51
|
Trendafilova A, Moujir LM, Sousa PMC, Seca AML. Research Advances on Health Effects of Edible Artemisia Species and Some Sesquiterpene Lactones Constituents. Foods 2020; 10:E65. [PMID: 33396790 PMCID: PMC7823681 DOI: 10.3390/foods10010065] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 12/20/2022] Open
Abstract
The genus Artemisia, often known collectively as "wormwood", has aroused great interest in the scientific community, pharmaceutical and food industries, generating many studies on the most varied aspects of these plants. In this review, the most recent evidence on health effects of edible Artemisia species and some of its constituents are presented and discussed, based on studies published until 2020, available in the Scopus, Web of Sciences and PubMed databases, related to food applications, nutritional and sesquiterpene lactones composition, and their therapeutic effects supported by in vivo and clinical studies. The analysis of more than 300 selected articles highlights the beneficial effect on health and the high clinical relevance of several Artemisia species besides some sesquiterpene lactones constituents and their derivatives. From an integrated perspective, as it includes therapeutic and nutritional properties, without ignoring some adverse effects described in the literature, this review shows the great potential of Artemisia plants and some of their constituents as dietary supplements, functional foods and as the source of new, more efficient, and safe medicines. Despite all the benefits demonstrated, some gaps need to be filled, mainly related to the use of raw Artemisia extracts, such as its standardization and clinical trials on adverse effects and its health care efficacy.
Collapse
Affiliation(s)
- Antoaneta Trendafilova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria
| | - Laila M. Moujir
- Department of Biochemistry, Microbiology, Genetics and Cell Biology, Facultad de Farmacia, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain;
| | - Pedro M. C. Sousa
- Faculty of Sciences and Technology, University of Azores, 9500-321 Ponta Delgada, Portugal;
| | - Ana M. L. Seca
- cE3c—Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group & Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus, 9500-321 Ponta Delgada, Portugal
- LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
52
|
Salazar-Gómez A, Ontiveros-Rodríguez JC, Pablo-Pérez SS, Vargas-Díaz ME, Garduño-Siciliano L. The potential role of sesquiterpene lactones isolated from medicinal plants in the treatment of the metabolic syndrome - A review. SOUTH AFRICAN JOURNAL OF BOTANY : OFFICIAL JOURNAL OF THE SOUTH AFRICAN ASSOCIATION OF BOTANISTS = SUID-AFRIKAANSE TYDSKRIF VIR PLANTKUNDE : AMPTELIKE TYDSKRIF VAN DIE SUID-AFRIKAANSE GENOOTSKAP VAN PLANTKUNDIGES 2020; 135:240-251. [PMID: 32963416 PMCID: PMC7493762 DOI: 10.1016/j.sajb.2020.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 07/01/2020] [Accepted: 08/20/2020] [Indexed: 05/15/2023]
Abstract
Metabolic syndrome comprises a cluster of metabolic disorders related to the development of cardiovascular disease and type 2 diabetes mellitus. In latter years, plant secondary metabolites have become of special interest because of their potential role in preventing and managing metabolic syndrome. Sesquiterpene lactones constitute a large and diverse group of biologically active compounds widely distributed in several medicinal plants used for the treatment of metabolic disorders. The structural diversity and the broad spectrum of biological activities of these compounds drew significant interests in the pharmacological applications. This review describes selected sesquiterpene lactones that have been experimentally validated for their biological activities related to risk factors of metabolic syndrome, together with their mechanisms of action. The potential beneficial effects of sesquiterpene lactones discussed in this review demonstrate that these substances represent remarkable compounds with a diversity of molecular structure and high biological activity, providing new insights into the possible role in metabolic syndrome management.
Collapse
Key Words
- ACE, angiotensin I-converting enzyme
- AMPK, activated protein kinase
- APOC3, apolipoprotein C3
- AT, adipose tissue
- Antidiabetic
- CAT, catalase
- COX-2, cyclooxygenase 2
- CVD, cardiovascular disease
- FFA, free fatty acids
- FN, fibronectin
- G6Pase, glucose-6-phosphatase
- GK, glucokinase
- GPx, glutathione peroxidase
- GSH, reduced glutathione
- HDL-C, high-density lipoproteins-cholesterol
- Hypoglycemic
- Hypolipidemic
- IFN-γ, interferon gamma
- IL-1β, interleukin 1 beta
- IL-6, interleukin 6
- IR, insulin resistance
- JNK, c-Jun N-terminal kinases
- LDL-C, low-density lipoprotein-cholesterol
- LPS, lipopolysaccharide
- MAPK, mitogen-activated protein kinases
- MCP-1, monocyte chemoattractant protein 1
- Medicinal plants
- MetS, metabolic syndrome
- Metabolic syndrome
- NF-κB, nuclear factor kappa B
- NO, nitric oxide
- ROS, reactive oxygen species
- SLns, sesquiterpene lactones
- SOD, superoxide dismutase
- STAT1, signal transducer and activator of transcription 1
- STZ, streptozotocin
- Sesquiterpene lactones
- T2DM, type 2 diabetes mellitus
- TBARS, thiobarbituric acid reactive substances
- TC, total cholesterol
- TG, triglycerides
- TGF-β1, transforming growth factor beta
- TLRs, Toll-like receptor
- TNF-α, tumor necrosis factor alpha
- VLDL, very-low-density lipoprotein
- iNOS, inducible nitric oxide synthase
Collapse
Affiliation(s)
- Anuar Salazar-Gómez
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu y M. Stampa, Col. Planetario Lindavista, 77380 Ciudad de México, Mexico
| | - Julio C Ontiveros-Rodríguez
- CONACYT - Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-1, Ciudad Universitaria, 58030 Morelia, Michoacán, Mexico
| | - Saudy S Pablo-Pérez
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu y M. Stampa, Col. Planetario Lindavista, 77380 Ciudad de México, Mexico
| | - M Elena Vargas-Díaz
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, 11340 Ciudad de México, Mexico
| | - Leticia Garduño-Siciliano
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu y M. Stampa, Col. Planetario Lindavista, 77380 Ciudad de México, Mexico
| |
Collapse
|
53
|
Jiang YY, Shui JC, Zhang BX, Chin JW, Yue RS. The Potential Roles of Artemisinin and Its Derivatives in the Treatment of Type 2 Diabetes Mellitus. Front Pharmacol 2020; 11:585487. [PMID: 33381036 PMCID: PMC7768903 DOI: 10.3389/fphar.2020.585487] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic disease that has become a global public health problem. Studies on T2DM prevention and treatment mostly focus on discovering therapeutic drugs. Artemisinin and its derivatives were originally used as antimalarial treatments. In recent years, the roles of artemisinins in T2DM have attracted much attention. Artemisinin treatments not only attenuate insulin resistance and restore islet ß-cell function in T2DM but also have potential therapeutic effects on diabetic complications, including diabetic kidney disease, cognitive impairment, diabetic retinopathy, and diabetic cardiovascular disease. Many in vitro and in vivo experiments have confirmed the therapeutic utility of artemisinin and its derivatives on T2DM, but no article has systematically demonstrated the specific role artemisinin plays in the treatment of T2DM. This review summarizes the potential therapeutic effects and mechanism of artemisinin and its derivatives in T2DM and associated complications, providing a reference for subsequent related research.
Collapse
Affiliation(s)
- Ya-Yi Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia-Cheng Shui
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo-Xun Zhang
- Department of Endocrinology, Guang'anmen Hospital of China, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia-Wei Chin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ren-Song Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
54
|
Piperaquine Exposure Is Altered by Pregnancy, HIV, and Nutritional Status in Ugandan Women. Antimicrob Agents Chemother 2020; 64:AAC.01013-20. [PMID: 33020153 DOI: 10.1128/aac.01013-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/29/2020] [Indexed: 11/20/2022] Open
Abstract
Dihydroartemisinin-piperaquine (DHA-PQ) provides highly effective therapy and chemoprevention for malaria in pregnant African women. PQ concentrations of >10.3 ng/ml have been associated with reduced maternal parasitemia, placental malaria, and improved birth outcomes. We characterized the population pharmacokinetics (PK) of PQ in a post hoc analysis of human immunodeficiency virus (HIV)-infected and -uninfected pregnant women receiving DHA-PQ as chemoprevention every 4 or 8 weeks. The effects of covariates such as pregnancy, nutritional status (body mass index [BMI]), and efavirenz (EFV)-based antiretroviral therapy were investigated. PQ concentrations from two chemoprevention trials were pooled to create a population PK database from 274 women and 2,218 PK observations. A three-compartment model with an absorption lag best fit the data. Consistent with our prior intensive PK evaluation, pregnancy and EFV use resulted in a 72% and 61% increased PQ clearance, compared to postpartum and HIV-uninfected pregnant women, respectively. Low BMI at 28 weeks of gestation was associated with increased clearance (2% increase per unit decrease in BMI). Low-BMI women given DHA-PQ every 8 weeks had a higher prevalence of parasitemia, malaria infection, and placental malaria compared to women with higher BMIs. The reduced piperaquine exposure in women with low BMI as well as during EFV coadministration, compared to pregnant women with higher BMIs and not taking EFV, suggests that these populations could benefit from weekly instead of monthly dosing for prevention of malaria parasitemia. Simulations indicated that because of the BMI-clearance relationship, weight-based regimens would not improve protection compared to a 2,880 mg fixed-dose regimen when provided monthly. (The clinical trials described in this paper have been registered at ClinicalTrials.gov under identifiers NCT02163447 and NCT02282293.).
