51
|
Long C, Sebastian R, Faria AV, Hillis AE. Longitudinal Imaging of Reading and Naming Recovery after Stroke. APHASIOLOGY 2018; 32:839-854. [PMID: 30127542 PMCID: PMC6097621 DOI: 10.1080/02687038.2017.1417538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND Functional neuroimaging techniques can provide a unique window into the neural basis of language recovery after a stroke. The functional neuroimaging literature on post-stroke language recovery is complex; multiple factors such as the time post-stroke, degree of initial impairment, nature of the task, and lesion location and size, influence recovery patterns. Some of these factors may not be applicable across different stroke participants, and therefore, influence recovery trajectories in vastly different manners across patients. AIMS The aim of this paper is to examine longitudinal changes in brain activation patterns of reading and naming recovery in participants with posterior cerebral artery (PCA) strokes with varying degrees of initial language impairment. METHODS & PROCEDURES Five participants with PCA strokes and 5 healthy controls underwent language testing and functional MRI with a covert reading task and an overt picture-naming task. Stroke participants underwent language testing and scanning at the three time points: 2-5 weeks (T1, subacute phase), 4-7 months (T2, chronic phase), and 11-13 months (T3, chronic phase). Healthy controls underwent language testing and fMRI once. OUTCOMES & RESULTS Language testing indicated that there were varying degrees of reading and naming recovery or decline from the subacute to the chronic phase. With regard to task-based fMRI, we found that for most participants, naming consistently activated a diffuse bilateral network of frontal, temporal, parietal, and occipital regions across the three time points. In contrast, for the reading task, functional activation across the three time points was more left lateralized with a right to left shift in peak activation from the subacute to the chronic phase. CONCLUSIONS These results indicate that the patterns of activation during language processing is highly dependent on the task and phase of recovery, and these results may have implications for neurally targeted non-invasive brain stimulation techniques.
Collapse
Affiliation(s)
- Charltien Long
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD 21287, USA
| | - Rajani Sebastian
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD 21287, USA
| | - Andreia V. Faria
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore MD 21287, USA
| | - Argye E. Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD 21287, USA
- Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore MD 21287, USA
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
52
|
Blank IA, Kiran S, Fedorenko E. Can neuroimaging help aphasia researchers? Addressing generalizability, variability, and interpretability. Cogn Neuropsychol 2017; 34:377-393. [PMID: 29188746 PMCID: PMC6157596 DOI: 10.1080/02643294.2017.1402756] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neuroimaging studies of individuals with brain damage seek to link brain structure and activity to cognitive impairments, spontaneous recovery, or treatment outcomes. To date, such studies have relied on the critical assumption that a given anatomical landmark corresponds to the same functional unit(s) across individuals. However, this assumption is fallacious even across neurologically healthy individuals. Here, we discuss the severe implications of this issue, and argue for an approach that circumvents it, whereby: (i) functional brain regions are defined separately for each subject using fMRI, allowing for inter-individual variability in their precise location; (ii) the response profile of these subject-specific regions are characterized using various other tasks; and (iii) the results are averaged across individuals, guaranteeing generalizabliity. This method harnesses the complementary strengths of single-case studies and group studies, and it eliminates the need for post hoc "reverse inference" from anatomical landmarks back to cognitive operations, thus improving data interpretability.
Collapse
Affiliation(s)
- Idan A Blank
- a McGovern Institute for Brain Research , Massachusetts Institute of Technology , Cambridge , MA , USA
| | - Swathi Kiran
- b Department of Speech Language and Hearing Sciences, Aphasia Research Laboratory , Sargent College, Boston University , Boston , MA , USA
| | - Evelina Fedorenko
- c Department of Psychiatry , Massachusetts General Hospital , Charlestown , MA , USA
- d Department of Psychiatry , Harvard Medical School , Boston , MA , USA
| |
Collapse
|
53
|
Purcell J, Sebastian R, Leigh R, Jarso S, Davis C, Posner J, Wright A, Hillis AE. Recovery of orthographic processing after stroke: A longitudinal fMRI study. Cortex 2017; 92:103-118. [PMID: 28463704 PMCID: PMC5489136 DOI: 10.1016/j.cortex.2017.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/19/2017] [Accepted: 03/24/2017] [Indexed: 01/20/2023]
Abstract
An intact orthographic processing system is critical for normal reading and spelling. Here we investigate the neural changes associated with impairment and subsequent recovery of the orthographic lexical processing system in an individual with an ischemic left posterior cerebral artery (PCA) stroke. This work describes a longitudinal case study of a patient, whose initials are MMY, with impairments in orthographic lexical processing for reading and spelling at stroke onset, and who recovered these skills within 1 year post stroke. We tested the hypothesis that this acute impairment to reading and spelling would be associated with a selective loss of neural activation in the left fusiform gyrus (FG), and that subsequent recovery would be associated with a gain of neural activation in this region. MMY's case provided a unique opportunity to assess the selectivity of neural changes because she demonstrated a behavioral recovery of naming as well; i.e., if there is neural recovery for reading and spelling, but not naming, then these neural changes are selective to the recovery of orthographic processing. To test our hypothesis, we examined longitudinal behavioral and functional magnetic resonance imaging (fMRI) data of reading, spelling, and visual object naming acquired acutely, 3 weeks, 5 months, and one year post stroke. In confirmation of our hypothesis, the loss and subsequent gain of orthographic lexical processing was associated with up-regulation of neural activation in areas previously associated with orthographic lexical processing: i.e., the left mid-FG and inferior frontal junction (IFJ). Furthermore, these neural changes were found to be selective to orthographic processing, as they were observed for reading and spelling, but not for visual object naming within the left mid-FG. This work shows that left PCA stroke can temporarily and selectively disrupt the orthographic lexical processing system, not only in the posterior region adjacent to the stroke, but also in relatively distant frontal orthographic processing regions.
Collapse
Affiliation(s)
- Jeremy Purcell
- Cognitive Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Rajani Sebastian
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Richard Leigh
- National Institute of Neurological Disorders & Stroke, 10 Center Dr. MSC 1063, MD, USA
| | - Samson Jarso
- International Health Science University, Institute of Public Health and Management, International Hospital Kampala, P.O. Box 7782, Kampala, Uganda
| | - Cameron Davis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Joseph Posner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Amy Wright
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA; Cognitive Science, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
54
|
Gow DW, Ahlfors SP. Tracking reorganization of large-scale effective connectivity in aphasia following right hemisphere stroke. BRAIN AND LANGUAGE 2017; 170:12-17. [PMID: 28364641 PMCID: PMC5472378 DOI: 10.1016/j.bandl.2017.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/22/2016] [Accepted: 03/15/2017] [Indexed: 06/07/2023]
Abstract
In this paper we demonstrate the application of new effective connectivity analyses to characterize changing patterns of task-related directed interaction in large (25-55 node) cortical networks following the onset of aphasia. The subject was a left-handed woman who became aphasic following a right-hemisphere stroke. She was tested on an auditory word-picture verification task administered one and seven months after the onset of aphasia. MEG/EEG and anatomical MRI data were used to create high spatiotemporal resolution estimates of task-related cortical activity. Effective connectivity analyses of those data showed a reduction of bilateral network influences on preserved right-hemisphere structures, and an increase in intra-hemispheric left-hemisphere influences. She developed a connectivity pattern that was more left lateralized than that of right-handed control subjects. Her emergent left hemisphere network showed a combination of increased functional subdivision of perisylvian language areas and recruitment of medial structures.
