51
|
Ghavimi R, Alsahebfosoul F, Salehi R, Kazemi M, Etemadifar M, Zavaran Hosseini A. High-resolution melting curve analysis of polymorphisms within CD58, CD226, HLA-G genes and association with multiple sclerosis susceptibility in a subset of Iranian population: a case-control study. Acta Neurol Belg 2020; 120:645-652. [PMID: 30128676 DOI: 10.1007/s13760-018-0992-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 07/16/2018] [Indexed: 10/28/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system with unknown etiology, which typically is manifested in early to middle adulthood. Recently, genome-wide association studies have identified susceptibility of immune-related genes to be involved in MS predisposition. The goal of the current study was to investigate the association of single nucleotide polymorphisms (SNP) with the immunologically related genes responsible for the disease, composed of CD58 (rs2300747 A>G), CD226 (rs763361 C>T), and HLA-G (rs1611715 A>C), with MS susceptibility. In this case-control study, a total of 200 patients suffering from relapsing-remitting multiple sclerosis and 200 healthy individuals were recruited. DNA was extracted from blood and then all subjects were genotyped for the polymorphism within mentioned genes by high-resolution melting (HRM) real-time PCR method. Statistical analyses were performed using SPSS software (version 20; SPSS, Chicago, IL, USA). Our finding showed that there are significant differences in genotype and allele frequencies between two groups regarding rs763361 (P = 0.035, OR 0.64, CI 95% for C allele) and rs1611715 (P = 0.038, OR 1.57, CI 95% for AA genotype) polymorphisms within CD226 and HLA-G genes, respectively. Concerning rs2300747 polymorphism on CD58 gene, no significant differences were found between cases and controls. In general, results from the current study indicate that CD226 and HLA-G, but not CD58 genetic polymorphisms are associated with increased risk of MS in Isfahan population similar to European populations. However, to elucidate how these SNPs contribute to MS pathogenesis, functional studies are needed.
Collapse
|
52
|
Ziliotto M, Rodrigues RM, Chies JAB. Controlled hypobaric hypoxia increases immunological tolerance by modifying HLA-G expression, a potential therapy to inflammatory diseases. Med Hypotheses 2020; 140:109664. [PMID: 32155542 DOI: 10.1016/j.mehy.2020.109664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 12/22/2022]
Abstract
One of the most striking characteristics of human beings is the incredible capacity to adapt to different environments. This capacity allowed humans to spread all over our planet, occupying habitats as diverse as deserts, tropical forests or tundra regions. Interactions with the environment, climate, food and water availability shaped our evolution and define our survival. Essential to human life, oxygen availability also controls human dispersion and adaptation. For example, low oxygen availability can lead to physiological adaptations in populations living in highlands. Moreover, the consequences of differential oxygen availability (or even exposure to hypoxia) are evident in process as fine-tuned controlled as gene regulation. Physiological responses to fluctuations in oxygen availability are crucial already from the early days of life, since the human fetal environment is characterized by hypoxia. Hypoxia-Inducible Factors (HIFs) act as major regulators of pathways involved in glycolysis, erythropoiesis, angiogenesis, cell proliferation and stem cells function. Here we explore the physiological consequences of hypoxia in the human organism. In this sense, and considering the existence of HIF sequences in promoter regions of genes important to immune regulation, we hypothesize that exposure to induced hypoxia through the use of hypobaric chambers can be used as a complementary therapy to control chronic inflammation in several diseases characterized by systemic inflammatory conditions. Among these inflammatory conditions we highlight autoimmune diseases and chronic inflammation in HIV infected individuals under antiretroviral treatment. Several experiments, including arthritis animal models, the evaluation of athletes that already use hypobaric chambers to induce erythropoiesis, and the potential consequences of hypoxia as an immunotolerogenic inducer in the HIV infection context are approached and discussed here.
Collapse
Affiliation(s)
- Marina Ziliotto
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Raul Marques Rodrigues
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - José Artur Bogo Chies
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
53
|
Agnihotri V, Gupta A, Kumar L, Dey S. Serum sHLA-G: Significant diagnostic biomarker with respect to therapy and immunosuppressive mediators in Head and Neck Squamous Cell Carcinoma. Sci Rep 2020; 10:3806. [PMID: 32123232 PMCID: PMC7052243 DOI: 10.1038/s41598-020-60811-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 02/13/2020] [Indexed: 12/16/2022] Open
Abstract
Head & Neck Squamous Cell Carcinoma is one of the highest mortality factors in the world due to the lack of potential biomarker for early detection of disease. There is an urgent need for molecular marker involved in disease progression which remains suppressed normally, required for specificity. HLA-G is highly expressed in cancers and creates immune-suppressive microenvironment. Cancerous cells secrete inflammatory cytokines like IL-10,IFN-γ which increase expression of immunosuppressive molecules, such as HLA-G. We evaluated sHLA-G protein level in serum of 120 HNSCC patients at diagnosis and after therapy and compared with 99 individuals by SPR, ELISA and determined its mRNA level by qRT-PCR. sHLA-G was correlated with serum IL-10 and IFN-γ of the patients. Significant elevated levels of sHLA-G were observed in patients (8.25 ± 1.74 ng/µl) than control (6.45 ± 1.31 ng/µl). Levels were declined in (8.09 ± 1.79 ng/µl to 6.64 ± 1.33 ng/µl) patients in response to therapy. sHLA-G levels with tumor burden (8.16 ± 1.91 to 6.63 ± 1.32 ng/µl), node (8.62 ± 1.45 to 6.66 ± 1.26 ng/µl), PDSCC (8.14 ± 0.62 to 5.65 ± 0.27 ng/µl) and oropharynx (7.90 ± 1.24 to 6.10 ± 1.33 ng/µl) showed a positive and significant response to therapy. Findings indicate that sHLA-G can be a potential diagnostic serum protein marker for HNSCC due to its suppressive function and over expression in diseased condition with the influence of cytokines.
Collapse
Affiliation(s)
- Vertica Agnihotri
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Abhishek Gupta
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Lalit Kumar
- Medical Oncology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Sharmistha Dey
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India.
| |
Collapse
|
54
|
Expression of membrane-bound human leucocyte antigen-G in systemic sclerosis and systemic lupus erythematosus. Hum Immunol 2019; 81:162-167. [PMID: 31848026 DOI: 10.1016/j.humimm.2019.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022]
Abstract
Human leucocyte antigen-G (HLA-G) is a nonclassical class I major histocompatibility complex (MHC) molecule characterized by complex immunoregulatory and tolerogenic functions. Membrane-bound HLA-G is expressed on the surface of different cell populations in both physiological and pathological conditions. Systemic sclerosis (SSc) is a multisystem autoimmune disease characterized by widespread tissue fibrosis, vascular lesions and immunological alterations. Systemic lupus erythematosus is the prototypic systemic autoimmune disease affecting virtually any organ system, such as skin, joints, central nervous system, or kidneys. In SSc and SLE patients, the membrane expression of HLA-G on monocytes (0.88 ± 1.54 and 0.43 ± 0.75, respectively), CD4+ (0.42 ± 0.78 and 0.63 ± 0.48, respectively), CD8+ (2.65 ± 3.47 and 1.29 ± 1.34, respectively) and CD4+ CD8+ double-positive cells (13.87 ± 15.97 and 3.79 ± 3.11, respectively) was significantly higher than in healthy controls (0.12 ± 0.07; 0.01 ± 0.01; 0.14 ± 0.20 and 0.32 ± 0.38, respectively) (p < 0.0001). Our results show that in SSc and SLE the membrane expression of HLA-G by different subpopulations of peripheral blood mononuclear cells (PBMC) is increased, suggesting a potential role of HLA-G molecules in the complex immunological pathogenesis of these two autoimmune disorders.
Collapse
|
55
|
Wyatt RC, Lanzoni G, Russell MA, Gerling I, Richardson SJ. What the HLA-I!-Classical and Non-classical HLA Class I and Their Potential Roles in Type 1 Diabetes. Curr Diab Rep 2019; 19:159. [PMID: 31820163 PMCID: PMC6901423 DOI: 10.1007/s11892-019-1245-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Hyperexpression of classical HLA class I (HLA-I) molecules in insulin-containing islets has become a widely accepted hallmark of type 1 diabetes pathology. In comparison, relatively little is known about the expression, function and role of non-classical subtypes of HLA-I. This review focuses on the current understanding of the non-classical HLA-I subtypes: HLA-E, HLA-F and HLA-G, within and outside the field of type 1 diabetes, and considers the possible impacts of these molecules on disease etiology. RECENT FINDINGS Evidence is growing to suggest that non-classical HLA-I proteins are upregulated, both at the RNA and protein levels in the pancreas of individuals with recent-onset type 1 diabetes. Moreover, associations between non-classical HLA-I genotypes and age at onset of type 1 diabetes have been reported in some studies. As with classical HLA-I, it is likely that hyperexpression of non-classical HLA-I is driven by the release of diffusible interferons by stressed β cells (potentially driven by viral infection) and exacerbated by release of cytokines from infiltrating immune cells. Non-classical HLA-I proteins predominantly (but not exclusively) transduce negative signals to immune cells infiltrating at the site of injury/inflammation. We propose a model in which the islet endocrine cells, through expression of non-classical HLA-I are fighting back against the infiltrating immune cells. By inhibiting the activity and function on NK, B and select T cells, the non-classical HLA-I, proteins will reduce the non-specific bystander effects of inflammation, while at the same time still allowing the targeted destruction of β cells by specific islet-reactive CD8+ T cells.
Collapse
Affiliation(s)
- Rebecca C. Wyatt
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW UK
| | - Giacomo Lanzoni
- Diabetes Research Institute, University of Miami – Miller School of Medicine, 1450 NW 10th Avenue, Miami, FL 33136 USA
- Department of Biochemistry and Molecular Biology, University of Miami – Miller School of Medicine, 1011 NW 15th Street, Miami, FL 33136 USA
| | - Mark A. Russell
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW UK
| | - Ivan Gerling
- Department of Medicine University of Tennessee Health Science Center and VA Medical Center Research Service, 1030 Jefferson Avenue, Memphis, TN 38128 USA
| | - Sarah J. Richardson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW UK
| |
Collapse
|
56
|
Bertol BC, Dias FC, da Silva DM, Zambelli Ramalho LN, Donadi EA. Human Antigen Leucocyte (HLA)-G and HLA-E are differentially expressed in pancreatic disorders. Hum Immunol 2019; 80:948-954. [PMID: 31561913 DOI: 10.1016/j.humimm.2019.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Little information is available regarding the expression of the immunomodulatory Human Leukocyte Antigen (HLA)-G and -E molecules in pancreatic disorders. AIM To analyze HLA-G and -E expression in specimens of alcoholic chronic pancreatitis (ACP), idiopathic chronic pancreatitis (ICP), type 1 (T1D) and type 2 diabetes (T2D) and in histologically normal pancreas (HNP). METHODS HLA-G and -E expression (ACP = 30, ICP = 10, T1D = 10, T2D = 30 and HNP = 20) was evaluated by immunohistochemistry in three different areas (acini, islets and inflammatory infiltrate). RESULTS Acini and islets from HNP specimens exhibited higher HLA-G and -E expression compared to corresponding areas from all other patient groups. In inflammatory infiltrate, HLA-G and -E expression was observed only among the pancreatic disorders. We observed higher HLA-G and -E expression in acini from T2D compared to ACP, as well as higher HLA-G expression compared to ICP. CONCLUSION The decreased expression of HLA-G and -E in islets and acini together with the expression of these molecules in the inflammatory infiltrating cells were shared features among chronic inflammatory and autoimmune pancreatic disorders evaluated in this study, possibly reflecting tissue damage.