Collapse
|
55
|
Valissery P, Thapa R, Singh J, Gaur D, Bhattacharya J, Singh AP, Dhar SK. Potent in vivo antimalarial activity of water-soluble artemisinin nano-preparations. RSC Adv 2020; 10:36201-36211. [PMID: 35517081 PMCID: PMC9057047 DOI: 10.1039/d0ra05597b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
Artemisinin is a remarkable compound whose derivatives and combinations with multiple drugs have been utilized at the forefront of malaria treatment. However, the inherent issues of the parent compound such as poor bioavailability, short serum half-life, and high first-pass metabolism partially limit further applications of this drug. In this study, we enhanced the aqueous phase solubility of artemisinin by encapsulating it in two nanocarriers based on the polymer polycaprolactone (ART-PCL) and lipid-based Large Unilamellar Vesicles (ART-LIPO) respectively. Both nanoformulations exhibit in vitro parasite killing activity against Plasmodium falciparum with the ART-LIPO performing at comparable efficacy to the control drug solubilized in ethanol. These water-soluble formulations showed potent in vivo antimalarial activity as well in the mouse model of malaria at equivalent doses of the parent drug. Additionally, the artemisinin-PCL nanoformulation used in combination with either pyrimethamine or chloroquine increased the survival of the Plasmodium berghei infected mice for more than 34 days and effectively cured the mice of the infection. We highlight the potential for polymer and liposome-based nanocarriers in improving not only the aqueous phase solubility of artemisinin but also concomitantly retaining its therapeutic efficacy in vivo as well.
Collapse
Affiliation(s)
- Praveesh Valissery
- Special Centre for Molecular Medicine, Jawaharlal Nehru University New Delhi 110067 India
| | - Roshni Thapa
- Special Centre for Molecular Medicine, Jawaharlal Nehru University New Delhi 110067 India
| | - Jyoti Singh
- National Institute of Immunology New Delhi 110067 India
| | - Deepak Gaur
- School of Biotechnology, Jawaharlal Nehru University New Delhi 110067 India
| | | | | | - Suman Kumar Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University New Delhi 110067 India
| |
Collapse
|
56
|
Dinić J, Efferth T, García-Sosa AT, Grahovac J, Padrón JM, Pajeva I, Rizzolio F, Saponara S, Spengler G, Tsakovska I. Repurposing old drugs to fight multidrug resistant cancers. Drug Resist Updat 2020; 52:100713. [PMID: 32615525 DOI: 10.1016/j.drup.2020.100713] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 02/08/2023]
Abstract
Overcoming multidrug resistance represents a major challenge for cancer treatment. In the search for new chemotherapeutics to treat malignant diseases, drug repurposing gained a tremendous interest during the past years. Repositioning candidates have often emerged through several stages of clinical drug development, and may even be marketed, thus attracting the attention and interest of pharmaceutical companies as well as regulatory agencies. Typically, drug repositioning has been serendipitous, using undesired side effects of small molecule drugs to exploit new disease indications. As bioinformatics gain increasing popularity as an integral component of drug discovery, more rational approaches are needed. Herein, we show some practical examples of in silico approaches such as pharmacophore modelling, as well as pharmacophore- and docking-based virtual screening for a fast and cost-effective repurposing of small molecule drugs against multidrug resistant cancers. We provide a timely and comprehensive overview of compounds with considerable potential to be repositioned for cancer therapeutics. These drugs are from diverse chemotherapeutic classes. We emphasize the scope and limitations of anthelmintics, antibiotics, antifungals, antivirals, antimalarials, antihypertensives, psychopharmaceuticals and antidiabetics that have shown extensive immunomodulatory, antiproliferative, pro-apoptotic, and antimetastatic potential. These drugs, either used alone or in combination with existing anticancer chemotherapeutics, represent strong candidates to prevent or overcome drug resistance. We particularly focus on outcomes and future perspectives of drug repositioning for the treatment of multidrug resistant tumors and discuss current possibilities and limitations of preclinical and clinical investigations.
Collapse
Affiliation(s)
- Jelena Dinić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | | | - Jelena Grahovac
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, E-38071 La Laguna, Spain.
| | - Ilza Pajeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113 Sofia, Bulgaria
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 301724 Venezia-Mestre, Italy; Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Simona Saponara
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Dóm tér 10, Hungary
| | - Ivanka Tsakovska
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113 Sofia, Bulgaria
| |
Collapse
|
57
|
Luo Y, Guo Q, Zhang L, Zhuan Q, Meng L, Fu X, Hou Y. Dihydroartemisinin exposure impairs porcine ovarian granulosa cells by activating PERK-eIF2α-ATF4 through endoplasmic reticulum stress. Toxicol Appl Pharmacol 2020; 403:115159. [PMID: 32721431 DOI: 10.1016/j.taap.2020.115159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022]
Abstract
Dihydroartemisinin (DHA) is an artemisinin derivative commonly used in malaria therapy, and a growing number of studies have focused on the potent anticancer activity of DHA. However, the reproductive toxicity of anticancer drugs is a major concern for young female cancer patients. Previous studies have suggested that DHA can cause embryonic damage and affect oocyte maturation. Here, we explored the side effects of DHA exposure on ovarian somatic cells. We exposed porcine granulosa cells to 5 μM and 40 μM DHA for 24 h or 48 h in vitro. DHA inhibited granulosa cell viability in a dose-dependent manner and, in the 48 h treatment group, DHA enhanced the apoptotic rate. We observed that the levels of intracellular calcium, mitochondrial calcium, and ATP concentration were elevated with DHA treatment. In granulosa cells exposed to DHA, the mRNA levels of endoplasmic reticulum stress-related genes GRP78 and ATF4 were increased. Furthermore, analysis of the unfolded protein response signaling pathway showed that the protein levels of P-PERK, P-eIF2α, and ATF4 were upregulated by DHA exposure. These results demonstrate that in granulosa cells, DHA exposure induces endoplasmic reticulum stress that then activates the PERK/eIF2α/ATF4 signaling pathway, thus providing insight into the mechanism underlying DHA-induced reproductive toxicity, and giving reference to DHA use in females.
Collapse
Affiliation(s)
- Yan Luo
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qing Guo
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Luyao Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qingrui Zhuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lin Meng
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yunpeng Hou
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
58
|
Yin S, Yang H, Zhao X, Wei S, Tao Y, Liu M, Bo R, Li J. Antimalarial agent artesunate induces G0/G1 cell cycle arrest and apoptosis via increasing intracellular ROS levels in normal liver cells. Hum Exp Toxicol 2020; 39:1681-1689. [PMID: 32633561 DOI: 10.1177/0960327120937331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Artesunate (ARS) has been shown to be highly effective against chloroquine-resistant malaria. In vitro studies reported that ARS has anticancer effects; however, its detrimental action on cancer cells may also play a role in its toxicity toward normal cells and its potential toxicity has not been sufficiently researched. In this study, we investigated the possible cytotoxic effects using normal BRL-3A and AML12 liver cells. The results showed that ARS dose-dependently inhibited cell proliferation and arrested the G0/G1 phase cell cycle in both BRL-3A and AML12 liver cells. Western blotting demonstrated that ARS induced a significant downregulation of cyclin-dependent kinase-2 (CDK2), CDK4, cyclin D1, and cyclin E1 in various levels and then caused apoptosis when the Bcl-2/Bax ratio decreased. Conversely, the levels of intracellular reactive oxygen species (ROS) were increased. The ROS scavenger N-acetylcysteine can significantly inhibit cell cycle arrest and apoptosis induced by ARS. Thus, the data confirmed that ARS exposure impairs normal liver cell proliferation by inducing G0/G1 cell cycle arrest and apoptosis, and this detrimental action may be associated with intracellular ROS accumulation. Collectively, the possible side effects of ARS on healthy normal cells cannot be neglected when developing therapies.
Collapse
Affiliation(s)
- S Yin
- College of Veterinary Medicine, 38043Yangzhou University, Yangzhou, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - H Yang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, People's Republic of China
| | - X Zhao
- College of Veterinary Medicine, 38043Yangzhou University, Yangzhou, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - S Wei
- College of Veterinary Medicine, 38043Yangzhou University, Yangzhou, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - Y Tao
- College of Veterinary Medicine, 38043Yangzhou University, Yangzhou, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - M Liu
- College of Veterinary Medicine, 38043Yangzhou University, Yangzhou, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - R Bo
- College of Veterinary Medicine, 38043Yangzhou University, Yangzhou, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - J Li
- College of Veterinary Medicine, 38043Yangzhou University, Yangzhou, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| |
Collapse
|
59
|
Zech J, Gold D, Salaymeh N, Sasson NC, Rabinowitch I, Golenser J, Mäder K. Oral Administration of Artemisone for the Treatment of Schistosomiasis: Formulation Challenges and In Vivo Efficacy. Pharmaceutics 2020; 12:E509. [PMID: 32503130 PMCID: PMC7356104 DOI: 10.3390/pharmaceutics12060509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022] Open
Abstract
Artemisone is an innovative artemisinin derivative with applications in the treatment of malaria, schistosomiasis and other diseases. However, its low aqueous solubility and tendency to degrade after solubilisation limits the translation of this drug into clinical practice. We developed a self-microemulsifying drug delivery system (SMEDDS), which is easy to produce (simple mixing) with a high drug load. In addition to known pharmaceutical excipients (Capmul MCM, Kolliphor HS15, propylene glycol), we identified Polysorb ID 46 as a beneficial new additional excipient. The physicochemical properties were characterized by dynamic light scattering, conductivity measurements, rheology and electron microscopy. High storage stability, even at 30 °C, was achieved. The orally administrated artemisone SMEDDS formulation was highly active in vivo in S. mansoni infected mice. Thorough elimination of the adult worms, their eggs and prevention of the deleterious granuloma formation in the livers of infected mice was observed even at a relatively low dose of the drug. The new formulation has a high potential to accelerate the clinical use of artemisone in schistosomiasis and malaria.
