51
|
Matz M, Heinrich F, Zhang Q, Lorkowski C, Seelow E, Wu K, Lachmann N, Addo RK, Durek P, Mashreghi MF, Budde K. The regulation of interferon type I pathway-related genes RSAD2 and ETV7 specifically indicates antibody-mediated rejection after kidney transplantation. Clin Transplant 2018; 32:e13429. [PMID: 30341925 DOI: 10.1111/ctr.13429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/03/2018] [Accepted: 10/12/2018] [Indexed: 01/09/2023]
Abstract
CONTEXT Antibody-mediated rejection (ABMR) after kidney transplantation (KTx) remains the crucial obstacle to successful long-term graft function. The identification of gene signatures involved in ABMR could grant the basis for better prevention and treatment strategies. OBJECTIVE The identification of gene signatures in whole blood cells specific for ABMR after KTx. MATERIALS AND METHODS Total RNA from blood cells of 16 kidney-transplanted patients with ABMR, stable graft function (SGF), and with T-cell-mediated rejection (TCMR) was isolated. Gene expression was determined by high-throughput sequencing followed by validation and analyses of differentially expressed candidates on mRNA level and on protein level in a large patient cohort (n = 185) in patients with SGF, urinary tract infection (UTI), borderline rejection (BL), TCMR, ABMR, and interstitial fibrosis and tubular atrophy. RESULTS From the 570 genes detected, 111 discriminated ABMR from SGF and TCMR. A distinct enrichment of interferon (IFN) type I and type II signature gene set was observed. The expression of candidate genes IFIT1, ETV7, and RSAD2 distinguished ABMR patients from patients with SGF and also TCMR, whereas ETV7 and RSAD2 differentiated ABMR also from BL. CONCLUSION The IFN-inducible genes ETV7 and RSAD2 represent specific biomarkers for ABMR episodes after KTx.
Collapse
Affiliation(s)
- Mareen Matz
- Department of Nephrology, Charité University Medicine Berlin, Berlin, Germany
| | - Frederik Heinrich
- Deutsches Rheuma-Forschungszentrum Berlin, A Leibniz Institute(DRFZ), Berlin, Germany
| | - Qiang Zhang
- Department of Nephrology, Charité University Medicine Berlin, Berlin, Germany
| | - Christine Lorkowski
- Department of Nephrology, Charité University Medicine Berlin, Berlin, Germany
| | - Evelyn Seelow
- Department of Nephrology, Charité University Medicine Berlin, Berlin, Germany
| | - Kaiyin Wu
- Department of Pathology, Charité University Medicine Berlin, Berlin, Germany
| | - Nils Lachmann
- Center for Tumor Medicine, H&I Laboratory, Charité University Medicine Berlin, Berlin, Germany
| | - Richard K Addo
- Deutsches Rheuma-Forschungszentrum Berlin, A Leibniz Institute(DRFZ), Berlin, Germany
| | - Pawel Durek
- Deutsches Rheuma-Forschungszentrum Berlin, A Leibniz Institute(DRFZ), Berlin, Germany
| | - Mir-Farzin Mashreghi
- Deutsches Rheuma-Forschungszentrum Berlin, A Leibniz Institute(DRFZ), Berlin, Germany
| | - Klemens Budde
- Department of Nephrology, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
52
|
Neveu B, Caron M, Lagacé K, Richer C, Sinnett D. Genome wide mapping of ETV6 binding sites in pre-B leukemic cells. Sci Rep 2018; 8:15526. [PMID: 30341373 PMCID: PMC6195514 DOI: 10.1038/s41598-018-33947-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 10/08/2018] [Indexed: 02/08/2023] Open
Abstract
Genetic alterations in the transcriptional repressor ETV6 are associated with hematological malignancies. Notably, the t(12;21) translocation leading to an ETV6-AML1 fusion gene is the most common genetic alteration found in childhood acute lymphoblastic leukemia. Moreover, most of these patients also lack ETV6 expression, suggesting a tumor suppressor function. To gain insights on ETV6 DNA-binding specificity and genome wide transcriptional regulation capacities, we performed chromatin immunoprecipitation experiments coupled to deep sequencing in a t(12;21)-positive pre-B leukemic cell line. This strategy led to the identification of ETV6-bound regions that were further associated to gene expression. ETV6 binding is mostly cell type-specific as only few regions are shared with other blood cell subtypes. Peaks localization and motif enrichment analyses revealed that this unique binding profile could be associated with the ETV6-AML1 fusion protein specific to the t(12;21) background. This study underscores the complexity of ETV6 binding and uncovers ETV6 transcriptional network in pre-B leukemia cells bearing the recurrent t(12;21) translocation.
Collapse
Affiliation(s)
- Benjamin Neveu
- Sainte-Justine UHC Research Center, Montreal, Qc, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Montreal, Qc, Canada
| | - Maxime Caron
- Sainte-Justine UHC Research Center, Montreal, Qc, Canada
| | - Karine Lagacé
- Sainte-Justine UHC Research Center, Montreal, Qc, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Montreal, Qc, Canada
| | - Chantal Richer
- Sainte-Justine UHC Research Center, Montreal, Qc, Canada
| | - Daniel Sinnett
- Sainte-Justine UHC Research Center, Montreal, Qc, Canada.
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Montreal, Qc, Canada.
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Qc, Canada.