Collapse
Affiliation(s)
- Bruna Cristina Bertol
- Postgraduate Program of Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, ZIP Code: 14049-900 Ribeirão Preto, Brazil.
| | - Fabrício César Dias
- Department of Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, ZIP Code: 14049-900 Ribeirão Preto, Brazil.
| | - Deisy Mara da Silva
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, ZIP Code: 14049-900 Ribeirão Preto, Brazil.
| | - Leandra Náira Zambelli Ramalho
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, ZIP Code: 14049-900 Ribeirão Preto, Brazil.
| | - Eduardo Antônio Donadi
- Postgraduate Program of Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, ZIP Code: 14049-900 Ribeirão Preto, Brazil; Department of Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, ZIP Code: 14049-900 Ribeirão Preto, Brazil.
| |
Collapse
|
57
|
Malik NN, Jenkins AM, Mellon J, Bailey G. Engineering strategies for generating hypoimmunogenic cells with high clinical and commercial value. Regen Med 2019; 14:983-989. [DOI: 10.2217/rme-2019-0117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Nafees N Malik
- AgeX Therapeutics, Inc., Alameda, CA 94501, USA
- Juvenescence, Douglas, Isle of Man, UK
| | | | | | - Gregory Bailey
- AgeX Therapeutics, Inc., Alameda, CA 94501, USA
- Juvenescence, Douglas, Isle of Man, UK
| |
Collapse
|
58
|
Adolf IC, Akan G, Mselle TF, Dharsee N, Namkinga LA, Atalar F. Implication of Soluble HLA-G and HLA-G +3142G/C Polymorphism in Breast Cancer Patients Receiving Adjuvant Therapy in Tanzania. Asian Pac J Cancer Prev 2019; 20:3465-3472. [PMID: 31759373 PMCID: PMC7062990 DOI: 10.31557/apjcp.2019.20.11.3465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/10/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND During cancer growth, immunosuppressive microenvironment is created that enables tumour cells to evade an eliminative immune response and hence manage to grow into malignancy. HLA-G, existing as either membrane-bound (mHLA-G) or soluble (sHLA-G) molecule is thought to be immunosuppressive and produced more by tumor cells. The +3142G/C polymorphism in HLA-G gene affects its expression, and G allele is considered to be a protective mutant allele associated with less expression of HLA-G. The implication of HLA-G in cancer development has been reported in different cancers and populations. But, its implication in most African populations has not yet been investigated. The aim of this study was to determine the possible associations of soluble HLA-G and HLA-G +3142G/C SNP with breast cancer. MATERIALS AND METHODS 75 breast cancer patients and 84 normal controls were recruited in this study. The genotyping of HLA-G +3142G/C polymorphism was determined by LightSNiP typing assay using quantitative Real-Time PCR and sHLA-G levels were determined by ELISA. RESULTS The sHLA-G levels were significantly lower in breast cancer patients than in controls (p<0.001). Also, they were significantly lower in mastectomized patients compared to non-mastectomized patients (p=0.018). The ROC analysis revealed a significant ability of sHLA-G to differentiate breast cancer patients versus normal controls (AUC=0.697, 95% CI= 0.619-0.767, p<0.001) and identify mastectomized patients (AUC=0.667, 95% CI= 0.549 to 0.772, p=0.041). The assessment of +3142G/C polymorphism revealed a relatively similar distribution of frequencies of genotypes and alleles between breast cancer patients and normal controls (p>0.05) and was neither associated with sHLA-G levels. CONCLUSION While the +3142G/C SNP was found not to be relevant to breast cancer, the changes of sHLA-G levels in response to medical interventions such as mastectomy may be translated into its potential prognostic utility for breast cancer. More studies are needed to provide clear evidence of sHLA-G as a diagnostic and prognostic marker of breast cancer in Tanzania. .
Collapse
Affiliation(s)
- Ismael Chatita Adolf
- Department of Biochemistry, MUHAS Genetics Laboratory, Muhimbili University of Health and Allied Sciences,
- University of Dar es Salaam, Mbeya College of Health and Allied Sciences,
| | - Gokce Akan
- Department of Biochemistry, MUHAS Genetics Laboratory, Muhimbili University of Health and Allied Sciences,
| | - Teddy F Mselle
- Department of Biochemistry, MUHAS Genetics Laboratory, Muhimbili University of Health and Allied Sciences,
| | | | - Lucy A Namkinga
- University of Dar es Salaam, Mbeya College of Health and Allied Sciences,
| | - Fatmahan Atalar
- Department of Biochemistry, MUHAS Genetics Laboratory, Muhimbili University of Health and Allied Sciences,
- 4Child Health Institute, Department of Medical Genetics, Istanbul University, Turkey.
| |
Collapse
|
59
|
Bogomiakova ME, Eremeev AV, Lagarkova MA. At Home among Strangers: Is It Possible to Create Hypoimmunogenic Pluripotent Stem Cell Lines? Mol Biol 2019. [DOI: 10.1134/s0026893319050042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
60
|
Hasanah N, Mintaroem K, Fitri LE, Noorhamdani N. Interleukin 10 Induces the Expression of Membrane-Bound HLA- G and the Production of Soluble HLA-G on HeLa CCL-2 Cells. Open Access Maced J Med Sci 2019; 7:3554-3558. [PMID: 32010375 PMCID: PMC6986524 DOI: 10.3889/oamjms.2019.830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND: Interleukin-10 is a cytokine that has a pleiotropic effect on the immune system and inflammation. IL-10 can contribute to the anti-tumour immune response by increasing HLA-G expression. AIM: This study aimed to determine the effect of IL-10 induction on membrane HLA-G expression and soluble HLA-G production of HeLa CCL-2 cells. METHODS: HeLa CCL-2 cells were cultured in the well plate and divided into 4 groups consist of 1 control group that was not induced by IL-10 and 3 treatment groups that were induced by IL-10 500 ng/ml, 1000 ng/ml and 2000 ng/ml respectively. All groups were incubated for 48 hours in a 37°C incubator at 5% CO2 atmospheric pressure. HLA-G measurements were carried out both in cell lysate and cell culture supernatant using ELISA and in membrane-bound using immunofluorescence method. The expression of HLA-G in membrane-bound calculated using the ImageJ application. Data obtained were analysed by ANOVA and LSD test. RESULTS: In the control group, the HLA-G level in the culture supernatant was higher than in cell lysate (p = 0.000), as well as in all treatment groups (p = 0.000). There were significant differences between the treatment group (p = 0.000) and within the treatment group (p = 0.000) at HLA levels. The highest expression of HLA-G in HeLa cell membranes found in cell culture induced by IL-10 concentrations of 500 ng/ml, i.e., 59.28 AU in view. HLA-G membrane expression in the IL-10 1000 ng/ml induced group was significantly different from all treatment groups (p = 0.000). CONCLUSION: HeLa CCL-2 cells express HLA-G on the membrane and release dissolved HLA-G without induction of IL-10 although IL-10 induction augments the presence and the production of HLA-G in HeLa CCl-2 cells.
Collapse
Affiliation(s)
- Nurul Hasanah
- Doctoral Programme in Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia; Laboratory of Histology Faculty of Medicine Universitas Mulawarman, Samarinda, Indonesia
| | - Karyono Mintaroem
- Laboratory of Pathology Anatomy, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Loeki Enggar Fitri
- Laboratory of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | | |
Collapse
|
61
|
Lin A, Yan W. Intercellular transfer of HLA-G: its potential in cancer immunology. Clin Transl Immunology 2019; 8:e1077. [PMID: 31489189 PMCID: PMC6716982 DOI: 10.1002/cti2.1077] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/03/2019] [Accepted: 08/04/2019] [Indexed: 12/14/2022] Open
Abstract
Intercellular protein transfer between cancer cells and immune cells is a very common phenomenon that can affect different stages of host antitumor immune responses. HLA-G, a non-classical HLA class I antigen, has been observed to be widely expressed in various malignancies, and its immune-suppressive functions have been well recognised. HLA-G expression in cancer cells can directly mediate immune tolerance by interacting with inhibitory receptors such as ILT2 and ILT4 expressed on immune cells. Moreover, a network of multiple directional intercellular transfers of HLA-G among cancer cells and immune cells through trogocytosis, exosomes and tunnelling nanotubes provides malignant cells with an alternative ploy for antigen sharing and induces more complex heterogeneity, to modulate immune responses, ultimately leading to immune evasion, therapy resistance, disease progression and poor clinical outcome. Herein, we discuss the relative aspects of the intercellular transfer of HLA-G between tumor cells and immune cells and its potential use in tumor immunology research and translational cancer therapy.
