51
|
Fusella F, Seclì L, Cannata C, Brancaccio M. The one thousand and one chaperones of the NF-κB pathway. Cell Mol Life Sci 2020; 77:2275-2288. [PMID: 31811308 PMCID: PMC11104964 DOI: 10.1007/s00018-019-03402-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/04/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022]
Abstract
The NF-κB pathway represents a crucial signaling mechanism in sensing and integrating a multitude of environmental and intracellular stimuli and directing a coordinated response that from the cellular level may impact on the entire organism. A plethora of chaperone proteins work at multiple steps of the pathway, from membrane receptor activation to transcription factor binding to DNA. Indeed, chaperones are required to assist protein conformational changes, to assemble supramolecular complexes and to regulate protein ubiquitination, required for pathway activation. Some chaperones acquired a role as integral components of the signaling complexes, needed for signal progression. Here we describe the chaperones involved in the NF-κB pathway and their specific roles in the different contexts.
Collapse
Affiliation(s)
- Federica Fusella
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Laura Seclì
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Cristiana Cannata
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy.
| |
Collapse
|
52
|
Hoter A, Rizk S, Naim HY. Heat Shock Protein 60 in Hepatocellular Carcinoma: Insights and Perspectives. Front Mol Biosci 2020; 7:60. [PMID: 32351972 PMCID: PMC7174549 DOI: 10.3389/fmolb.2020.00060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Heat shock protein 60 (HSP60) is a mitochondrial chaperone that is implicated in physiological and pathological processes. For instance, it contributes to protein folding and stability, translocation of mitochondrial proteins, and apoptosis. Variations in the expression levels of HSP60 have been correlated to various diseases and cancers, including hepatocellular carcinoma (HCC). Unlike other HSPs which clearly increase in some cancers, data about HSP60 levels in HCC are controversial and difficult to interpret. In the current review, we summarize and simplify the current knowledge about the role of HSP60 in HCC. In addition, we highlight the possibility of its targeting, using chemical compounds and/or genetic tools for treatment of HCC.
Collapse
Affiliation(s)
- Abdullah Hoter
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hanover, Germany.,Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Sandra Rizk
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
53
|
Zhang J, Hu C, Jiao X, Yang Y, Li J, Yu H, Qin Y, Wei Y. Potential Role of mRNAs and LncRNAs in Chronic Intermittent Hypoxia Exposure-Aggravated Atherosclerosis. Front Genet 2020; 11:290. [PMID: 32328084 PMCID: PMC7160761 DOI: 10.3389/fgene.2020.00290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/10/2020] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis is the pathological basis of cardiovascular disease. Obstructive sleep apnea (OSA) aggravates atherosclerosis, and chronic intermittent hypoxia (CIH) as a prominent feature of OSA plays an important role during the process of atherosclerosis. The mechanisms of CIH in the development of atherosclerosis remain unclear. In the current study, we used microarray to investigate differentially expressed mRNAs and long non-coding RNAs (lncRNAs) in aorta from five groups of ApoE–/– mice fed with a high-fat diet and exposed to various conditions: normoxia for 8 weeks, CIH for 8 weeks, normoxia for 12 weeks, CIH for 12 weeks, or CIH for 8 weeks followed by normoxia for 4 weeks. Selected transcripts were validated in aorta tissues and RT-qPCR analysis showed correlation with the microarray data. Gene Ontology analysis and pathway enrichment analysis were performed to explore the mRNA function. Bioinformatic analysis indicated that short-term CIH induced up-regulated mRNAs involved in inflammatory response. Pathway enrichment analysis of lncRNA co-localized mRNAs and lncRNA co-expressed mRNAs were performed to explore lncRNA functions. The up-regulated mRNAs, lncRNA co-localized mRNAs and lncRNA co-expressed mRNAs were significantly associated with protein processing in endoplasmic reticulum pathway in atherosclerotic vascular tissue with long-term CIH exposure, suggesting that differentially expressed mRNAs and lncRNAs play important roles in this pathway. Moreover, a mRNA-lncRNA co-expression network with 380 lncRNAs, 508 mRNAs and 3238 relationships was constructed based on the correlation analysis between the differentially expressed mRNAs and lncRNAs. In summary, our study provided a systematic perspective on the potential function of mRNAs and lncRNAs in CIH-aggravated atherosclerosis, and may provide novel molecular candidates for future investigation on atherosclerosis exposed to CIH.
Collapse
Affiliation(s)
- Jing Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China.,Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing, China.,Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Chaowei Hu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China.,Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing, China.,Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Xiaolu Jiao
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China.,Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing, China.,Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Yunyun Yang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China.,Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing, China.,Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Juan Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China.,Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing, China.,Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Huahui Yu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China.,Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing, China.,Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Yanwen Qin
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China.,Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing, China.,Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Yongxiang Wei
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China.,Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing, China.,Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| |
Collapse
|
54
|
Yang S, Ren X, Liang Y, Yan Y, Zhou Y, Hu J, Wang Z, Song F, Wang F, Liao W, Liao W, Ding Y, Liang L. KNK437 restricts the growth and metastasis of colorectal cancer via targeting DNAJA1/CDC45 axis. Oncogene 2020; 39:249-261. [PMID: 31477839 DOI: 10.1038/s41388-019-0978-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/27/2019] [Accepted: 06/12/2019] [Indexed: 02/05/2023]
Abstract
As an inhibitor of heat shock proteins (HSPs), KNK437 has been reported to play an anti-tumor role in several cancers. But its therapeutic effect and mechanisms in colorectal cancer (CRC) remain unclear. Here, KNK437 sharply inhibited the level of DnaJ heat shock protein family (Hsp40) member A1 (DNAJA1), followed by DNAJB1, but had little effect on the levels of HSP27, HSP105, HSP90, and HSP70 in CRC cells. DNAJA1 promoted CRC cell proliferation in vitro and tumor growth and metastasis in vivo. Mechanistically, DNAJA1 was activated by E2F transcription factor 1 (E2F1) and then promoted cell cycle by stabilizing cell division cycle protein 45 (CDC45), which could be reversed by KNK437. DNAJA1 was significantly upregulated in CRC tissues and positively correlated with serosa invasion, lymph node metastasis. High level of DNAJA1 predicted poor prognosis for CRC patients. Its expression was highly linked with E2F1 and CDC45 in CRC tissues. More importantly, KNK437 significantly suppressed the growth of DNAJA1 expressing tumor in vivo. The combined treatment of KNK437 with 5-FU/L-OHP chemotherapy reduced liver metastasis of CRC. These data reveal a novel mechanism of KNK437 in anti-tumor therapy of CRC and provides a newly therapeutic strategy with potential translation to the CRC patients.
Collapse
Affiliation(s)
- Shaoshan Yang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Department of Pathology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong Province, People's Republic of China
| | - Xiaoli Ren
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Yunshi Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Yongrong Yan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Yangshu Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Jinlong Hu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Zhizhi Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Fuyao Song
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Feifei Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Wenting Liao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong Province, People's Republic of China.
| |
Collapse
|
55
|
Abstract
Being originally discovered as cellular recycling bins, lysosomes are today recognized as versatile signaling organelles that control a wide range of cellular functions that are essential not only for the well-being of normal cells but also for malignant transformation and cancer progression. In addition to their core functions in waste disposal and recycling of macromolecules and energy, lysosomes serve as an indispensable support system for malignant phenotype by promoting cell growth, cytoprotective autophagy, drug resistance, pH homeostasis, invasion, metastasis, and genomic integrity. On the other hand, malignant transformation reduces the stability of lysosomal membranes rendering cancer cells sensitive to lysosome-dependent cell death. Notably, many clinically approved cationic amphiphilic drugs widely used for the treatment of other diseases accumulate in lysosomes, interfere with their cancer-promoting and cancer-supporting functions and destabilize their membranes thereby opening intriguing possibilities for cancer therapy. Here, we review the emerging evidence that supports the supplementation of current cancer therapies with lysosome-targeting cationic amphiphilic drugs.
Collapse
|
56
|
El-Kassas S, El-Naggar K, Abdo SE, Abdo W, Kirrella AAK, El-Mehaseeb I, Abu El-Magd M. Dietary supplementation with copper oxide nanoparticles ameliorates chronic heat stress in broiler chickens. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an18270] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Aims Heat stress (HS) is one of the most serious problems of poultry production. Copper (Cu) is an essential trace element that plays a crucial role in the organism defence against oxidative stress. Because of the low mineral availability of the commercial Cu salts, in a novel approach, copper oxide nanoparticles (CuO-NPs) were used to alleviate chronic heat stress-induced degenerative changes in two commercial broiler strains (Ross 308 and Cobb 500). Methods Birds of each broiler strain were divided into six groups, with three replicates each. The first group (N1) received 100% of the recommended Cu requirements as CuO and was housed under normal temperature (24 ± 2°C), the second and third groups (N2 and N3 respectively) received 100% and 50% of the recommended Cu requirements as CuO-NPs and were housed under normal temperature. The fourth, fifth and sixth groups (H1, H2 and H3 respectively) received the same level of Cu supplementation as did the first, second and third groups respectively, and they were housed under normal temperature until the age of 21 days, and then exposed to HS (33 ± 2°C/5 h per day for two successive weeks). Key results Dietary supplementation with CuO-NPs during HS altered the HS-induced responses of the birds, as confirmed by decreased liver malondehyde (MDA) concentration and enhanced superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx1) mRNA expression levels and enzyme activities (P < 0.001), with a distinct linear association between the gene expression level and enzyme activity. Copper oxide NPs also reduced HS-induced degenerative changes in the hepatic tissue. These nanoparticles modulated, although variably, liver HS protein 70 (HSP70), HS protein 90 (HSP90) and HS factor 3 (HSF3) mRNA transcript levels among Ross and Cobb chickens following HS (P < 0.001). Performance of both strains under HS was improved (as shown by a marked reduction in body temperature (P < 0.001) and a higher bodyweight (P < 0.01)) when CuO-NPs were supplemented in the diet, especially for the birds receiving 50% of the recommended Cu requirement, with different responses being noted in the two strains studied. Conclusion CuO-NPs could be used as a good alternative source of Cu in poultry nutrition during summer. Implications Dietary supplementation of CuO-NPs, especially at 50% of the birds’ recommended requirement, during heat stress could enhance bird performance, lower bird temperature and increase its resistance to negative consequences of elevated temperature.
Collapse
|
57
|
Multhoff G, Vaupel P. Hypoxia Compromises Anti-Cancer Immune Responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1232:131-143. [PMID: 31893404 DOI: 10.1007/978-3-030-34461-0_18] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypoxia, one of the hallmarks of cancer, is caused by an insufficient oxygen supply, mostly due to a chaotic, deficient tumor microcirculation. Apart from a hypoxia-mediated resistance to standard therapies, modulated gene and protein expression, genetic instability and malignant progression, hypoxia also plays a pivotal role in anti-cancer immune responses by (a) reducing survival, cytolytic and migratory activity of effector cells such as CD4+ cells, CD8+ cytotoxic T cells, natural killer-like T cells and natural killer cells, (b) reducing the production and release of effector cytokines, (c) supporting immunosuppressive cells such as regulatory T cells, myeloid-derived suppressor cells and M2 macrophages, (d) increasing the production and release of immunosuppressive cytokines, and (e) inducing the expression of immune checkpoint inhibitors. In this minireview, immunosuppressive effects of hypoxia- and HIF-1a-driven traits in cancers are described.