Collapse
Affiliation(s)
- Johanna Zech
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany;
| | - Daniel Gold
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel;
| | - Nadeen Salaymeh
- Department of Microbiology and Molecular Genetics, The Kuvin Centre for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel;
| | - Netanel Cohen Sasson
- Department of Medical Neurobiology, Institute for Medical Research-Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112002, Israel; (N.C.S.); (I.R.)
| | - Ithai Rabinowitch
- Department of Medical Neurobiology, Institute for Medical Research-Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112002, Israel; (N.C.S.); (I.R.)
| | - Jacob Golenser
- Department of Microbiology and Molecular Genetics, The Kuvin Centre for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel;
| | - Karsten Mäder
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany;
| |
Collapse
|
60
|
Zhang J. The osteoprotective effects of artemisinin compounds and the possible mechanisms associated with intracellular iron: A review of in vivo and in vitro studies. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 76:103358. [PMID: 32143118 DOI: 10.1016/j.etap.2020.103358] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 05/16/2023]
Abstract
Osteoporosis is a progressive systemic disease characterized by low bone mineral density and deterioration of bone microarchitecture. The current therapies are effective to prevent further bone loss and fractures but they are accompanied by undesirable side effects and cost issues. The discovery of Chinese herbal medicines with osteoprotective effects provides alternative treatments to prevent bone loss without causing severe side effects. Artemisinin (ARS) and its related compounds have been clinically used as antimalarial agents. Interestingly, their bioactivity is not limited to antimalarial treatment. Experimental evidences indicate that ARS compounds are a potential type of therapeutic alternative medicine for bone loss induced by accelerated osteoclastic bone resorption. The present review intends to summarize the current understandings of ARS compounds and their molecular mechanisms of actions in preventing bone loss. ARS compounds selectively inhibit osteoclast differentiation by downregulation of pathways involved in receptor activator of nuclear factor kappa-B ligand (RANKL) -induced osteoclastogenesis, and have no effect on osteogenic differentiation of osteoblasts. The exact mechanism of activation and action of these anti-resorption effects are not fully elucidated. Considering the characteristic of high levels of intracellular iron in osteoclasts, ARS compounds may inhibit osteoclast differentiation via mechanisms associated with intracellular iron, including the cleavage of endoperoxide bridge, oxidative damage and ferroptosis. The anti-resorptive effects of ARS compounds need to be further investigated in bone loss models caused by different factors, and to be under clinical development.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China.
| |
Collapse
|
61
|
Xia M, Liu D, Liu Y, Liu H. The Therapeutic Effect of Artemisinin and Its Derivatives in Kidney Disease. Front Pharmacol 2020; 11:380. [PMID: 32296335 PMCID: PMC7136752 DOI: 10.3389/fphar.2020.00380] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Artemisinin (ARS) and its derivatives (ARSs) are recommended as the first-line antimalarial drugs for the treatment of malaria. Besides antimalarial function, its potent anti-inflammatory and immunoregulatory properties, as well as the ability to regulate oxidative stress have brought them to a prominent position. As researchers around the world are continually exploring the unknown biological activities of ARS derivatives, experimental studies have shown much progress in renal therapy. This review aims to give a brief overview of the current research on ARSs applications for kidney treatment with the evaluation of therapeutic properties and potential molecular mechanisms.
Collapse
Affiliation(s)
- Ming Xia
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Di Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Yu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| |
Collapse
|
62
|
Hao DL, Xie R, De GJ, Yi H, Zang C, Yang MY, Liu L, Ma H, Cai WY, Zhao QH, Sui F, Chen YJ. pH-Responsive Artesunate Polymer Prodrugs with Enhanced Ablation Effect on Rodent Xenograft Colon Cancer. Int J Nanomedicine 2020; 15:1771-1786. [PMID: 32214810 PMCID: PMC7083641 DOI: 10.2147/ijn.s242032] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/02/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose In this study, pH-sensitive poly(2-ethyl-2-oxazoline)-poly(lactic acid)-poly(β-amino ester) (PEOz-PLA-PBAE) triblock copolymers were synthesized and were conjugated with an antimalaria drug artesunate (ART), for inhibition of a colon cancer xenograft model. Methods The as-prepared polymer prodrugs are tended to self-assemble into polymeric micelles in aqueous milieu, with PEOz segment as hydrophilic shell and PLA-PBAE segment as hydrophobic core. Results The pH sensitivity of the as-prepared copolymers was confirmed by acid-base titration with pKb values around 6.5. The drug-conjugated polymer micelles showed high stability for at least 96 h in PBS and 37°C, respectively. The as-prepared copolymer prodrugs showed high drug loading content, with 9.57%±1.24% of drug loading for PEOz-PLA-PBAE-ART4. The conjugated ART could be released in a sustained and pH-dependent manner, with 92% of released drug at pH 6.0 and 57% of drug released at pH 7.4, respectively. In addition, in vitro experiments showed higher inhibitory effect of the prodrugs on rodent CT-26 cells than that of free ART. Animal studies also demonstrated the enhanced inhibitory efficacy of PEOz-PLA-PBAE-ART2 micelles on the growth of rodent xenograft tumor. Conclusion The pH-responsive artesunate polymer prodrugs are promising candidates for colon cancer adjuvant therapy.
Collapse
Affiliation(s)
- Dan-Li Hao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Ran Xie
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Ge-Jing De
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Hong Yi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Chen Zang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Mi-Yi Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Li Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Hai Ma
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Wei-Yan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Qing-He Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Feng Sui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Yan-Jun Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| |
Collapse
|
63
|
Yang W, Chen X, Li Y, Guo S, Wang Z, Yu X. Advances in Pharmacological Activities of Terpenoids. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20903555] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Terpenoids, the most abundant compounds in natural products, are a set of important secondary metabolites in plants with diverse structures. Terpenoids play key roles in plant growth and development, response to the environment, and physiological processes. As raw materials, terpenoids were also widely used in pharmaceuticals, food, and cosmetics industries. Terpenoids possess antitumor, anti-inflammatory, antibacterial, antiviral, antimalarial effects, promote transdermal absorption, prevent and treat cardiovascular diseases, and have hypoglycemic activities. In addition, previous studies have also found that terpenoids have many potential applications, such as insect resistance, immunoregulation, antioxidation, antiaging, and neuroprotection. Terpenoids have a complex structure with diverse effects and different mechanisms of action. Activities and mechanisms of terpenoids were reviewed in this paper. The development and application prospect of terpenoid compounds were also prospected, which provides a useful reference for new drug discovery and drug design based on terpenoids.
Collapse
Affiliation(s)
| | - Xu Chen
- School of Pharmacy, Linyi University, P. R. China
| | - Yanli Li
- School of Pharmacy, Linyi University, P. R. China
| | - Shaofen Guo
- School of Pharmacy, Linyi University, P. R. China
| | - Zhen Wang
- School of Pharmacy, Linyi University, P. R. China
| | - Xiuling Yu
- School of Pharmacy, Linyi University, P. R. China
| |
Collapse
|
64
|
Duparc S, Chalon S, Miller S, Richardson N, Toovey S. Neurological and psychiatric safety of tafenoquine in Plasmodium vivax relapse prevention: a review. Malar J 2020; 19:111. [PMID: 32169086 PMCID: PMC7071640 DOI: 10.1186/s12936-020-03184-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/06/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Tafenoquine is an 8-aminoquinoline anti-malarial drug recently approved as a single-dose (300 mg) therapy for Plasmodium vivax relapse prevention, when co-administered with 3-days of chloroquine or other blood schizonticide. Tafenoquine 200 mg weekly after a loading dose is also approved as travellers' prophylaxis. The development of tafenoquine has been conducted over many years, using various dosing regimens in diverse populations. METHODS This review brings together all the preclinical and clinical data concerning tafenoquine central nervous system safety. Data were assembled from published sources. The risk of neuropsychiatric adverse events (NPAEs) with single-dose tafenoquine (300 mg) in combination with chloroquine to achieve P. vivax relapse prevention is particularly examined. RESULTS There was no evidence of neurotoxicity with tafenoquine in preclinical animal models. In clinical studies in P. vivax relapse prevention, nervous system adverse events, mainly headache and dizziness, occurred in 11.4% (36/317) of patients with tafenoquine (300 mg)/chloroquine versus 10.2% (19/187) with placebo/chloroquine; and in 15.5% (75/483) of patients with tafenoquine/chloroquine versus 13.3% (35/264) with primaquine (15 mg/day for 14 days)/chloroquine. Psychiatric adverse events, mainly insomnia, occurred in 3.8% (12/317) of patients with tafenoquine/chloroquine versus 2.7% (5/187) with placebo/chloroquine; and in 2.9% (14/483) of patients with tafenoquine/chloroquine versus 3.4% (9/264) for primaquine/chloroquine. There were no serious or severe NPAEs observed with tafenoquine (300 mg)/chloroquine in these studies. CONCLUSIONS The risk:benefit of single-dose tafenoquine/chloroquine in P. vivax relapse prevention is favourable in the presence of malaria, with a low risk of NPAEs, similar to that seen with chloroquine alone or primaquine/chloroquine.
Collapse
Affiliation(s)
- Stephan Duparc
- Medicines for Malaria Venture, Route de Pré-Bois 20, 1215, Geneva 15, Switzerland.
| | - Stephan Chalon
- Medicines for Malaria Venture, Route de Pré-Bois 20, 1215, Geneva 15, Switzerland
| | | | | | - Stephen Toovey
- Medicines for Malaria Venture, Route de Pré-Bois 20, 1215, Geneva 15, Switzerland.,Pegasus Research, London, UK
| |
Collapse
|
65
|
Wojcicki AV, Kadapakkam M, Frymoyer A, Lacayo N, Chae HD, Sakamoto KM. Repurposing Drugs for Acute Myeloid Leukemia: A Worthy Cause or a Futile Pursuit? Cancers (Basel) 2020; 12:cancers12020441. [PMID: 32069925 PMCID: PMC7072462 DOI: 10.3390/cancers12020441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is a clinically and genetically heterogenous malignancy of myeloid progenitor cells that affects patients of all ages. Despite decades of research and improvement in overall outcomes, standard therapy remains ineffective for certain subtypes of AML. Current treatment is intensive and leads to a number of secondary effects with varying results by patient population. Due to the high cost of discovery and an unmet need for new targeted therapies that are well tolerated, alternative drug development strategies have become increasingly attractive. Repurposing existing drugs is one approach to identify new therapies with fewer financial and regulatory hurdles. In this review, we provide an overview of previously U.S. Food and Drug Administration (FDA) approved non-chemotherapy drugs under investigation for the treatment of AML.