Collapse
Affiliation(s)
- Aifen Lin
- Biological Resource CenterTaizhou Hospital of Zhejiang ProvinceWenzhou Medical UniversityLinhaiZhejiangChina
| | - Wei‐Hua Yan
- Medical Research CenterTaizhou Hospital of Zhejiang ProvinceWenzhou Medical UniversityLinhaiZhejiangChina
| |
Collapse
|
62
|
Schwich E, Rebmann V, Horn PA, Celik AA, Bade-Döding C, Kimmig R, Kasimir-Bauer S, Buderath P. Vesicular-Bound HLA-G as a Predictive Marker for Disease Progression in Epithelial Ovarian Cancer. Cancers (Basel) 2019; 11:E1106. [PMID: 31382533 PMCID: PMC6721594 DOI: 10.3390/cancers11081106] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EV) and their tumor-supporting cargos provide a promising translational potential in liquid biopsies for risk assessment of epithelial ovarian cancer (EOC) patients frequently relapsing, despite initial complete therapy responses. As the immune checkpoint molecule HLA-G, which is operative in immune-escape, can be released by EV, we evaluate the abundance of EV and its vesicular-bound amount of HLA-G (HLA-GEV) as a biomarker in EOC. After enrichment of EV from plasma samples, we determined the EV particle number and amount of HLA-GEV by nanoparticle tracking analysis or ELISA. The association of results with the clinical status/outcome revealed that both, EV particle number and HLA-GEV were significantly elevated in EOC patients, compared to healthy females. However, elevated levels of HLA-GEV, but not EV numbers, were exclusively associated with a disadvantageous clinical status/outcome, including residual tumor, presence of circulating tumor cells, and disease progression. High HLA-GEV status was an independent predictor of progression, besides residual tumor burden and platinum-sensitivity. Especially among patients without residual tumor burden or with platinum-sensitivity, HLA-GEV identified patients with high risk of progression. Thus, this study highlights HLA-GEV as a potential novel biomarker for risk assessment of EOC patients with a rather beneficial prognosis defined by platinum-sensitivity or lack of residual tumor burden.
Collapse
Affiliation(s)
- Esther Schwich
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany.
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Alexander A Celik
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Christina Bade-Döding
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Rainer Kimmig
- Department for Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Sabine Kasimir-Bauer
- Department for Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Paul Buderath
- Department for Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| |
Collapse
|
63
|
Durmanova V, Bandzuchova H, Zilinska Z, Tirpakova J, Kuba D, Buc M, Polakova K. Association of HLA-G Polymorphisms in the 3'UTR Region and Soluble HLA-G with Kidney Graft Outcome. Immunol Invest 2019; 48:644-658. [PMID: 31094243 DOI: 10.1080/08820139.2019.1610888] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background: Human leukocyte antigen G (HLA-G) belongs to nonclassical HLA I molecule involving in the suppression of immune response. Besides its profound effect to induce fetal tolerance, HLA-G expression has been associated with allograft acceptance. For the regulation of HLA-G levels, polymorphic sites within the 3' untranslated region (3'UTR) are of crucial importance. The aim of the study was to analyze the association between several HLA-G 3'UTR variants (+3003T/C, +3010C/G, +3027C/A, +3035C/T, +3142G/C, +3187A/G, and +3196C/G), soluble HLA-G (sHLA-G) level, and kidney graft outcome in the Slovak Caucasian population. Methods: We investigated 69 kidney transplant recipients (45 males, 24 females) of age 27-65 years. Out of this group, 37 recipients developed acute rejection that was biopsy proven. Recipient's plasma was obtained at 1 day before transplantation and analyzed by ELISA. The HLA-G 3'UTR polymorphisms were typed by direct sequencing. Results: In the recipients with stable allograft function, significantly higher values of sHLA-G were found in the homozygous +3010GG, +3142CC, +3187GG, and +3196CC carriers in comparison to the acute rejection recipients (P = 0.01-0.05). Conclusion: The study demonstrated genetic association between HLA-G 3'UTR variants and sHLA-G level in kidney recipients leading to graft acceptance. We suggest to monitor the pretransplantation sHLA-G level as additional marker to predict kidney graft outcome. Abbreviations: AMR: Antibody-mediated rejection; APC: antigen-presenting cell; CD: cluster of designation; del: deletion; HLA: human leukocyte antigen; ILT: immunoglobulin-like transcript; ins: insertion; KIR: killer-cell immunoglobulin-like receptor; NK: natural killer; sHLA-G: soluble HLA-G; SNP: single nucleotide polymorphism; TCMR: T cell-mediated rejection; URR: upstream regulatory region; UTR: untranslated region.
Collapse
Affiliation(s)
- Vladimira Durmanova
- a Institute of Immunology, Faculty of Medicine , Comenius University in Bratislava , Bratislava , Slovakia
| | | | - Zuzana Zilinska
- c Urological Clinic and Center for Kidney Transplantation, University Hospital Bratislava and Faculty of Medicine , Comenius University in Bratislava , Bratislava , Slovakia
| | - Jana Tirpakova
- b National Transplantation Organisation , Bratislava , Slovakia
| | - Daniel Kuba
- b National Transplantation Organisation , Bratislava , Slovakia
| | - Milan Buc
- a Institute of Immunology, Faculty of Medicine , Comenius University in Bratislava , Bratislava , Slovakia
| | - Katarina Polakova
- d Cancer Research Institute, Biomedical Research Center , Slovak Academy of Sciences , Bratislava , Slovakia
| |
Collapse
|
64
|
Reed J, Wetzel SA. Trogocytosis-Mediated Intracellular Signaling in CD4 + T Cells Drives T H2-Associated Effector Cytokine Production and Differentiation. THE JOURNAL OF IMMUNOLOGY 2019; 202:2873-2887. [PMID: 30962293 DOI: 10.4049/jimmunol.1801577] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/13/2019] [Indexed: 12/24/2022]
Abstract
CD4+ T cells have been observed to acquire APC-derived membrane and membrane-associated molecules through trogocytosis in diverse immune settings. Despite this, the consequences of trogocytosis on the recipient T cell remain largely unknown. We previously reported that trogocytosed molecules on CD4+ T cells engage their respective surface receptors, leading to sustained TCR signaling and survival after APC removal. Using peptide-pulsed bone marrow-derived dendritic cells and transfected murine fibroblasts expressing antigenic MHC:peptide complexes as APC, we show that trogocytosis-positive CD4+ T cells display effector cytokines and transcription factor expression consistent with a TH2 phenotype. In vitro-polarized TH2 cells were found to be more efficient at performing trogocytosis than TH1 or nonpolarized CD4+ cells, whereas subsequent trogocytosis-mediated signaling induced TH2 differentiation in polarized TH1 and nonpolarized cells. Trogocytosis-positive CD4+ T cells generated in vivo also display a TH2 phenotype in both TCR-transgenic and wild-type models. These findings suggest that trogocytosis-mediated signaling impacts CD4+ T cell differentiation and effector cytokine production and may play a role in augmenting or shaping a TH2-dominant immune response.
Collapse
Affiliation(s)
- Jim Reed
- Program in Cellular, Molecular and Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, MT 59812; and
| | - Scott A Wetzel
- Program in Cellular, Molecular and Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, MT 59812; and .,Center for Environmental Health Sciences, University of Montana, Missoula, MT 59812
| |
Collapse
|
65
|
Abstract
Extracellular vesicles (EVs) are important mediators of intercellular communication in cancer and in normal tissues. EVs transfer biologically active molecules from the cell of origin to recipient cells. This review summarizes the studies on EVs derived from renal cell carcinoma and from a subpopulation of CD105-positive renal cancer stem cells. While EVs from renal cell carcinoma show mild biological activity, EVs from renal cancer stem cells enhance tumor angiogenesis and metastasis formation. The effect is probably due to the transfer of proangiogenic RNA cargo to endothelial cells, which acquire an activated angiogenic phenotype. In vivo, treatment with EVs favors the formation of a premetastatic niche in the lungs. Moreover, EVs derived from renal cancer stem cells modify gene expression in mesenchymal stromal cells, enhancing the expression of genes involved in matrix remodeling, cell migration, and tumor growth. Mesenchymal stromal cells preconditioned with tumor EVs and then coinjected in vivo with renal cancer cells support tumor growth and vessel formation. Finally, tumor EVs promote tumor immune escape by inhibiting the differentiation process of dendritic cells and the activation of T cells. Thus, tumor-derived EVs act on the microenvironment favoring tumor aggressiveness, may contribute to angiogenesis through both direct and indirect mechanisms and are involved in tumor immune escape. Membrane-bound packages called extracellular vesicles (EVs) released by kidney cancer stem cells can make tumors more aggressive, promote the onset of cancer at other sites, and help tumors escape the anti-cancer immune response. Giovanni Camussi and colleagues at the University of Turin, Italy, review understanding of EVs from kidney cancer cells. EVs from cancer stem cells are especially effective in promoting cancer, unlike those from mature cancer cells. This is partly due to their ability to promote the formation of new blood vessels to sustain tumor growth. Some of the vesicles’ effects are mediated by transferring small molecules of ribonucleic acid (RNA) into other cells. These RNAs can regulate the activity of specific genes, promoting cancer. Studying patients’ EVs may assist cancer diagnosis and help predict the likely progression of the disease.
Collapse
|
66
|
Eckert F, Zwirner K, Boeke S, Thorwarth D, Zips D, Huber SM. Rationale for Combining Radiotherapy and Immune Checkpoint Inhibition for Patients With Hypoxic Tumors. Front Immunol 2019; 10:407. [PMID: 30930892 PMCID: PMC6423917 DOI: 10.3389/fimmu.2019.00407] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/15/2019] [Indexed: 12/19/2022] Open
Abstract
In order to compensate for the increased oxygen consumption in growing tumors, tumors need angiogenesis and vasculogenesis to increase the supply. Insufficiency in this process or in the microcirculation leads to hypoxic tumor areas with a significantly reduced pO2, which in turn leads to alterations in the biology of cancer cells as well as in the tumor microenvironment. Cancer cells develop more aggressive phenotypes, stem cell features and are more prone to metastasis formation and migration. In addition, intratumoral hypoxia confers therapy resistance, specifically radioresistance. Reactive oxygen species are crucial in fixing DNA breaks after ionizing radiation. Thus, hypoxic tumor cells show a two- to threefold increase in radioresistance. The microenvironment is enriched with chemokines (e.g., SDF-1) and growth factors (e.g., TGFβ) additionally reducing radiosensitivity. During recent years hypoxia has also been identified as a major factor for immune suppression in the tumor microenvironment. Hypoxic tumors show increased numbers of myeloid derived suppressor cells (MDSCs) as well as regulatory T cells (Tregs) and decreased infiltration and activation of cytotoxic T cells. The combination of radiotherapy with immune checkpoint inhibition is on the rise in the treatment of metastatic cancer patients, but is also tested in multiple curative treatment settings. There is a strong rationale for synergistic effects, such as increased T cell infiltration in irradiated tumors and mitigation of radiation-induced immunosuppressive mechanisms such as PD-L1 upregulation by immune checkpoint inhibition. Given the worse prognosis of patients with hypoxic tumors due to local therapy resistance but also increased rate of distant metastases and the strong immune suppression induced by hypoxia, we hypothesize that the subgroup of patients with hypoxic tumors might be of special interest for combining immune checkpoint inhibition with radiotherapy.