| |
Collapse
|
53
|
Kim YJ, Yoo JE, Jeon Y, Chong JU, Choi GH, Song DG, Jung SH, Oh BK, Park YN. Suppression of PROX1-mediated TERT expression in hepatitis B viral hepatocellular carcinoma. Int J Cancer 2018; 143:3155-3168. [DOI: 10.1002/ijc.31731] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 05/22/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Young-Joo Kim
- Natural Products Research Center; Korea Institute of Science and Technology; Gangneung South Korea
- Department of Pathology, Brain Korea 21 PLUS Project for Medical Science; Yonsei University College of Medicine; Seoul South Korea
| | - Jeong Eun Yoo
- Department of Pathology, Brain Korea 21 PLUS Project for Medical Science; Yonsei University College of Medicine; Seoul South Korea
| | - Youngsic Jeon
- Department of Pathology, Brain Korea 21 PLUS Project for Medical Science; Yonsei University College of Medicine; Seoul South Korea
| | - Jae Uk Chong
- Department of Surgery; Yonsei University College of Medicine; Seoul South Korea
| | - Gi Hong Choi
- Department of Surgery; Yonsei University College of Medicine; Seoul South Korea
| | - Dae-Geun Song
- Systems Biotechnology Research Center; Korea Institute of Science and Technology; Gangneung South Korea
| | - Sang Hoon Jung
- Natural Products Research Center; Korea Institute of Science and Technology; Gangneung South Korea
| | - Bong-Kyeong Oh
- Institute of Medical Science, Hanyang University College of Medicine; Seoul South Korea
| | - Young Nyun Park
- Department of Pathology, Brain Korea 21 PLUS Project for Medical Science; Yonsei University College of Medicine; Seoul South Korea
| |
Collapse
|
54
|
Wu J, Qin W, Wang Y, Sadik A, Liu J, Wang Y, Song P, Wang X, Sun K, Zeng J, Wang L. SPDEF is overexpressed in gastric cancer and triggers cell proliferation by forming a positive regulation loop with FoxM1. J Cell Biochem 2018; 119:9042-9054. [PMID: 30076647 DOI: 10.1002/jcb.27161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 05/14/2018] [Indexed: 12/20/2022]
Abstract
The SAM-pointed domain-containing ETS transcription factor (SPDEF) is an epithelial-specific transcription factor of the E26 transformation-specific (ETS) family, which binds the target gene through the high-affinity sequence of GGAT. It is suggested that SPDEF targets the promoter activity of Forkhead Box M1 (FoxM1), which has been proven to be highly expressed in gastric cancer. We found that SPDEF was overexpressed both at the messenger RNA (mRNA) and at the protein level in human gastric cancer species. The gastric cancer cells transfected with the SPDEF expression plasmid or SPDEF small interfering RNA (siRNA) led to observations on the clone genetics assay that indicated the promotion or the inhibition of gastric cancer cell proliferation, respectively. Both mRNA and protein levels of FoxM1 were regulated by SPDEF in gastric cancer cells and FoxM1 was also overexpressed in the corresponding human gastric cancer species. The overexpression and inhibition of FoxM1 could upregulate and downregulate the mRNA and protein levels of SPDEF expression, respectively. The recovery experiments verified that the overexpression of FoxM1 could at least partially revert both the expression of SPDEF and the proliferation of the cell lines even with the siRNA inhibition of SPDEF. The result of the dual luciferase activity assay showed that SPDEF bound to the promoter of FoxM1 and activated it. FoxM1 might also bind to the promoter of SPDEF to affect its expression. The results were checked in vivo. In conclusion, SPDEF is overexpressed in gastric cancer, which can form a positive regulation loop with FoxM1 to promote gastric carcinogenesis.
Collapse
Affiliation(s)
- Jing Wu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Wen Qin
- Department of Medical Administration, Shandong University Hospital, Shandong University, Jinan, China
| | - Ying Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Arsil Sadik
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jilan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yangyang Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Ping Song
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiaoyun Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Kaiyue Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jiping Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Lixiang Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
55
|
Ramnath D, Irvine KM, Lukowski SW, Horsfall LU, Loh Z, Clouston AD, Patel PJ, Fagan KJ, Iyer A, Lampe G, Stow JL, Schroder K, Fairlie DP, Powell JE, Powell EE, Sweet MJ. Hepatic expression profiling identifies steatosis-independent and steatosis-driven advanced fibrosis genes. JCI Insight 2018; 3:120274. [PMID: 30046009 DOI: 10.1172/jci.insight.120274] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/12/2018] [Indexed: 12/23/2022] Open
Abstract
Chronic liver disease (CLD) is associated with tissue-destructive fibrosis. Considering that common mechanisms drive fibrosis across etiologies, and that steatosis is an important cofactor for pathology, we performed RNA sequencing on liver biopsies of patients with different fibrosis stages, resulting from infection with hepatitis C virus (HCV) (with or without steatosis) or fatty liver disease. In combination with enhanced liver fibrosis score correlation analysis, we reveal a common set of genes associated with advanced fibrosis, as exemplified by those encoding the transcription factor ETS-homologous factor (EHF) and the extracellular matrix protein versican (VCAN). We identified 17 fibrosis-associated genes as candidate EHF targets and demonstrated that EHF regulates multiple fibrosis-associated genes, including VCAN, in hepatic stellate cells. Serum VCAN levels were also elevated in advanced fibrosis patients. Comparing biopsies from patients with HCV with or without steatosis, we identified a steatosis-enriched gene set associated with advanced fibrosis, validating follistatin-like protein 1 (FSTL1) as an exemplar of this profile. In patients with advanced fibrosis, serum FSTL1 levels were elevated in those with steatosis (versus those without). Liver Fstl1 mRNA levels were also elevated in murine CLD models. We thus reveal a common gene signature for CLD-associated liver fibrosis and potential biomarkers and/or targets for steatosis-associated liver fibrosis.
Collapse
Affiliation(s)
- Divya Ramnath
- Institute for Molecular Bioscience (IMB) and.,IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Katharine M Irvine
- Centre for Liver Disease Research and.,Faculty of Medicine, Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Samuel W Lukowski
- Institute for Molecular Bioscience (IMB) and.,IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Leigh U Horsfall
- Centre for Liver Disease Research and.,Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Zhixuan Loh
- Institute for Molecular Bioscience (IMB) and.,IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Preya J Patel
- Centre for Liver Disease Research and.,Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | | | - Abishek Iyer
- Institute for Molecular Bioscience (IMB) and.,IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Guy Lampe
- Pathology Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Jennifer L Stow
- Institute for Molecular Bioscience (IMB) and.,IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience (IMB) and.,IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia
| | - David P Fairlie
- Institute for Molecular Bioscience (IMB) and.,IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Joseph E Powell
- Institute for Molecular Bioscience (IMB) and.,IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia.,Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Elizabeth E Powell
- Centre for Liver Disease Research and.,Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB) and.,IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
56
|
Fry EA, Inoue K. Aberrant expression of ETS1 and ETS2 proteins in cancer. CANCER REPORTS AND REVIEWS 2018; 2:10.15761/CRR.1000151. [PMID: 29974077 PMCID: PMC6027756 DOI: 10.15761/crr.1000151] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ETS transcription factors regulate expression of genes involved in normal cell development, proliferation, differentiation, angiogenesis, and apoptosis, consisting of 28 family members in humans. Dysregulation of these transcription factors facilitates cell proliferation in cancers, and several members participate in invasion and metastasis by activating gene transcription. ETS1 and ETS2 are the founding members of the ETS family and regulate transcription by binding to ETS sequences. They are both involved in oncogenesis and tumor suppression depending on the biological situations used. The essential roles of ETS proteins in human telomere maintenance have been suggested, which have been linked to creation of new Ets binding sites. Recently, preferential binding of ETS2 to gain-of-function mutant p53 and ETS1 to wild type p53 (WTp53) has been suggested, raising the tumor promoting role for the former and tumor suppressive role for the latter. The oncogenic and tumor suppressive functions of ETS1 and 2 proteins have been discussed.