Collapse
Affiliation(s)
- Anna V. Wojcicki
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.V.W.); (M.K.); (N.L.); (H.-D.C.)
| | - Meena Kadapakkam
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.V.W.); (M.K.); (N.L.); (H.-D.C.)
| | - Adam Frymoyer
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Norman Lacayo
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.V.W.); (M.K.); (N.L.); (H.-D.C.)
| | - Hee-Don Chae
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.V.W.); (M.K.); (N.L.); (H.-D.C.)
| | - Kathleen M. Sakamoto
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.V.W.); (M.K.); (N.L.); (H.-D.C.)
- Correspondence: ; Tel.: +650-725-7126
| |
Collapse
|
66
|
Zheng C, Shan L, Tong P, Efferth T. Cardiotoxicity and Cardioprotection by Artesunate in Larval Zebrafish. Dose Response 2020; 18:1559325819897180. [PMID: 31975974 PMCID: PMC6958657 DOI: 10.1177/1559325819897180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/13/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022] Open
Abstract
Although artesunate (ART) is generally accepted as a safe and well-tolerated
first-line treatment of severe malaria, cases of severe side effects and
toxicity of this compound are also documented. This study applied larval
zebrafishes to determine the acute toxicity and efficacy of ART and performed
RNA-sequencing analyses to unravel the underlying signaling pathways
contributing to ART’s activities. Results from acute toxicity assay showed that
a single-dose intravenous injection of ART from 3.6 ng/fish (1/9 maximum
nonlethal concentration) to 41.8 ng/fish (lethal dose 10%) obviously induced
pericardial edema, circulation defects, yolk sac absorption delay, renal edema,
and swim bladder loss, indicating acute cardiotoxicity, nephrotoxicity, and
developmental toxicity of ART. Efficacy assay showed that ART at 1/2 lowest
observed adverse effect level (LOAEL) exerted cardioprotective effects on
zebrafishes with verapamil-induced heart failure. Artesunate significantly
restored cardiac malformation, venous stasis, cardiac output decrease, and blood
flow dynamics reduction. No adverse events were observed with this treatment,
indicating that ART at doses below LOAEL was effective and safe. These results
indicate that ART at low doses was cardioprotective, but revealed cardiotoxicity
at high doses. RNA-sequencing analysis showed that gene expression of
frizzled class receptor 7a (fzd7a) was
significantly upregulated in zebrafishes with verapamil-induced heart failure
and significantly downregulated if ART at 1/2 LOAEL was coadministrated,
indicating that fzd7a-modulated Wnt signaling may mediate the
cardioprotective effect of ART. For the first time, this study revealed the
biphasic property of ART, providing in-depth knowledge on the pharmacological
efficacy-safety profile for its therapeutic and safe applications in clinic.
Collapse
Affiliation(s)
- Chuanrui Zheng
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Peijian Tong
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
67
|
Old wine in new bottles: Drug repurposing in oncology. Eur J Pharmacol 2020; 866:172784. [DOI: 10.1016/j.ejphar.2019.172784] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023]
|
68
|
Efferth T, Oesch F. Repurposing of plant alkaloids for cancer therapy: Pharmacology and toxicology. Semin Cancer Biol 2019; 68:143-163. [PMID: 31883912 DOI: 10.1016/j.semcancer.2019.12.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/15/2019] [Indexed: 02/08/2023]
Abstract
Drug repurposing (or repositioning) is an emerging concept to use old drugs for new treatment indications. Phytochemicals isolated from medicinal plants have been largely neglected in this context, although their pharmacological activities have been well investigated in the past, and they may have considerable potentials for repositioning. A grand number of plant alkaloids inhibit syngeneic or xenograft tumor growth in vivo. Molecular modes of action in cancer cells include induction of cell cycle arrest, intrinsic and extrinsic apoptosis, autophagy, inhibition of angiogenesis and glycolysis, stress and anti-inflammatory responses, regulation of immune functions, cellular differentiation, and inhibition of invasion and metastasis. Numerous underlying signaling processes are affected by plant alkaloids. Furthermore, plant alkaloids suppress carcinogenesis, indicating chemopreventive properties. Some plant alkaloids reveal toxicities such as hepato-, nephro- or genotoxicity, which disqualifies them for repositioning purposes. Others even protect from hepatotoxicity or cardiotoxicity of xenobiotics and established anticancer drugs. The present survey of the published literature clearly demonstrates that plant alkaloids have the potential for repositioning in cancer therapy. Exploitation of the chemical diversity of natural alkaloids may enrich the candidate pool of compounds for cancer chemotherapy and -prevention. Their further preclinical and clinical development should follow the same stringent rules as for any other synthetic drug as well. Prospective randomized, placebo-controlled clinical phase I and II trials should be initiated to unravel the full potential of plant alkaloids for drug repositioning.
Collapse
Affiliation(s)
- Thomas Efferth
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Mainz, Germany.
| | - Franz Oesch
- Institute of Toxicology, Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
69
|
Zhu Y, Klausen C, Zhou J, Guo X, Zhang Y, Zhu H, Li Z, Cheng JC, Xie S, Yang W, Li Y, Leung PCK. Novel dihydroartemisinin dimer containing nitrogen atoms inhibits growth of endometrial cancer cells and may correlate with increasing intracellular peroxynitrite. Sci Rep 2019; 9:15528. [PMID: 31664127 PMCID: PMC6820742 DOI: 10.1038/s41598-019-52108-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/13/2019] [Indexed: 12/13/2022] Open
Abstract
In the present study, a novel dimer, SM1044, selected from a series of dihydroartemisinin (DHA) derivatives containing nitrogen atoms comprising simple aliphatic amine linkers, showed strong growth inhibition in six types of human endometrial cancer (EC) cells, with half maximal inhibitory concentration (IC50) and 95% confidence interval (CI) < 3.6 (1.16~11.23) μM. SM1044 evoked apoptosis and activated caspase-3, -8 and -9 in a concentration- and time-dependent manner, and these effects were manifested early in RL95-2 compared to KLE cells, possibly correlated with the induction of intracellular ONOO-. Catalase and uric acid attenuated the growth inhibitory effects of SM1044 on EC cells, but sodium pyruvate did not. In vivo, the average xenograft tumour growth inhibition rates ranged from 35.8% to 49.9%, respectively, after 2.5 and 5.0 mg/kg SM1044 intraperitoneal treatment, and no obvious behavioural and histopathological abnormalities were observed in SM1044-treated mice in this context. SM1044 predominantly accumulated in the uteri of mice after a single injection. SM1044 displayed efficacy as a tumour suppressor with distinct mechanism of action and unique tissue distribution, properties that distinguish it from other artemisinin analogues. Our findings provide a new clue for artemisinin analogue against cancer.
Collapse
Affiliation(s)
- Yan Zhu
- Laboratory of Reproductive Pharmacology, Shanghai Institute of Planned Parenthood Research; Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, China. .,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada.
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Jieyun Zhou
- Laboratory of Reproductive Pharmacology, Shanghai Institute of Planned Parenthood Research; Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, China
| | - Xiangjie Guo
- Laboratory of Reproductive Pharmacology, Shanghai Institute of Planned Parenthood Research; Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, China
| | - Yu Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hua Zhu
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Zhao Li
- Laboratory of Reproductive Pharmacology, Shanghai Institute of Planned Parenthood Research; Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, China
| | - Jung-Chien Cheng
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Shuwu Xie
- Laboratory of Reproductive Pharmacology, Shanghai Institute of Planned Parenthood Research; Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, China
| | - Wenjie Yang
- Laboratory of Reproductive Pharmacology, Shanghai Institute of Planned Parenthood Research; Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, China
| | - Ying Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada.
| |
Collapse
|
70
|
Sub-acute toxicological study of artemisinin-piperaquine tablets in rhesus monkeys. Regul Toxicol Pharmacol 2019; 109:104486. [PMID: 31580888 DOI: 10.1016/j.yrtph.2019.104486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 01/31/2023]
Abstract
Artemisinin-piperaquine tablet (trade name Artequick, ATQ), is a novel combination therapy for the treatment of malaria and especially for resistant P.falciparum malaria. The aim of our study was to assess the potential sub-acute toxicity profile of ATQ by oral administration route in rhesus monkeys. Monkeys were administrated once daily with doses of ATQ (39.1, 78.2, 156.4 mg/kg) for 21 days and then followed-up a 56-day recovery period. The administration of ATQ at high dose produced significant changes in the clinical signs primarily involved in gastrointestinal and nervous systems. Body weight loss, significant decrease in food consumption and body temperature were observed in monkeys at high dose. Various hematological and biochemical parameters changes, and significant pathological lesions (adrenal gland, thymus and femur epiphyseal) were observed in the middle and high dose group at the end of the treatment period. However, the toxic effects of ATQ were reversed and delayed adverse drug reaction did not occur during the recovery period. Based on the results of this study, the no-observed-adverse-effect level for ATQ was considered to be 39.1 mg/kg in rhesus monkeys.
Collapse
|
71
|
Ding X, Yue W, Chen H. Effect of artesunate on apoptosis and autophagy in tamoxifen resistant breast cancer cells (TAM-R). Transl Cancer Res 2019; 8:1863-1872. [PMID: 35116937 PMCID: PMC8797964 DOI: 10.21037/tcr.2019.08.41] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/12/2019] [Indexed: 11/24/2022]
Abstract
Background The antitumor effect of artesunate (ART) is well-recognized. To investigate the effect of ART on tamoxifen-resistant breast cancer cells (TAM-R) proliferation, apoptosis, and autophagy with TAM-R cells of breast cancer as objects of study, and to investigate whether ART could re-sensitize TAM-R cells to TAM therapy. Methods Experiments were performed using TAM-R cell lines. Cell Death Detection ELISA kit was used to detect the level of apoptosis. Western blot and immunofluorescent staining analysis were conducted to detect autophagy and apoptosis related proteins in TAM-R cells. Results After treated with ART, the proliferation activity of TAM-R cells was inhibited in a concentration-dependent manner. Increased apoptosis activity was detected in TAM-R cells when treated with ART. Compared with 10−6 M TAM monotherapy group, treatment group with ART and TAM in combination caused significant reduction in the levels of Bcl-2, XIAP, and Survivin proteins, and elevation of caspase-7. However, increased p53 proteins was not detected after ART treatment. No significant change was observed in autophagy proteins LC-3 and Beclin-1 among control, ART, TAM, and ART combined with TAM groups. Conclusions The intervention of ART could not inhibit protective autophagy in TAM-R cells, however, possess potential in inducing apoptosis. In addition, as ART inhibit TAM-R cells growth in a dose-dependent manner, co-administration of 1 or 3 µM of ART with 10−6 M TAM might not be enough to re-sensitize TAM-R cells to TAM therapy.