Collapse
Affiliation(s)
- Gabriele Multhoff
- Center for Translational Cancer Research (TranslaTUM), Radiation Immuno-Oncology Group, Klinikum rechts der Isar, TU Munich (TUM), München, Germany.
| | - Peter Vaupel
- Department of Radiation Oncology, Klinikum rechts der Isar, TU München (TUM), München, Germany
| |
Collapse
|
58
|
Wen X, Yuan M, Li C, Zeng J, Duan F, Lou B, Yang Y, Qian X, Lin X. Effect of vitrectomy with intrasurgical regulation of intraocular pressure in a rabbit model of central retinal artery occlusion. Exp Eye Res 2019; 189:107779. [PMID: 31626799 DOI: 10.1016/j.exer.2019.107779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 11/15/2022]
Abstract
Central retinal artery occlusion (CRAO) is an ophthalmic emergency that causes severe and permanent visual impairment. The effects of conventional treatments on recanalizing retinal arteries and improving visual outcome are equivocal. This study was designed to determine the possible benefits of pars plana vitrectomy (PPV) with intrasurgical regulation of intraocular pressure using intraocular vascular counterpulsation (IVT). CRAO was induced by 532-nm argon green laser activation of auricular intravenous injected rose bengal, a photosensitive dye, in the central retinal arteries (CRA) of eighty-four New Zealand white albino rabbits. CRAO rabbits were randomly assigned to photocoagulation, vitrectomy and counterpulsation groups. Depending on the time intervals between surgery and CRAO induction, vitrectomy and counterpulsation groups were further divided into 2 h (2h), 6 h (6h) and 24 h (24h) subgroups. The proportion of eyes with complete recanalization was significantly higher in the 2h counterpulsation subgroup after three days (P = 0.032) and in all counterpulsation subgroups after one week (P = 0.020). After one month, the 2h and 6h counterpulsation subgroups showed greater oscillatory potential (OPs) responses (F = 3.519, P = 0.049). The 2h counterpulsation subgroup also exhibited greater b-wave amplitude in photopic 3.0 Flicker(F = 4.530, P = 0.044). Histologic evaluation revealed less destruction in the inner retina for the 2h and 6h counterpulsation subgroups. Expression of HSP70 was higher in the 2h and 6h counterpulsation subgroups (F = 48.915,P < 0.001). Levels of HSP90 were lower in all counterpulsation subgroups (F = 30.065,P < 0.001). Levels of TNF-α were lower in the 2h counterpulsation subgroup (F = 14.762,P < 0.001). These results indicate that PPV with IVT was effective to recanalize retinal arteries after CRAO. Early intervention provided better morphologic and functional prognosis for inner retina. The protective effect was related with higher retinal levels of HSP70 and lower levels of HSP90 and TNF-α.
Collapse
Affiliation(s)
- Xin Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 54 Xianlie South Road, Yuexiu District, Guangzhou City, Guangdong Province, China; Department of Ophthalmology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou City, Guangdong Province, China
| | - Miner Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 54 Xianlie South Road, Yuexiu District, Guangzhou City, Guangdong Province, China
| | - Cheng Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 54 Xianlie South Road, Yuexiu District, Guangzhou City, Guangdong Province, China
| | - Jieting Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 54 Xianlie South Road, Yuexiu District, Guangzhou City, Guangdong Province, China
| | - Fang Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 54 Xianlie South Road, Yuexiu District, Guangzhou City, Guangdong Province, China
| | - Bingsheng Lou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 54 Xianlie South Road, Yuexiu District, Guangzhou City, Guangdong Province, China
| | - Yao Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 54 Xianlie South Road, Yuexiu District, Guangzhou City, Guangdong Province, China
| | - Xiaobing Qian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 54 Xianlie South Road, Yuexiu District, Guangzhou City, Guangdong Province, China
| | - Xiaofeng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 54 Xianlie South Road, Yuexiu District, Guangzhou City, Guangdong Province, China.
| |
Collapse
|
59
|
Lopreiato V, Vailati-Riboni M, Bellingeri A, Khan I, Farina G, Parys C, Loor J. Inflammation and oxidative stress transcription profiles due to in vitro supply of methionine with or without choline in unstimulated blood polymorphonuclear leukocytes from lactating Holstein cows. J Dairy Sci 2019; 102:10395-10410. [DOI: 10.3168/jds.2019-16413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/28/2019] [Indexed: 01/06/2023]
|
60
|
Hoter A, Rizk S, Naim HY. The Multiple Roles and Therapeutic Potential of Molecular Chaperones in Prostate Cancer. Cancers (Basel) 2019; 11:cancers11081194. [PMID: 31426412 PMCID: PMC6721600 DOI: 10.3390/cancers11081194] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common cancer types in men worldwide. Heat shock proteins (HSPs) are molecular chaperones that are widely implicated in the pathogenesis, diagnosis, prognosis, and treatment of many cancers. The role of HSPs in PCa is complex and their expression has been linked to the progression and aggressiveness of the tumor. Prominent chaperones, including HSP90 and HSP70, are involved in the folding and trafficking of critical cancer-related proteins. Other members of HSPs, including HSP27 and HSP60, have been considered as promising biomarkers, similar to prostate-specific membrane antigen (PSMA), for PCa screening in order to evaluate and monitor the progression or recurrence of the disease. Moreover, expression level of chaperones like clusterin has been shown to correlate directly with the prostate tumor grade. Hence, targeting HSPs in PCa has been suggested as a promising strategy for cancer therapy. In the current review, we discuss the functions as well as the role of HSPs in PCa progression and further evaluate the approach of inhibiting HSPs as a cancer treatment strategy.
Collapse
Affiliation(s)
- Abdullah Hoter
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Sandra Rizk
- School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| |
Collapse
|
61
|
LUBKOWSKA A, BRYCZKOWSKA I, SZYGULA Z, GIEMZA C, SKRZEK A, ROTTER I, LOMBARDI G, BANFI G. The Effect of Repeated Whole-Body Cryostimulation on the HSP-70 and Lipid Metabolisms in Healthy Subjects. Physiol Res 2019; 68:419-429. [DOI: 10.33549/physiolres.933954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was to evaluate the effects of exposure to 30 daily whole body cryostimulation (WBC) on lipid metabolic parameters and serum HSP-70 concentration. The study involved 45 volunteers, homogeneous in terms of diet and daily physical activity. Blood samples were collected before and after the 10th, the 20th, and the 30th session and one month after the intervention. Total cholesterol, HDL, TG concentrations and Apolipoprotein A-I, ApoB and HSP-70 protein levels were determined in serum. Additionally, the LI (Lipid Index) and the LDL level were calculated. During exposure, positive changes in the lipid profile that included a decrease in the TCh, initiated after the 20th WBC session with a simultaneous decrease in TG and LDL levels, and an increase in the HDL concentration were observed. These changes were accompanied by a downward trend in the ApoB concentration and a decrease in the ApoB:ApoA-I ratio after 30 sessions. The nature of these changes persisted for a month after the exposure. The obtained results indicate metabolic benefits that result from prolonged exposure to cryogenic temperatures, confirming the postulate of using WBC in the regulation of lipid metabolism and the prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- A. LUBKOWSKA
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - I. BRYCZKOWSKA
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Z. SZYGULA
- Department of Physiotherapy, State University of Applied Sciences in Nowy Sacz, Nowy Sacz, Poland
| | - C. GIEMZA
- Faculty of Physiotherapy, University School of Physical Education in Wrocław, Wroclaw, Poland
| | - A. SKRZEK
- Faculty of Physiotherapy, University School of Physical Education in Wrocław, Wroclaw, Poland
| | - I. ROTTER
- Department of Medical Rehabilitation, Pomeranian Medical University in Szczecin, Poland
| | - G. LOMBARDI
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Instituto Ortopedico Galeazzi, Milano, Italy
| | - G. BANFI
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Instituto Ortopedico Galeazzi, Milano, Italy
| |
Collapse
|
62
|
Shevtsov M, Pitkin E, Ischenko A, Stangl S, Khachatryan W, Galibin O, Edmond S, Lobinger D, Multhoff G. Ex vivo Hsp70-Activated NK Cells in Combination With PD-1 Inhibition Significantly Increase Overall Survival in Preclinical Models of Glioblastoma and Lung Cancer. Front Immunol 2019; 10:454. [PMID: 30967859 PMCID: PMC6439337 DOI: 10.3389/fimmu.2019.00454] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
Heat shock protein 70 (Hsp70) which is expressed on the plasma membrane of highly aggressive tumors including non-small cell lung carcinoma and glioblastoma multiforme serves as a target for Hsp70-targeting NK cells. Herein, we aimed to investigate the antitumor effects of a combined therapy consisting of ex vivo Hsp70-peptide TKD/IL-2-activated NK cells in combination with mouse/human anti-PD-1 antibody in a syngeneic glioblastoma and a xenograft lung cancer mouse model. Mice with membrane Hsp70 positive syngeneic GL261 glioblastoma or human xenograft A549 lung tumors were sham-treated with PBS or injected with ex vivo TKD/IL-2-activated mouse/human NK cells and mouse/human PD-1 antibody either as a single regimen or in combination. Tumor volume was assessed by MR scanning and tumor-infiltrating CD8+ T, NK, and PD-1+ cells were quantified by immunohistochemistry (IHC). We could show that the adoptive transfer of ex vivo TKD/IL-2-activated mouse NK cells or the inhibition of PD-1 resulted in tumor growth delay and an improved overall survival (OS) in a syngeneic glioblastoma mouse model. A combination of both therapies was well-tolerated and significantly more effective with respect to both outcome parameters than either of the single regimens. A combined treatment in a xenograft lung cancer model showed identical effects in immunodeficient mice bearing human lung cancer after adoptive transfer of TKD/IL-2-activated human effector cells and a human PD-1 antibody. Tumor control was associated with a massive infiltration with CD8+ T and NK cells in both tumor models and a decreased in PD-1 expression on immune effector cells. In summary, a combined approach consisting of activated NK cells and anti-PD-1 therapy is safe and results in a long-term tumor control which is accompanied by a massive tumor immune cell infiltration in 2 preclinical tumor models.
Collapse
Affiliation(s)
- Maxim Shevtsov
- Radiation Immuno-Oncology, Center for Translational Cancer Research, TUM (TranslaTUM), Munich, Germany.,Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.,Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia.,Almazov National Medical Research Centre, Polenov Russian Scientific Research Institute of Neurosurgery, St. Petersburg, Russia
| | - Emil Pitkin
- Wharton School, University of Pennsylvania, Philadelphia, PA, United States
| | - Alexander Ischenko
- Research Institute of Highly Pure Biopreparations, St. Petersburg, Russia
| | - Stefan Stangl
- Radiation Immuno-Oncology, Center for Translational Cancer Research, TUM (TranslaTUM), Munich, Germany
| | - William Khachatryan
- Almazov National Medical Research Centre, Polenov Russian Scientific Research Institute of Neurosurgery, St. Petersburg, Russia
| | - Oleg Galibin
- Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - Stanley Edmond
- Radiation Immuno-Oncology, Center for Translational Cancer Research, TUM (TranslaTUM), Munich, Germany
| | - Dominik Lobinger
- Radiation Immuno-Oncology, Center for Translational Cancer Research, TUM (TranslaTUM), Munich, Germany
| | - Gabriele Multhoff
- Radiation Immuno-Oncology, Center for Translational Cancer Research, TUM (TranslaTUM), Munich, Germany
| |
Collapse
|
63
|
Bajzert J, Gorczykowski M, Stefaniak T. Evaluation of the protective effect of immunization spf DBA/2J mice with selected bacterial, recombinant Hsp60 antigens during Salmonella Enteritidis challenge. Microb Pathog 2019; 128:206-214. [DOI: 10.1016/j.micpath.2018.12.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/21/2018] [Accepted: 12/26/2018] [Indexed: 11/24/2022]
|
64
|
Radiochemotherapy combined with NK cell transfer followed by second-line PD-1 inhibition in a patient with NSCLC stage IIIb inducing long-term tumor control: a case study. Strahlenther Onkol 2019; 195:352-361. [PMID: 30747241 PMCID: PMC6433810 DOI: 10.1007/s00066-019-01434-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/24/2019] [Indexed: 02/06/2023]
Abstract
Background Membrane heat shock protein 70 (mHsp70) is indicative of high-risk tumors and serves as a tumor-specific target for natural killer (NK) cells stimulated with Hsp70 peptide (TKD) and Interleukin(IL)-2. Radiochemotherapy (RCT), mHsp70-targeting NK cells, and programmed death(PD)-1 inhibition were combined to improve the efficacy of tumor-specific immune cells in a non-small cell lung carcinoma (NSCLC) patient. Patient Following simultaneous RCT (64.8 Gy), a patient with inoperable NSCLC (cT4, cN3, cM0, stage IIIb) was treated with 4 cycles of autologous ex vivo TKD/IL-2-activated NK cells and the PD-1 antibody nivolumab as a second-line therapy. Blood samples were taken for immunophenotyping during the course of therapy. Results Adoptive transfer of ex vivo TKD/IL-2-activated NK cells after RCT combined with PD-1 blockade is well tolerated and results in superior overall survival (OS). No viable tumor cells but a massive immune cell infiltration in fibrotic tissue was detected after therapy. Neither tumor progression nor distant metastases were detectable by CT scanning 33 months after diagnosis. Therapy response was associated with significantly increased CD3−/NKG2D+/CD94+ NK cell counts, elevated CD8+ to CD4+ T cell and CD3−/CD56bright to CD3−/CD56dim NK cell ratios, and significantly reduced regulatory T cells (Tregs) in the peripheral blood. Conclusion A combined therapy consisting of RCT, mHsp70-targeting NK cells, and PD-1 antibody inhibition is well tolerated, induces anti-tumor immunity, and results in long-term tumor control in one patient with advanced NSCLC. Further, randomized studies are necessary to confirm the efficacy of this combination therapy.