Collapse
Affiliation(s)
- Franziska Eckert
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK) Partnersite Tuebingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kerstin Zwirner
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Simon Boeke
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK) Partnersite Tuebingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Daniela Thorwarth
- German Cancer Consortium (DKTK) Partnersite Tuebingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK) Partnersite Tuebingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan M. Huber
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
67
|
Gonzaga AKG, Santos HBDP, Crispim JCO, Souza LBD, Palomino GM. Immunohistochemical evaluation of HLA-G and FoxP3+ T regulatory cells in oral cavity and lower lip squamous cell carcinomas. Braz Oral Res 2019; 33:e020. [DOI: 10.1590/1807-3107bor-2019.vol33.0020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 02/25/2019] [Indexed: 11/21/2022] Open
|
68
|
Lin A, Yan WH. Heterogeneity of HLA-G Expression in Cancers: Facing the Challenges. Front Immunol 2018; 9:2164. [PMID: 30319626 PMCID: PMC6170620 DOI: 10.3389/fimmu.2018.02164] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/03/2018] [Indexed: 12/24/2022] Open
Abstract
Phenotypic heterogeneity has been observed in most malignancies, which represents a considerable challenge for tumor therapy. In recent decades, the biological function and clinical significance of the human leukocyte antigen (HLA)-G have been intensively explored. It is now widely accepted that HLA-G is a critical marker of immunotolerance in cancer cell immune evasion and is strongly associated with disease progress and prognosis for cancer patients. Moreover, it has recently been emphasized that the signaling pathway linking HLA-G and immunoglobulin-like transcripts (ILTs) is considered an immune checkpoint. In addition, HLA-G itself can generate at least seven distinct isoforms, and intertumor and intratumor heterogeneity of HLA-G expression is common across different tumor types. Furthermore, HLA-G heterogeneity in cancers has been related to disease stage and outcomes, metastatic status and response to different therapies. This review focuses on the heterogeneity of HLA-G expression in malignant lesions, and clinical implications of this heterogeneity that might be relevant to personalized treatments are also discussed.
Collapse
Affiliation(s)
- Aifen Lin
- Biological Resource Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| | - Wei-Hua Yan
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| |
Collapse
|
69
|
Contini P, Negrini S, Murdaca G, Borro M, Puppo F. Evaluation of membrane-bound and soluble forms of human leucocyte antigen-G in systemic sclerosis. Clin Exp Immunol 2018; 193:152-159. [PMID: 29660112 PMCID: PMC6046504 DOI: 10.1111/cei.13134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2018] [Indexed: 12/26/2022] Open
Abstract
Systemic sclerosis (SSc) is a complex disease characterized by immune dysregulation, extensive vascular damage and widespread fibrosis. Human leucocyte antigen-G (HLA-G) is a non-classic class I major histocompatibility complex (MHC) molecule characterized by complex immunomodulating properties. HLA-G is expressed on the membrane of different cell lineages in both physiological and pathological conditions. HLA-G is also detectable in soluble form (sHLA-G) deriving from the shedding of surface isoforms (sHLA-G1) or the secretion of soluble isoforms (HLA-G5). Several immunosuppressive functions have been attributed to both membrane-bound and soluble HLA-G molecules. The plasma levels of sHLA-G were higher in SSc patients (444·27 ± 304·84 U/ml) compared to controls (16·74 ± 20·58 U/ml) (P < 0·0001). The plasma levels of transforming growth factor (TGF)-β were higher in SSc patients (18 937 ± 15 217 pg/ml) compared to controls (11 099 ± 6081 pg/ml; P = 0·003), and a significant correlation was found between TGF-β and the plasma levels of total sHLA-G (r = 0·65; P < 0·01), sHLA-G1 (r = 0·60; P = 0·003) and HLA-G5 (r = 0·47; P = 0·02). The percentage of HLA-G-positive monocytes (0·98 ± 1·72), CD4+ (0·37 ± 0·68), CD8+ (2·05 ± 3·74) and CD4+ CD8+ double-positive cells (14·53 ± 16·88) was higher in SSc patients than in controls (0·11 ± 0·08, 0·01 ± 0·01, 0·01 ± 0·01 and 0·39 ± 0·40, respectively) (P < 0·0001). These data indicate that in SSc the secretion and/or shedding of soluble HLA-G molecules and the membrane expression of HLA-G by peripheral blood mononuclear cells (PBMC) is clearly elevated, suggesting an involvement of HLA-G molecules in the immune dysregulation of SSc.
Collapse
Affiliation(s)
- P. Contini
- Department of Internal MedicineClinical Immunology Unit, University of Genoa and Ospedale Policlinico San MartinoGenoaItaly
| | - S. Negrini
- Department of Internal MedicineClinical Immunology Unit, University of Genoa and Ospedale Policlinico San MartinoGenoaItaly
| | - G. Murdaca
- Department of Internal MedicineClinical Immunology Unit, University of Genoa and Ospedale Policlinico San MartinoGenoaItaly
| | - M. Borro
- Department of Internal MedicineClinical Immunology Unit, University of Genoa and Ospedale Policlinico San MartinoGenoaItaly
| | - F. Puppo
- Department of Internal MedicineClinical Immunology Unit, University of Genoa and Ospedale Policlinico San MartinoGenoaItaly
| |
Collapse
|
70
|
Lazarte J, Adamson MB, Tumiati LC, Delgado DH. 10-Year Experience with HLA-G in Heart Transplantation. Hum Immunol 2018; 79:587-593. [PMID: 29859206 DOI: 10.1016/j.humimm.2018.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 11/19/2022]
Abstract
The Human Leukocyte Antigen-G (HLA-G) is a MHC-class Ib molecule with robust immunomodulatory properties; in transplant, it inhibits cytotoxic activity of immune cells and thus has a pivotal role in protecting the allograft from immune attack. The present review details a 10-year experience investigating the influence of HLA-G on heart transplantation, allograft rejection and cardiac allograft vasculopathy development. Exploration of HLA-G in transplantation began with the initial findings of its increased expression in allograft hearts. Since then, HLA-G has been recognized as an important factor in transplant immunology. We discuss inducers of HLA-G expression, and the importance of HLA-G as a potential biomarker in allograft rejection and heart failure. We also highlight the importance of polymorphisms and how they may influence both HLA-G expression and clinical outcomes. There remains much to be done in this field, however we hope that findings from our group and other groups will ignite interest and facilitate further expansion of HLA-G research in transplantation.
Collapse
Affiliation(s)
- Julieta Lazarte
- Departments of Medicine, Schulich School of Medicine, Western University, London, Ontario, Canada.
| | - Mitchell B Adamson
- Department of Medicine, Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Laura C Tumiati
- Department of Cardiovascular Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Diego H Delgado
- Department of Cardiology, Hear Failure and Transplant Program, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
71
|
Deonizio JMD, Guitart J, Yazdan P, Mulinari-Brenner F, Sotto MN, Sanches JA. Immune privilege disruption in folliculotropic mycosis fungoides: investigation of major histocompatibility complex antigen expression. Int J Dermatol 2018; 57:675-680. [PMID: 29603194 DOI: 10.1111/ijd.13967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/31/2018] [Accepted: 02/24/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Folliculotropic mycosis fungoides (FMF) is a cutaneous T-cell lymphoma mainly affecting the hair follicle, which seems to represent a place of immune privilege phenomenon. OBJECTIVES To explore a possible role of immune privilege (IP) in FMF analyzing the major histocompatibility complex (MHC) expression. METHODS Immunohistochemistry for HLA-G and MHC-II was performed to formalin-fixed paraffin-embedded cutaneous skin biopsies of FMF patients (n = 43), conventional mycosis fungoides (CMF; n = 13), alopecia areata (AA; n = 13), and normal scalp skin (NS; n = 12). RESULTS HLA-G expression was lower in FMF (34%: 14/41) and CMF (18%: 2/11) groups compared to alopecia areata (92%:11/12) and normal scalp skin group (100%: 12/12). MHC-II expression in hair follicle was greater in the FMF group (18/42: 43%) compared to AA (0%) and NS (0%). HLA-G and MHC-II expression in cellular infiltrate had no difference among FMF and CMF groups and was different compared to the AA group. CONCLUSIONS Our data support the hypothesis of disruption of immune privilege based on the lower expression of HLA-G and higher expression of MHC-II in the follicular epithelium in mycosis fungoides compared to alopecia areata and normal scalp skin. The lack of difference between FMF and CMF groups did not support the role of these molecules as a driver of folliculotropism. The expression of MHC molecules seems to be different between neoplastic and inflammatory infiltrates. The definitive significance of expression of the MHC molecules remains unclear, and more studies are necessary to fully understand the role of these molecules in cutaneous lymphomas.
Collapse
Affiliation(s)
- Janyana M D Deonizio
- Department of Dermatology, University of São Paulo Medical School, São Paulo, Brazil
| | - Joan Guitart
- Department of Dermatopathology, Northwestern University, Chicago, USA
| | - Pedram Yazdan
- Department of Dermatopathology, Northwestern University, Chicago, USA
| | | | - Mirian N Sotto
- Department of Dermatology, University of São Paulo Medical School, São Paulo, Brazil
| | - José A Sanches
- Department of Dermatology, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
72
|
Yamamoto T, Iwase H, King TW, Hara H, Cooper DKC. Skin xenotransplantation: Historical review and clinical potential. Burns 2018; 44:1738-1749. [PMID: 29602717 DOI: 10.1016/j.burns.2018.02.029] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/02/2018] [Accepted: 02/27/2018] [Indexed: 12/22/2022]
Abstract
Half a million patients in the USA alone require treatment for burns annually. Following an extensive burn, it may not be possible to provide sufficient autografts in a single setting. Pig skin xenografts may provide temporary coverage. However, preformed xenoreactive antibodies in the human recipient activate complement, and thus result in rapid rejection of the graft. Because burn patients usually have some degree of immune dysfunction and are therefore at increased risk of infection, immunosuppressive therapy is undesirable. Genetic engineering of the pig has increased the survival of pig heart, kidney, islet, and corneal grafts in immunosuppressed non-human primates from minutes to months or occasionally years. We summarize the current status of research into skin xenotransplantation for burns, with special emphasis on developments in genetic engineering of pigs to protect the graft from immunological injury. A genetically-engineered pig skin graft now survives as long as an allograft and, importantly, rejection of a skin xenograft is not detrimental to a subsequent allograft. Nevertheless, currently, systemic immunosuppressive therapy would still be required to inhibit a cellular response, and so we discuss what further genetic manipulations could be carried out to inhibit the cellular response.
