Avenue, Suite 4600, Medford, Massachusetts 02155, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
The effect of laurel leaf extract against toxicity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in cultured rat hepatocytes. Arh Hig Rada Toksikol 2012; 62:309-15. [PMID: 22202464 DOI: 10.2478/10004-1254-62-2011-2118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a very toxic environmental pollutant that raises great public concern about its impact on human health. Recent studies indicate that laurel leaf extract exhibits antioxidant properties that can counter the toxic effects of certain compounds in the liver. The aim of this study was to assess how effective LE is against the toxicity of TCDD in a primary culture of rat hepatocytes. The extract (50 mg L(-1), 100 mg L(-1), and 200 mg L(-1)) was added to cultures alone or with TCDD (1.61 mg L(-1) and 3.22 mg L(-1)) for 48 hours. Cell viability was measured using the [3-(4,5-dimethyl-thiazol-2-yl) 2,5-diphenyltetrazolium bromide] (MTT) assay and the lactate dehydrogenase (LDH) cytotoxicity assay, while oxidative damage was assessed by measuring total antioxidant capacity (TAC) and total oxidative stress (TOS). DNA damage was also analysed using the micronucleus (MN) assay of the cultured hepatocytes. TCDD alone lowered, and laurel extract had no effect on cell viability. TCDD also increased TOS and significantly decreased TAC. It significantly increased the frequency of micronucleated hepatocytes in a dose-dependent manner. In cultures exposed to LE alone, TOS did not change and TAC significantly increased in a dose-dependent manner. Added to TCDD, laurel countered its toxic effects and showed protective effects against TCDD-mediated DNA damage. This points to the therapeutic potential of laurel against TCDD toxicity in the liver.
Collapse
|
79
|
Chobtang J, de Boer IJM, Hoogenboom RLAP, Haasnoot W, Kijlstra A, Meerburg BG. The need and potential of biosensors to detect dioxins and dioxin-like polychlorinated biphenyls along the milk, eggs and meat food chain. SENSORS (BASEL, SWITZERLAND) 2011; 11:11692-716. [PMID: 22247688 PMCID: PMC3252005 DOI: 10.3390/s111211692] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/02/2011] [Accepted: 12/14/2011] [Indexed: 11/17/2022]
Abstract
Dioxins and dioxin-like polychlorinated biphenyls (DL-PCBs) are hazardous toxic, ubiquitous and persistent chemical compounds, which can enter the food chain and accumulate up to higher trophic levels. Their determination requires sophisticated methods, expensive facilities and instruments, well-trained personnel and expensive chemical reagents. Ideally, real-time monitoring using rapid detection methods should be applied to detect possible contamination along the food chain in order to prevent human exposure. Sensor technology may be promising in this respect. This review gives the state of the art for detecting possible contamination with dioxins and DL-PCBs along the food chain of animal-source foods. The main detection methods applied (i.e., high resolution gas-chromatography combined with high resolution mass-spectrometry (HRGC/HRMS) and the chemical activated luciferase gene expression method (CALUX bioassay)), each have their limitations. Biosensors for detecting dioxins and related compounds, although still under development, show potential to overcome these limitations. Immunosensors and biomimetic-based biosensors potentially offer increased selectivity and sensitivity for dioxin and DL-PCB detection, while whole cell-based biosensors present interpretable biological results. The main shortcoming of current biosensors, however, is their detection level: this may be insufficient as limits for dioxins and DL-PCBs for food and feedstuffs are in pg per gram level. In addition, these contaminants are normally present in fat, a difficult matrix for biosensor detection. Therefore, simple and efficient extraction and clean-up procedures are required which may enable biosensors to detect dioxins and DL-PCBs contamination along the food chain.
Collapse
Affiliation(s)
- Jeerasak Chobtang
- Animal Production Systems Group, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands; E-Mails: (J.C.); (I.J.M.B.)
- Livestock Research, Wageningen University and Research Centre, P.O. Box 65, 8200 AB Lelystad, The Netherlands; E-Mail: (A.K.)
| | - Imke J. M. de Boer
- Animal Production Systems Group, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands; E-Mails: (J.C.); (I.J.M.B.)
| | - Ron L. A. P. Hoogenboom
- RIKILT Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE Wageningen, The Netherlands; E-Mails: (R.L.A.P.H.); (W.H.)
| | - Willem Haasnoot
- RIKILT Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE Wageningen, The Netherlands; E-Mails: (R.L.A.P.H.); (W.H.)
| | - Aize Kijlstra
- Livestock Research, Wageningen University and Research Centre, P.O. Box 65, 8200 AB Lelystad, The Netherlands; E-Mail: (A.K.)
- Eye Research Institute Maastricht, Department of Ophthalmology, University Hospital Maastricht, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Bastiaan G. Meerburg
- Livestock Research, Wageningen University and Research Centre, P.O. Box 65, 8200 AB Lelystad, The Netherlands; E-Mail: (A.K.)
| |
Collapse
|
80
|
Denison MS, Soshilov AA, He G, DeGroot DE, Zhao B. Exactly the same but different: promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. Toxicol Sci 2011; 124:1-22. [PMID: 21908767 DOI: 10.1093/toxsci/kfr218] [Citation(s) in RCA: 578] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Ah receptor (AhR) is a ligand-dependent transcription factor that mediates a wide range of biological and toxicological effects that result from exposure to a structurally diverse variety of synthetic and naturally occurring chemicals. Although the overall mechanism of action of the AhR has been extensively studied and involves a classical nuclear receptor mechanism of action (i.e., ligand-dependent nuclear localization, protein heterodimerization, binding of liganded receptor as a protein complex to its specific DNA recognition sequence and activation of gene expression), details of the exact molecular events that result in most AhR-dependent biochemical, physiological, and toxicological effects are generally lacking. Ongoing research efforts continue to describe an ever-expanding list of ligand-, species-, and tissue-specific spectrum of AhR-dependent biological and toxicological effects that seemingly add even more complexity to the mechanism. However, at the same time, these studies are also identifying and characterizing new pathways and molecular mechanisms by which the AhR exerts its actions and plays key modulatory roles in both endogenous developmental and physiological pathways and response to exogenous chemicals. Here we provide an overview of the classical and nonclassical mechanisms that can contribute to the differential sensitivity and diversity in responses observed in humans and other species following ligand-dependent activation of the AhR signal transduction pathway.
Collapse
Affiliation(s)
- Michael S Denison
- Department of Environmental Toxicology, University of California, Davis, California 95616, USA.
| | | | | | | | | |
Collapse
|