Collapse
Affiliation(s)
- David W Gow
- Neuropsychology Laboratory, Massachusetts General Hospital, 175 Cambridge St., CPZ S340, Boston, MA 02114, United States; Department of Psychology, Salem State University, 352 Lafayette St., Salem, MA 01970, United States; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth St., S2301, Charlestown, MA 02129, United States; Harvard-MIT Division of Health Sciences and Technology, 77 Massachusetts Ave., E25-519, Cambridge, MA 02139, United States.
| | - Seppo P Ahlfors
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth St., S2301, Charlestown, MA 02129, United States
| |
Collapse
|
55
|
ALHarbi MF, Armijo-Olivo S, Kim ES. Transcranial direct current stimulation (tDCS) to improve naming ability in post-stroke aphasia: A critical review. Behav Brain Res 2017; 332:7-15. [PMID: 28572057 DOI: 10.1016/j.bbr.2017.05.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/18/2017] [Accepted: 05/22/2017] [Indexed: 12/20/2022]
Abstract
PURPOSE Transcranial Direct Current Stimulation (tDCS) is a non-invasive neuromodulation tool that can be used to influence cortical brain activity to induce measurable behavioral changes. Although there is growing evidence that tDCS combined with behavioural language therapy could boost language recovery in patients with post-stroke aphasia, there is great variability in patient characteristics, treatment protocols, and outcome measures in these studies that poses challenges for analyzing the evidence. The purpose of this study is to critically analyze the methodological rigor of the evidence regarding the use of tDCS for post-stroke anomia. METHOD This critical review was conducted by searching four databases (MEDLINE, EMBase, PsycINFO, and CINAHL). Nineteen studies fully met the inclusion criteria. Three critical appraisal tools and Robey and Schultz's (1998) five- phase model for conducting clinical outcome research were adopted to evaluate and analyze the current level of evidence. Methodological issues of the studies were also identified. RESULTS The current level of evidence for using tDCS for anomia is at the pre-efficacy level with emerging evidence at the efficacy level. Lack of proper evaluation of carry-over effects in cross-over studies, lack of or unclear randomization, allocation concealment, and incomplete data handling were the main methodological issues that could threaten the validity of the tDCS for anomia studies. CONCLUSIONS Several methodological issues have been identified in pre-efficacy studies that pose challenges in determining whether tDCS is a beneficial adjunct to behavioral aphasia therapy. Future studies need to improve the quality of the methods used to investigate the effect of tDCS for anomia.
Collapse
Affiliation(s)
- Mohammed F ALHarbi
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada; Department of Speech-language pathology and Audiology, College of Medical Rehabilitation Sciences, Taibah University, Madinah, Saudi Arabia.
| | - Susan Armijo-Olivo
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada; Rehabilitation Research Center, University of Alberta, Edmonton, AB, Canada
| | - Esther S Kim
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada; Dept. of Communication Sciences and Disorders, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
56
|
Skipper‐Kallal LM, Lacey EH, Xing S, Turkeltaub PE. Functional activation independently contributes to naming ability and relates to lesion site in post-stroke aphasia. Hum Brain Mapp 2017; 38:2051-2066. [PMID: 28083891 PMCID: PMC6867020 DOI: 10.1002/hbm.23504] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 09/27/2016] [Accepted: 12/15/2016] [Indexed: 11/06/2022] Open
Abstract
Language network reorganization in aphasia may depend on the degree of damage in critical language areas, making it difficult to determine how reorganization impacts performance. Prior studies on remapping of function in aphasia have not accounted for the location of the lesion relative to critical language areas. They rectified this problem by using a multimodal approach, combining multivariate lesion-symptom mapping and fMRI in chronic aphasia to understand the independent contributions to naming performance of the lesion and the activity in both hemispheres. Activity was examined during two stages of naming: covert retrieval, and overt articulation. Regions of interest were drawn based on over- and under-activation, and in areas where activity had a bivariate relationship with naming. Regressions then tested whether activation of these regions predicted naming ability, while controlling for lesion size and damage in critical left hemisphere naming areas, as determined by lesion-symptom mapping. Engagement of the right superior temporal sulcus (STS) and disengagement of the left dorsal pars opercularis (dPOp) during overt naming was associated with better than predicted naming performance. Lesions in the left STS prevented right STS engagement and resulted in persistent left dPOp activation. In summary, changes in activity during overt articulation independently relate to naming outcomes, controlling for stroke severity. Successful remapping relates to network disruptions that depend on the location of the lesion in the left hemisphere. Hum Brain Mapp 38:2051-2066, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Elizabeth H. Lacey
- Department of NeurologyGeorgetown University Medical CenterWashingtonDC
- Research Division, MedStar National Rehabilitation HospitalWashingtonDC
| | - Shihui Xing
- Department of NeurologyGeorgetown University Medical CenterWashingtonDC
- First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Peter E. Turkeltaub
- Department of NeurologyGeorgetown University Medical CenterWashingtonDC
- Research Division, MedStar National Rehabilitation HospitalWashingtonDC
| |
Collapse
|
57
|
Norise C, Hamilton RH. Non-invasive Brain Stimulation in the Treatment of Post-stroke and Neurodegenerative Aphasia: Parallels, Differences, and Lessons Learned. Front Hum Neurosci 2017; 10:675. [PMID: 28167904 PMCID: PMC5253356 DOI: 10.3389/fnhum.2016.00675] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/19/2016] [Indexed: 11/22/2022] Open
Abstract
Numerous studies over the span of more than a decade have shown that non-invasive brain stimulation (NIBS) techniques, namely transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), can facilitate language recovery for patients who have suffered from aphasia due to stroke. While stroke is the most common etiology of aphasia, neurodegenerative causes of language impairment—collectively termed primary progressive aphasia (PPA)—are increasingly being recognized as important clinical phenotypes in dementia. Very limited data now suggest that (NIBS) may have some benefit in treating PPAs. However, before applying the same approaches to patients with PPA as have previously been pursued in patients with post-stroke aphasia, it will be important for investigators to consider key similarities and differences between these aphasia etiologies that is likely to inform successful approaches to stimulation. While both post-stroke aphasia and the PPAs have clear overlaps in their clinical phenomenology, the mechanisms of injury and theorized neuroplastic changes associated with the two etiologies are notably different. Importantly, theories of plasticity in post-stroke aphasia are largely predicated on the notion that regions of the brain that had previously been uninvolved in language processing may take on new compensatory roles. PPAs, however, are characterized by slow distributed degeneration of cellular units within the language system; compensatory recruitment of brain regions to subserve language is not currently understood to be an important aspect of the condition. This review will survey differences in the mechanisms of language representation between the two etiologies of aphasia and evaluate properties that may define and limit the success of different neuromodulation approaches for these two disorders.