Collapse
Affiliation(s)
- Takayuki Yamamoto
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hayato Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Timothy W King
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
73
|
Kordelas L, da Silva Nardi F, Wagner B, Ditschkowski M, Liebregts T, Lindemann M, Heinemann FM, Horn PA, Beelen DW, Rebmann V. Elevated soluble human leukocyte antigen G levels in patients after allogeneic stem cell transplantation are associated with less severe acute and chronic graft-versus-host disease. Bone Marrow Transplant 2018. [DOI: 10.1038/s41409-018-0145-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
74
|
Tawfeek GAE, Alhassanin S. HLA-G Gene Polymorphism in Egyptian Patients with Non-Hodgkin Lymphoma and its Clinical Outcome. Immunol Invest 2018; 47:315-325. [PMID: 29388862 DOI: 10.1080/08820139.2018.1430826] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Non-Hodgkin lymphoma (NHL) is a major cancer in Egypt and worldwide and has many risk factors including genes involved in the immune response. AIM we investigated the HLA-G 14bp gene polymorphism as a risk factor for NHL and its clinic pathologic features. The study involved 150 patients with NHL and 100 healthy control. Full histories, clinical examination, C.T scan and laboratory investigations such as CBC, LDH, ?2microglobulin and HCV RNA by qualitative real time PCR were performed for all subjects. HLA-G 14bp ins/del gene polymorphism was determined by PCR. RESULTS in our study, del/del, ins/del and dominant genotypes increased the risk of NHL by 11.01, 10.55 and 10.88 fold respectively (p<0.001) but the recessive genotype did not increase the risk of NHL (p=0.112). Cases with the del allele had a greater risk of NHL than those with the ins allele (p<0.001). del/del and ins/del genotypes were significantly associated with higher LDH and ?2microglobulin levels (p<0.001), lower Hb and platelet values (p<0.001), extra nodal sites (p=0.001), poor performance status (p=0.04) and relapse (p=0.001). Conclusions: the results suggest that HLA-G 14bp ins/del gene polymorphism is a risk factor for NHL in our Egyptian population and is associated with poor clinical pathological features. ABBREVIATIONS Non-Hodgkin lymphoma (NHL), Diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), Epstein-Barr virus (EBV), human T-cell lymphotropic/leukemia virus-1 (HTLV-1).
Collapse
Affiliation(s)
| | - Suzan Alhassanin
- b Clinical Oncology Department, Faculty of Medicine , Menoufia University , Al Minufiyah , Egypt
| |
Collapse
|
75
|
Shi G, Shen X, Wang P, Dai P, Jin B, Tong Y, Lin H. Correlation between human leukocyte antigen-G expression and clinical parameters in oral squamous cell carcinoma. Indian J Cancer 2018; 55:340-343. [DOI: 10.4103/ijc.ijc_602_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
76
|
Abstract
A group of impressive immunotherapies for cancer treatment, including immune checkpoint-blocking antibodies, gene therapy and immune cell adoptive cellular immunotherapy, have been established, providing new weapons to fight cancer. Natural killer (NK) cells are a component of the first line of defense against tumors and virus infections. Studies have shown dysfunctional NK cells in patients with cancer. Thus, restoring NK cell antitumor functionality could be a promising therapeutic strategy. NK cells that are activated and expanded ex vivo can supplement malfunctional NK cells in tumor patients. Therapeutic antibodies, chimeric antigen receptor (CAR), or bispecific proteins can all retarget NK cells precisely to tumor cells. Therapeutic antibody blockade of the immune checkpoints of NK cells has been suggested to overcome the immunosuppressive signals delivered to NK cells. Oncolytic virotherapy provokes antitumor activity of NK cells by triggering antiviral immune responses. Herein, we review the current immunotherapeutic approaches employed to restore NK cell antitumor functionality for the treatment of cancer.
Collapse
Affiliation(s)
- Yangxi Li
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China
| | - Rui Sun
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
77
|
Zhang Y, Yu S, Han Y, Wang Y, Sun Y. Human leukocyte antigen-G expression and polymorphisms promote cancer development and guide cancer diagnosis/treatment. Oncol Lett 2017; 15:699-709. [PMID: 29399142 PMCID: PMC5772757 DOI: 10.3892/ol.2017.7407] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/02/2017] [Indexed: 12/11/2022] Open
Abstract
Human leukocyte antigen-G (HLA-G) is a non-classical HLA molecule, predominantly expressed in cytotrophoblast cells to protect the fetus during pregnancy. Notably, a high frequency of HLA-G expression has been observed in a wide variety of cancer types in previous studies. Furthermore, HLA-G expression in cancer has been considered to be detrimental, since it can protect cancer cells from natural killer cell cytotoxic T lymphocyte-mediated destruction, promote tumor spreading and shorten the survival time of patients by facilitating tumor immune evasion. In addition, HLA-G polymorphisms have been investigated in numerous types of cancer and are considered as risk factors and predictive markers of cancer. This review focuses on HLA-G expression and its polymorphisms in cancer, analyzing the mechanisms of HLA-G in promoting cancer development, and evaluating the potential and value of its clinical application as a diagnostic and prognostic biomarker, or even as a prospective therapeutic target in certain types of tumors.
Collapse
Affiliation(s)
- Yanwen Zhang
- Department of Oncology, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Shuwen Yu
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Yali Han
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Yunshan Wang
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Yuping Sun
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
78
|
Overexpression of Human Leukocyte Antigen-G and Interleukin 10 in acral lentiginous melanoma. J Dermatol Sci 2017; 88:149-152. [DOI: 10.1016/j.jdermsci.2017.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/06/2017] [Accepted: 05/22/2017] [Indexed: 11/17/2022]
|
79
|
Davis ZB, Vallera DA, Miller JS, Felices M. Natural killer cells unleashed: Checkpoint receptor blockade and BiKE/TriKE utilization in NK-mediated anti-tumor immunotherapy. Semin Immunol 2017; 31:64-75. [PMID: 28882429 DOI: 10.1016/j.smim.2017.07.011] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/26/2017] [Indexed: 10/18/2022]
Abstract
Natural killer (NK) cells have long been known to mediate anti-tumor responses without prior sensitization or recognition of specific tumor antigens. However, the tumor microenvironment can suppress NK cell function resulting in tumor escape and disease progression. Despite recent advances in cytokine therapy and NK cell adoptive transfer, tumor expression of ligands to NK - expressed checkpoint receptors can still suppress NK mediated tumor lysis. This review will explore many of the checkpoint receptors tumors utilize to manipulate the NK cell response as well as some of the current and upcoming pharmacological solutions to limit tumor suppression of NK cell function. Furthermore, we will discuss the potential to use these drugs in combinational therapies with novel antibody reagents such as bi- and tri-specific killer engagers (BiKEs and TriKEs) against tumor-specific antigens to enhance NK cell-mediated tumor rejection.
Collapse
Affiliation(s)
- Zachary B Davis
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, United States; Masonic Cancer Center, University of Minnesota, United States
| | - Daniel A Vallera
- Masonic Cancer Center, University of Minnesota, United States; Department of Therapeutic Radiology-Radiation Oncology, University of Minnesota, United States
| | - Jeffrey S Miller
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, United States; Masonic Cancer Center, University of Minnesota, United States.
| | - Martin Felices
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, United States; Masonic Cancer Center, University of Minnesota, United States
| |
Collapse
|
80
|
Persson G, Melsted WN, Nilsson LL, Hviid TVF. HLA class Ib in pregnancy and pregnancy-related disorders. Immunogenetics 2017; 69:581-595. [PMID: 28699111 DOI: 10.1007/s00251-017-0988-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 04/18/2017] [Indexed: 12/30/2022]
Abstract
The HLA class Ib genes, HLA-E, HLA-F, and HLA-G, were discovered long after the classical HLA class Ia genes. The elucidation of their functions had a modest beginning. However, their basic functions and involvement in pathophysiology and a range of diseases are now emerging. Although results from a range of studies support the functional roles for the HLA class Ib molecules in adult life, especially HLA-G and HLA-F have most intensively been, and were also primarily, studied in relation to reproduction and pregnancy. The expression of HLA class Ib proteins at the feto-maternal interface in the placenta seems to be important for the maternal acceptance of the semi-allogenic fetus. In contrast to the functions of HLA class Ia, HLA-G possesses immune-modulatory and tolerogenic functions. Here, we review an accumulating amount of data describing the functions of HLA class Ib molecules in relation to fertility, reproduction, and pregnancy, and a possible role for these molecules in certain pregnancy complications, such as implantation failure, recurrent spontaneous abortions, and pre-eclampsia. The results from different kinds of studies point toward a role for HLA class Ib, especially HLA-G, throughout the reproductive cycle from conception to the birth weight of the child.
Collapse
Affiliation(s)
- Gry Persson
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, 10 Sygehusvej, 4000, Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Wenna Nascimento Melsted
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, 10 Sygehusvej, 4000, Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Line Lynge Nilsson
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, 10 Sygehusvej, 4000, Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Vauvert F Hviid
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, 10 Sygehusvej, 4000, Roskilde, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
81
|
Crux NB, Elahi S. Human Leukocyte Antigen (HLA) and Immune Regulation: How Do Classical and Non-Classical HLA Alleles Modulate Immune Response to Human Immunodeficiency Virus and Hepatitis C Virus Infections? Front Immunol 2017; 8:832. [PMID: 28769934 PMCID: PMC5513977 DOI: 10.3389/fimmu.2017.00832] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/30/2017] [Indexed: 12/13/2022] Open
Abstract
The genetic factors associated with susceptibility or resistance to viral infections are likely to involve a sophisticated array of immune response. These genetic elements may modulate other biological factors that account for significant influence on the gene expression and/or protein function in the host. Among them, the role of the major histocompatibility complex in viral pathogenesis in particular human immunodeficiency virus (HIV) and hepatitis C virus (HCV), is very well documented. We, recently, added a novel insight into the field by identifying the molecular mechanism associated with the protective role of human leukocyte antigen (HLA)-B27/B57 CD8+ T cells in the context of HIV-1 infection and why these alleles act as a double-edged sword protecting against viral infections but predisposing the host to autoimmune diseases. The focus of this review will be reexamining the role of classical and non-classical HLA alleles, including class Ia (HLA-A, -B, -C), class Ib (HLA-E, -F, -G, -H), and class II (HLA-DR, -DQ, -DM, and -DP) in immune regulation and viral pathogenesis (e.g., HIV and HCV). To our knowledge, this is the very first review of its kind to comprehensively analyze the role of these molecules in immune regulation associated with chronic viral infections.