Collapse
|
65
|
Gerber H, Mosser S, Boury-Jamot B, Stumpe M, Piersigilli A, Goepfert C, Dengjel J, Albrecht U, Magara F, Fraering PC. The APMAP interactome reveals new modulators of APP processing and beta-amyloid production that are altered in Alzheimer's disease. Acta Neuropathol Commun 2019; 7:13. [PMID: 30704515 PMCID: PMC6354426 DOI: 10.1186/s40478-019-0660-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/11/2019] [Indexed: 12/16/2022] Open
Abstract
The adipocyte plasma membrane-associated protein APMAP is expressed in the brain where it associates with γ-secretase, a protease responsible for the generation of the amyloid-β peptides (Aβ) implicated in the pathogenesis of Alzheimer's disease (AD). In this study, behavioral investigations revealed spatial learning and memory deficiencies in our newly generated mouse line lacking the protein APMAP. In a mouse model of AD, the constitutive deletion of APMAP worsened the spatial memory phenotype and led to increased Aβ production and deposition into senile plaques. To investigate at the molecular level the neurobiological functions of APMAP (memory and Aβ formation) and a possible link with the pathological hallmarks of AD (memory impairment and Aβ pathology), we next developed a procedure for the high-grade purification of cellular APMAP protein complexes. The biochemical characterization of these complexes revealed a series of new APMAP interactomers. Among these, the heat shock protein HSPA1A and the cation-dependent mannose-6-phosphate receptor (CD-M6PR) negatively regulated APP processing and Aβ production, while clusterin, calnexin, arginase-1, PTGFRN and the cation-independent mannose-6-phosphate receptor (CI-M6PR/IGF2R) positively regulated APP and Aβ production. Several of the newly identified APMAP interactomers contribute to the autophagy-lysosome system, further supporting an emergent agreement that this pathway can modulate APP metabolism and Aβ generation. Importantly, we have also demonstrated increased alternative splicing of APMAP and lowered levels of the Aβ controllers HSPA1A and CD-M6PR in human brains from neuropathologically verified AD cases.
Collapse
Affiliation(s)
- Hermeto Gerber
- Foundation Eclosion, CH-1228, Plan-les-Ouates, Switzerland
- Campus Biotech Innovation Park, CH-1202, Geneva, Switzerland
- Department of Biology, University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Sebastien Mosser
- Foundation Eclosion, CH-1228, Plan-les-Ouates, Switzerland
- Campus Biotech Innovation Park, CH-1202, Geneva, Switzerland
| | - Benjamin Boury-Jamot
- Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, CH-1015, Lausanne, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Alessandra Piersigilli
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, CH-3012, Bern, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Christine Goepfert
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, CH-3012, Bern, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Joern Dengjel
- Department of Biology, University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Urs Albrecht
- Department of Biology, University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Fulvio Magara
- Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, CH-1015, Lausanne, Switzerland
| | - Patrick C Fraering
- Foundation Eclosion, CH-1228, Plan-les-Ouates, Switzerland.
- Campus Biotech Innovation Park, CH-1202, Geneva, Switzerland.
| |
Collapse
|
66
|
Ooi KGJ, Khoo P, Vaclavik V, Watson SL. Statins in ophthalmology. Surv Ophthalmol 2019; 64:401-432. [PMID: 30703407 DOI: 10.1016/j.survophthal.2019.01.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 01/07/2023]
Abstract
Statins, 3-hydroxy-3-methyl-gutaryl coenzyme A reductase inhibitors, are a class of lipid-lowering drugs with anti-inflammatory, immunomodulatory, and vascular effects. Statins are increasingly being used in the treatment of a variety of medical conditions. We examine the actions of statins on the eye and its associated ophthalmic disorders. Statins can be synthetic or nonsynthetic, and their differentiating derivations may contribute to their varying cholesterol-lowering and pleiotropic effects. There is conflicting evidence on the ocular therapeutic and adverse effects of the statins. Statins may play a role in reducing the burden of dry eye, corneal ulcer scarring, thyroid-associated orbitopathy, glaucoma, uveitis and other associated ocular inflammatory states, cataract, proliferative vitreoretinopathy, diabetic retinopathy, macular degeneration, and choroidal melanoma. Topical preparations of statins can be formulated, thereby extending the range of ocular diseases that may be amenable to treatment. Statins have a relatively safe side effect profile, but rare and serious adverse reactions have been reported with their usage in ophthalmology, including myopathies and rhabdomyolysis with acute renal failure.
Collapse
Affiliation(s)
- Kenneth G-J Ooi
- Save Sight Institute, University of Sydney, Sydney, New South Wales, Australia.
| | - Pauline Khoo
- Save Sight Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Veronika Vaclavik
- Jules Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Stephanie L Watson
- Save Sight Institute, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
67
|
Kirkegaard T, Gray J, Priestman DA, Wallom KL, Atkins J, Olsen OD, Klein A, Drndarski S, Petersen NHT, Ingemann L, Smith DA, Morris L, Bornæs C, Jørgensen SH, Williams I, Hinsby A, Arenz C, Begley D, Jäättelä M, Platt FM. Heat shock protein-based therapy as a potential candidate for treating the sphingolipidoses. Sci Transl Med 2017; 8:355ra118. [PMID: 27605553 DOI: 10.1126/scitranslmed.aad9823] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 08/18/2016] [Indexed: 12/17/2022]
Abstract
Lysosomal storage diseases (LSDs) often manifest with severe systemic and central nervous system (CNS) symptoms. The existing treatment options are limited and have no or only modest efficacy against neurological manifestations of disease. We demonstrate that recombinant human heat shock protein 70 (HSP70) improves the binding of several sphingolipid-degrading enzymes to their essential cofactor bis(monoacyl)glycerophosphate in vitro. HSP70 treatment reversed lysosomal pathology in primary fibroblasts from 14 patients with eight different LSDs. HSP70 penetrated effectively into murine tissues including the CNS and inhibited glycosphingolipid accumulation in murine models of Fabry disease (Gla(-/-)), Sandhoff disease (Hexb(-/-)), and Niemann-Pick disease type C (Npc1(-/-)) and attenuated a wide spectrum of disease-associated neurological symptoms in Hexb(-/-) and Npc1(-/-) mice. Oral administration of arimoclomol, a small-molecule coinducer of HSPs that is currently in clinical trials for Niemann-Pick disease type C (NPC), recapitulated the effects of recombinant human HSP70, suggesting that heat shock protein-based therapies merit clinical evaluation for treating LSDs.
Collapse
Affiliation(s)
| | - James Gray
- Department of Pharmacology, University of Oxford, Oxford, U.K
| | | | | | - Jennifer Atkins
- Department of Pharmacology, University of Oxford, Oxford, U.K
| | - Ole Dines Olsen
- Orphazyme ApS, Copenhagen, Denmark. Cell Death and Metabolism Unit, Center for Autophagy, Recycling, and Metabolism, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Alexander Klein
- Institut für Chemie der Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | | - David A Smith
- Department of Pharmacology, University of Oxford, Oxford, U.K
| | - Lauren Morris
- Department of Pharmacology, University of Oxford, Oxford, U.K
| | | | | | - Ian Williams
- Department of Pharmacology, University of Oxford, Oxford, U.K
| | | | - Christoph Arenz
- Institut für Chemie der Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Begley
- Institute of Pharmaceutical Science, King's College London, London, U.K
| | - Marja Jäättelä
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling, and Metabolism, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, U.K
| |
Collapse
|
68
|
Targeting Heat Shock Proteins in Cancer: A Promising Therapeutic Approach. Int J Mol Sci 2017; 18:ijms18091978. [PMID: 28914774 PMCID: PMC5618627 DOI: 10.3390/ijms18091978] [Citation(s) in RCA: 312] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022] Open
Abstract
Heat shock proteins (HSPs) are a large family of chaperones that are involved in protein folding and maturation of a variety of "client" proteins protecting them from degradation, oxidative stress, hypoxia, and thermal stress. Hence, they are significant regulators of cellular proliferation, differentiation and strongly implicated in the molecular orchestration of cancer development and progression as many of their clients are well established oncoproteins in multiple tumor types. Interestingly, tumor cells are more HSP chaperonage-dependent than normal cells for proliferation and survival because the oncoproteins in cancer cells are often misfolded and require augmented chaperonage activity for correction. This led to the development of several inhibitors of HSP90 and other HSPs that have shown promise both preclinically and clinically in the treatment of cancer. In this article, we comprehensively review the roles of some of the important HSPs in cancer, and how targeting them could be efficacious, especially when traditional cancer therapies fail.
Collapse
|
69
|
Wang LC, Liao LX, Lv HN, Liu D, Dong W, Zhu J, Chen JF, Shi ML, Fu G, Song XM, Jiang Y, Zeng KW, Tu PF. Highly Selective Activation of Heat Shock Protein 70 by Allosteric Regulation Provides an Insight into Efficient Neuroinflammation Inhibition. EBioMedicine 2017; 23:160-172. [PMID: 28807514 PMCID: PMC5605382 DOI: 10.1016/j.ebiom.2017.08.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 12/11/2022] Open
Abstract
Heat shock protein 70 (Hsp70) is widely involved in immune disorders, making it as an attractive drug target for inflammation diseases. Nonselective induction of Hsp70 upregulation for inflammation therapy could cause extensive interference in inflammation-unrelated protein functions, potentially resulting in side effects. Nevertheless, direct pharmacological activation of Hsp70 via targeting specific functional amino acid residue may provide an insight into precise Hsp70 function regulation and a more satisfactory treatment effect for inflammation, which has not been extensively focused. Here we show a cysteine residue (Cys306) for selective Hsp70 activation using natural small-molecule handelin. Covalent modification of Cys306 significantly elevates Hsp70 activity and shows more satisfactory anti-neuroinflammation effects. Mechanism study reveals Cys306 modification by handelin induces an allosteric regulation to facilitate adenosine triphosphate hydrolysis capacity of Hsp70, which leads to the effective blockage of subsequent inflammation signaling pathway. Collectively, our study offers some insights into direct pharmacological activation of Hsp70 by specially targeting functional cysteine residue, thus providing a powerful tool for accurately modulating neuroinflammation pathogenesis in human with fewer undesirable adverse effects. Cys306 is a druggable residue for direct pharmacological activation of Hsp70. Covalent modification of Cys306 promotes direct Hsp70 activation via allosteric effect. Pharmacological activation of Hsp70 exerts satisfactory inhibition on neuroinflammation with fewer side effects.
Accumulated evidence reveals that Hsp70, a stress response protein, is highly involved in various neuroimmunological diseases. Hsp70 herein serves as a tempting target for anti-inflammation therapy. In this work, we identified an herb-derived guaianolide dimer compound handelin as a potent activator of Hsp70 with anti-neuroinflammatory effects. Handelin covalently modified Cys306 residue of Hsp70, and then activated Hsp70 by allosteric effect. These results can provide an insight into the direct pharmacological regulation of Hsp70 function by targeting specific amino acid residue and also guide future rational drug design to treat human neuroimmunological diseases.