Collapse
Affiliation(s)
- Elizabeth A. Fry
- The Dept. of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - Kazushi Inoue
- The Dept. of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| |
Collapse
|
57
|
Suico MA, Shuto T, Kai H. Roles and regulations of the ETS transcription factor ELF4/MEF. J Mol Cell Biol 2018; 9:168-177. [PMID: 27932483 PMCID: PMC5907832 DOI: 10.1093/jmcb/mjw051] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/21/2016] [Indexed: 12/12/2022] Open
Abstract
Most E26 transformation-specific (ETS) transcription factors are involved in the pathogenesis and progression of cancer. This is in part due to the roles of ETS transcription factors in basic biological processes such as growth, proliferation, and differentiation, and also because of their regulatory functions that have physiological relevance in tumorigenesis, immunity, and basal cellular homoeostasis. A member of the E74-like factor (ELF) subfamily of the ETS transcription factor family—myeloid elf-1-like factor (MEF), designated as ELF4—has been shown to be critically involved in immune response and signalling, osteogenesis, adipogenesis, cancer, and stem cell quiescence. ELF4 carries out these functions as a transcriptional activator or through interactions with its partner proteins. Mutations in ELF4 cause aberrant interactions and induce downstream processes that may lead to diseased cells. Knowing how ELF4 impinges on certain cellular processes and how it is regulated in the cells can lead to a better understanding of the physiological and pathological consequences of modulated ELF4 activity.
Collapse
Affiliation(s)
- Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| |
Collapse
|
58
|
Das KK, Heeg S, Pitarresi JR, Reichert M, Bakir B, Takano S, Kopp JL, Wahl-Feuerstein A, Hicks P, Sander M, Rustgi AK. ETV5 regulates ductal morphogenesis with Sox9 and is critical for regeneration from pancreatitis. Dev Dyn 2018. [PMID: 29532564 DOI: 10.1002/dvdy.24626] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The plasticity of pancreatic acinar cells to undergo acinar to ductal metaplasia (ADM) has been demonstrated to contribute to the regeneration of the pancreas in response to injury. Sox9 is critical for ductal cell fate and important in the formation of ADM, most likely in concert with a complex hierarchy of, as yet, not fully elucidated transcription factors. RESULTS By using a mouse model of acute pancreatitis and three dimensional organoid culture of primary pancreatic ductal cells, we herein characterize the Ets-transcription factor Etv5 as a pivotal regulator of ductal cell identity and ADM that acts upstream of Sox9 and is essential for Sox9 expression in ADM. Loss of Etv5 is associated with increased severity of acute pancreatitis and impaired ADM formation leading to delayed tissue regeneration and recovery in response to injury. CONCLUSIONS Our data provide new insights in the regulation of ADM with implications in our understanding of pancreatic homeostasis, pancreatitis and epithelial plasticity. Developmental Dynamics 247:854-866, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Koushik K Das
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania.,Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Steffen Heeg
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Medicine II, Medical Center, University of Freiburg, Freiburg, Germany
| | - Jason R Pitarresi
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maximilian Reichert
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania.,II. Medizinische Klinik, Technical University of Munich, Munich, Germany
| | - Basil Bakir
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shigetsugu Takano
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Janel L Kopp
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Anja Wahl-Feuerstein
- Department of Medicine II, Medical Center, University of Freiburg, Freiburg, Germany
| | - Philip Hicks
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maike Sander
- Department of Pediatrics, Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, San Diego, California
| | - Anil K Rustgi
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
59
|
Abstract
Abnormally activated RAS proteins are the main oncogenic driver that governs the functioning of major signaling pathways involved in the initiation and development of human malignancies. Mutations in RAS genes and or its regulators, most frequent in human cancers, are the main force for incessant RAS activation and associated pathological conditions including cancer. In general, RAS is the main upstream regulator of the highly conserved signaling mechanisms associated with a plethora of important cellular activities vital for normal homeostasis. Mutated or the oncogenic RAS aberrantly activates a web of interconnected signaling pathways including RAF-MEK (mitogen-activated protein kinase kinase)-ERK (extracellular signal-regulated kinase), phosphoinositide-3 kinase (PI3K)/AKT (protein kinase B), protein kinase C (PKC) and ral guanine nucleotide dissociation stimulator (RALGDS), etc., leading to uncontrolled transcriptional expression and reprogramming in the functioning of a range of nuclear and cytosolic effectors critically associated with the hallmarks of carcinogenesis. This review highlights the recent literature on how oncogenic RAS negatively use its signaling web in deregulating the expression and functioning of various effector molecules in the pathogenesis of human malignancies.
Collapse
|
60
|
Increased expression of EHF contributes to thyroid tumorigenesis through transcriptionally regulating HER2 and HER3. Oncotarget 2018; 7:57978-57990. [PMID: 27517321 PMCID: PMC5295405 DOI: 10.18632/oncotarget.11154] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/27/2016] [Indexed: 12/19/2022] Open
Abstract
E26 transformation-specific (ETS) transcription factor EHF plays a tumor suppressor role in prostate cancer and esophageal squamous cell carcinoma (ESCC), whereas it is overexpressed and may act as an oncogene in ovarian and mammary cancers. However, its biological role in thyroid cancer remains totally unknown. The aim of this study was to explore the biological functions of EHF and its potential as a therapeutic target in thyroid cancer. Using quantitative RT-PCR (qRT-PCR) assay, we evaluated mRNA expression of EHF in a cohort of primary papillary thyroid cancers (PTCs) and matched non-cancerous thyroid tissues. The functions of knockdown and ectopic expression of EHF in thyroid cancer cells were determine by a series of in vitro and in vivo experiments. Moreover, dual-luciferase reporter and chromatin immunoprecipitation (ChIP) assays were performed to identify its downstream targets. Our data showed that EHF expression was significantly increased in PTCs compared with matched non-cancerous thyroid tissues. EHF knockdown significantly inhibited thyroid cancer cell proliferation, colony formation, migration, invasion and tumorigenic potential in nude mice and induced cell cycle arrested and apoptosis by modulating the PI3K/Akt and MAPK/Erk signaling pathways. On the other hand, ectopic expression of EHF in thyroid cancer cells notably promoted cell growth and invasiveness. Importantly, EHF was identified as a new transcription factor for HER2 and HER3, contributing to thyroid tumorigenesis. Altogether, our findings suggest that EHF is a novel functional oncogene in thyroid cancer by transcriptionally regulating HER2 and HER3, and may represent a potential therapeutic target for this cancer.