Collapse
Affiliation(s)
- Xiaoqing Ding
- Department of Hematology, Dongfang Hospital Affiliated to Beijing University of Traditional Chinese Medicine, Beijing 100078, China
| | - Wei Yue
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA 22908, USA
| | - Haiyan Chen
- Department of Hematology, Dongfang Hospital Affiliated to Beijing University of Traditional Chinese Medicine, Beijing 100078, China
| |
Collapse
|
72
|
Abstract
Gephyrin-mediated clustering of GABAA and glycine receptors underlies fast inhibitory signaling at central synapses. In this issue of Neuron, Kasaragod et al. (2019) demonstrate that artemisinin antimalarial drugs bind to gephyrin at the same site where the receptor interaction occurs.
Collapse
Affiliation(s)
- Jeong Joo Kim
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ryan E Hibbs
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
73
|
Patel YS, Mistry N, Mehra S. Repurposing artemisinin as an anti-mycobacterial agent in synergy with rifampicin. Tuberculosis (Edinb) 2019; 115:146-153. [DOI: 10.1016/j.tube.2019.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/04/2019] [Accepted: 03/12/2019] [Indexed: 01/25/2023]
|
74
|
Artemisinin and its derivatives: a potential therapeutic approach for oral lichen planus. Inflamm Res 2019; 68:297-310. [DOI: 10.1007/s00011-019-01216-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 12/20/2022] Open
|
75
|
Liu Y, Gao S, Zhu J, Zheng Y, Zhang H, Sun H. Dihydroartemisinin induces apoptosis and inhibits proliferation, migration, and invasion in epithelial ovarian cancer via inhibition of the hedgehog signaling pathway. Cancer Med 2018; 7:5704-5715. [PMID: 30338663 PMCID: PMC6247066 DOI: 10.1002/cam4.1827] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 09/04/2018] [Accepted: 09/19/2018] [Indexed: 01/28/2023] Open
Abstract
Dihydroartemisinin (DHA), the primary of artemisinin extracted from the traditional Chinese medicine Artemisia annua, has been used in malaria treatment for a long time. Recently, many studies have indicated that, in addition to antimalarial effects, DHA also exhibits anticancer activity in certain types of neoplasms, including ovarian cancer. However, the precise anti‐ovarian cancer mechanism of DHA is still unclear. Abnormal activation of the hedgehog (Hh) pathway is closely related to tumorigenesis and progression of ovarian cancer. We performed this study to elucidate the effects of DHA on the biological behavior of ovarian cancer cells and to determine its effects on the Hh signaling pathway. CCK8 assays and flow cytometry were used to evaluate the effects of DHA on cell viability and apoptosis in both ovarian cancer cells and HOSEPICs (human ovarian surface epithelial cells) in response to DHA treatment. Transwell membrane chambers were used to analyze the effects of DHA on the migration and invasion of epithelial ovarian cancer cells following treatment with DHA. The impact of DHA on Hh signaling was analyzed by RT‐qPCR and Western blot. DHA significantly inhibited proliferation, migration, and invasion of ovarian cancer cells, and induced apoptosis in vitro. In contrast, DHA had few effects on cell proliferation and apoptosis in HOSEPICs. DHA inhibited the hedgehog signaling pathway. Furthermore, DHA inhibited purmorphamine (Hh signaling pathway agonist)‐induced cell proliferation, cell migration, and cell invasion and the inhibition of apoptosis. Importantly, DHA enhanced GANT61 (hedgehog signaling pathway inhibitor)‐induced apoptosis and the inhibition of cell viability, migratory capacity, and invasive ability. This study demonstrates that DHA inhibits cell viability, migration, and invasion, as well as induces apoptosis in epithelial ovarian cancer through suppression of the Hh signaling pathway.
Collapse
Affiliation(s)
- Yanmei Liu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Shujun Gao
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.,The Diagnosis and Treatment Center of Cervical Disease, Obstetrics and Gynecology, Hospital of Fudan University, Shanghai, China
| | - Jie Zhu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Ya Zheng
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Haiyan Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Hong Sun
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
76
|
Resolving neuroinflammation, the therapeutic potential of the anti-malaria drug family of artemisinin. Pharmacol Res 2018; 136:172-180. [DOI: 10.1016/j.phrs.2018.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022]
|
77
|
Bruneel F, Raffetin A, Corne P, Llitjos JF, Mourvillier B, Argaud L, Wolff M, Laurent V, Jauréguiberry S. Management of severe imported malaria in adults. Med Mal Infect 2018; 50:213-225. [PMID: 30266432 DOI: 10.1016/j.medmal.2018.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/30/2018] [Indexed: 11/28/2022]
Abstract
Severe malaria accounts for approximately 10% of all cases of imported malaria in France; cases are mainly due to Plasmodium falciparum, while other Plasmodium species are possible but uncommon (P. vivax, P. knowlesi, P. malariae, and P. ovale). On the basis of WHO criteria for endemic areas, the French criteria defining severe imported malaria in adults have been progressively adapted to the European healthcare level. Management of severe imported malaria is a diagnostic and treatment emergency and must be initially conducted in the intensive care unit. Anti-infective treatment is now based on intravenous artesunate, which must be available in every hospital of the country likely to receive severe imported malaria patients. Intravenous quinine is thus used as a second-line treatment and is restricted to limited indications. Critical care management of organ failure is essential, particularly in patients presenting with very severe malaria. To date, no adjunctive therapy (including exchange transfusion) has demonstrated clear beneficial effects.
Collapse
Affiliation(s)
- F Bruneel
- Réanimation médico-chirurgicale, hôpital Mignot, centre hospitalier de Versailles, 177, rue de Versailles, 78150 Le Chesnay, France.
| | - A Raffetin
- Médecine interne, maladies infectieuses et tropicales, CHI Villeneuve-Saint-Georges, 94190 Villeneuve-Saint-Georges, France
| | - P Corne
- Réanimation médicale, CHU de Montpellier, 34000 Montpellier, France
| | - J F Llitjos
- Réanimation médicale, CHU Cochin, 75014 Paris, France
| | - B Mourvillier
- Réanimation médicale et infectieuse, CHU Bichat-Claude-Bernard, 75018 Paris, France
| | - L Argaud
- Réanimation médicale, CHU Edouard-Herriot, 69000 Lyon, France
| | - M Wolff
- Réanimation médicale et infectieuse, CHU Bichat-Claude-Bernard, 75018 Paris, France
| | - V Laurent
- Réanimation médico-chirurgicale, hôpital Mignot, centre hospitalier de Versailles, 177, rue de Versailles, 78150 Le Chesnay, France
| | - S Jauréguiberry
- Maladies infectieuses et tropicales, CHU Pitié-Salpêtrière, 75013 Paris, France
| |
Collapse
|
78
|
Prevention of carcinogenesis and metastasis by Artemisinin-type drugs. Cancer Lett 2018; 429:11-18. [DOI: 10.1016/j.canlet.2018.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022]
|
79
|
Gugliandolo E, D'Amico R, Cordaro M, Fusco R, Siracusa R, Crupi R, Impellizzeri D, Cuzzocrea S, Di Paola R. Neuroprotective Effect of Artesunate in Experimental Model of Traumatic Brain Injury. Front Neurol 2018; 9:590. [PMID: 30108544 PMCID: PMC6079305 DOI: 10.3389/fneur.2018.00590] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/02/2018] [Indexed: 01/21/2023] Open
Abstract
Traumatic brain injuries (TBI) are an important public health challenge. In addition, subsequent events at TBI can compromise the quality of life of these patients. In fact, TBI is associated with several complications for both long and short term, some evidence shows how TBI is associated with a decline in cognitive functions such as the risk of developing dementia, cerebral atrophy, and Parkinson disease. After the direct damage from TBI, a key role in TBI injury is played by the inflammatory response and oxidative stress, that contributes to tissue damage and to neurodegenerative processes, typical of secondary injury, after TBI. Given the complex series of events that are involved after TBI injury, a multitarget pharmacological approach is needed. Artesunate is a more stable derivative of its precursor artemisin, a sesquiterpene lactone obtained from a Chinese plant Artemisia annua, a plant used for centuries in traditional Chinese medicine. artesunate has been shown to be a pluripotent agent with different pharmacological actions. therefore, in this experimental model of TBI we evaluated whether the treatment with artesunate at the dose of 30 mg\Kg, had an efficacy in reducing the neuroinflammatory process after TBI injury, and in inhibiting the NLRP3 inflammasome pathway, which plays a key role in the inflammatory process. We also assessed whether treatment with artesunate was able to exert a neuroprotective action by modulating the release of neurotrophic factors. our results show that artesunate was able to reduce the TBI-induced lesion, it also showed an anti-inflammatory action through the inhibition of Nf-kb, release of proinflammatory cytokines IL-1β and TNF-α and through the inhibition NLRP3 inflammasome complex, furthermore was able to reduce the activation of astrocytes and microglia (GFAP, Iba-1). Finally, our results show that the protective effects of artesunate also occur through the modulation of neurotrophic factors (BDNF, GDNF, NT-3) that play a key role in neuronal survival.