Collapse
Affiliation(s)
- Catherine Norise
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania Philadelphia, PA, USA
| | - Roy H Hamilton
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
58
|
Right Hemisphere Remapping of Naming Functions Depends on Lesion Size and Location in Poststroke Aphasia. Neural Plast 2017; 2017:8740353. [PMID: 28168061 PMCID: PMC5266856 DOI: 10.1155/2017/8740353] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/24/2016] [Indexed: 11/17/2022] Open
Abstract
The study of language network plasticity following left hemisphere stroke is foundational to the understanding of aphasia recovery and neural plasticity in general. Damage in different language nodes may influence whether local plasticity is possible and whether right hemisphere recruitment is beneficial. However, the relationships of both lesion size and location to patterns of remapping are poorly understood. In the context of a picture naming fMRI task, we tested whether lesion size and location relate to activity in surviving left hemisphere language nodes, as well as homotopic activity in the right hemisphere during covert name retrieval and overt name production. We found that lesion size was positively associated with greater right hemisphere activity during both phases of naming, a pattern that has frequently been suggested but has not previously been clearly demonstrated. During overt naming, lesions in the inferior frontal gyrus led to deactivation of contralateral frontal areas, while lesions in motor cortex led to increased right motor cortex activity. Furthermore, increased right motor activity related to better naming performance only when left motor cortex was lesioned, suggesting compensatory takeover of speech or language function by the homotopic node. These findings demonstrate that reorganization of language function, and the degree to which reorganization facilitates aphasia recovery, is dependent on the size and site of the lesion.
Collapse
|
59
|
Qiu WH, Wu HX, Yang QL, Kang Z, Chen ZC, Li K, Qiu GR, Xie CQ, Wan GF, Chen SQ. Evidence of cortical reorganization of language networks after stroke with subacute Broca's aphasia: a blood oxygenation level dependent-functional magnetic resonance imaging study. Neural Regen Res 2017; 12:109-117. [PMID: 28250756 PMCID: PMC5319215 DOI: 10.4103/1673-5374.198996] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Aphasia is an acquired language disorder that is a common consequence of stroke. The pathogenesis of the disease is not fully understood, and as a result, current treatment options are not satisfactory. Here, we used blood oxygenation level-dependent functional magnetic resonance imaging to evaluate the activation of bilateral cortices in patients with Broca's aphasia 1 to 3 months after stroke. Our results showed that language expression was associated with multiple brain regions in which the right hemisphere participated in the generation of language. The activation areas in the left hemisphere of aphasia patients were significantly smaller compared with those in healthy adults. The activation frequency, volumes, and intensity in the regions related to language, such as the left inferior frontal gyrus (Broca's area), the left superior temporal gyrus, and the right inferior frontal gyrus (the mirror region of Broca's area), were lower in patients compared with healthy adults. In contrast, activation in the right superior temporal gyrus, the bilateral superior parietal lobule, and the left inferior temporal gyrus was stronger in patients compared with healthy controls. These results suggest that the right inferior frontal gyrus plays a role in the recovery of language function in the subacute stage of stroke-related aphasia by increasing the engagement of related brain areas.
Collapse
Affiliation(s)
- Wei-Hong Qiu
- Department of Rehabilitation Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Hui-Xiang Wu
- Department of Rehabilitation Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Qing-Lu Yang
- Department of Rehabilitation Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhuang Kang
- Department of Radiology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhao-Cong Chen
- Department of Rehabilitation Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Kui Li
- Department of Rehabilitation Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Guo-Rong Qiu
- Department of Rehabilitation Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Chun-Qing Xie
- Department of Rehabilitation Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Gui-Fang Wan
- Department of Rehabilitation Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shao-Qiong Chen
- Department of Radiology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
60
|
Oliveira FFD, Marin SDMC, Bertolucci PHF. Neurological impressions on the organization of language networks in the human brain. Brain Inj 2016; 31:140-150. [PMID: 27740867 DOI: 10.1080/02699052.2016.1199914] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND More than 95% of right-handed individuals, as well as almost 80% of left-handed individuals, have left hemisphere dominance for language. The perisylvian networks of the dominant hemisphere tend to be the most important language systems in human brains, usually connected by bidirectional fibres originated from the superior longitudinal fascicle/arcuate fascicle system and potentially modifiable by learning. Neuroplasticity mechanisms take place to preserve neural functions after brain injuries. Language is dependent on a hierarchical interlinkage of serial and parallel processing areas in distinct brain regions considered to be elementary processing units. Whereas aphasic syndromes typically result from injuries to the dominant hemisphere, the extent of the distribution of language functions seems to be variable for each individual. METHOD Review of the literature Results: Several theories try to explain the organization of language networks in the human brain from a point of view that involves either modular or distributed processing or sometimes both. The most important evidence for each approach is discussed under the light of modern theories of organization of neural networks. CONCLUSIONS Understanding the connectivity patterns of language networks may provide deeper insights into language functions, supporting evidence-based rehabilitation strategies that focus on the enhancement of language organization for patients with aphasic syndromes.
Collapse
Affiliation(s)
- Fabricio Ferreira de Oliveira
- a Department of Neurology and Neurosurgery , Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP) , São Paulo , SP , Brazil
| | - Sheilla de Medeiros Correia Marin
- a Department of Neurology and Neurosurgery , Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP) , São Paulo , SP , Brazil
| | - Paulo Henrique Ferreira Bertolucci
- a Department of Neurology and Neurosurgery , Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP) , São Paulo , SP , Brazil
| |
Collapse
|
61
|
Spielmann K, van de Sandt-Koenderman WME, Heijenbrok-Kal MH, Ribbers GM. Transcranial direct current stimulation in post-stroke sub-acute aphasia: study protocol for a randomized controlled trial. Trials 2016; 17:380. [PMID: 27484456 PMCID: PMC4970230 DOI: 10.1186/s13063-016-1505-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/16/2016] [Indexed: 12/17/2022] Open
Abstract
Background Transcranial direct current stimulation (tDCS) is a promising new technique to optimize the effect of regular Speech and Language Therapy (SLT) in the context of aphasia rehabilitation. The present study focuses on the effect of tDCS provided during SLT in the sub-acute stage after stroke. The primary aim is to evaluate the potential effect of tDCS on language functioning, specifically on word-finding, as well as generalization effects to verbal communication. The secondary aim is to evaluate its effect on social participation and quality of life, and its cost-effectiveness. Methods We strive to include 58 stroke patients with aphasia, enrolled in an inpatient or outpatient stroke rehabilitation program, in a multicenter, double-blind, randomized controlled trial with two parallel groups and 6 months’ follow-up. Patients will participate in two separate intervention weeks, with a pause of 2 weeks in between, in the context of their regular aphasia rehabilitation program. The two intervention weeks comprise daily 45-minute sessions of word-finding therapy, combined with either anodal tDCS over the left inferior frontal gyrus (1 mA, 20 minutes; experimental condition) or sham-tDCS over the same region (control condition). The primary outcome measure is word-finding. Secondary outcome measures are verbal communication, social participation, quality of life, and cost-effectiveness of the intervention. Discussion Our results will contribute to the discussion on whether tDCS should be implemented in regular aphasia rehabilitation programs for the sub-acute post-stroke population in terms of (cost-)effectiveness. Trial registration Nederlands Trail Register: NTR4364. Registered on 21 February 2014. Electronic supplementary material The online version of this article (doi:10.1186/s13063-016-1505-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kerstin Spielmann
- Rijndam Rehabilitation Institute, PO Box 23181, 3001, KD, Rotterdam, The Netherlands. .,Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000, CA, Rotterdam, The Netherlands.