Collapse
|
61
|
Inamoto I, Shin JA. Peptide therapeutics that directly target transcription factors. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ichiro Inamoto
- Department of Chemistry; University of Toronto, 3359 Mississauga Road; Mississauga Ontario L5L 1C6 Canada
| | - Jumi A. Shin
- Department of Chemistry; University of Toronto, 3359 Mississauga Road; Mississauga Ontario L5L 1C6 Canada
| |
Collapse
|
62
|
Tomar S, Plotnik JP, Haley J, Scantland J, Dasari S, Sheikh Z, Emerson R, Lenz D, Hollenhorst PC, Mitra AK. ETS1 induction by the microenvironment promotes ovarian cancer metastasis through focal adhesion kinase. Cancer Lett 2018; 414:190-204. [DOI: 10.1016/j.canlet.2017.11.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/23/2017] [Accepted: 11/11/2017] [Indexed: 12/12/2022]
|
63
|
Baumann J, Ignashkova TI, Chirasani SR, Ramírez-Peinado S, Alborzinia H, Gendarme M, Kuhnigk K, Kramer V, Lindemann RK, Reiling JH. Golgi stress-induced transcriptional changes mediated by MAPK signaling and three ETS transcription factors regulate MCL1 splicing. Mol Biol Cell 2018; 29:42-52. [PMID: 29118074 PMCID: PMC5746065 DOI: 10.1091/mbc.e17-06-0418] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/11/2017] [Accepted: 10/31/2017] [Indexed: 12/14/2022] Open
Abstract
The secretory pathway is a major determinant of cellular homoeostasis. While research into secretory stress signaling has so far mostly focused on the endoplasmic reticulum (ER), emerging data suggest that the Golgi itself serves as an important signaling hub capable of initiating stress responses. To systematically identify novel Golgi stress mediators, we performed a transcriptomic analysis of cells exposed to three different pharmacological compounds known to elicit Golgi fragmentation: brefeldin A, golgicide A, and monensin. Subsequent gene-set enrichment analysis revealed a significant contribution of the ETS family transcription factors ELK1, GABPA/B, and ETS1 to the control of gene expression following compound treatment. Induction of Golgi stress leads to a late activation of the ETS upstream kinases MEK1/2 and ERK1/2, resulting in enhanced ETS factor activity and the transcription of ETS family target genes related to spliceosome function and cell death induction via alternate MCL1 splicing. Further genetic analyses using loss-of-function and gain-of-function experiments suggest that these transcription factors operate in parallel.
Collapse
Affiliation(s)
- Jan Baumann
- BioMed X Innovation Center, 69120 Heidelberg, Germany
| | | | | | | | | | | | - Kyra Kuhnigk
- BioMed X Innovation Center, 69120 Heidelberg, Germany
| | | | - Ralph K Lindemann
- Translational Innovation Platform Oncology, Merck Biopharma, Merck KGaA, 64293 Darmstadt, Germany
| | - Jan H Reiling
- BioMed X Innovation Center, 69120 Heidelberg, Germany
| |
Collapse
|
64
|
Hong MJ, Lee SY, Choi JE, Jin CC, Kang HJ, Baek SA, Lee SY, Shin KM, Jeong JY, Lee WK, Yoo SS, Lee J, Cha SI, Kim CH, Son JW, Park JY. A genetic variation in microRNA target site of ETS2 is associated with clinical outcomes of paclitaxel-cisplatin chemotherapy in non-small cell lung cancer. Oncotarget 2017; 7:15948-58. [PMID: 26893365 PMCID: PMC4941289 DOI: 10.18632/oncotarget.7433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/06/2016] [Indexed: 11/25/2022] Open
Abstract
The present study was performed to investigate the association of single nucleotide polymorphisms (SNPs) located in the miRNA target sites with the clinical outcomes of first line paclitaxel-cisplatin chemotherapy in advanced NSCLC. Eighty SNPs in miRNA binding sites of cancer related genes selected from 18,500 miRNA:target bindings in crosslinking, ligation, and sequencing of hybrids (CLASH) data were investigated in 379 advanced NSCLC patients using a sequenom mass spectrometry-based genotype assay. qRT-PCR and luciferase assay were conducted to examine functional relevance of potentially functional SNPs in miRNA binding sites. Of the 80 SNPs analyzed, 16 SNPs were significantly associated with the clinical outcomes after chemotherapy. Among these, ANAPC1 rs3814026C>T, ETS2 rs461155A>G, SORBS1 rs7081076C>A and POLR2A rs2071504C>T could predict both chemotherapy response and survival. Notably, ETS2 rs461155A>G was significantly associated with decreased ETS2 mRNA expression in both tumor and paired normal lung tissues (Ptrend = 4 × 10−7, and 3 × 10−4, respectively). Consistently, a decreased expression of the reporter gene for the G allele of rs461155 compared with the A allele was observed by luciferase assay. These findings suggest that the four SNPs, especially ETS2 rs461155A>G, could be used as biomarkers predicting the clinical outcomes of NSCLC patients treated with first-line paclitaxel-cisplatin chemotherapy.