Collapse
Affiliation(s)
- Nicole B Crux
- Faculty of Medicine and Dentistry, Department of Dentistry, University of Alberta, Edmonton, AB, Canada.,Faculty of Medicine and Dentistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- Faculty of Medicine and Dentistry, Department of Dentistry, University of Alberta, Edmonton, AB, Canada.,Faculty of Medicine and Dentistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
82
|
Cavalcanti A, Almeida R, Mesquita Z, Duarte ALBP, Donadi EA, Lucena-Silva N. Gene polymorphism and HLA-G expression in patients with childhood-onset systemic lupus erythematosus: A pilot study. HLA 2017; 90:219-227. [DOI: 10.1111/tan.13084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 06/11/2017] [Accepted: 06/15/2017] [Indexed: 11/28/2022]
Affiliation(s)
- A. Cavalcanti
- Pediatric Rheumatology Unit; Federal University of Pernambuco; Recife Brazil
- Department of Immunology, Aggeu Magalhães Research Center; Oswaldo Cruz Foundation; Recife Brazil
| | - R. Almeida
- Department of Immunology, Aggeu Magalhães Research Center; Oswaldo Cruz Foundation; Recife Brazil
| | - Z. Mesquita
- Pediatric Rheumatology Unit; Institute of Integrative Medicine Professor Fernando Figueira; Recife Brazil
| | - A. L. B. P. Duarte
- Pediatric Rheumatology Unit; Federal University of Pernambuco; Recife Brazil
| | - E. A. Donadi
- Department of Clinical Medicine; São Paulo University; Ribeirão Preto Brazil
| | - N. Lucena-Silva
- Department of Immunology, Aggeu Magalhães Research Center; Oswaldo Cruz Foundation; Recife Brazil
| |
Collapse
|
83
|
Rescuing lymphocytes from HLA-G immunosuppressive effects mediated by the tumor microenvironment. Oncotarget 2016; 6:37385-97. [PMID: 26460949 PMCID: PMC4741936 DOI: 10.18632/oncotarget.6044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 09/17/2015] [Indexed: 11/25/2022] Open
Abstract
Several studies have demonstrated that the antitumor activities of both T and natural killer (NK) effector populations are limited by the immunosuppressive strategies of tumors. In several malignant transformations, the expression of HLA-G by tumor cells rises dramatically, rendering them strongly immunosuppressive. In this study, we postulated that the absence of HLA-G receptors would prevent the immunosuppressive effects of both soluble and membrane-bound HLA-G. Thus, we investigated the therapeutic potential of effector NK cells genetically modified to downregulate the expression of ILT2 (HLA-G receptor) on their cell surfaces. We have shown that the proliferation of modified NK is still dependent on stimulation signals (no malignant transformation). ILT2− NK cells proliferate, migrate, and eliminate HLA-G negative targets cells to the same extent parental NK cells do. However, in the presence of HLA-G positive tumors, ILT2− NK cells exhibit superior proliferation, conjugate formation, degranulation, and killing activities compared to parent NK cells. We tested the effectiveness of ILT2− NK cells in vivo using a xenograft cancer model and found that silencing ILT2 rescued their anti-tumor activity. We believe that combining ILT2− NK cells with existing therapeutic strategies will strengthen the antitumor response in cancer patients.
Collapse
|
84
|
Lazarte J, Goldraich L, Manlhiot C, Kozuszko S, Rao V, Delgado D. Human Leukocyte Antigen-G Polymorphisms Association With Cancer Post-Heart Transplantation. Hum Immunol 2016; 77:805-11. [DOI: 10.1016/j.humimm.2016.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/22/2015] [Accepted: 01/04/2016] [Indexed: 11/30/2022]
|
85
|
Allergen-driven HLA-G expression and secretion in peripheral blood mononuclear cells from allergic rhinitis patients. Hum Immunol 2016; 77:1172-1178. [PMID: 27527921 DOI: 10.1016/j.humimm.2016.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 07/21/2016] [Accepted: 08/10/2016] [Indexed: 01/26/2023]
Abstract
BACKGROUND It has been reported that soluble HLA-G serum levels are increased in patients with pollen-induced allergic rhinitis and decrease after immunotherapy. However, no functional study has been conducted so far. The aim of this study was to evaluate the membrane expression and secretion of HLA-G molecules in peripheral blood mononuclear cells from allergic rhinitis patients after in vitro incubation with the causal allergen. METHODS AND RESULTS Twenty-two allergic rhinitis patients and ten healthy subjects were enrolled. Membrane HLA-G expression was determined by flow cytometry and soluble HLA-G in culture supernatant was determined by immunoenzymatic assay. HLA-G expression was detected in CD4+ (T-helper-2) cells and monocytes after in vitro stimulation with the causal allergen but not with non specific stimuli and non causal allergens. Accordingly, the release of soluble HLA-G in culture supernatant occurred only after the stimulation with the causal allergen. Collectively, these results were confirmed by Western blot analysis. CONCLUSIONS The present study provides the first in vitro evidence that in allergic patients HLA-G expression and secretion is specifically induced by the causal allergen. These data may add new insights into the pathogenetic mechanisms underlying allergic inflammation and allergen specific immunotherapy.
Collapse
|
86
|
Nardi FDS, König L, Wagner B, Giebel B, Santos Manvailer LF, Rebmann V. Soluble monomers, dimers and HLA-G-expressing extracellular vesicles: the three dimensions of structural complexity to use HLA-G as a clinical biomarker. HLA 2016; 88:77-86. [PMID: 27440734 DOI: 10.1111/tan.12844] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022]
Abstract
The HLA-G molecule belongs to the family of nonclassical human leukocyte antigen (HLA) class I. At variance to classical HLA class I, HLA-G displays (i) a low number of nucleotide variations within the coding region, (ii) a high structural diversity, (iii) a restricted peptide repertoire, (iv) a limited tissue distribution and (v) strong immune-suppressive properties. The physiological HLA-G surface expression is restricted to the maternal-fetal interface and to immune-privileged adult tissues. Soluble forms of HLA-G (sHLA-G) are detectable in various body fluids. Cellular activation and pathological processes are associated with an aberrant or a neo-expression of HLA-G/sHLA-G. Functionally, HLA-G and its secreted forms are considered to be key players in the induction of short- and long-term tolerance. Thus, its unique expression profile and tolerance-inducing functions render HLA-G/sHLA-G an attractive biomarker to monitor the systemic health/disease status and disease activity/progression for clinical approaches in disease management and treatments. Here, we place emphasis on (i) the current status of the tolerance-inducing functions by HLA-G/sHLA-G, (ii) the current complexity to implement this molecule as a meaningful clinical biomarker regarding the three dimensions of structural diversity (monomers, dimers and HLA-G-expressing extracellular vesicles) with its functional implications, and (iii) novel and future approaches to detect and quantify sHLA-G structures and functions.
Collapse
Affiliation(s)
- F da Silva Nardi
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany.,Laboratory of Immunogenetics and Histocompatibility (LIGH), Federal University of Paraná, Genetics Department, Curitiba, Brazil.,Ministry of Education of Brazil, Capes Foundation, Brasília, Brazil
| | - L König
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany.,Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| | - B Wagner
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - B Giebel
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - L F Santos Manvailer
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany.,Ministry of Education of Brazil, Capes Foundation, Brasília, Brazil
| | - V Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| |
Collapse
|
87
|
Haghi M, Hosseinpour Feizi MA, Sadeghizadeh M, Lotfi AS. 14-bp Insertion/Deletion Polymorphism of the HLA-G gene in Breast Cancer among Women from North Western Iran. Asian Pac J Cancer Prev 2016; 16:6155-8. [PMID: 26320511 DOI: 10.7314/apjcp.2015.16.14.6155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The human leukocyte antigen-G (HLA-G) gene is highly expressed in cancer pathologies and is one strategy used by tumor cells to escape immune surveillance. A 14-bp insertion/deletion (InDel) polymorphism of the HLA-G gene has been suggested to be associated with HLA-G mRNA stability and the expression of HLA-G. The aim of present study was to assess any genetic association between this polymorphism and breast cancer among Iranian-Azeri women. MATERIALS AND METHODS In this study 227 women affected with breast cancer, in addition to 255 age-sex and ethnically matched healthy individuals as the control group, participated. Genotyping was performed using polymerase chain reaction and electrophoresis assays. The data were compiled according to the genotype and allele frequencies, compared using the Chi-square test. Statistical significance was set at P<0.05. RESULTS In this case-control study, no significant difference was found between the case and control groups at allelic and genotype levels, although there is a slightly higher allele frequency of HLA-G 14bp deletion in breast cancer affected group. However,when the stage I subgroup was compared with stage II plus stage III subgroup of affected breast cancer, a significant difference was seen with the 14 bp deletion allele frequency. The stage II-III subgroup patients had higher frequency of deletion allele (57.4% vs 45.8%) than stage I cases (χ2=4.16, p-value=0.041). CONCLUSIONS Our data support a possible action of HLA-G 14bp InDel polymorphism as a potential genetic risk factor for progression of breast cancer. This finding highlights the necessity of future studies of this gene to establish the exact role of HLA-G in progression steps of breast cancer.