| | - W Mieke E van de Sandt-Koenderman
- Rijndam Rehabilitation Institute, PO Box 23181, 3001, KD, Rotterdam, The Netherlands.,Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000, CA, Rotterdam, The Netherlands
| | | | - Gerard M Ribbers
- Rijndam Rehabilitation Institute, PO Box 23181, 3001, KD, Rotterdam, The Netherlands.,Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000, CA, Rotterdam, The Netherlands
| |
Collapse
|
62
|
Carlson HL, Jadavji Z, Mineyko A, Damji O, Hodge J, Saunders J, Hererro M, Nowak M, Patzelt R, Mazur-Mosiewicz A, MacMaster FP, Kirton A. Treatment of dysphasia with rTMS and language therapy after childhood stroke: Multimodal imaging of plastic change. BRAIN AND LANGUAGE 2016; 159:23-34. [PMID: 27262774 DOI: 10.1016/j.bandl.2016.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 02/18/2016] [Accepted: 05/11/2016] [Indexed: 06/05/2023]
Abstract
Expressive dysphasia accompanies left inferior frontal gyrus (IFG/Broca) injury. Recovery may relate to interhemispheric balance with homologous, contralesional IFG but is unexplored in children. We evaluated effects of inhibitory rTMS to contralesional IFG combined with intensive speech therapy (SLT). A 15year-old, right-handed male incurred a left middle cerebral artery stroke. After 30months, severe non-fluent dysphasia impacted quality of life. Language networks, neuronal metabolism and white matter pathways were explored using MRI. Language function was measured longitudinally. An intensive SLT program was combined with contralesional inhibitory rTMS of right pars triangularis. Procedures were well tolerated. Language function improved persisting to four months. Post-treatment fMRI demonstrated increased left perilesional IFG activations and connectivity at rest. Bilateral changes in inositol and glutamate metabolism were observed. Contralesional, inhibitory rTMS appears safe in childhood stroke-induced dysphasia. We observed clinically significant improvements after SLT coupled with rTMS. Advanced neuroimaging can evaluate intervention-induced plasticity.
Collapse
Affiliation(s)
- Helen L Carlson
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada; Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada; Department of Neurosciences, Alberta Children's Hospital, Calgary, AB, Canada.
| | - Zeanna Jadavji
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada
| | - Aleksandra Mineyko
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada; Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada; Department of Neurosciences, Alberta Children's Hospital, Calgary, AB, Canada; Department of Pediatrics, University of Calgary, Calgary, AB, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Omar Damji
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada; Department of Neurosciences, Alberta Children's Hospital, Calgary, AB, Canada
| | - Jacquie Hodge
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada
| | - Jenny Saunders
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada
| | - Mia Hererro
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada; Department of Neurosciences, Alberta Children's Hospital, Calgary, AB, Canada
| | - Michele Nowak
- Department of Neurosciences, Alberta Children's Hospital, Calgary, AB, Canada
| | - Rebecca Patzelt
- Department of Neurosciences, Alberta Children's Hospital, Calgary, AB, Canada
| | - Anya Mazur-Mosiewicz
- Department of Clinical Psychology, Chicago School of Professional Psychology, Chicago, IL, USA
| | - Frank P MacMaster
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada; Department of Pediatrics, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Psychiatry, University of Calgary, AB, Canada; The Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada; Child and Adolescent Imaging Research (CAIR) Programs, Alberta Children's Hospital, Calgary, AB, Canada
| | - Adam Kirton
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada; Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada; Department of Neurosciences, Alberta Children's Hospital, Calgary, AB, Canada; Department of Pediatrics, University of Calgary, Calgary, AB, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
63
|
Marini A, Galetto V, Tatu K, Duca S, Geminiani G, Sacco K, Zettin M. Recovering two languages with the right hemisphere. BRAIN AND LANGUAGE 2016; 159:35-44. [PMID: 27289209 DOI: 10.1016/j.bandl.2016.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 02/26/2016] [Accepted: 05/28/2016] [Indexed: 06/06/2023]
Abstract
Converging evidence suggests that the right hemisphere (RH) plays an important role in language recovery from aphasia after a left hemisphere (LH) lesion. In this longitudinal study we describe the neurological, cognitive, and linguistic profile of A.C., a bilingual who, after a severe traumatic brain injury, developed a form of fluent aphasia that affected his two languages (i.e., Romanian and Italian). The trauma-induced parenchymal atrophy led to an exceptional ventricular dilation that, gradually, affected the whole left hemisphere. A.C. is now recovering both languages relying only on his right hemisphere. An fMRI experiment employing a bilingual covert verb generation task documented the involvement of the right middle temporal gyrus in processes of lexical selection and access. This case supports the hypothesis that the RH plays a role in language recovery from aphasia when the LH has suffered massive lesions.