Collapse
Affiliation(s)
- Mi Jeong Hong
- Departments of Biochemistry and Cell Biology, Kyungpook National University Medical Center, Daegu, Republic of Korea.,Cell and Matrix Research Institute, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Shin Yup Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Lung Cancer Center, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Jin Eun Choi
- Departments of Biochemistry and Cell Biology, Kyungpook National University Medical Center, Daegu, Republic of Korea.,Cell and Matrix Research Institute, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Cheng Cheng Jin
- Departments of Biochemistry and Cell Biology, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Hyo Jung Kang
- Departments of Biochemistry and Cell Biology, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Sun Ah Baek
- Departments of Biochemistry and Cell Biology, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - So Yeon Lee
- Lung Cancer Center, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Kyung Min Shin
- Department of Radiology, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Ji Yun Jeong
- Department of Pathology, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Won Kee Lee
- Biostatistics Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Soo Yoo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Lung Cancer Center, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Jaehee Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Ick Cha
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Chang Ho Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Woong Son
- Department of Internal Medicine, Konyang University Hospital, Daejeon, Republic of Korea
| | - Jae Yong Park
- Departments of Biochemistry and Cell Biology, Kyungpook National University Medical Center, Daegu, Republic of Korea.,Cell and Matrix Research Institute, Kyungpook National University Medical Center, Daegu, Republic of Korea.,Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Lung Cancer Center, Kyungpook National University Medical Center, Daegu, Republic of Korea
| |
Collapse
|
65
|
Brown AJ, Gibson SJ, Hatton D, James DC. In silico design of context-responsive mammalian promoters with user-defined functionality. Nucleic Acids Res 2017; 45:10906-10919. [PMID: 28977454 PMCID: PMC5737543 DOI: 10.1093/nar/gkx768] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/22/2017] [Indexed: 12/19/2022] Open
Abstract
Comprehensive de novo-design of complex mammalian promoters is restricted by unpredictable combinatorial interactions between constituent transcription factor regulatory elements (TFREs). In this study, we show that modular binding sites that do not function cooperatively can be identified by analyzing host cell transcription factor expression profiles, and subsequently testing cognate TFRE activities in varying homotypic and heterotypic promoter architectures. TFREs that displayed position-insensitive, additive function within a specific expression context could be rationally combined together in silico to create promoters with highly predictable activities. As TFRE order and spacing did not affect the performance of these TFRE-combinations, compositions could be specifically arranged to preclude the formation of undesirable sequence features. This facilitated simple in silico-design of promoters with context-required, user-defined functionalities. To demonstrate this, we de novo-created promoters for biopharmaceutical production in CHO cells that exhibited precisely designed activity dynamics and long-term expression-stability, without causing observable retroactive effects on cellular performance. The design process described can be utilized for applications requiring context-responsive, customizable promoter function, particularly where co-expression of synthetic TFs is not suitable. Although the synthetic promoter structure utilized does not closely resemble native mammalian architectures, our findings also provide additional support for a flexible billboard model of promoter regulation.
Collapse
Affiliation(s)
- Adam J Brown
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield S1 3JD, UK
| | - Suzanne J Gibson
- Biopharmaceutical Development, MedImmune, Cambridge CB21 6GH, UK
| | - Diane Hatton
- Biopharmaceutical Development, MedImmune, Cambridge CB21 6GH, UK
| | - David C James
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield S1 3JD, UK
| |
Collapse
|
66
|
Li X, Chen R, Zhu S. bHLH-O proteins balance the self-renewal and differentiation of Drosophila neural stem cells by regulating Earmuff expression. Dev Biol 2017; 431:239-251. [PMID: 28899667 DOI: 10.1016/j.ydbio.2017.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/23/2017] [Accepted: 09/08/2017] [Indexed: 10/18/2022]
Abstract
Balancing self-renewal and differentiation of stem cells requires differential expression of self-renewing factors in two daughter cells generated from the asymmetric division of the stem cells. In Drosophila type II neural stem cell (or neuroblast, NB) lineages, the expression of the basic helix-loop-helix-Orange (bHLH-O) family proteins, including Deadpan (Dpn) and E(spl) proteins, is required for maintaining the self-renewal and identity of type II NBs, whereas the absence of these self-renewing factors is essential for the differentiation of intermediate neural progenitors (INPs) generated from type II NBs. Here, we demonstrate that Dpn maintains type II NBs by suppressing the expression of Earmuff (Erm). We provide evidence that Dpn and E(spl) proteins suppress Erm by directly binding to C-sites and N-boxes in the cis-regulatory region of erm. Conversely, the absence of bHLH-O proteins in INPs allows activation of erm and Erm-mediated maturation of INPs. Our results further suggest that Pointed P1 (PntP1) mediates the dedifferentiation of INPs resulting from the loss of Erm or overexpression of Dpn or E(spl) proteins. Taken together, these findings reveal mechanisms underlying the regulation of the maintenance of type II NBs and differentiation of INPs through the differential expression of bHLH-O family proteins.
Collapse
Affiliation(s)
- Xiaosu Li
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Rui Chen
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Sijun Zhu
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States.
| |
Collapse
|
67
|
A bipolar role of the transcription factor ERG for cnidarian germ layer formation and apical domain patterning. Dev Biol 2017; 430:346-361. [PMID: 28818668 DOI: 10.1016/j.ydbio.2017.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/29/2017] [Accepted: 08/09/2017] [Indexed: 02/06/2023]
Abstract
Germ layer formation and axial patterning are biological processes that are tightly linked during embryonic development of most metazoans. In addition to canonical WNT, it has been proposed that ERK-MAPK signaling is involved in specifying oral as well as aboral territories in cnidarians. However, the effector and the molecular mechanism underlying latter phenomenon is unknown. By screening for potential effectors of ERK-MAPK signaling in both domains, we identified a member of the ETS family of transcription factors, Nverg that is bi-polarily expressed prior to gastrulation. We further describe the crucial role of NvERG for gastrulation, endomesoderm as well as apical domain formation. The molecular characterization of the obtained NvERG knock-down phenotype using previously described as well as novel potential downstream targets, provides evidence that a single transcription factor, NvERG, simultaneously controls expression of two different sets of downstream targets, leading to two different embryonic gene regulatory networks (GRNs) in opposite poles of the developing embryo. We also highlight the molecular interaction of cWNT and MEK/ERK/ERG signaling that provides novel insight into the embryonic axial organization of Nematostella, and show a cWNT repressive role of MEK/ERK/ERG signaling in segregating the endomesoderm in two sub-domains, while a common input of both pathways is required for proper apical domain formation. Taking together, we build the first blueprint for a global cnidarian embryonic GRN that is the foundation for additional gene specific studies addressing the evolution of embryonic and larval development.