Collapse
Affiliation(s)
- Li-Chao Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Li-Xi Liao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hai-Ning Lv
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dan Liu
- Proteomics Laboratory, Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing 100191, China
| | - Wei Dong
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jian Zhu
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jin-Feng Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Meng-Ling Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ge Fu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiao-Min Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
70
|
Nakajima H, Furukawa C, Chang YC, Ogata H, Magae J. Delayed Growth Suppression and Radioresistance Induced by Long-Term Continuous Gamma Irradiation. Radiat Res 2017; 188:181-190. [DOI: 10.1667/rr14666.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Hiroo Nakajima
- Department of Breast Surgery, Misugi-kai Sato Hospital, 65-1 Yabuhigashi-machi, Hirakata-shi, Osaka 573-1124, Japan
| | - Chiharu Furukawa
- Department of Biotechnology, Institute of Research and Innovation, 1201 Takada, Kashiwa 277-0861, Japan
| | - Young-Chae Chang
- Department of Cell Biology, Catholic University of Daegu, School of Medicine, 3056-6 Daemyung-4-Dong, Nam-gu, Daegu 705-718, Republic of Korea
| | - Hiromitsu Ogata
- Center for Public Health Informatics, National Institute of Public Health, 2-3-6 Minami, Wako, Saitama 351-0197, Japan
| | - Junji Magae
- Department of Biotechnology, Institute of Research and Innovation, 1201 Takada, Kashiwa 277-0861, Japan
- Center for Public Health Informatics, National Institute of Public Health, 2-3-6 Minami, Wako, Saitama 351-0197, Japan
- Magae Bioscience Institute, 49-4 Fujimidai, Tsukuba 300-1263, Japan
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1 Iwado Kita, Komae, Tokyo 201-8511, Japan
| |
Collapse
|
71
|
Abdo SE, El-Kassas S, El-Nahas AF, Mahmoud S. Modulatory Effect of Monochromatic Blue Light on Heat Stress Response in Commercial Broilers. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1351945. [PMID: 28698764 PMCID: PMC5494062 DOI: 10.1155/2017/1351945] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 03/11/2017] [Accepted: 04/12/2017] [Indexed: 12/13/2022]
Abstract
In a novel approach, monochromatic blue light was used to investigate its modulatory effect on heat stress biomarkers in two commercial broiler strains (Ross 308 and Cobb 500). At 21 days old, birds were divided into four groups including one group housed in white light, a second group exposed to blue light, a 3rd group exposed to white light + heat stress, and a 4th group exposed to blue light + heat stress. Heat treatment at 33°C lasted for five h for four successive days. Exposure to blue light during heat stress reduced MDA concentration and enhanced SOD and CAT enzyme activities as well as modulated their gene expression. Blue light also reduced the degenerative changes that occurred in the liver tissue as a result of heat stress. It regulated, though variably, liver HSP70, HSP90, HSF1, and HSF3 gene expression among Ross and Cobb chickens. Moreover, the Cobb strain showed better performance than Ross manifested by a significant reduction of rectal temperature in the case of H + B. Furthermore, a significant linear relationship was found between the lowered rectal temperature and the expression of all HSP genes. Generally, the performance of both strains by most assessed parameters under heat stress is improved when using blue light.
Collapse
Affiliation(s)
- Safaa E. Abdo
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Seham El-Kassas
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Abeer F. El-Nahas
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Shawky Mahmoud
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| |
Collapse
|
72
|
Liso A, Castellani S, Massenzio F, Trotta R, Pucciarini A, Bigerna B, De Luca P, Zoppoli P, Castiglione F, Palumbo MC, Stracci F, Landriscina M, Specchia G, Bach LA, Conese M, Falini B. Human monocyte-derived dendritic cells exposed to hyperthermia show a distinct gene expression profile and selective upregulation of IGFBP6. Oncotarget 2017; 8:60826-60840. [PMID: 28977828 PMCID: PMC5617388 DOI: 10.18632/oncotarget.18338] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 05/12/2017] [Indexed: 12/31/2022] Open
Abstract
Fever plays a role in activating innate immunity while its relevance in activating adaptive immunity is less clear. Even brief exposure to elevated temperatures significantly impacts on the immunostimulatory capacity of dendritic cells (DCs), but the consequences on immune response remain unclear. To address this issue, we analyzed the gene expression profiles of normal human monocyte-derived DCs from nine healthy adults subjected either to fever-like thermal conditions (39°C) or to normal temperature (37°C) for 180 minutes. Exposure of DCs to 39°C caused upregulation of 43 genes and downregulation of 24 genes. Functionally, the up/downregulated genes are involved in post-translational modification, protein folding, cell death and survival, and cellular movement. Notably, when compared to monocytes, DCs differentially upregulated transcription of the secreted protein IGFBP-6, not previously known to be specifically linked to hyperthermia. Exposure of DCs to 39°C induced apoptosis/necrosis and resulted in accumulation of IGFBP-6 in the conditioned medium at 48 h. IGFBP-6 may have a functional role in the hyperthermic response as it induced chemotaxis of monocytes and T lymphocytes, but not of B lymphocytes. Thus, temperature regulates complex biological DC functions that most likely contribute to their ability to induce an efficient adaptive immune response.
Collapse
Affiliation(s)
- Arcangelo Liso
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Stefano Castellani
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Francesca Massenzio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Rosa Trotta
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Barbara Bigerna
- Institute of Haematology, University of Perugia, Perugia, Italy
| | | | - Pietro Zoppoli
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi Magna Graecia, Catanzaro, Italy
| | - Filippo Castiglione
- Institute for Applied Computing, National Research Council of Italy, Rome, Italy
| | | | - Fabrizio Stracci
- Department of Experimental Medicine, Section of Public Health, University of Perugia, Perugia, Italy
| | - Matteo Landriscina
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.,Laboratory of Preclinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | | | - Leon A Bach
- Department of Medicine, Alfred Hospital, Monash University, Melbourne, Australia.,Department of Endocrinology and Diabetes, Alfred Hospital, Melbourne, Australia
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | |
Collapse
|
73
|
Yang X, Cui Y, Yue J, He H, Yu C, Liu P, Liu J, Ren X, Meng Y. The histological characteristics, age-related thickness change of skin, and expression of the HSPs in the skin during hair cycle in yak (Bos grunniens). PLoS One 2017; 12:e0176451. [PMID: 28463974 PMCID: PMC5413005 DOI: 10.1371/journal.pone.0176451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 04/11/2017] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE This experiment was conducted to study the histological characteristics, age-related thickness changes, and expression of HSPs in the skin of yak. METHODS A total of 20 yaks (10 males and 10 females) were used. Different regions of the normal skin of three different ages (newborn, half-year-old and adult) of yaks were harvested for histological study and thickness measurement. Biopsy samples were taken from the scapula regions of the skin from the same five approximately 1-year-old yaks during the hair cycle (telogen, anagen and catagen). RT-PCR, western blot and immunohistochemistry methods using the mRNA and protein levels were used to detect the expression of HSP27, HSP70 and HSP90. RT-PCR method was used to detect the mRNA expression of CGI-58 and KDF1. The IPP6.0 software was used to analyze the immunohistochemistry and measure the thickness of the skin. RESULTS The general histological structure of hairy yak skin was similar to other domestic mammals. The unique features included prominent cutaneous vascular plexuses, underdeveloped sweat glands, a large number of nasolabial glands in the nasolabial plate, and hair follicle groups composed of one primary follicle and several secondary follicles. The skin, epidermis and dermis thickness did vary significantly between different body regions and different ages. The thickness of the skin, epidermis and dermis increased from newborn to adult in yaks. Yak skin thickness decreased from dorsally to ventrally on the trunk. The skin on the lateral surface was thicker than the skin on the medial surface on the limbs. HSP27, HSP70 and HSP90 showed different expression patterns during the hair cycle using RT-PCR, western blot and immunohistochemistry methods. The expression of HSP27 mRNA and protein in the anagen stage was the highest, followed by the catagen stage, and the expression in the telogen stage was the lowest. The expression of HSP70 mRNA and protein in the telogen stage was the highest, followed by the anagen stage, and the expression in the catagen stage was the lowest. The expression of HSP90 mRNA and protein in the anagen stage was the highest, followed by the telogen stage, and the expression in the catagen stage was the lowest. HSPs were mainly expressed in the outer root sheath of hair follicle during the hair cycle, also expressed in epidermis, sebaceous gland and sweat gland in the skin of Yak. The expression of CGI-58 mRNA in the anagen stage was the highest, followed by the catagen stage, and the expression in the telogen stage was the lowest. The expression of KDF1 mRNA in the telogen stage was the highest, followed by the catagen stage, and the expression in the anagen stage was the lowest. MEANING In this study, we examined and fully described the histology of normal skin in Yak and measured the skin thickness of different ages and different regions in Yak. These data may be useful to better understand and appreciate the adaptability features of yak skin. Our investigation reports the expression patterns of HSPs in yak skin for the first time. The different expression pattern of HSPs during the hair cycle suggests they may play different roles in yak hair follicle biology.
Collapse
Affiliation(s)
- Xue Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jing Yue
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Honghong He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Chuan Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Penggang Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jun Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiandong Ren
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yun Meng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
74
|
Doberentz E, Genneper L, Wagner R, Madea B. Expression times for hsp27 and hsp70 as an indicator of thermal stress during death due to fire. Int J Legal Med 2017; 131:1707-1718. [PMID: 28233103 DOI: 10.1007/s00414-017-1566-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/16/2017] [Indexed: 12/23/2022]
Abstract
The expression of heat shock proteins (hsps) increases in cases of hyperthermal cellular stress in order to protect cellular structures. Hsps can be visualized with immunohistochemical staining. We examined 48 cases of death from fire and excessive heat and a control group of 100 deaths without any perimortem thermal stress, measuring both the hsp27 and hsp70 expressions in myocardial, pulmonary, and renal tissues. The results revealed a correlation between hsp expression and survival time. Hsps are expressed rapidly within seconds or minutes after exposure to heat stress. In particular, hsp27 is expressed fast in high levels, whereas hsp70 expression is higher in the pulmonary and renal tissue of long-term survivors. In the myocardial tissue, hsp27 expression dominated in both short- and long-term survival. The expression pattern is strongly dependent on the organ structure and the survival time, which should be considered in future postmortem studies on hsps.
Collapse
Affiliation(s)
- E Doberentz
- Institute of Legal Medicine, University of Bonn, Bonn, Germany
| | - L Genneper
- Institute of Legal Medicine, University of Bonn, Bonn, Germany
| | - R Wagner
- Institute of Legal Medicine, University of Bonn, Bonn, Germany
| | - B Madea
- Institute of Legal Medicine, University of Bonn, Bonn, Germany.
| |
Collapse
|
75
|
Zhou XY, Luo Y, Zhu YM, Liu ZH, Kent TA, Rong JG, Li W, Qiao SG, Li M, Ni Y, Ishidoh K, Zhang HL. Inhibition of autophagy blocks cathepsins-tBid-mitochondrial apoptotic signaling pathway via stabilization of lysosomal membrane in ischemic astrocytes. Cell Death Dis 2017; 8:e2618. [PMID: 28206988 PMCID: PMC5386481 DOI: 10.1038/cddis.2017.34] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 01/14/2017] [Accepted: 01/16/2017] [Indexed: 01/07/2023]
Abstract
Our previous study and others have demonstrated that autophagy is activated in ischemic astrocytes and contributes to astrocytic cell death. However, the mechanisms of ischemia-induced autophagy remain largely unknown. In this study, we established a rat's model of permanent middle cerebral artery occlusion (pMCAO) and an in vitro oxygen and glucose deprivation (OGD) model. Autophagy was inhibited by either pharmacological treatment with 3-methyladenine (3-MA) and wortmannin (Wort) or genetic treatment with knockdown of Atg5 in primary cultured astrocytes and knockout of Atg5 in mouse embryonic fibroblast (MEF) cells, respectively. We found that pharmacological or genetic inhibition of autophagy reversed pMCAO or OGD-induced increase in LC3-II, active cathepsin B and L, tBid, active caspase-3 and cytoplastic cytochrome c (Cyt-c), and suppressed the injury-induced reduction in mitochondrial Cyt-c in ischemic cortex, in injured astrocytes and MEF cells. Immunofluorescence analysis showed that 3-MA or Wort treatment reversed OGD-induced release of cathepsin B and L from the lysosome to the cytoplasm and activation of caspase-3 in the astrocytes. Furthermore, treatment of 3-MA or Wort decreased OGD-induced increase in lysosomal membrane permeability and enhanced OGD-induced upregulation of lysosomal heat shock protein 70.1B (Hsp70.1B) in astrocytes. Inhibition of autophagy by 3-MA or Wort reduced infarction volume in rats and protected OGD-induced astrocytic cell injury. A non-selective caspase inhibitor z-VAD-fmk or a specific caspase-3 inhibitor Q-DEVD-OPh also rescued OGD-induced astrocytic cell injury. In conclusion, our presenting data suggest that inhibition of autophagy blocks cathepsins–tBid–mitochondrial apoptotic signaling pathway via stabilization of lysosomal membranes, possibly due to upregulation of the lysosomal Hsp70.1B in ischemic astrocytes.