Collapse
Affiliation(s)
- Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Department of Pharmacological and Physiological Science, Saint Louis University, St. Louis, MO, United States
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
80
|
Lam NS, Long X, Su XZ, Lu F. Artemisinin and its derivatives in treating helminthic infections beyond schistosomiasis. Pharmacol Res 2018; 133:77-100. [DOI: 10.1016/j.phrs.2018.04.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 04/12/2018] [Accepted: 04/30/2018] [Indexed: 12/26/2022]
|
81
|
Jiang F, Zhou JY, Zhang D, Liu MH, Chen YG. Artesunate induces apoptosis and autophagy in HCT116 colon cancer cells, and autophagy inhibition enhances the artesunate‑induced apoptosis. Int J Mol Med 2018; 42:1295-1304. [PMID: 29901098 PMCID: PMC6089754 DOI: 10.3892/ijmm.2018.3712] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/30/2018] [Indexed: 12/16/2022] Open
Abstract
The present study assessed the antitumor effect of artesunate (ART) in vitro and in vivo, as well as its underlying mechanism of action in HCT116 colon cancer cells. An MTT assay, DAPI staining, flow cytometry, western blotting, immunohistochemistry, transmission electron microscopy and TUNEL assay were performed to study the molecular mechanism underlying the antitumor effects of ART in HCT116 colon cancer cells. ART was observed to inhibit proliferation by inducing the apoptosis of HCT116 cells both in vitro and in vivo. Flow cytometry analysis demonstrated that treatment with 2 and 4 µg/ml ART for 48 h induced early apoptosis in 22.7 and 33.8% of cells, respectively. In the xenograft tumors of BALB/c nude mice, TUNEL-positive cells increased in the ART group compared with that in the normal saline group. Furthermore,the associated mitochondrial cleaved-caspase 3, poly-ADP ribose polymerase (PARP), caspase 9 and Bcl-2-associated X protein levels increased while B-cell lymphoma-2 (Bcl-2) decreased both in the cell and animal ART-treated group. ART-treated cells also exhibited autophagy induction, as evidenced by increased protein expression levels of light chain 3 (LC3) and beclin-1, and the presence of autophagosomes. Notably, pharmacological blockade of autophagy activation using hydroxychloroquine markedly enhanced ART-induced apoptosis and increased the protein levels of cleaved caspase 3 and PARP, while decreasing the levels of LC3 and beclin-1. These findings suggested that the ART-induced autophagy may have a cytoprotective effect by suppressing apoptosis. In conclusion, ART may be a potentially clinically useful anticancer drug for human colon cancer. In addition, co-treatment with ART and an autophagy inhibitor may be an effective anticancer therapy.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of TCM, Nanjing, Jiangsu 210029, P.R. China
| | - Jin-Yong Zhou
- Department of Central Laboratory, The Affiliated Hospital of Nanjing University of TCM, Nanjing, Jiangsu 210029, P.R. China
| | - Dan Zhang
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of TCM, Nanjing, Jiangsu 210029, P.R. China
| | - Ming-Hao Liu
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Yu-Gen Chen
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of TCM, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
82
|
Abstract
The field of Traditional Chinese Medicine (TCM) represents a vast and largely untapped resource for modern medicine. Exemplified by the success of the antimalarial artemisinin, the recent years have seen a rapid increase in the understanding and application of TCM-derived herbs and formulations for evidence-based therapy. In this review, we summarise and discuss the developmental history, clinical background and molecular basis of an action for several representative TCM-derived medicines, including artemisinin, arsenic trioxide, berberine and Salvia miltiorrhiza or Danshen. Through this, we highlight important examples of how TCM-derived medicines have already contributed to modern medicine, and discuss potential avenues for further research.
Collapse
|
83
|
Bruneel F, Raffetin A, Roujansky A, Corne P, Tridon C, Llitjos JF, Mourvillier B, Laurent V, Jauréguiberry S. Prise en charge du paludisme grave d’importation de l’adulte. MEDECINE INTENSIVE REANIMATION 2018. [DOI: 10.3166/rea-2018-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
En France, le paludisme grave d’importation concerne environ 12 à 14 % des accès palustres et implique très majoritairement Plasmodium falciparum. À partir de la définition du paludisme grave de l’Organisation mondiale de la santé utilisée en zone d’endémie palustre, la définition française du paludisme grave d’importation de l’adulte a été adaptée aux données et au contexte européens. La prise en charge du paludisme grave est une urgence diagnostique et thérapeutique qui doit être réalisée initialement en réanimation. Le traitement curatif du paludisme grave d’importation repose maintenant sur l’artésunate intraveineux (IV) qui doit être disponible dans chaque hôpital susceptible de recevoir ces patients. Dès lors, la quinine IV devient un traitement de seconde ligne réservé à quelques circonstances. La prise en charge symptomatique des défaillances d’organes est primordiale, notamment au cours des formes les plus sévères. Enfin, aucun traitement adjuvant n’a prouvé, à ce jour, son efficacité en pratique clinique.
Collapse
|
84
|
Progress in the pharmacological treatment of human cystic and alveolar echinococcosis: Compounds and therapeutic targets. PLoS Negl Trop Dis 2018; 12:e0006422. [PMID: 29677189 PMCID: PMC5931691 DOI: 10.1371/journal.pntd.0006422] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/02/2018] [Accepted: 03/31/2018] [Indexed: 02/06/2023] Open
Abstract
Human cystic and alveolar echinococcosis are helmintic zoonotic diseases caused by infections with the larval stages of the cestode parasites Echinococcus granulosus and E. multilocularis, respectively. Both diseases are progressive and chronic, and often fatal if left unattended for E. multilocularis. As a treatment approach, chemotherapy against these orphan and neglected diseases has been available for more than 40 years. However, drug options were limited to the benzimidazoles albendazole and mebendazole, the only chemical compounds currently licensed for treatment in humans. To compensate this therapeutic shortfall, new treatment alternatives are urgently needed, including the identification, development, and assessment of novel compound classes and drug targets. Here is presented a thorough overview of the range of compounds that have been tested against E. granulosus and E. multilocularis in recent years, including in vitro and in vivo data on their mode of action, dosage, administration regimen, therapeutic outcomes, and associated clinical symptoms. Drugs covered included albendazole, mebendazole, and other members of the benzimidazole family and their derivatives, including improved formulations and combined therapies with other biocidal agents. Chemically synthetized molecules previously known to be effective against other infectious and non-infectious conditions such as anti-virals, antibiotics, anti-parasites, anti-mycotics, and anti-neoplastics are addressed. In view of their increasing relevance, natural occurring compounds derived from plant and fungal extracts are also discussed. Special attention has been paid to the recent application of genomic science on drug discovery and clinical medicine, particularly through the identification of small inhibitor molecules tackling key metabolic enzymes or signalling pathways. Human cystic and alveolar echinococcosis (CE and AE), caused by the larval stages of the helminths Echinococcus granulosus and E. multilocularis, respectively, are progressive and chronic diseases affecting more than 1 million people worldwide. Both are considered orphan and neglected diseases by the World Health Organization. As a treatment approach, chemotherapy is limited to the use of benzimidazoles, drugs that stop parasite growth but do not kill the parasite. To compensate this therapeutic shortfall, new treatment alternatives are urgently needed. Here, we present the state-of-the-art regarding the alternative compounds and new formulations of benzimidazoles assayed against these diseases until now. Some of these new and modified compounds, either alone or in combination, could represent a step forward in the treatment of CE and AE. Unfortunately, few compounds have reached clinical trials stage in humans and, when assayed, the design of these studies has not allowed evidence-based conclusions. Thus, there is still an urgent need for defining new compounds or improved formulations of those already assayed, and also for a careful design of clinical protocols that could lead to the draw of a broad international consensus on the use of a defined drug, or a combination of drugs, for the effective treatment of CE and AE.
Collapse
|
85
|
Artesunate enhances the therapeutic response of glioma cells to temozolomide by inhibition of homologous recombination and senescence. Oncotarget 2018; 7:67235-67250. [PMID: 27626497 PMCID: PMC5341871 DOI: 10.18632/oncotarget.11972] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/04/2016] [Indexed: 01/04/2023] Open
Abstract
Glioblastoma multiforme (GBM), a malignant brain tumor with a dismal prognosis, shows a high level of chemo- and radioresistance and, therefore, attempts to sensitize glioma cells are highly desired. Here, we addressed the question of whether artesunate (ART), a drug currently used in the treatment of malaria, enhances the killing response of glioblastoma cells to temozolomide (TMZ), which is the first-line therapeutic for GBM. We measured apoptosis, necrosis, autophagy and senescence, and the extent of DNA damage in glioblastoma cells. Further, we determined the tumor growth in nude mice. We show that ART enhances the killing effect of TMZ in glioblastoma cell lines and in glioblastoma stem-like cells. The DNA double-strand break level induced by TMZ was not clearly enhanced in the combined treatment regime. Also, we did not observe an attenuation of TMZ-induced autophagy, which is considered a survival mechanism. However, we observed a significant effect of ART on homologous recombination (HR) with downregulation of RAD51 protein expression and HR activity. Further, we found that ART is able to inhibit senescence induced by TMZ. Since HR and senescence are pro-survival mechanisms, its inhibition by ART appears to be a key node in enhancing the TMZ-induced killing response. Enhancement of the antitumor effect of TMZ by co-administration of ART was also observed in a mouse tumor model. In conclusion, the amelioration of TMZ-induced cell death upon ART co-treatment provides a rational basis for a combination regime of TMZ and ART in glioblastoma therapy.