Collapse
|
68
|
Weiswald LB, Hasan MR, Wong JCT, Pasiliao CC, Rahman M, Ren J, Yin Y, Gusscott S, Vacher S, Weng AP, Kennecke HF, Bièche I, Schaeffer DF, Yapp DT, Tai IT. Inactivation of the Kinase Domain of CDK10 Prevents Tumor Growth in a Preclinical Model of Colorectal Cancer, and Is Accompanied by Downregulation of Bcl-2. Mol Cancer Ther 2017; 16:2292-2303. [PMID: 28663269 DOI: 10.1158/1535-7163.mct-16-0666] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/15/2017] [Accepted: 06/23/2017] [Indexed: 11/16/2022]
Abstract
Cyclin-dependent kinase 10 (CDK10), a CDC2-related kinase, is highly expressed in colorectal cancer. Its role in the pathogenesis of colorectal cancer is unknown. This study examines the function of CDK10 in colorectal cancer, and demonstrates its role in suppressing apoptosis and in promoting tumor growth in vitro and in vivo Modulation of CDK10 expression in colorectal cancer cell lines demonstrates that CDK10 promotes cell growth, reduces chemosensitivity and inhibits apoptosis by upregulating the expression of Bcl-2. This effect appears to depend on its kinase activity, as kinase-defective mutant colorectal cancer cell lines have an exaggerated apoptotic response and reduced proliferative capacity. In vivo, inhibiting CDK10 in colorectal cancer following intratumoral injections of lentivirus-mediated CDK10 siRNA in a patient-derived xenograft mouse model demonstrated its efficacy in suppressing tumor growth. Furthermore, using a tissue microarray of human colorectal cancer tissues, the potential for CDK10 to be a prognostic biomarker in colorectal cancer was explored. In tumors of individuals with colorectal cancer, high expression of CDK10 correlates with earlier relapse and shorter overall survival. The findings of this study indicate that CDK10 plays a role in the pathogenesis in colorectal cancer and may be a potential therapeutic target for treatment. Mol Cancer Ther; 16(10); 2292-303. ©2017 AACR.
Collapse
Affiliation(s)
- Louis-Bastien Weiswald
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Mohammad R Hasan
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - John C T Wong
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Clarissa C Pasiliao
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Mahbuba Rahman
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Jianhua Ren
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Yaling Yin
- Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.,Cancer Surveillance & Outcomes, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Samuel Gusscott
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Sophie Vacher
- Department of Genetics, Institute Curie, Paris, France
| | - Andrew P Weng
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Hagen F Kennecke
- Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Ivan Bièche
- Department of Genetics, Institute Curie, Paris, France
| | - David F Schaeffer
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Donald T Yapp
- Experimental Therapeutics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Isabella T Tai
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada. .,Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| |
Collapse
|
69
|
Kar A, Gutierrez-Hartmann A. ESE-1/ELF3 mRNA expression associates with poor survival outcomes in HER2 + breast cancer patients and is critical for tumorigenesis in HER2 + breast cancer cells. Oncotarget 2017; 8:69622-69640. [PMID: 29050229 PMCID: PMC5642504 DOI: 10.18632/oncotarget.18710] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/23/2017] [Indexed: 12/25/2022] Open
Abstract
ESE-1/Elf3 and HER2 appear to establish a positive feedback regulatory loop, but the precise role of ESE-1 in HER2+ breast tumorigenesis remains unknown. Analyzing public repositories, we found that luminal B and HER2 subtype patients with high ESE-1 mRNA levels displayed worse relapse free survival. We stably knocked down ESE-1 in HER2+ luminal B BT474 cells and HER2 subtype SKBR3 cells, which resulted in decreased cell proliferation, colony formation, and anchorage-independent growth in vitro. Stable ESE-1 knockdown inhibited HER2-dependent signaling in BT474 cells and inhibited mTOR activation in SKBR3 cells, but reduced Akt signaling in both cell types. Expression of a constitutively-active Myr-Akt partially rescued the anti-proliferative effect of ESE-1 knockdown in both cell lines. Furthermore, ESE-1 knockdown inhibited cyclin D1, resulting in a G1 delay in both cell lines. Finally, ESE-1 knockdown completely inhibited BT474 cell xenograft tumors in NOD/SCID female mice, which correlated with reduced in vitro tumorsphere formation. Taken together, these results reveal the ESE-1 controls transformation via distinct upstream signaling mechanisms in SKBR3 and BT474 cells, which ultimately impinge on Akt and cyclin D1 in both cell types to regulate cell proliferation. Particularly significant is that ESE-1 controls tumorigenesis and is associated with worse clinical outcomes in HER2 breast cancer.
Collapse
Affiliation(s)
- Adwitiya Kar
- Cancer Biology Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Arthur Gutierrez-Hartmann
- Cancer Biology Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Biochemistry & Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
70
|
Sizemore GM, Pitarresi JR, Balakrishnan S, Ostrowski MC. The ETS family of oncogenic transcription factors in solid tumours. Nat Rev Cancer 2017; 17:337-351. [PMID: 28450705 DOI: 10.1038/nrc.2017.20] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Findings over the past decade have identified aberrant activation of the ETS transcription factor family throughout all stages of tumorigenesis. Specifically in solid tumours, gene rearrangement and amplification, feed-forward growth factor signalling loops, formation of gain-of-function co-regulatory complexes and novel cis-acting mutations in ETS target gene promoters can result in increased ETS activity. In turn, pro-oncogenic ETS signalling enhances tumorigenesis through a broad mechanistic toolbox that includes lineage specification and self-renewal, DNA damage and genome instability, epigenetics and metabolism. This Review discusses these different mechanisms of ETS activation and subsequent oncogenic implications, as well as the clinical utility of ETS factors.
Collapse
Affiliation(s)
- Gina M Sizemore
- The Comprehensive Cancer Center, The Ohio State University
- Department of Cancer Biology and Genetics, The Ohio State University, 598 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, Ohio 43210, USA
| | - Jason R Pitarresi
- The Comprehensive Cancer Center, The Ohio State University
- Department of Cancer Biology and Genetics, The Ohio State University, 598 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, Ohio 43210, USA
| | - Subhasree Balakrishnan
- The Comprehensive Cancer Center, The Ohio State University
- Department of Cancer Biology and Genetics, The Ohio State University, 598 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, Ohio 43210, USA
| | - Michael C Ostrowski
- The Comprehensive Cancer Center, The Ohio State University
- Department of Cancer Biology and Genetics, The Ohio State University, 598 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, Ohio 43210, USA
| |
Collapse
|
71
|
Potu H, Peterson LF, Kandarpa M, Pal A, Sun H, Durham A, Harms PW, Hollenhorst PC, Eskiocak U, Talpaz M, Donato NJ. Usp9x regulates Ets-1 ubiquitination and stability to control NRAS expression and tumorigenicity in melanoma. Nat Commun 2017; 8:14449. [PMID: 28198367 PMCID: PMC5316860 DOI: 10.1038/ncomms14449] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 12/30/2016] [Indexed: 01/20/2023] Open
Abstract
ETS transcription factors are commonly deregulated in cancer by chromosomal translocation, overexpression or post-translational modification to induce gene expression programs essential in tumorigenicity. Targeted destruction of these proteins may have therapeutic impact. Here we report that Ets-1 destruction is regulated by the deubiquitinating enzyme, Usp9x, and has major impact on the tumorigenic program of metastatic melanoma. Ets-1 deubiquitination blocks its proteasomal destruction and enhances tumorigenicity, which could be reversed by Usp9x knockdown or inhibition. Usp9x and Ets-1 levels are coincidently elevated in melanoma with highest levels detected in metastatic tumours versus normal skin or benign skin lesions. Notably, Ets-1 is induced by BRAF or MEK kinase inhibition, resulting in increased NRAS expression, which could be blocked by inactivation of Usp9x and therapeutic combination of Usp9x and MEK inhibitor fully suppressed melanoma growth. Thus, Usp9x modulates the Ets-1/NRAS regulatory network and may have biologic and therapeutic implications.