Collapse
Affiliation(s)
- Andrea Marini
- Dipartimento di Lingue e Letterature, Comunicazione, Formazione e Società, University of Udine, Udine, Italy; Scientific Institute, IRCCS Eugenio Medea, San Vito al Tagliamento, Pordenone, Italy; Claudiana - Landesfachhochschule für Gesundheitsberufe, Bolzano, Italy.
| | - Valentina Galetto
- Centro Puzzle, Torino, Italy; Center for Cognitive Science, Università degli Studi di Torino, Italy
| | - Karina Tatu
- Dipartimento di Psicologia, Università di Torino, Italy; Koelliker Hospital, Turin, Italy
| | | | - Giuliano Geminiani
- Center for Cognitive Science, Università degli Studi di Torino, Italy; Dipartimento di Psicologia, Università di Torino, Italy; Koelliker Hospital, Turin, Italy; Neuroscience Institute of Turin, Italy
| | - Katiuscia Sacco
- Center for Cognitive Science, Università degli Studi di Torino, Italy; Dipartimento di Psicologia, Università di Torino, Italy; Koelliker Hospital, Turin, Italy; Neuroscience Institute of Turin, Italy
| | - Marina Zettin
- Centro Puzzle, Torino, Italy; Center for Cognitive Science, Università degli Studi di Torino, Italy; Dipartimento di Psicologia, Università di Torino, Italy.
| |
Collapse
|
64
|
Maladaptive Plasticity in Aphasia: Brain Activation Maps Underlying Verb Retrieval Errors. Neural Plast 2016; 2016:4806492. [PMID: 27429808 PMCID: PMC4939358 DOI: 10.1155/2016/4806492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/25/2016] [Accepted: 05/05/2016] [Indexed: 11/18/2022] Open
Abstract
Anomia, or impaired word retrieval, is the most widespread symptom of aphasia, an acquired language impairment secondary to brain damage. In the last decades, functional neuroimaging techniques have enabled studying the neural basis underlying anomia and its recovery. The present study aimed to explore maladaptive plasticity in persistent verb anomia, in three male participants with chronic nonfluent aphasia. Brain activation maps associated with semantic verb paraphasia occurring within an oral picture-naming task were identified with an event-related fMRI paradigm. These maps were compared with those obtained in our previous study examining adaptive plasticity (i.e., successful verb naming) in the same participants. The results show that activation patterns related to semantic verb paraphasia and successful verb naming comprise a number of common areas, contributing to both maladaptive and adaptive neuroplasticity mechanisms. This finding suggests that the segregation of brain areas provides only a partial view of the neural basis of verb anomia and successful verb naming. Therefore, it indicates the importance of network approaches which may better capture the complexity of maladaptive and adaptive neuroplasticity mechanisms in anomia recovery.
Collapse
|
65
|
TURKELTAUB PE, SWEARS MK, D’MELLO AM, STOODLEY CJ. Cerebellar tDCS as a novel treatment for aphasia? Evidence from behavioral and resting-state functional connectivity data in healthy adults. Restor Neurol Neurosci 2016; 34:491-505. [PMID: 27232953 PMCID: PMC5469248 DOI: 10.3233/rnn-150633] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Aphasia is an acquired deficit in the ability to communicate through language. Noninvasive neuromodulation offers the potential to boost neural function and recovery, yet the optimal site of neuromodulation for aphasia has yet to be established. The right posterolateral cerebellum is involved in multiple language functions, interconnects with left-hemisphere language cortices, and is crucial for optimization of function and skill acquisition, suggesting that cerebellar neuromodulation could enhance aphasia rehabilitation. OBJECTIVE To provide preliminary behavioral and functional connectivity evidence from healthy participants that cerebellar neuromodulation may be useful for rehabilitation of aphasia. METHODS In Experiment 1, 76 healthy adults performed articulation and verbal fluency tasks before and after anodal, cathodal or sham transcranial direct current stimulation (tDCS) was applied over two cerebellar locations (anterior, right posterolateral). In Experiment 2, we examined whether anodal tDCS over the right posterolateral cerebellum modulated resting-state functional connectivity in language networks in 27 healthy adults. RESULTS TDCS over the right posterolateral cerebellum significantly improved phonemic fluency. Cerebellar neuromodulation increased functional connectivity between the cerebellum and areas involved in the motor control of speech, and enhanced the correlations between left-hemisphere language and speech-motor regions. CONCLUSION We provide proof-of-principle evidence that cerebellar neuromodulation improves verbal fluency and impacts resting-state connectivity in language circuits. These findings suggest that the cerebellum is a viable candidate for neuromodulation in people with aphasia.
Collapse
Affiliation(s)
- Peter E. TURKELTAUB
- Dept of Neurology, Georgetown University, Washington, D.C
- Research Division, MedStar National Rehabilitation Hospital, Washington, D.C
| | | | - Anila M. D’MELLO
- Dept of Psychology, American University, Washington D.C
- Center for Behavioral Neuroscience, American University, Washington D.C
| | - Catherine J. STOODLEY
- Dept of Psychology, American University, Washington D.C
- Center for Behavioral Neuroscience, American University, Washington D.C
| |
Collapse
|
66
|
Marangolo P, Fiori V, Sabatini U, De Pasquale G, Razzano C, Caltagirone C, Gili T. Bilateral Transcranial Direct Current Stimulation Language Treatment Enhances Functional Connectivity in the Left Hemisphere: Preliminary Data from Aphasia. J Cogn Neurosci 2016; 28:724-38. [DOI: 10.1162/jocn_a_00927] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Abstract
Several studies have already shown that transcranial direct current stimulation (tDCS) is a useful tool for enhancing recovery in aphasia. However, no reports to date have investigated functional connectivity changes on cortical activity because of tDCS language treatment. Here, nine aphasic persons with articulatory disorders underwent an intensive language therapy in two different conditions: bilateral anodic stimulation over the left Broca's area and cathodic contralesional stimulation over the right homologue of Broca's area and a sham condition. The language treatment lasted 3 weeks (Monday to Friday, 15 sessions). In all patients, language measures were collected before (T0) and at the end of treatment (T15). Before and after each treatment condition (real vs. sham), each participant underwent a resting-state fMRI study. Results showed that, after real stimulation, patients exhibited the greatest recovery not only in terms of better accuracy in articulating the treated stimuli but also for untreated items on different tasks of the language test. Moreover, although after the sham condition connectivity changes were confined to the right brain hemisphere, real stimulation yielded to stronger functional connectivity increase in the left hemisphere. In conclusion, our data provide converging evidence from behavioral and functional imaging data that bilateral tDCS determines functional connectivity changes within the lesioned hemisphere, enhancing the language recovery process in stroke patients.