Collapse
|
86
|
Toxicity and related mechanisms of dihydroartemisinin on porcine oocyte maturation in vitro. Toxicol Appl Pharmacol 2018; 341:8-15. [DOI: 10.1016/j.taap.2018.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/29/2017] [Accepted: 01/04/2018] [Indexed: 11/19/2022]
|
87
|
Drecourt A, Babdor J, Dussiot M, Petit F, Goudin N, Garfa-Traoré M, Habarou F, Bole-Feysot C, Nitschké P, Ottolenghi C, Metodiev MD, Serre V, Desguerre I, Boddaert N, Hermine O, Munnich A, Rötig A. Impaired Transferrin Receptor Palmitoylation and Recycling in Neurodegeneration with Brain Iron Accumulation. Am J Hum Genet 2018; 102:266-277. [PMID: 29395073 DOI: 10.1016/j.ajhg.2018.01.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/05/2018] [Indexed: 12/29/2022] Open
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a genetically heterogeneous condition characterized by progressive dystonia with iron accumulation in the basal ganglia. How NBIA-associated mutations trigger iron overload remains poorly understood. After studying fibroblast cell lines from subjects carrying both known and unreported biallelic mutations in CRAT and REPS1, we ascribe iron overload to the abnormal recycling of transferrin receptor (TfR1) and the reduction of TfR1 palmitoylation in NBIA. Moreover, we describe palmitoylation as a hitherto unreported level of post-translational TfR1 regulation. A widely used antimalarial agent, artesunate, rescued abnormal TfR1 palmitoylation in cultured fibroblasts of NBIA subjects. These observations suggest therapeutic strategies aimed at targeting impaired TfR1 recycling and palmitoylation in NBIA.
Collapse
|
88
|
Efferth T. Cancer combination therapy of the sesquiterpenoid artesunate and the selective EGFR-tyrosine kinase inhibitor erlotinib. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 37:58-61. [PMID: 29174651 DOI: 10.1016/j.phymed.2017.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The shift from cytotoxic to targeted chemotherapy led to improved treatment outcomes in oncology. Nevertheless, many cancer patients cannot be cured from their disease because of the development of drug resistance and side effects. PURPOSE There is an ongoing quest for novel compounds, which raised not only the interest in natural products but also in novel combination therapy regimens. STUDY DESIGN In this review, we report on the inhibition epidermal growth factor receptor (EGFR) by targeted small molecules and their combination with natural products from medicinal plants. RESULTS The combination of erlotinib with artesunate leads to synergistic inhibition of cell growth in isobologram analyses. Artesunate is an approved anti-malaria drug, which is also active against cancer as shown in vitro, in vivo and in preliminary clinical phase I/II trials. CONCLUSION The combination of natural products (e.g. the sesquiterpenoid artesunate) and synthetic compounds (e.g. the small molecule EGFR tyrosine kinase inhibitor erlotinib) may lead to improved clinical success rates in oncology.
Collapse
Affiliation(s)
- Thomas Efferth
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
89
|
Reduced cardiotoxicity and increased oral efficacy of artemether polymeric nanocapsules in Plasmodium berghei-infected mice. Parasitology 2017; 145:1075-1083. [PMID: 29223181 DOI: 10.1017/s0031182017002207] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Artemether (ATM) cardiotoxicity, its short half-life and low oral bioavailability are the major limiting factors for its use to treat malaria. The purposes of this work were to study free-ATM and ATM-loaded poly-ε-caprolactone nanocapules (ATM-NC) cardiotoxicity and oral efficacy on Plasmodium berghei-infected mice. ATM-NC was obtained by interfacial polymer deposition and ATM was associated with polymeric NC oily core. For cardiotoxicity evaluation, male black C57BL6 uninfected or P. berghei-infected mice received, by oral route twice daily/4 days, vehicle (sorbitol/carboxymethylcellulose), blank-NC, free-ATM or ATM-NC at doses 40, 80 or 120 mg kg-1. Electrocardiogram (ECG) lead II signal was obtained before and after treatment. For ATM efficacy evaluation, female P. berghei-infected mice were treated the same way. ATM-NC improved antimalarial in vivo efficacy and reduced mice mortality. Free-ATM induced significantly QT and QTc intervals prolongation. ATM-NC (120 mg kg-1) given to uninfected mice reduced QT and QTc intervals prolongation 34 and 30%, respectively, compared with free-ATM. ATM-NC given to infected mice also reduced QT and QTc intervals prolongation, 28 and 27%, respectively. For the first time, the study showed a nanocarrier reducing cardiotoxicity of ATM given by oral route and it was more effective against P. berghei than free-ATM as monotherapy.
Collapse
|
90
|
Zyad A, Tilaoui M, Jaafari A, Oukerrou MA, Mouse HA. More insights into the pharmacological effects of artemisinin. Phytother Res 2017; 32:216-229. [PMID: 29193409 DOI: 10.1002/ptr.5958] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 12/23/2022]
Abstract
Artemisinin is one of the most widely prescribed drugs against malaria and has recently received increased attention because of its other potential biological effects. The aim of this review is to summarize recent discoveries of the pharmaceutical effects of artemisinin in basic science along with its mechanistic action, as well as the intriguing results of recent clinical studies, with a focus on its antitumor activity. Scientific evidence indicates that artemisinin exerts its biological activity by generating reactive oxygen species that damage the DNA, mitochondrial depolarization, and cell death. In the present article review, scientific evidence suggests that artemisinin is a potential therapeutic agent for various diseases. Thus, this review is expected to encourage interested scientists to conduct further preclinical and clinical studies to evaluate these biological activities.
Collapse
Affiliation(s)
- Abdelmajid Zyad
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| | - Mounir Tilaoui
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| | - Abdeslam Jaafari
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| | - Moulay Ali Oukerrou
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| | - Hassan Ait Mouse
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| |
Collapse
|
91
|
Immune-Stimulatory and Therapeutic Activity of Tinospora cordifolia: Double-Edged Sword against Salmonellosis. J Immunol Res 2017; 2017:1787803. [PMID: 29318160 PMCID: PMC5727750 DOI: 10.1155/2017/1787803] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/17/2017] [Indexed: 11/17/2022] Open
Abstract
The present study was aimed at determining the activity of aqueous and methanolic extracts of Tinospora cordifolia (AETC and METC) against Salmonella typhimurium. In vitro anti-Salmonella activity of T. cordifolia was determined through the broth dilution and agar well diffusion assays. The immune-stimulating potential of AETC or METC was determined by measuring the cytokine levels in the culture supernatants of treated murine J774 macrophages. Antibacterial activity of AETC or METC was determined by treating S. typhimurium-infected macrophages and BALB/C mice. The toxicity of AETC or METC was determined by measuring the levels of liver inflammation markers aspartate transaminase (AST) and alanine transaminase (ALT) and antioxidant enzymes. Macrophages treated with AETC or METC secreted greater levels of IFN-γ, TNF-α, and IL-1β. METC showed greater activity against S. typhimurium infection in macrophages and mice as well. Treatment with METC resulted in increased survival and reduced bacterial load in S. typhimurium-infected mice. Moreover, METC or AETC treatment reduced the liver inflammation and rescued the levels of antioxidant enzymes in S. typhimurium-infected mice. The results of the present study suggest that the use of T. cordifolia may act as a double-edged sword in combating salmonellosis.
Collapse
|
92
|
Synthesis of novel C-9 carbon substituted derivatives of artemisinin. Bioorg Med Chem 2017; 25:6098-6101. [DOI: 10.1016/j.bmc.2017.03.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/04/2017] [Accepted: 03/07/2017] [Indexed: 11/17/2022]
|
93
|
From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy. Semin Cancer Biol 2017; 46:65-83. [DOI: 10.1016/j.semcancer.2017.02.009] [Citation(s) in RCA: 366] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/15/2017] [Accepted: 02/24/2017] [Indexed: 12/24/2022]
|
94
|
Cancer combination therapies with artemisinin-type drugs. Biochem Pharmacol 2017; 139:56-70. [DOI: 10.1016/j.bcp.2017.03.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/28/2017] [Indexed: 01/28/2023]
|
95
|
Efferth T, Schöttler U, Krishna S, Schmiedek P, Wenz F, Giordano FA. Answer to the comment of Hai Lu et al. regarding "Hepatotoxicity by combination treatment of temozolomide, artesunate and Chinese herbs in a glioblastoma multiforme patient: case report and review of the literature. Arch Toxicol (2016)". Arch Toxicol 2017; 91:2491-2492. [PMID: 28317071 DOI: 10.1007/s00204-017-1958-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Thomas Efferth
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Staudinger Weg 5, 55128, Mainz, Germany.
| | - Ursula Schöttler
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Sanjeev Krishna
- Institute for Infection and Immunity, St. George's, University of London, London, UK
| | - Peter Schmiedek
- Department of Radiation Oncology, University Medical Center Mannheim, Mannheim, Germany
| | - Frederik Wenz
- Department of Radiation Oncology, University Medical Center Mannheim, Mannheim, Germany
| | - Frank A Giordano
- Department of Radiation Oncology, University Medical Center Mannheim, Mannheim, Germany
| |
Collapse
|
96
|
Song L, Pei L, Yao S, Wu Y, Shang Y. NLRP3 Inflammasome in Neurological Diseases, from Functions to Therapies. Front Cell Neurosci 2017; 11:63. [PMID: 28337127 PMCID: PMC5343070 DOI: 10.3389/fncel.2017.00063] [Citation(s) in RCA: 333] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 02/22/2017] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation has been identified as a causative factor of multiple neurological diseases. The nucleotide-binding oligomerization domain-, leucine-rich repeat- and pyrin domain-containing 3 (NLRP3) inflammasome, a subcellular multiprotein complex that is abundantly expressed in the central nervous system (CNS), can sense and be activated by a wide range of exogenous and endogenous stimuli such as microbes, aggregated and misfolded proteins, and adenosine triphosphate, which results in activation of caspase-1. Activated caspase-1 subsequently leads to the processing of interleukin-1β (IL-1β) and interleukin-18 (IL-18) pro-inflammatory cytokines and mediates rapid cell death. IL-1β and IL-18 drive inflammatory responses through diverse downstream signaling pathways, leading to neuronal damage. Thus, the NLRP3 inflammasome is considered a key contributor to the development of neuroinflammation. In this review article, we briefly discuss the structure and activation the NLRP3 inflammasome and address the involvement of the NLRP3 inflammasome in several neurological disorders, such as brain infection, acute brain injury and neurodegenerative diseases. In addition, we review a series of promising therapeutic approaches that target the NLRP3 inflammasome signaling including anti-IL-1 therapy, small molecule NLRP3 inhibitors and other compounds, however, these approaches are still experimental in neurological diseases. At present, it is plausible to generate cell-specific conditional NLRP3 knockout (KO) mice via the Cre system to investigate the role of the NLRP3 inflammasome, which may be instrumental in the development of novel pharmacologic investigations for neuroinflammation-associated diseases.