Collapse
Affiliation(s)
- Xian-Yong Zhou
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science; Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| | - Yu Luo
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science; Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| | - Yong-Ming Zhu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science; Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| | - Zhi-He Liu
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Thomas A Kent
- Stroke Outcomes Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX, USA.,Center for Translational Research on Inflammatory Diseases, Michael E DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Jia-Guo Rong
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science; Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| | - Wei Li
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science; Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| | - Shi-Gang Qiao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science; Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| | - Min Li
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science; Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| | - Yong Ni
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science; Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| | - Kazumi Ishidoh
- Institute for Health Sciences, Division of Molecular Biology, Tokushima Bumi University, Yamashiro-cho, Tokushima City, Tokushima, Japan
| | - Hui-Ling Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science; Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| |
Collapse
|
76
|
Hazra J, Mukherjee P, Ali A, Poddar S, Pal M. Engagement of Components of DNA-Break Repair Complex and NFκB in Hsp70A1A Transcription Upregulation by Heat Shock. PLoS One 2017; 12:e0168165. [PMID: 28099440 PMCID: PMC5242496 DOI: 10.1371/journal.pone.0168165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/26/2016] [Indexed: 12/23/2022] Open
Abstract
An involvement of components of DNA-break repair (DBR) complex including DNA-dependent protein kinase (DNA-PK) and poly-ADP-ribose polymerase 1 (PARP-1) in transcription regulation in response to distinct cellular signalling has been revealed by different laboratories. Here, we explored the involvement of DNA-PK and PARP-1 in the heat shock induced transcription of Hsp70A1A. We find that inhibition of both the catalytic subunit of DNA-PK (DNA-PKc), and Ku70, a regulatory subunit of DNA-PK holo-enzyme compromises transcription of Hsp70A1A under heat shock treatment. In immunoprecipitation based experiments we find that Ku70 or DNA-PK holoenzyme associates with NFκB. This NFκB associated complex also carries PARP-1. Downregulation of both NFκB and PARP-1 compromises Hsp70A1A transcription induced by heat shock treatment. Alteration of three bases by site directed mutagenesis within the consensus κB sequence motif identified on the promoter affected inducibility of Hsp70A1A transcription by heat shock treatment. These results suggest that NFκB engaged with the κB motif on the promoter cooperates in Hsp70A1A activation under heat shock in human cells as part of a DBR complex including DNA-PK and PARP-1.
Collapse
Affiliation(s)
- Joyita Hazra
- Division of Molecular Medicine, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata, India
| | - Pooja Mukherjee
- Division of Molecular Medicine, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata, India
| | - Asif Ali
- Division of Molecular Medicine, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata, India
| | - Soumita Poddar
- Bioinformatics Center, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata, India
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata, India
- * E-mail:
| |
Collapse
|
77
|
Abstract
Multiple sclerosis (MS) is an immune-mediated and neurodegenerative central nervous system disease, mostly affect myelin sheaths. The MS pathogenesis is still under debate. It is influenced by genetic, environment factors. Heat shock proteins (HSPs) are highly conserved proteins seen in all organisms. Not only heat stress but also under many stress conditions they are overexpressed. Their roles in MS pathogenesis are highly correlated with their location (intracellular or extracellular). In this chapter, we will discuss the role of HSP in MS pathogenesis.
Collapse
|
78
|
Kuo SC, Liu YW, Tsai CH, Sheen-Chen SM. Ischemic preconditioning in hepatic ischemic–reperfusion injury. FORMOSAN JOURNAL OF SURGERY 2016. [DOI: 10.1016/j.fjs.2016.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
79
|
Stress responses of human retinal pigment epithelial cells to glyoxal. Graefes Arch Clin Exp Ophthalmol 2016; 254:2361-2372. [PMID: 27520463 DOI: 10.1007/s00417-016-3463-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 07/04/2016] [Accepted: 08/01/2016] [Indexed: 10/21/2022] Open
Abstract
PURPOSE Intracellular formation of advanced glycation end products (AGEs) is a crucial pathological process in retinal diseases such as age-related macular degeneration (AMD) or diabetic retinopathy (DR). Glyoxal is a physiological metabolite produced during formation of AGEs and has also been shown to derive from photodegraded bisretinoid fluorophores in aging retinal pigment epithelial (RPE) cells. METHODS Flow cytometry was combined with either: 1) immunocytochemical staining to detect glyoxal induced formation of Nε-carboxymethyllysine (CML)-modifications of intracellular proteins (AGEs) and changes in the production of stress response proteins; or 2) vital staining to determine apoptosis rates (annexin V binding), formation of intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and changes in intracellular pH upon treatment of cells with glyoxal. The percentage of apoptotic cells was further quantified by flow cytometry after staining of fixed cells with propidium iodide to determine cells with a subdiploid (fragmented) DNA content. Apoptosis related activation of caspase 3 was determined by Western blotting. Glyoxal induced changes in VEGF-A165a mRNA expression and protein production were determined by real-time PCR and by flow cytometry after immunocytochemical staining. RESULTS Increasing glyoxal concentrations resulted in enhanced formation of AGEs, such as CML modifications of proteins. This was associated with elevated levels of intracellular reactive oxygen species, a depolarized MMP, and a decreased intracellular pH, resulting in an increased number of apoptotic cells. Apoptosis related caspase 3 activation increased in a dose dependent manner after glyoxal incubation. In consequence, the cells activated compensatory mechanisms and increased the levels of the anti-oxidative and stress-related proteins heme oxygenase-1, osteopontin, heat shock protein 27, copper/zinc superoxide dismutase, manganese superoxide dismutase, and cathepsin D. Furthermore, VEGF-A165a mRNA expression and VEGF-A protein production were significantly increased after incubation with glyoxal in ARPE-19 cells. CONCLUSIONS The glyoxal-induced oxidative stress and apoptosis in ARPE-19 cells may provide a suitable in vitro model for studying RPE cellular reactions to AGEs that occur in AMD or in DR.
Collapse
|
80
|
Borges TJ, Lang BJ, Lopes RL, Bonorino C. Modulation of Alloimmunity by Heat Shock Proteins. Front Immunol 2016; 7:303. [PMID: 27555846 PMCID: PMC4977877 DOI: 10.3389/fimmu.2016.00303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 07/27/2016] [Indexed: 01/08/2023] Open
Abstract
The immunological mechanisms that evolved for host defense against pathogens and injury are also responsible for transplant rejection. Host rejection of foreign tissue was originally thought to be mediated mainly by T cell recognition of foreign MHC alleles. Management of solid organ transplant rejection has thus focused mainly on inhibition of T cell function and matching MHC alleles between donor and host. Recently, however, it has been demonstrated that the magnitude of the initial innate immune responses upon transplantation has a decisive impact on rejection. The exact mechanisms underlying this phenomenon have yet to be characterized. Ischemic cell death and inflammation that occur upon transplantation are synonymous with extracellular release of various heat shock proteins (Hsps), many of which have been shown to have immune-modulatory properties. Here, we review the impact of Hsps upon alloimmunity and discuss the potential use of Hsps as accessory agents to improve solid organ transplant outcomes.
Collapse
Affiliation(s)
- Thiago J Borges
- Faculdade de Biociências e Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul , Brazil
| | - Benjamin J Lang
- Department of Radiation Oncology, Center for Life Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Rafael L Lopes
- Faculdade de Biociências e Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul , Brazil
| | - Cristina Bonorino
- Faculdade de Biociências e Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul , Brazil
| |
Collapse
|
81
|
Kumar S, Deepak P, Acharya A. HSP70 Modulates the Enhanced Production of Reactive Intermediate Metabolites and a Proinflammatory Cytokine TNF-α Expression in a T Cell Lymphoma. EUR J INFLAMM 2016. [DOI: 10.1177/1721727x0600400304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Heat shock proteins are intracellular soluble proteins expressed consecutively in all cells. They are immunogenic proteins able to activate antigen-presenting cells by binding through the CD91 receptor and activate both CD4+ and CD8+ T-cells. Macrophage plays a pivotal role in innate immune response and secretes a number of regulatory molecules upon activation. In the present study, we investigate the activation of normal and tumor-associated macrophage to produce the effector molecules which have a role in immunomodulation, especially in the killing of the transformed or tumor cells. In vitro and in vivo treatment of NMO and TAMs (from T-Cell Lymphoma) with optimum dose 10 μg of hsp70 produce effector molecules such as nitric oxide (NO), hydrogen peroxide (H2O2) and tumor necrosis factor-α (TNF α). The results of our experiments reveal that the production of effector molecules is dose-dependent, and the result of immunoblots also confirms the increased expression of iNOS. These findings suggest that autologous hsp70 are highly immunogenic and potent activating agents for the enhanced production of effector molecules in NMO and TAMs in a T-cell lymphoma.
Collapse
Affiliation(s)
- S. Kumar
- Immunology Laboratory, Department of Zoology, Faculty of Science, Banaras Hindu University, Varanasi, India
| | - P. Deepak
- Immunology Laboratory, Department of Zoology, Faculty of Science, Banaras Hindu University, Varanasi, India
| | - A. Acharya
- Immunology Laboratory, Department of Zoology, Faculty of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
82
|
Piri N, Kwong JMK, Gu L, Caprioli J. Heat shock proteins in the retina: Focus on HSP70 and alpha crystallins in ganglion cell survival. Prog Retin Eye Res 2016; 52:22-46. [PMID: 27017896 PMCID: PMC4842330 DOI: 10.1016/j.preteyeres.2016.03.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/14/2016] [Accepted: 03/22/2016] [Indexed: 10/22/2022]
Abstract
Heat shock proteins (HSPs) belong to a superfamily of stress proteins that are critical constituents of a complex defense mechanism that enhances cell survival under adverse environmental conditions. Cell protective roles of HSPs are related to their chaperone functions, antiapoptotic and antinecrotic effects. HSPs' anti-apoptotic and cytoprotective characteristics, their ability to protect cells from a variety of stressful stimuli, and the possibility of their pharmacological induction in cells under pathological stress make these proteins an attractive therapeutic target for various neurodegenerative diseases; these include Alzheimer's, Parkinson's, Huntington's, prion disease, and others. This review discusses the possible roles of HSPs, particularly HSP70 and small HSPs (alpha A and alpha B crystallins) in enhancing the survival of retinal ganglion cells (RGCs) in optic neuropathies such as glaucoma, which is characterized by progressive loss of vision caused by degeneration of RGCs and their axons in the optic nerve. Studies in animal models of RGC degeneration induced by ocular hypertension, optic nerve crush and axotomy show that upregulation of HSP70 expression by hyperthermia, zinc, geranyl-geranyl acetone, 17-AAG (a HSP90 inhibitor), or through transfection of retinal cells with AAV2-HSP70 effectively supports the survival of injured RGCs. RGCs survival was also stimulated by overexpression of alpha A and alpha B crystallins. These findings provide support for translating the HSP70- and alpha crystallin-based cell survival strategy into therapy to protect and rescue injured RGCs from degeneration associated with glaucomatous and other optic neuropathies.
Collapse
Affiliation(s)
- Natik Piri
- Stein Eye Institute, University of California, Los Angeles, CA 90095, USA; Brain Research Institute, University of California, Los Angeles, CA 90095, USA.
| | - Jacky M K Kwong
- Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
| | - Lei Gu
- Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
| | - Joseph Caprioli
- Stein Eye Institute, University of California, Los Angeles, CA 90095, USA; Brain Research Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
83
|
Kumar S, Stokes J, Singh UP, Scissum Gunn K, Acharya A, Manne U, Mishra M. Targeting Hsp70: A possible therapy for cancer. Cancer Lett 2016; 374:156-166. [PMID: 26898980 PMCID: PMC5553548 DOI: 10.1016/j.canlet.2016.01.056] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/28/2016] [Accepted: 01/31/2016] [Indexed: 01/13/2023]
Abstract
In all organisms, heat-shock proteins (HSPs) provide an ancient defense system. These proteins act as molecular chaperones by assisting proper folding and refolding of misfolded proteins and aid in the elimination of old and damaged cells. HSPs include Hsp100, Hsp90, Hsp70, Hsp40, and small HSPs. Through its substrate-binding domains, Hsp70 interacts with wide spectrum of molecules, ranging from unfolded to natively folded and aggregated proteins, and provides cytoprotective role against various cellular stresses. Under pathophysiological conditions, the high expression of Hsp70 allows cells to survive with lethal injuries. Increased Hsp70, by interacting at several points on apoptotic signaling pathways, leads to inhibition of apoptosis. Elevated expression of Hsp70 in cancer cells may be responsible for tumorigenesis and for tumor progression by providing resistance to chemotherapy. In contrast, inhibition or knockdown of Hsp70 reduces the size of tumors and can cause their complete regression. Moreover, extracellular Hsp70 acts as an immunogen that participates in cross presentation of MHC-I molecules. The goals of this review are to examine the roles of Hsp70 in cancer and to present strategies targeting Hsp70 in the development of cancer therapeutics.