Collapse
Affiliation(s)
- Paola Marangolo
- 1IRCCS Fondazione Santa Lucia, Rome, Italy
- 2Università Federico II, Naples, Italy
| | - Valentina Fiori
- 1IRCCS Fondazione Santa Lucia, Rome, Italy
- 3Università degli Studi di Roma Tor Vergata, Rome, Italy
| | - Umberto Sabatini
- 1IRCCS Fondazione Santa Lucia, Rome, Italy
- 4University of Magna Grecia, Catanzaro, Italy
| | | | | | - Carlo Caltagirone
- 1IRCCS Fondazione Santa Lucia, Rome, Italy
- 3Università degli Studi di Roma Tor Vergata, Rome, Italy
| | - Tommaso Gili
- 1IRCCS Fondazione Santa Lucia, Rome, Italy
- 5Museo Storico della Fiscia e Ricerche “Enrico Fermi”, Rome, Italy
| |
Collapse
|
67
|
Sandars M, Cloutman L, Woollams AM. Taking Sides: An Integrative Review of the Impact of Laterality and Polarity on Efficacy of Therapeutic Transcranial Direct Current Stimulation for Anomia in Chronic Poststroke Aphasia. Neural Plast 2015; 2016:8428256. [PMID: 26819777 PMCID: PMC4706968 DOI: 10.1155/2016/8428256] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/10/2015] [Accepted: 08/24/2015] [Indexed: 11/18/2022] Open
Abstract
Anomia is a frequent and persistent symptom of poststroke aphasia, resulting from damage to areas of the brain involved in language production. Cortical neuroplasticity plays a significant role in language recovery following stroke and can be facilitated by behavioral speech and language therapy. Recent research suggests that complementing therapy with neurostimulation techniques may enhance functional gains, even amongst those with chronic aphasia. The current review focuses on the use of transcranial Direct Current Stimulation (tDCS) as an adjunct to naming therapy for individuals with chronic poststroke aphasia. Our survey of the literature indicates that combining therapy with anodal (excitatory) stimulation to the left hemisphere and/or cathodal (inhibitory) stimulation to the right hemisphere can increase both naming accuracy and speed when compared to the effects of therapy alone. However, the benefits of tDCS as a complement to therapy have not been yet systematically investigated with respect to site and polarity of stimulation. Recommendations for future research to help determine optimal protocols for combined therapy and tDCS are outlined.
Collapse
Affiliation(s)
- Margaret Sandars
- Neuroscience and Aphasia Research Unit, School of Psychological Sciences, 3rd Floor, Zochonis Building, University of Manchester, Brunswick Street, Manchester M13 9PL, UK
| | - Lauren Cloutman
- Neuroscience and Aphasia Research Unit, School of Psychological Sciences, 3rd Floor, Zochonis Building, University of Manchester, Brunswick Street, Manchester M13 9PL, UK
| | - Anna M. Woollams
- Neuroscience and Aphasia Research Unit, School of Psychological Sciences, 3rd Floor, Zochonis Building, University of Manchester, Brunswick Street, Manchester M13 9PL, UK
| |
Collapse
|
68
|
Geva S, Correia MM, Warburton EA. Contributions of bilateral white matter to chronic aphasia symptoms as assessed by diffusion tensor MRI. BRAIN AND LANGUAGE 2015; 150:117-28. [PMID: 26401977 PMCID: PMC4669306 DOI: 10.1016/j.bandl.2015.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/09/2015] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
Language reorganisation following stroke has been studied widely. However, while studies of brain activation and grey matter examined both hemispheres, studies of white matter changes have mostly focused on the left hemisphere. Here we examined the relationship between bilateral hemispheric white matter and aphasia symptoms. 15 chronic stroke patients with aphasia and 18 healthy adults were studied using Diffusion Weighted Imaging data. By applying histogram analysis, Tract-Based Spatial Statistics, tractography and lesion-tract overlap methods, it was found that damage to the left hemisphere in general, and to the arcuate fasciculus in particular, correlated with impairments on word repetition, object naming, sentence comprehension and homophone and rhyme judgement. However, no such relationship was found in the right hemisphere. It is suggested that while some language function in aphasia can be explained by damage to the left arcuate fasciculus, it cannot be explained by looking at the contra-lesional tract.
Collapse
Affiliation(s)
- Sharon Geva
- Department of Clinical Neurosciences, University of Cambridge, United Kingdom; Cognitive Neuroscience and Neuropsychiatry Section, UCL Institute of Child Health, United Kingdom.
| | - Marta M Correia
- MRC Cognition and Brain Sciences Unit, Cambridge, United Kingdom
| | | |
Collapse
|
69
|
Xing S, Lacey EH, Skipper-Kallal LM, Jiang X, Harris-Love ML, Zeng J, Turkeltaub PE. Right hemisphere grey matter structure and language outcomes in chronic left hemisphere stroke. Brain 2015; 139:227-41. [PMID: 26521078 DOI: 10.1093/brain/awv323] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/23/2015] [Indexed: 11/13/2022] Open
Abstract
The neural mechanisms underlying recovery of language after left hemisphere stroke remain elusive. Although older evidence suggested that right hemisphere language homologues compensate for damage in left hemisphere language areas, the current prevailing theory suggests that right hemisphere engagement is ineffective or even maladaptive. Using a novel combination of support vector regression-based lesion-symptom mapping and voxel-based morphometry, we aimed to determine whether local grey matter volume in the right hemisphere independently contributes to aphasia outcomes after chronic left hemisphere stroke. Thirty-two left hemisphere stroke survivors with aphasia underwent language assessment with the Western Aphasia Battery-Revised and tests of other cognitive domains. High-resolution T1-weighted images were obtained in aphasia patients and 30 demographically matched healthy controls. Support vector regression-based multivariate lesion-symptom mapping was used to identify critical language areas in the left hemisphere and then to quantify each stroke survivor's lesion burden in these areas. After controlling for these direct effects of the stroke on language, voxel-based morphometry was then used to determine whether local grey matter volumes in the right hemisphere explained additional variance in language outcomes. In brain areas in which grey matter volumes related to language outcomes, we then compared grey matter volumes in patients and healthy controls to assess post-stroke plasticity. Lesion-symptom mapping showed that specific left hemisphere regions related to different language abilities. After controlling for lesion burden in these areas, lesion size, and demographic factors, grey matter volumes in parts of the right temporoparietal cortex positively related to spontaneous speech, naming, and repetition scores. Examining whether domain general cognitive functions might explain these relationships, partial correlations demonstrated that grey matter volumes in these clusters related to verbal working memory capacity, but not other cognitive functions. Further, grey matter volumes in these areas were greater in stroke survivors than healthy control subjects. To confirm this result, 10 chronic left hemisphere stroke survivors with no history of aphasia were identified. Grey matter volumes in right temporoparietal clusters were greater in stroke survivors with aphasia compared to those without history of aphasia. These findings suggest that the grey matter structure of right hemisphere posterior dorsal stream language homologues independently contributes to language production abilities in chronic left hemisphere stroke, and that these areas may undergo hypertrophy after a stroke causing aphasia.