Collapse
Affiliation(s)
- Harish Potu
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan School of Medicine and Comprehensive Cancer Center, Ann Arbor, Michigan 48109, USA
| | - Luke F. Peterson
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan School of Medicine and Comprehensive Cancer Center, Ann Arbor, Michigan 48109, USA
| | - Malathi Kandarpa
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan School of Medicine and Comprehensive Cancer Center, Ann Arbor, Michigan 48109, USA
| | - Anupama Pal
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan School of Medicine and Comprehensive Cancer Center, Ann Arbor, Michigan 48109, USA
| | - Hanshi Sun
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, USA
| | - Alison Durham
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, Michigan 48109, USA
| | - Paul W. Harms
- Departments of Pathology and Dermatology, University of Michigan School of Medicine, Ann Arbor, Michigan 48109, USA
| | - Peter C. Hollenhorst
- Department of Biochemistry and Molecular Biology, Medical Sciences Program, Indiana University Bloomington, 1001 Third St, Bloomington, Indiana 47405, USA
| | - Ugur Eskiocak
- Children's Research Institute and Department of Pediatrics, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Moshe Talpaz
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan School of Medicine and Comprehensive Cancer Center, Ann Arbor, Michigan 48109, USA
| | - Nicholas J. Donato
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
72
|
Archer LK, Frame FM, Maitland NJ. Stem cells and the role of ETS transcription factors in the differentiation hierarchy of normal and malignant prostate epithelium. J Steroid Biochem Mol Biol 2017; 166:68-83. [PMID: 27185499 DOI: 10.1016/j.jsbmb.2016.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/25/2016] [Accepted: 05/07/2016] [Indexed: 12/18/2022]
Abstract
Prostate cancer is the most common cancer of men in the UK and accounts for a quarter of all new cases. Although treatment of localised cancer can be successful, there is no cure for patients presenting with invasive prostate cancer and there are less treatment options. They are generally treated with androgen-ablation therapies but eventually the tumours become hormone resistant and patients develop castration-resistant prostate cancer (CRPC) for which there are no further successful or curative treatments. This highlights the need for new treatment strategies. In order to prevent prostate cancer recurrence and treatment resistance, all the cell populations in a heterogeneous prostate tumour must be targeted, including the rare cancer stem cell (CSC) population. The ETS transcription factor family members are now recognised as a common feature in multiple cancers including prostate cancer; with aberrant expression, loss of tumour suppressor function, inactivating mutations and the formation of fusion genes observed. Most notably, the TMPRSS2-ERG gene fusion is present in approximately 50% of prostate cancers and in prostate CSCs. However, the role of other ETS transcription factors in prostate cancer is less well understood. This review will describe the prostate epithelial cell hierarchy and discuss the evidence behind prostate CSCs and their inherent resistance to conventional cancer therapies. The known and proposed roles of the ETS family of transcription factors in prostate epithelial cell differentiation and regulation of the CSC phenotype will be discussed, as well as how they might be targeted for therapy.
Collapse
Affiliation(s)
- Leanne K Archer
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - Fiona M Frame
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - Norman J Maitland
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, United Kingdom.
| |
Collapse
|
73
|
Tricoli JV, Bleyer A, Anninga J, Barr R. The Biology of AYA Cancers. CANCER IN ADOLESCENTS AND YOUNG ADULTS 2017. [DOI: 10.1007/978-3-319-33679-4_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
74
|
Zhao T, Jiang W, Wang X, Wang H, Zheng C, Li Y, Sun Y, Huang C, Han ZB, Yang S, Jia Z, Xie K, Ren H, Hao J. ESE3 Inhibits Pancreatic Cancer Metastasis by Upregulating E-Cadherin. Cancer Res 2016; 77:874-885. [PMID: 27923832 DOI: 10.1158/0008-5472.can-16-2170] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/12/2016] [Accepted: 11/19/2016] [Indexed: 12/15/2022]
Abstract
The ETS family transcription factor ESE3 is a crucial element in differentiation and development programs for many epithelial tissues. Here we report its role as a tumor suppressor in pancreatic cancer. We observed drastically lower ESE3 expression in pancreatic ductal adenocarcinomas (PDAC) compared with adjacent normal pancreatic tissue. Reduced expression of ESE3 in PDAC correlated closely with an increase in lymph node metastasis and vessel invasion and a decrease in relapse-free and overall survival in patients. In functional experiments, downregulating the expression of ESE3 promoted PDAC cell motility and invasiveness along with metastasis in an orthotopic mouse model. Mechanistic studies in PDAC cell lines, the orthotopic mouse model, and human PDAC specimens demonstrated that ESE3 inhibited PDAC metastasis by directly upregulating E-cadherin expression at the level of its transcription. Collectively, our results establish ESE3 as a negative regulator of PDAC progression and metastasis by enforcing E-cadherin upregulation. Cancer Res; 77(4); 874-85. ©2016 AACR.
Collapse
Affiliation(s)
- Tiansuo Zhao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Department of Pancreatic Cancer, Tianjin, P.R. China.,Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wenna Jiang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Department of Pancreatic Cancer, Tianjin, P.R. China
| | - Xiuchao Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Department of Pancreatic Cancer, Tianjin, P.R. China
| | - Hongwei Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Department of Pancreatic Cancer, Tianjin, P.R. China
| | - Chen Zheng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Department of Pancreatic Cancer, Tianjin, P.R. China
| | - Yang Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Department of Pancreatic Cancer, Tianjin, P.R. China
| | - Yan Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| | - Chongbiao Huang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Department of Pancreatic Cancer, Tianjin, P.R. China
| | - Zhi-Bo Han
- Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, P.R. China
| | - Shengyu Yang
- Department of Tumor Biology and Comprehensive Melanoma Research Center, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Zhiliang Jia
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keping Xie
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - He Ren
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Department of Pancreatic Cancer, Tianjin, P.R. China
| | - Jihui Hao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Department of Pancreatic Cancer, Tianjin, P.R. China.