Collapse
Affiliation(s)
- Limin Song
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Lei Pei
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Shanglong Yao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Yan Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - You Shang
- Department of Critical Care Medicine, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| |
Collapse
|
97
|
Golenser J, Buchholz V, Bagheri A, Nasereddin A, Dzikowski R, Guo J, Hunt NH, Eyal S, Vakruk N, Greiner A. Controlled release of artemisone for the treatment of experimental cerebral malaria. Parasit Vectors 2017; 10:117. [PMID: 28249591 PMCID: PMC5333427 DOI: 10.1186/s13071-017-2018-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/07/2017] [Indexed: 11/24/2022] Open
Abstract
Background Cerebral malaria (CM) is a leading cause of malarial mortality resulting from infection by Plasmodium falciparum. Treatment commonly involves adjunctive care and injections or transfusion of artemisinins. All artemisinins that are in current use are metabolized to dihydroxyartemisinin (DHA), to which there is already some parasite resistance. We used artemisone, a derivative that does not convert to DHA, has improved pharmacokinetics and anti-plasmodial activity and is also anti-inflammatory (an advantage given the immunopathological nature of CM). Methods We examined controlled artemisone release from biodegradable polymers in a mouse CM model. This would improve treatment by exposing the parasites for a longer period to a non-toxic drug concentration, high enough to eliminate the pathogen and prevent CM. The preparations were inserted into mice as prophylaxis, early or late treatment in the disease course. Results The most efficient formulation was a rigid polymer, containing 80 mg/kg artemisone, which cured all of the mice when used as early treatment and 60% of the mice when used as a very late treatment (at which stage all control mice would die of CM within 24 h). In those mice that were not completely cured, relapse followed a latent period of more than seven days. Prophylactic treatment four days prior to the infection prevented CM. We also measured the amount of artemisone released from the rigid polymers using a bioassay with cultured P. falciparum. Significant amounts of artemisone were released throughout at least ten days, in line with the in vivo prophylactic results. Conclusions Overall, we demonstrate, as a proof-of-concept, a controlled-sustained release system of artemisone for treatment of CM. Mice were cured or if treated at a very late stage of the disease, depicted a delay of a week before death. This delay would enable a considerable time window for exact diagnosis and appropriate additional treatment. Identical methods could be used for other parasites that are sensitive to artemisinins (e.g. Toxoplasma gondii and Neospora caninum).
Collapse
Affiliation(s)
- Jacob Golenser
- Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem (HU)-Hadassah Medical School (HMS), Jerusalem, Israel.
| | - Viola Buchholz
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstrasse 30, Bayreuth, Germany
| | - Amir Bagheri
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstrasse 30, Bayreuth, Germany
| | - Abed Nasereddin
- Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem (HU)-Hadassah Medical School (HMS), Jerusalem, Israel.,Al-Quds University, Abu Dis, The Palestinian Authority
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem (HU)-Hadassah Medical School (HMS), Jerusalem, Israel
| | - Jintao Guo
- Department of Pathology and Bosch Institute, The University of Sydney, Sydney, Australia.,State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Nicholas H Hunt
- Department of Pathology and Bosch Institute, The University of Sydney, Sydney, Australia
| | - Sara Eyal
- Institute of Drug Research, School of Pharmacy, HU-HMS, Jerusalem, Israel
| | - Natalia Vakruk
- Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem (HU)-Hadassah Medical School (HMS), Jerusalem, Israel.,Institute of Drug Research, School of Pharmacy, HU-HMS, Jerusalem, Israel
| | - Andreas Greiner
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstrasse 30, Bayreuth, Germany
| |
Collapse
|
98
|
Roussel C, Caumes E, Thellier M, Ndour PA, Buffet PA, Jauréguiberry S. Artesunate to treat severe malaria in travellers: review of efficacy and safety and practical implications. J Travel Med 2017; 24:2930768. [PMID: 28395097 DOI: 10.1093/jtm/taw093] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Artesunate (AS) is the WHO first-line treatment of severe malaria in endemic countries, in adults and children. However, despite solid evidence that AS is safe and more effective than quinine in endemic areas, its deployment in non-endemic areas has been slow, due in part to the absence of a full good manufacturing practice (GMP) qualification (although prequalification has been granted in 2010). Prospective comparative trials were not conducted in travellers, but several retrospective studies and case reports are providing insights into the efficacy and safety of AS in imported severe malaria. METHODS We performed a systematic review on AS use in non-endemic areas for the treatment of imported severe malaria, using the Prisma method for bibliographic reports. Post-AS delayed haemolysis (PADH) was defined by delayed haemolytic episodes occurring 7-30 days after treatment initiation. We summarized prescription guidelines and generated answers to frequently asked questions regarding the use of AS in travellers with severe malaria. RESULTS We analysed 12 retrospectives and 1 prospective study as well as 7 case reports of AS treatment in 624 travellers. Of 574 patients with reported outcome, 23 died (4%). No death was attributed to AS toxicity. Non-haematological side effects were uncommon and mainly included mild hepatitis, neurological, renal, cutaneous and cardiac manifestations. PADH occurred in 15% of the treated patients. No death or sequelae were reported. Overall blood transfusion was administered in 50% of travellers with PADH. CONCLUSION AS is highly efficacious in travellers with severe malaria. The frequency of PADH supports the need of weekly follow-up of haematological parameters during 1 month. Full GMP qualification for the drug and rapid approval by drug agencies is warranted, backed by clear recommendations for optimal use.
Collapse
Affiliation(s)
- Camille Roussel
- Université Sorbonne Paris Cité, Université Paris Descartes, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Eric Caumes
- Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Service des Maladies Infectieuses et Tropicales, Paris, France.,Sorbonne Université, Université Pierre et Marie Curie, faculté de médecine Pitié-Salpêtrière, Paris, France
| | - Marc Thellier
- Sorbonne Université, Université Pierre et Marie Curie, faculté de médecine Pitié-Salpêtrière, Paris, France.,Centre National de Référence du Paludisme - Site Pitié-Salpêtrière, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Service de parasitologie, Paris, France
| | - Papa Alioune Ndour
- Université Sorbonne Paris Cité, Université Paris Descartes, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Pierre A Buffet
- Université Sorbonne Paris Cité, Université Paris Descartes, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Stéphane Jauréguiberry
- Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Service des Maladies Infectieuses et Tropicales, Paris, France.,Sorbonne Université, Université Pierre et Marie Curie, faculté de médecine Pitié-Salpêtrière, Paris, France.,Centre National de Référence du Paludisme - Site Pitié-Salpêtrière, Paris, France
| |
Collapse
|
99
|
Silva-Pinto A, Ruas R, Almeida F, Duro R, Silva A, Abreu C, Sarmento A. Artemether-lumefantrine and liver enzyme abnormalities in non-severe Plasmodium falciparum malaria in returned travellers: a retrospective comparative study with quinine-doxycycline in a Portuguese centre. Malar J 2017; 16:43. [PMID: 28122572 PMCID: PMC5264472 DOI: 10.1186/s12936-017-1698-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/17/2017] [Indexed: 01/18/2023] Open
Abstract
Background Artemisinin-based therapy is the current standard treatment for non-severe malaria due to Plasmodium falciparum. The potential for asymptomatic liver toxicity of this therapy and its implication in clinical practice is currently unknown. The aim of this study is to assess the hepatic function in patients treated with a standard three-day artemisinin-based regimen and to compare it with the quinine-doxycycline regimen. Methods Retrospective and comparative study of returned adult travellers admitted with non-severe P. falciparum malaria. Fifty-seven patients were included: 19 treated with artemisinin-based therapy and 38 with quinine-doxycycline therapy. Results During treatment, when compared with quinine-doxycycline group, the artemisinin-lumefantrine group presented a higher proportion of significant liver enzyme abnormalities (42 vs. 5%, p < 0.01) and a higher peak value of aspartate aminotransferase (131 vs. 64 U/L, p < 0.01) and alanine aminotransferase (99 vs. 75 U/L, p = 0.05). None of the patients was symptomatic, there were no treatment interruptions and all patients achieved clinical cure. Conclusions Treatment of uncomplicated falciparum malaria with artemisinin-based therapy might cause asymptomatic liver enzyme abnormalities in the first days of treatment. Nevertheless, these liver enzyme abnormalities seem to be harmless, asymptomatic and self-limited.
Collapse
Affiliation(s)
- André Silva-Pinto
- Infectious Diseases Department, Centro Hospitalar São João, Alameda Professor Hernani Monteiro, 4200, Porto, Portugal.
| | - Rogério Ruas
- Infectious Diseases Department, Centro Hospitalar São João, Alameda Professor Hernani Monteiro, 4200, Porto, Portugal
| | - Francisco Almeida
- Infectious Diseases Department, Centro Hospitalar São João, Alameda Professor Hernani Monteiro, 4200, Porto, Portugal
| | - Raquel Duro
- Infectious Diseases Department, Centro Hospitalar São João, Alameda Professor Hernani Monteiro, 4200, Porto, Portugal
| | - André Silva
- Infectious Diseases Department, Centro Hospitalar São João, Alameda Professor Hernani Monteiro, 4200, Porto, Portugal
| | - Cândida Abreu
- Infectious Diseases Department, Centro Hospitalar São João, Alameda Professor Hernani Monteiro, 4200, Porto, Portugal
| | - António Sarmento
- Infectious Diseases Department, Centro Hospitalar São João, Alameda Professor Hernani Monteiro, 4200, Porto, Portugal
| |
Collapse
|
100
|
|