Collapse
Affiliation(s)
- Shihui Xing
- 1 Department of Neurology, Georgetown University Medical Center, Washington, D.C., USA 2 Department of Neurology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Elizabeth H Lacey
- 1 Department of Neurology, Georgetown University Medical Center, Washington, D.C., USA 3 Research Division, MedStar National Rehabilitation Hospital, Washington, D.C., USA
| | | | - Xiong Jiang
- 4 Department of Neuroscience, Georgetown University Medical Center, Washington, D.C., USA
| | - Michelle L Harris-Love
- 3 Research Division, MedStar National Rehabilitation Hospital, Washington, D.C., USA 5 Department of Rehabilitation Science, George Mason University, Fairfax, V.A., USA
| | - Jinsheng Zeng
- 2 Department of Neurology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Peter E Turkeltaub
- 1 Department of Neurology, Georgetown University Medical Center, Washington, D.C., USA 3 Research Division, MedStar National Rehabilitation Hospital, Washington, D.C., USA
| |
Collapse
|
70
|
Scott NM, Leuthold A, Sera MD, Georgopoulos AP. Differential neural activity patterns for spatial relations in humans: a MEG study. Exp Brain Res 2015; 234:429-41. [PMID: 26514809 DOI: 10.1007/s00221-015-4467-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/06/2015] [Indexed: 11/26/2022]
Abstract
Children learn the words for above-below relations earlier than for left-right relations, despite treating these equally well in a simple visual categorization task. Even as adults--conflicts in congruency, such as when a stimulus is depicted in a spatially incongruent manner with respect to salient global cues--can be challenging. Here we investigated the neural correlates of encoding and maintaining in working memory above-below and left-right relational planes in 12 adults using magnetoencephalography in order to discover whether above-below relations are represented by the brain differently than left-right relations. Adults performed perfectly on the task behaviorally, so any differences in neural activity were attributed to the stimuli's cognitive attributes. In comparing above-below to left-right relations during stimulus encoding, we found the greatest differences in neural activity in areas associated with space and movement. In comparing congruent to incongruent trials, we found the greatest differential activity in premotor areas. For both contrasts, brain areas involved in the encoding phase were also involved in the maintenance phase, which provides evidence that those brain areas are particularly important in representing the relational planes or congruency types throughout the trial. When comparing neural activity associated with the relational planes during working memory, additional right posterior areas were implicated, whereas the congruent-incongruent contrast implicated additional bilateral frontal and temporal areas. These findings are consistent with the hypothesis left-right relations are represented differently than above-below relations.
Collapse
Affiliation(s)
- Nicole M Scott
- Center for Cognitive Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Arthur Leuthold
- Department of Neuroscience, University of Minnesota, 321 Church Street, Minneapolis, MN, 55455, USA
| | - Maria D Sera
- Center for Cognitive Sciences, University of Minnesota, Minneapolis, MN, USA
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - Apostolos P Georgopoulos
- Center for Cognitive Sciences, University of Minnesota, Minneapolis, MN, USA.
- Department of Neuroscience, University of Minnesota, 321 Church Street, Minneapolis, MN, 55455, USA.
| |
Collapse
|
71
|
Turkeltaub PE. Brain Stimulation and the Role of the Right Hemisphere in Aphasia Recovery. Curr Neurol Neurosci Rep 2015; 15:72. [PMID: 26396038 DOI: 10.1007/s11910-015-0593-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
72
|
Dąbrowska E. What exactly is Universal Grammar, and has anyone seen it? Front Psychol 2015; 6:852. [PMID: 26157406 PMCID: PMC4477053 DOI: 10.3389/fpsyg.2015.00852] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/08/2015] [Indexed: 11/14/2022] Open
Abstract
Universal Grammar (UG) is a suspect concept. There is little agreement on what exactly is in it; and the empirical evidence for it is very weak. This paper critically examines a variety of arguments that have been put forward as evidence for UG, focussing on the three most powerful ones: universality (all human languages share a number of properties), convergence (all language learners converge on the same grammar in spite of the fact that they are exposed to different input), and poverty of the stimulus (children know things about language which they could not have learned from the input available to them). I argue that these arguments are based on premises which are either false or unsubstantiated. Languages differ from each other in profound ways, and there are very few true universals, so the fundamental crosslinguistic fact that needs explaining is diversity, not universality. A number of recent studies have demonstrated the existence of considerable differences in adult native speakers’ knowledge of the grammar of their language, including aspects of inflectional morphology, passives, quantifiers, and a variety of more complex constructions, so learners do not in fact converge on the same grammar. Finally, the poverty of the stimulus argument presupposes that children acquire linguistic representations of the kind postulated by generative grammarians; constructionist grammars such as those proposed by Tomasello, Goldberg and others can be learned from the input. We are the only species that has language, so there must be something unique about humans that makes language learning possible. The extent of crosslinguistic diversity and the considerable individual differences in the rate, style and outcome of acquisition suggest that it is more promising to think in terms of a language-making capacity, i.e., a set of domain-general abilities, rather than an innate body of knowledge about the structural properties of the target system.
Collapse
Affiliation(s)
- Ewa Dąbrowska
- Department of Humanities, Northumbria University , Newcastle upon Tyne, UK
| |
Collapse
|
73
|
Neuroscience of Aphasia Recovery: the Concept of Neural Multifunctionality. Curr Neurol Neurosci Rep 2015; 15:41. [DOI: 10.1007/s11910-015-0568-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
74
|
Shah-Basak PP, Norise C, Garcia G, Torres J, Faseyitan O, Hamilton RH. Individualized treatment with transcranial direct current stimulation in patients with chronic non-fluent aphasia due to stroke. Front Hum Neurosci 2015; 9:201. [PMID: 25954178 PMCID: PMC4404833 DOI: 10.3389/fnhum.2015.00201] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 03/26/2015] [Indexed: 01/13/2023] Open
Abstract
While evidence suggests that transcranial direct current stimulation (tDCS) may facilitate language recovery in chronic post-stroke aphasia, individual variability in patient response to different patterns of stimulation remains largely unexplored. We sought to characterize this variability among chronic aphasic individuals, and to explore whether repeated stimulation with an individualized optimal montage could lead to persistent reduction of aphasia severity. In a two-phase study, we first stimulated patients with four active montages (left hemispheric anode or cathode; right hemispheric anode or cathode) and one sham montage (Phase 1). We examined changes in picture naming ability to address (1) variability in response to different montages among our patients, and (2) whether individual patients responded optimally to at least one montage. During Phase 2, subjects who responded in Phase 1 were randomized to receive either real-tDCS or to receive sham stimulation (10 days); patients who were randomized to receive sham stimulation first were then crossed over to receive real-tDCS (10 days). In both phases, 2 mA tDCS was administered for 20 min per real-tDCS sessions and patients performed a picture naming task during stimulation. Patients' language ability was re-tested after 2-weeks and 2-months following real and sham tDCS in Phase 2. In Phase 1, despite considerable individual variability, the greatest average improvement was observed after left-cathodal stimulation. Seven out of 12 subjects responded optimally to at least one montage as demonstrated by transient improvement in picture-naming. In Phase 2, aphasia severity improved at 2-weeks and 2-months following real-tDCS but not sham. Despite individual variability with respect to optimal tDCS approach, certain montages result in consistent transient improvement in persons with chronic post-stroke aphasia. This preliminary study supports the notion that individualized tDCS treatment may enhance aphasia recovery in a persistent manner.