Collapse
Affiliation(s)
- Mehdi Haghi
- Department of Genetics, Faculty of Natural Sciences, University of Tabriz, Tabriz, IranE-mail : ,
| | | | | | | |
Collapse
|
88
|
Zhao B, Liu JQ, Yang C, Zheng Z, Zhou Q, Guan H, Su LL, Hu DH. Human amniotic epithelial cells attenuate TGF-β1-induced human dermal fibroblast transformation to myofibroblasts via TGF-β1/Smad3 pathway. Cytotherapy 2016; 18:1012-1024. [PMID: 27262514 DOI: 10.1016/j.jcyt.2016.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/11/2016] [Accepted: 04/25/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND AIMS Keloids are raised dermal scars that extend beyond the boundaries of the initial injury. To date, there is no treatment to erase scars completely in humans. Growing evidence has shown that the human amniotic epithelial cells have anti-fibrotic properties and can reduce the fibrosis of lung and liver. However, it is unknown whether and how they can influence human keloids. The aim of this study was to investigate whether factors secreted by human amniotic epithelial cells have anti-fibrotic effects on human keloids and to clarify the potential transduction mechanism. METHODS Human amniotic epithelial cells were isolated and identified both with flow cytometry and immunofluorescent. The α-smooth muscle actin, collagen-I and III gene and protein expression of transforming growth factor (TGF)-β1-treated human adult dermal fibroblasts were partly abolished by human amniotic epithelial cells conditioned medium through stimulating the expression of matrix metalloproteinase (MMP). Furthermore, human amniotic epithelial cells conditioned medium effectively attenuated nuclear import of the Smad2/3 complex. RESULTS Soluble human leukocyte antigen G, a human amniotic epithelial cell-derived factor, significantly decreased collagen production in TGF-β1-induced human dermal fibroblasts, although the effect on collagen production was less than that of human amniotic epithelial cell-conditioned medium. CONCLUSIONS This study demonstrates that human amniotic epithelial cells conditioned medium could down-regulate the expression of fibrosis-related molecules by regulating MMP and tissue inhibitor of metalloproteinase levels, and suppress TGF-β1-induced fibroblast transition, in which the TGF-β1/Smad3 pathway is likely involved. These findings suggest that human amniotic epithelial cells are a potential therapeutic compound for the treatment of keloids.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jia-Qi Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chen Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhao Zheng
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qin Zhou
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hao Guan
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lin-Lin Su
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Da-Hai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
89
|
Molecular characterization of MHC class II in the Australian invasive cane toad reveals multiple splice variants. Immunogenetics 2016; 68:449-460. [DOI: 10.1007/s00251-016-0919-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/21/2016] [Indexed: 10/21/2022]
|
90
|
Nardi FDS, Slowik R, Michelon T, Manvailer LFDS, Wagner B, Neumann J, Horn P, Bicalho MDG, Rebmann V. High Amounts of Total and Extracellular Vesicle-Derived Soluble HLA-G are Associated with HLA-G 14-bp Deletion Variant in Women with Embryo Implantation Failure. Am J Reprod Immunol 2016; 75:661-71. [PMID: 26959830 DOI: 10.1111/aji.12507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/15/2016] [Indexed: 12/31/2022] Open
Abstract
PROBLEM Human leukocyte antigen-G (HLA-G) expression is related to 14-bp insertion/deletion polymorphism at the 3'UTR of the HLA-G gene. Soluble forms of HLA-G are released as free molecules or via extracellular vesicles (EVs). Due to the crucial role of HLA-G during pregnancy, we analyzed the 14-bp polymorphism and the two secreted forms in implantation failure women (IF) and in fertile women (FW). METHOD OF STUDY For the genetic analysis, 49 IF and 34 FW were genotyped. For sHLA-G quantification, serum samples from 35 IF and 23 FW were available. ExoQuick(™) kit was used for EVs precipitation. The total soluble HLA-G (sHLA-Gtot ) and vesicular sHLA-GEV were quantified by ELISA. The EVs size and concentration were determined by nanoparticle tracking analysis (NTA). RESULTS An increased proportion of IF presented high levels of sHLA-Gtot (P = 0.02) and vesicular sHLA-GEV (P = 0.0003) compared to FW. The 14-bp deletion allele is more frequent in IF (P = 0.0002) and associated with high levels of sHLA-Gtot and vesicular sHLA-GEV . CONCLUSION The high expression of sHLA-Gtot and sHLA-GEV , together with the presence of the 14-bp deletion allele, might be involved in implantation failure.
Collapse
Affiliation(s)
- Fabiola da Silva Nardi
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany.,Laboratory of Immunogenetics and Histocompatibility (LIGH), Genetics Department, Federal University of Paraná, Curitiba, Brazil.,Capes Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Renata Slowik
- Laboratory of Immunogenetics and Histocompatibility (LIGH), Genetics Department, Federal University of Paraná, Curitiba, Brazil
| | | | - Luis Felipe Dos Santos Manvailer
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany.,Capes Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Bettina Wagner
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Jorge Neumann
- Reproductive Immunology Center, Porto Alegre, Brazil
| | - Peter Horn
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Maria da Graça Bicalho
- Laboratory of Immunogenetics and Histocompatibility (LIGH), Genetics Department, Federal University of Paraná, Curitiba, Brazil
| | - Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| |
Collapse
|
91
|
Pankratz S, Ruck T, Meuth SG, Wiendl H. CD4(+)HLA-G(+) regulatory T cells: Molecular signature and pathophysiological relevance. Hum Immunol 2016; 77:727-33. [PMID: 26826445 DOI: 10.1016/j.humimm.2016.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/20/2016] [Indexed: 12/21/2022]
Abstract
The regulation of potentially harmful immune responses by regulatory T (Treg) cells is essential for maintaining peripheral immune tolerance and homeostasis. Especially CD4(+) Treg cells have been regarded as pivotal regulators of autoreactive and inflammatory responses as well as inducers of immune tolerance by using a variety of immune suppressive mechanisms. Besides the well-known classical CD4(+)CD25(+)FoxP3(+) Treg cells, CD4(+) T cells expressing the immune tolerizing molecule human leukocyte antigen G (HLA-G) have been recently described as another potent thymus-derived Treg (tTreg) cell subset. Albeit both tTreg subsets share common molecular characteristics, the mechanisms of their immunosuppressive function differ fundamentally. Dysfunction and numerical abnormalities of classical CD4(+) tTreg cells have been implicated in the pathogenesis of several immune-mediated diseases such as multiple sclerosis (MS). Clearly, a deeper understanding of the various CD4(+) tTreg subsets and also the underlying mechanisms of impaired immune tolerance in these disorders are essential for the development of potential therapeutic strategies. This review focuses on the current knowledge on defining features and functioning of HLA-G(+)CD4(+) tTreg cells as well as their emerging role in various pathologies with special emphasis on the pathogenesis of MS. Furthermore, future research possibilities together with potential therapeutic applications are discussed.
Collapse
Affiliation(s)
- Susann Pankratz
- Department of Neurology, University of Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.
| | - Tobias Ruck
- Department of Neurology, University of Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.
| | - Sven G Meuth
- Department of Neurology, University of Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.
| | - Heinz Wiendl
- Department of Neurology, University of Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.
| |
Collapse
|
92
|
König L, Kasimir-Bauer S, Hoffmann O, Bittner AK, Wagner B, Manvailer LFS, Schramm S, Bankfalvi A, Giebel B, Kimmig R, Horn PA, Rebmann V. The prognostic impact of soluble and vesicular HLA-G and its relationship to circulating tumor cells in neoadjuvant treated breast cancer patients. Hum Immunol 2016; 77:791-9. [PMID: 26796737 DOI: 10.1016/j.humimm.2016.01.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/21/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
Abstract
The non-classical human leukocyte antigen G (HLA-G) molecule and its soluble forms exert multiple immune suppressive regulatory functions in malignancy and in stem cells contributing to immune escape mechanisms. HLA-G can be secreted as free soluble HLA-G molecules or via extracellular vesicles (EVs). Here we evaluated these soluble HLA-G forms as prognostic marker for prediction of the clinical outcome of neoadjuvant chemotherapy (NACT) treated breast cancer (BC) patients. Plasma samples of BC patients procured before (n=142) and after (n=154) NACT were quantified for total soluble HLA-G (sHLA-Gtot) and HLA-G levels in ExoQuick™ derived EV fractions (sHLA-GEV) by ELISA. The corresponding increments were specified as free sHLA-G (sHLA-Gfree). Total and free sHLA-G were significantly increased in NACT treated BC patients compared to healthy controls (n=16). High sHLA-Gfree levels were exclusively associated to estrogen receptor expression before NACT. Importantly, high sHLA-GEV levels before NACT were related to disease progression and the detection of stem cell-like circulating tumor cells, but high sHLA-Gfree levels indicated an improved clinical outcome. Thus, this study demonstrates for the first time that the different sHLA-G subcomponents represent dissimilar qualitative prognostic impacts on the clinical outcome of NACT treated BC patients, whereas the total sHLA-G levels without separating into subcomponents are not related to clinical outcome.
Collapse
Affiliation(s)
- Lisa König
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany; Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45122 Essen, Germany.
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45122 Essen, Germany
| | - Oliver Hoffmann
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45122 Essen, Germany
| | - Ann-Kathrin Bittner
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45122 Essen, Germany
| | - Bettina Wagner
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Luis Felipe Santos Manvailer
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany; The Capes Foundation, Ministry of Education of Brazil, Cx. Postal 250, Brasília DF 70.040-020, Brazil
| | - Sabine Schramm
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Agnes Bankfalvi
- Institute for Pathology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45122 Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45122 Essen, Germany
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| |
Collapse
|
93
|
Abstract
HLA-G is a nonclassical human leukocyte antigen (HLA) class I molecule which plays important tolerogenic functions in various physiological and pathological situations such as fetus and transplant acceptance, and immune escaping of virus-infected and malignant cells. Here we describe a method, which allows for studying cell surface expression of HLA-G using specific antibodies with flow cytometry analysis.
Collapse
Affiliation(s)
- Aifen Lin
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, 317000, China
| | - Wei-Hua Yan
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, 317000, China.
| |
Collapse
|
94
|
Role of HLA-G and extracellular vesicles in renal cancer stem cell-induced inhibition of dendritic cell differentiation. BMC Cancer 2015; 15:1009. [PMID: 26704308 PMCID: PMC4690241 DOI: 10.1186/s12885-015-2025-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/16/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Tumor immune-escape has been related to the ability of cancer cells to inhibit T cell activation and dendritic cell (DC) differentiation. We previously identified a tumor initiating population, expressing the mesenchymal marker CD105, which fulfills the criteria for definition as cancer stem cells (CD105(+) CSCs) able to release extracellular vesicles (EVs) that favor tumor progression and metastases. The aim of the present study was to compare the ability of renal CSCs and derived EVs to modulate the behavior of monocyte-derived DCs with a non-tumor initiating renal cancer cell population (CD105(-) TCs) and their EVs. METHODS Maturation of monocyte-derived DCs was studied in presence of CD105(+) CSCs and CD105(-) TCs and their derived EVs. DC differentiation experiments were evaluated by cytofluorimetric analysis. T cell proliferation and ELISA assays were performed. Monocytes and T cells were purified from peripheral blood mononuclear cells obtained from healthy donors. RESULTS The results obtained demonstrate that both CD105(+) CSCs and CD105(-) TCs impaired the differentiation process of DCs from monocytes. However, the immune-modulatory effect of CD105(+) CSCs was significantly greater than that of CD105(-) TCs. EVs derived from CD105(+) CSCs and in less extent, those derived from CD105(-) TCs retained the ability to impair monocyte maturation and T cell activation. The mechanism has been mainly related to the expression of HLA-G by tumor cells and to its release in a form associated to EVs. HLA-G blockade significantly reduced the inhibitory effect of EVs on DC differentiation. CONCLUSIONS In conclusion, the results of the present study indicate that renal cancer cells and in particular CSCs and derived EVs impair maturation of DCs and T cell immune response by a mechanism involving HLA-G.