Collapse
Affiliation(s)
- Sanjay Kumar
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, AL 36101, USA
| | - James Stokes
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, AL 36101, USA
| | - Udai P Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Karyn Scissum Gunn
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, AL 36101, USA
| | - Arbind Acharya
- Centre of Advance Study in Zoology, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Manoj Mishra
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, AL 36101, USA.
| |
Collapse
|
84
|
Gao Z, Zhang J, Li L, Shen L, Li Q, Zou Y, Du X, Zhao Z. Heat shock proteins 27 and 70 contribute to the protection of Schisandrin B against d-galactosamine-induced liver injury in mice. Can J Physiol Pharmacol 2016; 94:373-8. [DOI: 10.1139/cjpp-2015-0419] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Schisandrin B is a hepatoprotective component isolated from a traditional Chinese herb, Schisandra chinensis (Turcz.) Baill. This study determined the effect of Schisandrin B on d-galactosamine -induced liver injury and the role of heat shock proteins 27 and 70 against liver injury in mice. Acute liver injury was induced by intraperitoneal injection of d-galactosamine to mice, and Schisandrin B was given orally. The protein and gene expression of heat shock proteins 27 and 70 were detected by western blot and real-time quantitative polymerase chain reaction, respectively. Liver tissues were subjected to histological evaluation, and the activities of alanine aminotransferase and aspartate aminotransferase in the serum were measured. Pretreatment of Schisandrin B significantly attenuated d-galactosamine-induced liver injury in mice. This result was evidenced by improved alteration of histopathological hepatic necrosis and reduced alanine aminotransferase and aspartate aminotransferase activities in the serum. The hepatoprotective effect was accompanied with overexpression of heat shock proteins 27 and 70 both at the protein and mRNA levels. However, the aforementioned actions of Schisandrin B were all markedly suppressed by the heat shock protein inhibitor quercetin. Heat shock proteins 27 and 70 were involved in the protective effect of Schisandrin B against d-galactosamine-induced liver injury in mice.
Collapse
Affiliation(s)
- Zhiying Gao
- Polygenic Disease Institute, Qiqihar Medical University, 333 Bukui Street, Jianhua District, Qiqihar 161006, P. R. China
| | - Jishun Zhang
- Department of Gastroenterology and Hepatology, Beijing Chaoyang Hospital, Capital Medical University, 5 Jingyuan Road, Shijingshan District, Beijing 100043, P. R. China
| | - Libo Li
- Department of Pharmacology, Qiqihar Medical University, 333 Bukui Street, Jianhua District, Qiqihar 161006, P. R. China
| | - Longqing Shen
- School of Basic Medicine, Qiqihar Medical University, 333 Bukui Street, Jianhua District, Qiqihar 161006, P. R. China
| | - Qingyi Li
- Department of Pharmacology, Qiqihar Medical University, 333 Bukui Street, Jianhua District, Qiqihar 161006, P. R. China
| | - Yu Zou
- Department of Pharmacology, Qiqihar Medical University, 333 Bukui Street, Jianhua District, Qiqihar 161006, P. R. China
| | - Xiaohui Du
- Department of Pharmacology, Qiqihar Medical University, 333 Bukui Street, Jianhua District, Qiqihar 161006, P. R. China
| | - Zhibo Zhao
- School of Basic Medicine, Qiqihar Medical University, 333 Bukui Street, Jianhua District, Qiqihar 161006, P. R. China
| |
Collapse
|
85
|
Zhu X, Liu J, Bai J, Liu P, Zhang T, Jiang P, Wang X. Baculovirus expression of the N-terminus of porcine heat shock protein Gp96 improves the immunogenicity of recombinant PCV2 capsid protein. J Virol Methods 2016; 230:36-44. [PMID: 26826323 DOI: 10.1016/j.jviromet.2016.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 01/23/2016] [Accepted: 01/24/2016] [Indexed: 01/05/2023]
Abstract
Porcine circovirus type 2 (PCV2) causes significant economic losses to the swine industry worldwide. Heat shock proteins (Hsps) can be used as modulators to enhance both innate and adaptive immune responses. In the present study, recombinant baculoviruses expressing the PCV2Cap protein and the N-terminal 22-370 amino acids of porcine Gp96 (Gp96N), Hsp90, and Hsp70 (rBac-cap/Gp96N, rBac-cap/Hsp90 and rBac-cap/Hsp70, respectively) were constructed and the immune responses were examined in mice and piglets. The mouse experiments showed that rBac-cap/Gp96N increased the titers of specific anti-PCV2 neutralizing antibodies, proliferative responses of peripheral blood mononuclear cells (PBMCs) and IFN-γ levels compared to rBac-cap/Hsp90, rBac-cap/Hsp70, or rBac-cap. The pig experiments showed that the levels of anti-PCV2 antibody, proliferative responses of PBMCs, and IFN-γ in the rBac-cap/Gp96N groups were increased compared to those in rBac-cap group. There were no clear clinical signs of infection following PCV2 challenge in pigs inoculated with recombinant rBac-cap/Gp96N and rBac-cap, and the relative daily weight gains were higher than those in the challenge control (CC) group. The pathological lesions, extent of viremia, and viral loads of the vaccinated groups were milder than those in the CC group. Meanwhile, the extent of viremia and viral load present in the rBac-cap/Gp96N group were significantly lower than those in the rBac-cap group. These results indicated that porcine Gp96N effectively increased the humoral and cell-mediated immune responses of PCV2Cap. Gp96N presents an attractive adjuvant or immunotargeting strategy to enhance the protective efficacy of PCV2 subunit vaccines in swine.
Collapse
Affiliation(s)
- Xuejiao Zhu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Panrao Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Tingjie Zhang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| | - Xianwei Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
86
|
Thompson JW, Dawson VL, Perez-Pinzon MA, Dawson TM. Intracellular Signaling. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
87
|
ROS production, intracellular HSP70 levels and their relationship in human neutrophils: effects of age. Oncotarget 2015; 5:11800-12. [PMID: 25514461 PMCID: PMC4322963 DOI: 10.18632/oncotarget.2856] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/02/2014] [Indexed: 12/16/2022] Open
Abstract
ROS production and intracellular HSP70 levels were measured in human neutrophils for three age groups: young (20-59 years), elders (60-89 years) and nonagenarians (90 years and older). Elders showed higher levels of spontaneous intracellular ROS content compared with young and nonagenarian groups, which had similar intracellular ROS levels. Zymosan-induced (non-spontaneous) extracellular ROS levels were also similar for young and nonagenarians but were lower in elders. However, spontaneous extracellular ROS production increased continuously with age. Correlation analysis revealed positive relationships between HSP70 levels and zymosan-stimulated ROS production in the elder group. This was consistent with a promoting role for HSP70 in ROS-associated neutrophils response to pathogens. No positive correlation between ROS production and intracellular HSP70 levels was found for groups of young people and nonagenarians. In contrast, significant negative correlations of some ROS and HSP70 characteriscics were found for neutrophils from young people and nonagenarians. The observed difference in ROS and HSP70 correlations in elders and nonagenarians might be associated with an increased risk of mortality in older individuals less than 90 years old.
Collapse
|
88
|
Abstract
Local tumour hyperthermia for cancer treatment is currently used either for ablation purposes as an alternative to surgery or less frequently, in combination with chemotherapy and/or radiation therapy to enhance the effects of those traditional therapies. As it has become apparent that activating the immune system is crucial to successfully treat metastatic cancer, the potential of boosting anti-tumour immunity by heating tumours has become a growing area of cancer research. After reviewing the history of hyperthermia therapy for cancer and introducing methods for inducing local hyperthermia, this review describes different mechanisms by which heating tumours can elicit anti-tumour immune responses, including tumour cell damage, tumour surface molecule changes, heat shock proteins, exosomes, direct effects on immune cells, and changes in the tumour vasculature. We then go over in vivo studies that provide promising results showing that local hyperthermia therapy indeed activates various systemic anti-tumour immune responses that slow growth of untreated tumours. Finally, future research questions that will help bring the use of local hyperthermia as systemic immunotherapy closer to clinical application are discussed.
Collapse
Affiliation(s)
- Seiko Toraya-Brown
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Hanover , New Hampshire
| | | |
Collapse
|
89
|
Li SQ, Wan XD, Zhu S, Han HM, Xu ZS, Lu HJ. Establishment of a new animal model of azithromycin-induced liver injury and study the molecular pathological change during the process. Hum Exp Toxicol 2015. [PMID: 26205530 DOI: 10.1177/0960327115595684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The purpose of the present study is to establish a new animal model of azithromycin (AZ)-induced liver injury and study the molecular pathological change during the process. First, mice were respectively injected intraperitoneally with AZ of different high doses. Our results showed that 800 mg/kg AZ injection significantly induced liver injury in the mice, which reflected an ideal process of liver injury and repair. In this study, we analyzed the molecular pathological changes during the process by hematoxylin and eosin staining, immunohistochemistry, Western blot, and quantitative real-time reverse transcription polymerase chain reaction in the liver of mice at 0, 12, 24, 48, and 72 h after 800 mg/kg injection. Our results showed that the expression of heat shock protein 70, proliferating cell nuclear antigen, vascular endothelial growth factor, caspase 3, and cytochrome P450 2E1 were significantly differently expressed during liver injury induced by 800 mg/kg AZ in mice. Our results will be conducive for further study of the pathogenesis and prevention of drug-induced liver injury.
Collapse
Affiliation(s)
- S-Q Li
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, Medical College, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - X-D Wan
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, Medical College, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - S Zhu
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, China
| | - H-M Han
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, Medical College, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Z-S Xu
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, Medical College, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - H-J Lu
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, Medical College, Henan University of Science and Technology, Luoyang, People's Republic of China
| |
Collapse
|
90
|
Tababat-Khani P, de la Torre C, Canals F, Bennet H, Simo R, Hernandez C, Fex M, Agardh CD, Hansson O, Agardh E. Photocoagulation of human retinal pigment epithelium in vitro: unravelling the effects on ARPE-19 by transcriptomics and proteomics. Acta Ophthalmol 2015; 93:348-54. [PMID: 25604382 DOI: 10.1111/aos.12649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 11/24/2014] [Indexed: 02/06/2023]
Abstract
PURPOSE Despite the extensive use of retinal photocoagulation for ischaemia and vascular leakage in retinal vascular disease, the molecular mechanisms behind its clinical beneficial effects are still poorly understood. One important target of laser irradiation is the retinal pigment epithelium (RPE). In this study, we aimed at identifying the isolated effects of photocoagulation of RPE at both the mRNA and protein expression levels. METHODS Human ARPE-19 cells were exposed to photocoagulation. Gene expression and protein expression were compared to untreated cells using microarray and liquid chromatography-mass spectrometry analysis. Genes and proteins queried by microarray and mass spectrometry were subjected to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database pathway analyses. RESULTS Laser irradiation resulted in an induction of the cytoprotective heat-shock protein subfamily Hsp70 as well as in a suppression of the vascular permeability factor carbonic anhydrase 9 (CA9). These expression patterns were evident at both the mRNA and protein levels. KEGG pathway analyses revealed genes and proteins involved in cellular turnover, repair and inflammation. CONCLUSIONS By characterizing the transcriptional and translational effects of laser coagulation on the RPE cells in culture, we have revealed responses, which might contribute to some of the beneficial effects obtained by photocoagulation for ischaemia and vascular leakage in retinal vascular disease.