Collapse
Affiliation(s)
| | | | | | - Jose Torres
- Neurology, NYU Langone Medical Center New York, NY, USA
| | | | - Roy H Hamilton
- Neurology, University of Pennsylvania Philadelphia, PA, USA ; Perelman School of Medicine Philadelphia, PA, USA ; Physical Medicine and Rehabilitation, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
75
|
How Do You Treat Poststroke Aphasia with Acupuncture in Your Practice? Med Acupunct 2014; 26:298-301. [DOI: 10.1089/acu.2014.2652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
76
|
Zumbansen A, Thiel A. Recent advances in the treatment of post-stroke aphasia. Neural Regen Res 2014; 9:703-6. [PMID: 25206876 PMCID: PMC4146275 DOI: 10.4103/1673-5374.131570] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2014] [Indexed: 12/16/2022] Open
Affiliation(s)
- Anna Zumbansen
- School of Speech Pathology and Audiology, Université de Montréal, QC, Canada, H3C 3J7 ; Jewish General Hospital, McGill University, Montreal, QC, Canada, H3T 1E2
| | - Alexander Thiel
- Jewish General Hospital, McGill University, Montreal, QC, Canada, H3T 1E2
| |
Collapse
|
77
|
Zumbansen A, Peretz I, Hébert S. The Combination of Rhythm and Pitch Can Account for the Beneficial Effect of Melodic Intonation Therapy on Connected Speech Improvements in Broca's Aphasia. Front Hum Neurosci 2014; 8:592. [PMID: 25157222 PMCID: PMC4127945 DOI: 10.3389/fnhum.2014.00592] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/16/2014] [Indexed: 11/13/2022] Open
Abstract
Melodic intonation therapy (MIT) is a structured protocol for language rehabilitation in people with Broca's aphasia. The main particularity of MIT is the use of intoned speech, a technique in which the clinician stylizes the prosody of short sentences using simple pitch and rhythm patterns. In the original MIT protocol, patients must repeat diverse sentences in order to espouse this way of speaking, with the goal of improving their natural, connected speech. MIT has long been regarded as a promising treatment but its mechanisms are still debated. Recent work showed that rhythm plays a key role in variations of MIT, leading to consider the use of pitch as relatively unnecessary in MIT. Our study primarily aimed to assess the relative contribution of rhythm and pitch in MIT's generalization effect to non-trained stimuli and to connected speech. We compared a melodic therapy (with pitch and rhythm) to a rhythmic therapy (with rhythm only) and to a normally spoken therapy (without melodic elements). Three participants with chronic post-stroke Broca's aphasia underwent the treatments in hourly sessions, 3 days per week for 6 weeks, in a cross-over design. The informativeness of connected speech, speech accuracy of trained and non-trained sentences, motor-speech agility, and mood was assessed before and after the treatments. The results show that the three treatments improved speech accuracy in trained sentences, but that the combination of rhythm and pitch elicited the strongest generalization effect both to non-trained stimuli and connected speech. No significant change was measured in motor-speech agility or mood measures with either treatment. The results emphasize the beneficial effect of both rhythm and pitch in the efficacy of original MIT on connected speech, an outcome of primary clinical importance in aphasia therapy.
Collapse
Affiliation(s)
- Anna Zumbansen
- Faculty of Medicine, School of Speech Pathology and Audiology, Université de Montréal, Montreal, QC, Canada
- CRBLM, Centre for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada
- BRAMS, International Laboratory for Research on Brain, Music, and Sound, Université de Montréal, Montreal, QC, Canada
| | - Isabelle Peretz
- CRBLM, Centre for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada
- BRAMS, International Laboratory for Research on Brain, Music, and Sound, Université de Montréal, Montreal, QC, Canada
- Faculty of Arts and Science, Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Sylvie Hébert
- Faculty of Medicine, School of Speech Pathology and Audiology, Université de Montréal, Montreal, QC, Canada
- CRBLM, Centre for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada
- BRAMS, International Laboratory for Research on Brain, Music, and Sound, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
78
|
de Mendonça LIZ. Transcranial brain stimulation (TMS and tDCS) for post-stroke aphasia rehabilitation: Controversies. Dement Neuropsychol 2014; 8:207-215. [PMID: 29213905 PMCID: PMC5619396 DOI: 10.1590/s1980-57642014dn83000003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transcranial brain stimulation (TS) techniques have been investigated for use in
the rehabilitation of post-stroke aphasia. According to previous reports,
functional recovery by the left hemisphere improves recovery from aphasia, when
compared with right hemisphere participation. TS has been applied to stimulate
the activity of the left hemisphere or to inhibit homotopic areas in the right
hemisphere. Various factors can interfere with the brain's response to TS,
including the size and location of the lesion, the time elapsed since the causal
event, and individual differences in the hemispheric language dominance pattern.
The following questions are discussed in the present article: [a] Is inhibition of the right hemisphere truly beneficial?; [b] Is the transference of the language network to the left
hemisphere truly desirable in all patients?; [c] Is the use of TS during the post-stroke subacute phase truly
appropriate? Different patterns of neuroplasticity must occur in
post-stroke aphasia.
Collapse
|
79
|
Zumbansen A, Peretz I, Hébert S. Melodic intonation therapy: back to basics for future research. Front Neurol 2014; 5:7. [PMID: 24478754 PMCID: PMC3904283 DOI: 10.3389/fneur.2014.00007] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/09/2014] [Indexed: 12/12/2022] Open
Abstract
We present a critical review of the literature on melodic intonation therapy (MIT), one of the most formalized treatments used by speech-language therapist in Broca's aphasia. We suggest basic clarifications to enhance the scientific support of this promising treatment. First, therapeutic protocols using singing as a speech facilitation technique are not necessarily MIT. The goal of MIT is to restore propositional speech. The rationale is that patients can learn a new way to speak through singing by using language-capable regions of the right cerebral hemisphere. Eventually, patients are supposed to use this way of speaking permanently but not to sing overtly. We argue that many treatment programs covered in systematic reviews on MIT's efficacy do not match MIT's therapeutic goal and rationale. Critically, we identified two main variations of MIT: the French thérapie mélodique et rythmée (TMR) that trains patients to use singing overtly as a facilitation technique in case of speech struggle and palliative versions of MIT that help patients with the most severe expressive deficits produce a limited set of useful, readymade phrases. Second, we distinguish between the immediate effect of singing on speech production and the long-term effect of the entire program on language recovery. Many results in the MIT literature can be explained by this temporal perspective. Finally, we propose that MIT can be viewed as a treatment of apraxia of speech more than aphasia. This issue should be explored in future experimental studies.
Collapse
Affiliation(s)
- Anna Zumbansen
- Faculty of Medicine, School of Speech Pathology and Audiology, Université de Montréal, Montréal, QC, Canada
- BRAMS, International Laboratory for Brain, Music and Sound Research, Université de Montréal, Montréal, QC, Canada
| | - Isabelle Peretz
- BRAMS, International Laboratory for Brain, Music and Sound Research, Université de Montréal, Montréal, QC, Canada
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
| | - Sylvie Hébert
- Faculty of Medicine, School of Speech Pathology and Audiology, Université de Montréal, Montréal, QC, Canada
- BRAMS, International Laboratory for Brain, Music and Sound Research, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|