Collapse
|
95
|
Lazarte J, Tumiati LC, Rao V, Delgado DH. New Developments in HLA-G in Cardiac Transplantation. Hum Immunol 2015; 77:740-5. [PMID: 26707934 DOI: 10.1016/j.humimm.2015.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/08/2015] [Accepted: 12/08/2015] [Indexed: 12/20/2022]
Abstract
Human Leukocyte Antigen-G (HLA-G) is a non-classical class 1b protein, whose gene is located on chromosome 6 (6p21.31). HLA-G inhibits the immune cells' cytotoxic activity by interacting with specific receptors on their membranes. Since it is a naturally occurring immune modulator, HLA-G has been investigated in transplantation. Indeed, a number of investigations reveal that HLA-G expression is influenced by genetic polymorphisms and in turn, those polymorphisms are associated with detrimental or beneficial outcomes in various pathological situations. The present review introduces the HLA-G molecule, the gene and its polymorphisms. It focuses on the expression of HLA-G and the role of polymorphisms primarily in heart transplant outcomes, secondarily in other transplant organs, as well as the role of the allograft and effect of medical therapy. We discuss the limitations in HLA-G transplant investigations and future directions. The immune inhibiting activity of HLA-G has a great deal of potential for its utilization in enhancing diagnostic, preventive and therapeutic strategies against rejection in the setting of transplantation.
Collapse
Affiliation(s)
- Julieta Lazarte
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital-University Health Network, Toronto, Ontario, Canada.
| | - Laura C Tumiati
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital-University Health Network, Toronto, Ontario, Canada
| | - Vivek Rao
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital-University Health Network, Toronto, Ontario, Canada
| | - Diego H Delgado
- Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital-University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
96
|
Li T, Huang H, Liao D, Ling H, Su B, Cai M. WITHDRAWN: Lack of association between the HLA-G 3'UTR 14-bp ins/del polymorphism and cancer risk: A meta-analysis of case-control study. Hum Immunol 2015:S0198-8859(15)00564-9. [PMID: 26585360 DOI: 10.1016/j.humimm.2015.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 08/26/2014] [Accepted: 11/12/2015] [Indexed: 11/22/2022]
Abstract
This article hashas been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Tao Li
- Department of Chemotherapy, People's Hospital of Gaozhou, Gaozhou, Guangdong, China.
| | - Haohai Huang
- School of Pharmacy, Guangdong Medical College, Dongguan, Guangdong, China
| | - Dan Liao
- Sino-American Cancer Research Institute, Guangdong Medical College, Dongguan, Guangdong, China
| | - Huahuang Ling
- Department of Chemotherapy, People's Hospital of Gaozhou, Gaozhou, Guangdong, China
| | - Bingguang Su
- Department of Chemotherapy, People's Hospital of Gaozhou, Gaozhou, Guangdong, China
| | - Maode Cai
- Department of Chemotherapy, People's Hospital of Gaozhou, Gaozhou, Guangdong, China
| |
Collapse
|
97
|
Murdaca G, Contini P, Cagnati P, Marenco S, Pieri G, Lantieri F, Picciotto A, Puppo F. Behavior of soluble HLA-A, -B, -C and HLA-G molecules in patients with chronic hepatitis C virus infection undergoing pegylated interferon-α and ribavirin treatment: potential role as markers of response to antiviral therapy. Clin Exp Med 2015; 17:93-100. [PMID: 26567007 DOI: 10.1007/s10238-015-0399-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/19/2015] [Indexed: 11/25/2022]
Abstract
The serum levels of soluble HLA class I antigens (sHLA-A, -B, -C and sHLA-G) were determined in 40 HCV genotype 1-infected patients before (T 0), after 3, 6, and 12 months (T 3, T 6, and T 12) of pegylated-IFN-α plus ribavirin therapy and 6 months (T 18) after the end of treatment. Twenty patients were sustained virological responders (SVR), and 20 were non-responders (NR). sHLA-A, -B, -C levels at T 0 were significantly higher in both SVR (mean 10.48 μg/ml) and NR (mean 11.87 μg/ml) patients as compared to healthy controls (mean 0.34 μg/ml, p < 0.0001) and HIV-infected subjects (mean 1.22 μg/ml, p < 0.0001). sHLA-G levels at T 0 were significantly higher in SVR (mean 24.78 ng/ml) and NR (mean 24.93 ng/ml) patients as compared to healthy controls (mean 10.34 ng/ml, p = 0.015 and p = 0.014, respectively) but were lower as compared to HIV-infected subjects (mean 48.00 ng/ml, p < 0.0001). The levels of sHLA-A, -B, -C and sHLA-G significantly decreased in SVR from T 0 to T 18 (mean 1.64 and 1.43 ng/ml, respectively, p < 0.0001) and correlated with HCV-RNA, AST, ALT, γGT, and ALP levels. The determination of soluble HLA class I levels could be proposed as a surrogate marker to discriminate SVR and NR HCV-infected patients during PEG-IFN-α plus ribavirin therapy.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Department of Internal Medicine, Clinical Immunology Unit, University of Genoa, Viale Benedetto XV, n. 6, 16132, Genoa, Italy
| | - Paola Contini
- Department of Internal Medicine, Clinical Immunology Unit, University of Genoa, Viale Benedetto XV, n. 6, 16132, Genoa, Italy
| | - Paola Cagnati
- Department of Internal Medicine, Clinical Immunology Unit, University of Genoa, Viale Benedetto XV, n. 6, 16132, Genoa, Italy
| | - Simona Marenco
- Department of Internal Medicine, Gastroenterology Unit, University of Genoa, 16132, Genoa, Italy
| | - Giulia Pieri
- Department of Internal Medicine, Gastroenterology Unit, University of Genoa, 16132, Genoa, Italy
| | - Francesca Lantieri
- Department of Health Sciences, Biostatistic Unit, University of Genoa, 16132, Genoa, Italy
| | - Antonino Picciotto
- Department of Internal Medicine, Gastroenterology Unit, University of Genoa, 16132, Genoa, Italy
| | - Francesco Puppo
- Department of Internal Medicine, Clinical Immunology Unit, University of Genoa, Viale Benedetto XV, n. 6, 16132, Genoa, Italy.
| |
Collapse
|
98
|
Lin A, Yan WH. Human Leukocyte Antigen-G (HLA-G) Expression in Cancers: Roles in Immune Evasion, Metastasis and Target for Therapy. Mol Med 2015; 21:782-791. [PMID: 26322846 PMCID: PMC4749493 DOI: 10.2119/molmed.2015.00083] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/20/2015] [Indexed: 12/29/2022] Open
Abstract
Aberrant induction of human leukocyte antigen-G (HLA-G) expression has been observed in various malignancies and is strongly associated with tumor immune escape, metastasis and poor prognosis. To date, great achievements have been made in understanding the underlying mechanisms of HLA-G involved in tumor progression. HLA-G could lead to tumor evasion by inhibition of immune cell cytolysis, differentiation and proliferation and inhibition of cytokine production, induction of immune cell apoptosis, generation of regulatory cells and expansion of myeloid-derived suppressive cells and by impairment of chemotaxis. Moreover, HLA-G could arm tumor cells with a higher invasive and metastatic potential with the upregulation of tumor-promoting factor expression such as matrix metalloproteinases (MMPs), indicating that ectopic HLA-G expression could render multiple effects during the progression of malignancies. In this review, we summarized the mechanisms of HLA-G involved in promoting tumor cell immune escaping, metastasis and disease progression. Special attention will be paid to its significance as an attractive therapeutic target in cancers.
Collapse
Affiliation(s)
- Aifen Lin
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, People’s Republic of China
| | - Wei-Hua Yan
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, People’s Republic of China
| |
Collapse
|
99
|
Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov 2015; 14:561-84. [PMID: 26228759 DOI: 10.1038/nrd4591] [Citation(s) in RCA: 948] [Impact Index Per Article: 105.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Targeting immune checkpoints such as programmed cell death protein 1 (PD1), programmed cell death 1 ligand 1 (PDL1) and cytotoxic T lymphocyte antigen 4 (CTLA4) has achieved noteworthy benefit in multiple cancers by blocking immunoinhibitory signals and enabling patients to produce an effective antitumour response. Inhibitors of CTLA4, PD1 or PDL1 administered as single agents have resulted in durable tumour regression in some patients, and combinations of PD1 and CTLA4 inhibitors may enhance antitumour benefit. Numerous additional immunomodulatory pathways as well as inhibitory factors expressed or secreted by myeloid and stromal cells in the tumour microenvironment are potential targets for synergizing with immune checkpoint blockade. Given the breadth of potential targets in the immune system, critical questions to address include which combinations should move forward in development and which patients will benefit from these treatments. This Review discusses the leading drug targets that are expressed on tumour cells and in the tumour microenvironment that allow enhancement of the antitumour immune response.
Collapse
Affiliation(s)
- Kathleen M Mahoney
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA. [2] Division of Haematology and Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA. [3]
| | - Paul D Rennert
- 1] SugarCone Biotech, Holliston, Massachusetts 01746, USA. [2] Videre Biotherapeutics, Watertown, Massachusetts 02472, USA. [3]
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
100
|
Bian X, Si Y, Zhang M, Wei R, Yang X, Ren H, Zheng G, Wang C, Zhang Y. Down-expression of miR-152 lead to impaired anti-tumor effect of NK via upregulation of HLA-G. Tumour Biol 2015; 37:3749-56. [PMID: 26468017 DOI: 10.1007/s13277-015-3669-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/15/2015] [Indexed: 02/05/2023] Open
Abstract
It is known that chronic HBV infection (CHB) is the major risk factor for hepatocellular carcinoma (HCC) because CHB could not only cause liver tumorigenesis but also lead to change of local microenviroment and lower immune response to infected and cancerous cells (immune tolerance). Human leucocyte antigen-G (HLA-G) belongs to a non-classic MHC-I family and was considered to be an immune tolerance molecule, which could bind to immunosuppressive receptors of natural killer cell (NK) and T cells and trigger immunosuppressive signaling. Recently, numerous studies highlighted that microRNAs (miRNAs) were significantly differentially expressed in HCC tumorigenesis, and the expression was tissue-specific, indicating that miRNAs may cause great epigenetic changes in HCC tumorigenesis. In this study, we found that the expression of HLA-G was upregulated by hepatitis B virus (HBV) infection and miR-152; a HLA-G-targeting miRNA was downregulated by HBV infection. And high expression of HLA-G further suppressed NK against cancer cells, providing a new concept that miR-152 was involved in HBV-induced hepatocellular carcinoma.
Collapse
Affiliation(s)
- Xiaokun Bian
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China.,Department of Clinical Laboratory, Weifang People's Hospital, Shandong, China
| | - Yuanquan Si
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China.,Department of Clinical Laboratory, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Min Zhang
- Department of Medicine, Shandong Provincial Chest Hospital, Jinan, China
| | - Ran Wei
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaomin Yang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Hao Ren
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Guixi Zheng
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|