Collapse
Affiliation(s)
- Poya Tababat-Khani
- Unit on Vascular Diabetic Complications; Department of Clinical Sciences; Lund University Diabetes Center; Malmö Sweden
| | - Carolina de la Torre
- Proteomics Laboratory; Vall d'Hebron Institute of Oncology (VHIO); Vall d'Hebron University Hospital; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Francesc Canals
- Proteomics Laboratory; Vall d'Hebron Institute of Oncology (VHIO); Vall d'Hebron University Hospital; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Hedvig Bennet
- Unit on Diabetes and Celiac Disease; Department of Clinical Sciences; Lund University Diabetes Center; Malmö Sweden
| | - Rafael Simo
- Diabetes and Metabolism Research Unit and CIBERDEM; Vall d'Hebron Research Institute; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Cristina Hernandez
- Diabetes and Metabolism Research Unit and CIBERDEM; Vall d'Hebron Research Institute; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Malin Fex
- Unit on Diabetes and Celiac Disease; Department of Clinical Sciences; Lund University Diabetes Center; Malmö Sweden
| | - Carl-David Agardh
- Unit on Vascular Diabetic Complications; Department of Clinical Sciences; Lund University Diabetes Center; Malmö Sweden
| | - Ola Hansson
- Unit on Diabetes & Endocrinology; Department of Clinical Sciences; Lund University Diabetes Center; Malmö Sweden
| | - Elisabet Agardh
- Unit on Vascular Diabetic Complications; Department of Clinical Sciences; Lund University Diabetes Center; Malmö Sweden
| |
Collapse
|
91
|
Pasqua T, Filice E, Mazza R, Quintieri AM, Carmela Cerra M, Iannacone R, Melfi D, Indiveri C, Gattuso A, Angelone T. Cardiac and hepatic role of r-AtHSP70: basal effects and protection against ischemic and sepsis conditions. J Cell Mol Med 2015; 19:1492-503. [PMID: 25904190 PMCID: PMC4511348 DOI: 10.1111/jcmm.12491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/15/2014] [Indexed: 12/14/2022] Open
Abstract
Heat shock proteins (HSPs), highly conserved in all organisms, act as molecular chaperones activated by several stresses. The HSP70 class of stress-induced proteins is the most studied subtype in cardiovascular and inflammatory disease. Because of the high similarity between plant and mammalian HSP70, the aim of this work was to evaluate whether recombinant HSP70 of plant origin (r-AtHSP70) was able to protect rat cardiac and hepatic function under ischemic and sepsis conditions. We demonstrated for the first time that, in ex vivo isolated and perfused rat heart, exogenous r-AtHSP70 exerted direct negative inotropic and lusitropic effects via Akt/endothelial nitric oxide synthase pathway, induced post-conditioning cardioprotection via Reperfusion Injury Salvage Kinase and Survivor Activating Factor Enhancement pathways, and did not cause hepatic damage. In vivo administration of r-AtHSP70 protected both heart and liver against lipopolysaccharide-dependent sepsis, as revealed by the reduced plasma levels of interleukin-1β, tumour necrosis factor alpha, aspartate aminotransferase and alanine aminotransferase. These results suggest exogenous r-AtHSP70 as a molecular modulator able to protect myocardial function and to prevent cardiac and liver dysfunctions during inflammatory conditions.
Collapse
Affiliation(s)
- Teresa Pasqua
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Elisabetta Filice
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Rosa Mazza
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Anna Maria Quintieri
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Maria Carmela Cerra
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende (CS), Italy.,National Institute of Cardiovascular Research, Bologna, Italy
| | - Rina Iannacone
- ALSIA-Research Center Metapontum Agrobios, Metaponto (MT), Italy
| | - Donato Melfi
- ALSIA-Research Center Metapontum Agrobios, Metaponto (MT), Italy
| | - Cesare Indiveri
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Alfonsina Gattuso
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Tommaso Angelone
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende (CS), Italy.,National Institute of Cardiovascular Research, Bologna, Italy
| |
Collapse
|
92
|
Specht HM, Ahrens N, Blankenstein C, Duell T, Fietkau R, Gaipl US, Günther C, Gunther S, Habl G, Hautmann H, Hautmann M, Huber RM, Molls M, Offner R, Rödel C, Rödel F, Schütz M, Combs SE, Multhoff G. Heat Shock Protein 70 (Hsp70) Peptide Activated Natural Killer (NK) Cells for the Treatment of Patients with Non-Small Cell Lung Cancer (NSCLC) after Radiochemotherapy (RCTx) - From Preclinical Studies to a Clinical Phase II Trial. Front Immunol 2015; 6:162. [PMID: 25926832 PMCID: PMC4397864 DOI: 10.3389/fimmu.2015.00162] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/25/2015] [Indexed: 11/23/2022] Open
Abstract
Heat shock protein 70 (Hsp70) is frequently overexpressed in tumor cells. An unusual cell surface localization could be demonstrated on a large variety of solid tumors including lung, colorectal, breast, squamous cell carcinomas of the head and neck, prostate and pancreatic carcinomas, glioblastomas, sarcomas and hematological malignancies, but not on corresponding normal tissues. A membrane (m)Hsp70-positive phenotype can be determined either directly on single cell suspensions of tumor biopsies by flow cytometry using cmHsp70.1 monoclonal antibody or indirectly in the serum of patients using a novel lipHsp70 ELISA. A mHsp70-positive tumor phenotype has been associated with highly aggressive tumors, causing invasion and metastases and resistance to cell death. However, natural killer (NK), but not T cells were found to kill mHsp70-positive tumor cells after activation with a naturally occurring Hsp70 peptide (TKD) plus low dose IL-2 (TKD/IL-2). Safety and tolerability of ex vivo TKD/IL-2 stimulated, autologous NK cells has been demonstrated in patients with metastasized colorectal and non-small cell lung cancer (NSCLC) in a phase I clinical trial. Based on promising clinical results of the previous study, a phase II randomized clinical study was initiated in 2014. The primary objective of this multicenter proof-of-concept trial is to examine whether an adjuvant treatment of NSCLC patients after platinum-based radiochemotherapy (RCTx) with TKD/IL-2 activated, autologous NK cells is clinically effective. As a mHsp70-positive tumor phenotype is associated with poor clinical outcome only mHsp70-positive tumor patients will be recruited into the trial. The primary endpoint of this study will be the comparison of the progression-free survival of patients treated with ex vivo activated NK cells compared to patients who were treated with RCTx alone. As secondary endpoints overall survival, toxicity, quality-of-life, and biological responses will be determined in both study groups.
Collapse
Affiliation(s)
- Hanno M Specht
- Radiation Oncology, Klinikum rechts der Isar, Technische Universität München , Munich , Germany
| | - Norbert Ahrens
- Transfusion Medicine, Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg , Regensburg , Germany
| | - Christiane Blankenstein
- Münchner Studienzentrum (MSZ), Klinikum rechts der Isar, Technische Universität München , Munich , Germany
| | - Thomas Duell
- Thoracic Oncology, Asklepios Lungenfachkliniken , Munich , Germany
| | - Rainer Fietkau
- Radiation Oncology, University Hospital Erlangen , Erlangen , Germany
| | - Udo S Gaipl
- Radiation Oncology, University Hospital Erlangen , Erlangen , Germany
| | | | - Sophie Gunther
- Radiation Oncology, Klinikum rechts der Isar, Technische Universität München , Munich , Germany
| | - Gregor Habl
- Radiation Oncology, Klinikum rechts der Isar, Technische Universität München , Munich , Germany
| | - Hubert Hautmann
- Thoracic Oncology, Klinikum rechts der Isar, Technische Universität München , Munich , Germany
| | - Matthias Hautmann
- Radiation Oncology, University Hospital Regensburg , Regensburg , Germany
| | - Rudolf Maria Huber
- Thoracic Oncology, Department of Medicine, University of Munich , Munich , Germany
| | - Michael Molls
- Radiation Oncology, Klinikum rechts der Isar, Technische Universität München , Munich , Germany
| | - Robert Offner
- Transfusion Medicine, Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg , Regensburg , Germany
| | - Claus Rödel
- Radiation Oncology, University Hospital Frankfurt , Frankfurt , Germany
| | - Franz Rödel
- Radiation Oncology, University Hospital Frankfurt , Frankfurt , Germany
| | - Martin Schütz
- Thoracic Oncology, Klinikum Bogenhausen , Munich , Germany
| | - Stephanie E Combs
- Radiation Oncology, Klinikum rechts der Isar, Technische Universität München , Munich , Germany
| | - Gabriele Multhoff
- Radiation Oncology, Klinikum rechts der Isar, Technische Universität München , Munich , Germany ; Institute of Biological Molecular Imaging, Helmholtz Zentrum München , Munich , Germany
| |
Collapse
|
93
|
Wahhabaghai H, Heidari R, Zeinoddini A, Soleyman-Jahi S, Golmanesh L, Rasoulian B, Akbari H, Foadoddoni M, Esmailidehaj M. Hyperoxia-induced preconditioning against renal ischemic injury is mediated by reactive oxygen species but not related to heat shock proteins 70 and 32. Surgery 2015; 157:1014-22. [PMID: 25847506 DOI: 10.1016/j.surg.2015.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 01/21/2015] [Accepted: 01/29/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Pre-exposure of rats to normobaric hyperoxia (O2 ≥ 95%) may induce late preconditioning against renal ischemia-reperfusion (IR) injury. In this study we investigated probable mechanisms of IR injury such as the role of reactive oxygen species (ROS), renal antioxidant agents, and heat shock proteins (HSP) 32 and 70 during delayed hyperoxia-preconditioning (HO). METHODS Fifty-two rats were divided into 7 groups: (A) IR, (B) HO + IR, (C) mercaptopropionyl glycine (MPG) + HO + IR, (D) MPG + IR, (E) HO + sham, (F) MPG + sham, and (G) sham. Rats in the following study groups (group B, C and E) were kept in a normobaric hyperoxic environment for 4 h/day for 6 consecutive days, after which they were subjected to 40 minutes of ischemia; animals in the control group (group A, D, F, and G) were kept in a normoxic cage. At the end of the preconditioning period, 24 hours of reperfusion was performed. Renal function was assessed by measuring serum creatinine (Cr), blood urea nitrogen (BUN), and creatinine clearance (CLCr). Induction of the antioxidant system was evaluated by measuring renal catalase (CAT) and superoxide dismutase (SOD) activities and glutathione (GSH) and malondialdehyde (MDA) content. The role of ROS was investigated by use of MPG (a ROS scavenger). HSP32 & 70 mRNA and protein also were determined. RESULTS The hyperoxia-preconditioned IR group (B) had a lower plasma Cr and BUN and greater CLCr compared with the IR group (A) (P ≤ .016). Administration of MPG led to an increase in plasma Cr and BUN and a decrease in CLCr in group C compared with the hyperoxia-preconditioned group B (P ≤ .004). The hyperoxia-preconditioned IR group had a greater CAT activity and GSH level compared with the IR group A (P ≤ .007), whereas the administration of MPG did not change the GSH level but led to a decrease in CAT activity in group D compared with group B (P < .001). SOD activity did not change in hyperoxia-preconditioned ischemic rats compared with ischemic rats. Hyperoxia preconditioning and MPG administration in ischemic animals did not result in any considerable change in MDA level compared with the IR group A. Also, there were no clinically relevant differences in HSP32 & 70 mRNA and protein between all groups. CONCLUSION The present study demonstrates that repeated pre-exposure to hyperoxia can decrease subsequent renal IR damage in this rat model of renal ischemia. Free radical production after hyperoxia appears to play a pivotal role in the hyperoxia-induced renal protection independent of HSP level. Antioxidant enzyme activities and especially catalase seem to be implicated in this renal protective mechanism.
Collapse
Affiliation(s)
| | - Reza Heidari
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Atefeh Zeinoddini
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Soleyman-Jahi
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Golmanesh
- Department of Biochemistry, Tehran Azad University of Medical Sciences, Tehran, Iran
| | - Bahram Rasoulian
- Razi Herbal Medicines Research Center, Department of Physiology and Pharmacology, Lorestan University of Medical Sciences, Lorestan, Iran
| | - Hassan Akbari
- Department of Pathology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Foadoddoni
- Department of Physiology and Pharmacology, Birjand University of Medical Sciences, Birjand, Iran
| | - Mansour Esmailidehaj
- Department of Physiology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
94
|
A microarray study of middle cerebral occlusion rat brain with acupuncture intervention. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:496932. [PMID: 25861363 PMCID: PMC4377484 DOI: 10.1155/2015/496932] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/24/2014] [Accepted: 02/05/2015] [Indexed: 11/22/2022]
Abstract
Microarray analysis was used to investigate the changes of gene expression of ischemic stroke and acupuncture intervention in middle cerebral artery occlusion (MCAo) rat brain. Results showed that acupuncture intervention had a remarkable improvement in neural deficit score, cerebral blood flow, and cerebral infarction volume of MCAo rats. Microarray analysis showed that a total of 627 different expression genes were regulated in ischemic stroke. 417 genes were upregulated and 210 genes were downregulated. A total of 361 different expression genes were regulated after acupuncture intervention. Three genes were upregulated and 358 genes were downregulated. The expression of novel genes after acupuncture intervention, including Tph1 and Olr883, was further analyzed by Real-Time Quantitative Polymerase Chain Reaction (RT-PCR). Upregulation of Tph1 and downregulation of Olr883 indicated that the therapeutic effect of acupuncture for ischemic stroke may be closely related to the suppression of poststroke depression and regulation of olfactory transduction. In conclusion, the present study may enrich our understanding of the multiple pathological process of ischemic brain injury and indicate possible mechanisms of acupuncture on ischemic stroke.
Collapse
|
95
|
Gaipl US, Multhoff G, Scheithauer H, Lauber K, Hehlgans S, Frey B, Rödel F. Kill and spread the word: stimulation of antitumor immune responses in the context of radiotherapy. Immunotherapy 2015; 6:597-610. [PMID: 24896628 DOI: 10.2217/imt.14.38] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Besides the direct, targeted effects of ionizing irradiation (x-ray) on cancer cells, namely DNA damage and cell death induction, indirect, nontargeted ones exist, which are mediated in large part by the immune system. Immunogenic forms of tumor cell death induced by x-ray, including immune modulating danger signals like the heat shock protein 70, adenosine triphosphate, and high-mobility group box 1 protein are presented. Further, antitumor effects exerted by cells of the innate (natural killer cells) as well as adaptive immune system (T cells activated by dendritic cells) are outlined. Tumor cell death inhibiting molecules such as survivin are introduced as suitable target for molecularly tailored therapies in combination with x-ray. Finally, reasonable combinations of immune therapies with radiotherapy are discussed.
Collapse
Affiliation(s)
- Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | | | | | | | | | | | | |
Collapse
|
96
|
Kwong JMK, Gu L, Nassiri N, Bekerman V, Kumar-Singh R, Rhee KD, Yang XJ, Hauswirth WW, Caprioli J, Piri N. AAV-mediated and pharmacological induction of Hsp70 expression stimulates survival of retinal ganglion cells following axonal injury. Gene Ther 2015; 22:138-45. [PMID: 25427613 PMCID: PMC4320032 DOI: 10.1038/gt.2014.105] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 12/23/2022]
Abstract
We evaluated the effect of AAV2- and 17-AAG (17-N-allylamino-17-demethoxygeldanamycin)-mediated upregulation of Hsp70 expression on the survival of retinal ganglion cells (RGCs) injured by optic nerve crush (ONC). AAV2-Hsp70 expression in the retina was primarily observed in the ganglion cell layer. Approximately 75% of all transfected cells were RGCs. RGC survival in AAV2-Hsp70-injected animals was increased by an average of 110% 2 weeks after the axonal injury compared with the control. The increase in cell numbers was not even across the retinas with a maximum effect of approximately 306% observed in the inferior quadrant. 17-AAG-mediated induction of Hsp70 expression has been associated with cell protection in various models of neurodegenerative diseases. We show here that a single intravitreal injection of 17-AAG (0.2 ug ul(-1)) results in an increased survival of ONC-injured RGCs by approximately 49% compared with the vehicle-treated animals. Expression of Hsp70 in retinas of 17-AAG-treated animals was upregulated approximately by twofold compared with control animals. Our data support the idea that the upregulation of Hsp70 has a beneficial effect on the survival of injured RGCs, and the induction of this protein could be viewed as a potential neuroprotective strategy for optic neuropathies.
Collapse
Affiliation(s)
| | - Lei Gu
- Jules Stein Eye Institute, UCLA, Los Angeles, CA
| | | | | | | | - Kun Do Rhee
- Jules Stein Eye Institute, UCLA, Los Angeles, CA
| | | | | | | | - Natik Piri
- Jules Stein Eye Institute, UCLA, Los Angeles, CA
| |
Collapse
|
97
|
Liu L, Xu Y, Xu L, Wang J, Wu W, Xu L, Yan Y. Analysis of differentially expressed proteins in zebrafish (Danio rerio) embryos exposed to chlorpyrifos. Comp Biochem Physiol C Toxicol Pharmacol 2015; 167:183-9. [PMID: 25445019 DOI: 10.1016/j.cbpc.2014.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 11/20/2022]
Abstract
In this study, the protein expression profiles of zebrafish embryos under chlorpyrifos (CPF) stress were investigated. Zebrafish embryos were exposed to 0.25 mg/L CPF, and embryo samples were collected until 24 h post-fertilization (hpf). To gain a better understanding of the response of zebrafish embryos to CPF exposure, two-dimensional polyacrylamide gel electrophoresis (2D PAGE) coupled with mass spectrometry was employed to carry out a comparative proteomic analysis. Total proteins were extracted from the control and treated samples, separated by 2D PAGE, and visualized by silver staining. A total of 59 protein spots showed reproducible changes compared with the control. Of these 59 spots, 19 were selected and subjected to matrix-assisted laser desorption/ionization (MALDI) tandem time-of-flight mass spectrometry (TOF/TOF) analysis; 9 differentially expressed proteins were successfully identified, including 3 up-regulated proteins and 6 down-regulated proteins. The increased expression of 3 proteins associated with detoxification and stress response suggested that the activation of protective proteins was required in zebrafish embryos exposed to CPF. On the other hand, the decreased expression of 6 proteins is mainly involved in cytoskeleton structure, protein translation, signal transduction and lipoprotein metabolism. These data may help us understand the functions and the molecular mechanisms of these proteins in zebrafish embryos' response to CPF exposure.
Collapse
Affiliation(s)
- Lili Liu
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | | | | | | | |
Collapse
|
98
|
Han ZY, Mu T, Yang Z. Methionine protects against hyperthermia-induced cell injury in cultured bovine mammary epithelial cells. Cell Stress Chaperones 2015; 20:109-20. [PMID: 25108357 PMCID: PMC4255250 DOI: 10.1007/s12192-014-0530-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/18/2014] [Accepted: 07/18/2014] [Indexed: 01/06/2023] Open
Abstract
The aim of this study was to investigate the effects of methionine on cell proliferation, antioxidant activity, apoptosis, the expression levels of related genes (HSF-1, HSP70, Bax and Bcl-2) and the expression levels of protein (HSP70) in mammary epithelial cells, after heat treatment. Methionine (60 mg/L) increased the viability and attenuated morphological damage in hyperthermia-treated bovine mammary epithelial cells (BMECs). Additionally, methionine significantly reduced lactate dehydrogenase leakage, malondialdehyde formation, nitric oxide, and nitric oxide synthase activity. Superoxide dismutase, catalase, and glutathione peroxidase enzymatic activity was increased significantly in the presence of methionine. Bovine mammary epithelial cells also exhibited a certain amount of HSP70 reserve after methionine pretreatment for 24 h, and the expression level of the HSP70 gene and protein further increased with incubation at 42 °C for 30 min. Compared to the control, the expression of HSF-1 mRNA increased, and there was a significantly reduced expression of Bax/Bcl-2 mRNA and a reduced activity of caspase-3 against heat stress. Methionine also increased survival and decreased early apoptosis of hyperthermia-treated BMECs. Thus, methionine has cytoprotective effects on hyperthermia-induced damage in BMECs.
Collapse
Affiliation(s)
- Zhao-Yu Han
- College of Animal Science and Technology, Nanjing Agricultural University, 1# Weigang, Nanjing, 210095, China,
| | | | | |
Collapse
|
99
|
Dieterich A, Troschinski S, Schwarz S, Di Lellis MA, Henneberg A, Fischbach U, Ludwig M, Gärtner U, Triebskorn R, Köhler HR. Hsp70 and lipid peroxide levels following heat stress in Xeropicta derbentina (Krynicki 1836) (Gastropoda, Pulmonata) with regard to different colour morphs. Cell Stress Chaperones 2015; 20:159-68. [PMID: 25108358 PMCID: PMC4255243 DOI: 10.1007/s12192-014-0534-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/29/2014] [Accepted: 08/01/2014] [Indexed: 01/24/2023] Open
Abstract
Terrestrial snails which live under dry and hot conditions need efficient mechanisms of adaptation to counteract the problems of desiccation and over-heating. A profoundly heat tolerant snail species is the Mediterranean Xeropicta derbentina, exhibiting different shell colour morphs ranging from pale white to darkly banded. Considering that dark-pigmented snails are believed to have a disadvantage due to faster heating, we investigated possible differences in the stress markers Hsp70 and lipid peroxideation between four pre-defined colour morphs which were exposed to different temperatures for eight hours. The highest Hsp70 levels were observed in response to 38-40 °C. Levels decreased when this temperature was exceeded. Snails of a pre-defined colour category 3 (with a large black band at the umbilicus side of the shell) showed the most prominent Hsp70 response. Lipid peroxideation levels also showed a maximum at 38 °C but displayed a second peak at rather high temperatures at which the Hsp70 level already had decreased (45-48 °C). Particularly pure white snails (category 1) and the most pigmented ones (category 4) were found to have different levels of lipid peroxidation at 38 °C and 45 °C compared to the other morphs. A hypothesis involving a combined two-phase defence mechanism, to which both, the Hsp70 protection system and the antioxidant defence system, may contribute, is discussed.
Collapse
Affiliation(s)
- A. Dieterich
- />Animal Physiological Ecology, University of Tübingen, Konrad-Adenauer-Str. 20, 72072 Tübingen, Germany
| | - S. Troschinski
- />Animal Physiological Ecology, University of Tübingen, Konrad-Adenauer-Str. 20, 72072 Tübingen, Germany
| | - S. Schwarz
- />Animal Physiological Ecology, University of Tübingen, Konrad-Adenauer-Str. 20, 72072 Tübingen, Germany
| | - M. A. Di Lellis
- />Animal Physiological Ecology, University of Tübingen, Konrad-Adenauer-Str. 20, 72072 Tübingen, Germany
| | - A. Henneberg
- />Animal Physiological Ecology, University of Tübingen, Konrad-Adenauer-Str. 20, 72072 Tübingen, Germany
| | - U. Fischbach
- />Institute of Applied Research, University of Applied Sciences, Kanalstr. 33, 73728 Esslingen, Germany
| | - M. Ludwig
- />Institute of Applied Research, University of Applied Sciences, Kanalstr. 33, 73728 Esslingen, Germany
| | - U. Gärtner
- />Institute of Applied Research, University of Applied Sciences, Kanalstr. 33, 73728 Esslingen, Germany
| | - R. Triebskorn
- />Animal Physiological Ecology, University of Tübingen, Konrad-Adenauer-Str. 20, 72072 Tübingen, Germany
| | - H.-R. Köhler
- />Animal Physiological Ecology, University of Tübingen, Konrad-Adenauer-Str. 20, 72072 Tübingen, Germany
| |
Collapse
|
100
|
Gautam PK, Acharya A. Antigenic Hsp70-peptide upregulate altered cell surface MHC class I expression in TAMs and increases anti-tumor function in Dalton's lymphoma bearing mice. Tumour Biol 2014; 36:2023-32. [PMID: 25431260 DOI: 10.1007/s13277-014-2809-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/04/2014] [Indexed: 01/09/2023] Open
Abstract
Major histocompatibility complex (MHC) class I molecules not only provide a mechanistic framework for the cell-to-cell communication, but also possess broader biological function. Due to their ability to regulate presentation of tumor-associated antigens (TAAs), viral peptides which play an essential role in the regulation of immune responses by presenting antigenic peptides to cytotoxic T lymphocytes and by regulating cytolytic activities of immune cells. Tumor cells frequently do not express MHC class I molecules; as a result, tumor cells escape from immune surveillance. Cells surviving in tumor microenvironment are often characterized by a profound immune escape phenotype with alterations in MHC class I way of antigen processing. Cellular components of the tumor microenvironment, in particular alternatively activated M2 phenotype, are involved in tumor progression and suppression of anti-tumor immunity. Hsp70 is well recognized for its role in activating macrophages leading to enhanced production of inflammatory cytokines. It has been observed that Hsp70 derived from normal tissues do not elicit tumor immunity, while Hsp70 preparation from tumor cell associated with antigen are able to elicit tumor immunity. The finding shows that the expression of MHC class I (H2D(b)) drastically decreases in TAMs and Hsp70-peptide complex enhances H2D(b) expression in TAMs and it reverts back the suppressed function of TAMs into the M1 state of immunoregulatory phenotype that promotes tumor regression by enhanced antigen presentation.
Collapse
Affiliation(s)
- Pramod Kumar Gautam
- Department of Zoology, Faculty of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | | |
Collapse
|