| |
Collapse
|
75
|
Increased expression of EHF via gene amplification contributes to the activation of HER family signaling and associates with poor survival in gastric cancer. Cell Death Dis 2016; 7:e2442. [PMID: 27787520 PMCID: PMC5134001 DOI: 10.1038/cddis.2016.346] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 09/04/2016] [Accepted: 09/26/2016] [Indexed: 01/29/2023]
Abstract
The biological function of E26 transformation-specific (ETS) transcription factor EHF/ESE-3 in human cancers remains largely unknown, particularly gastric cancer. The aim of this study was to explore the role of EHF in tumorigenesis and its potential as a therapeutic target in gastric cancer. By using quantitative RT-PCR (qRT-PCR), immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) assays, we investigated the expression and copy number of EHF in a cohort of gastric cancers and control subjects. Specific EHF siRNAs was used to determine the biologic impacts and mechanisms of altered EHF expression in vitro and in vivo. Dual-luciferase reporter, chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA) assays were performed to identify its downstream targets. Our results demonstrated that EHF was significantly upregulated and frequently amplified in gastric cancer tissues as compared with control subjects. Moreover, EHF amplification was positively correlated with its overexpression and significantly associated with poor clinical outcomes of gastric cancer patients. We also found that EHF knockdown notably inhibited gastric cancer cell proliferation, colony formation, migration, invasion and tumorigenic potential in nude mice and induced cell cycle arrest and apoptosis. Importantly, we identified EHF as a new HER2 transcription factor and the modulator of HER3 and HER4 in gastric cancer. Collectively, our findings suggest that EHF is a novel functional oncogene in gastric cancer by regulating the human epidermal growth factor receptor (HER) family of receptor tyrosine kinases and may represent a potential prognostic marker and therapeutic target for this cancer.
Collapse
|
76
|
Grinchuk OV, Motakis E, Yenamandra SP, Ow GS, Jenjaroenpun P, Tang Z, Yarmishyn AA, Ivshina AV, Kuznetsov VA. Sense-antisense gene-pairs in breast cancer and associated pathological pathways. Oncotarget 2016; 6:42197-221. [PMID: 26517092 PMCID: PMC4747219 DOI: 10.18632/oncotarget.6255] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 09/30/2015] [Indexed: 01/04/2023] Open
Abstract
More than 30% of human protein-coding genes form hereditary complex genome architectures composed of sense-antisense (SA) gene pairs (SAGPs) transcribing their RNAs from both strands of a given locus. Such architectures represent important novel components of genome complexity contributing to gene expression deregulation in cancer cells. Therefore, the architectures might be involved in cancer pathways and, in turn, be used for novel drug targets discovery. However, the global roles of SAGPs in cancer pathways has not been studied. Here we investigated SAGPs associated with breast cancer (BC)-related pathways using systems biology, prognostic survival and experimental methods. Gene expression analysis identified 73 BC-relevant SAGPs that are highly correlated in BC. Survival modelling and metadata analysis of the 1161 BC patients allowed us to develop a novel patient prognostic grouping method selecting the 12 survival-significant SAGPs. The qRT-PCR-validated 12-SAGP prognostic signature reproducibly stratified BC patients into low- and high-risk prognostic subgroups. The 1381 SAGP-defined differentially expressed genes common across three studied cohorts were identified. The functional enrichment analysis of these genes revealed the GABPA gene network, including BC-relevant SAGPs, specific gene sets involved in cell cycle, spliceosomal and proteasomal pathways. The co-regulatory function of GABPA in BC cells was supported using siRNA knockdown studies. Thus, we demonstrated SAGPs as the synergistically functional genome architectures interconnected with cancer-related pathways and associated with BC patient clinical outcomes. Taken together, SAGPs represent an important component of genome complexity which can be used to identify novel aspects of coordinated pathological gene networks in cancers.
Collapse
Affiliation(s)
- Oleg V Grinchuk
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Efthymios Motakis
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore.,Current address: RIKEN, Japan
| | - Surya Pavan Yenamandra
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Ghim Siong Ow
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Piroon Jenjaroenpun
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Zhiqun Tang
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Aliaksandr A Yarmishyn
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Anna V Ivshina
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Vladimir A Kuznetsov
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore.,School of Computing Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
77
|
Heeg S, Das KK, Reichert M, Bakir B, Takano S, Caspers J, Aiello NM, Wu K, Neesse A, Maitra A, Iacobuzio-Donahue CA, Hicks P, Rustgi AK. ETS-Transcription Factor ETV1 Regulates Stromal Expansion and Metastasis in Pancreatic Cancer. Gastroenterology 2016; 151:540-553.e14. [PMID: 27318148 PMCID: PMC5002361 DOI: 10.1053/j.gastro.2016.06.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 05/13/2016] [Accepted: 06/06/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS The ETS-transcription factor ETV1 is involved in epithelial-mesenchymal transition during pancreatic development and is induced in mouse pancreatic intraepithelial neoplasia (PanIN) and pancreatic ductal adenocarcinoma (PDAC). We investigated the function of ETV1 in stromal expansion of PDAC and metastasis, as well as its effects on a novel downstream target Sparc, which encodes a matricellular protein found in PDAC stroma that has been associated with invasiveness, metastasis and poor patient outcomes. METHODS Pancreatic ductal cells were isolated from Pdx1Cre;Kras(G12D/+) mice (PanIN), Pdx1Cre;Kras(G12D/+);p53(fl/+) and Pdx1Cre;Kras(G12D/+);p53(fl/+);Rosa26(YFP) mice (PDAC), and Pdx1Cre;Kras(G12D/+);p53(fl/+);Sparc(-/-) mice. Cells were grown in 3-dimensional organoid culture to analyze morphology, proliferation, and invasion. Human PanIN and PDAC tissues were evaluated for ETV1 expression. Orthotopic pancreatic transplants of ETV1-overexpressing PDAC and respective control cells were performed. RESULTS ETV1 expression was significantly increased in human PanINs and, even more so, in primary and metastatic PDAC. Analyses of mouse orthotopic xenografts revealed that ETV1 induced significantly larger primary tumors than controls, with significantly increased stromal expansion, ascites and metastases. In 3-dimensional organoids, ETV1 disrupted cyst architecture, induced EMT, and increased invasive capacity. Furthermore, we identified Sparc as a novel functional gene target of Etv1 by luciferase assays, and SPARC and ETV1 proteins co-localized in vivo. Disruption of Sparc abrogates the phenotype of stromal expansion and metastasis found with ETV1 overexpression in vivo. We identified hyaluronan synthase 2 (Has2) as another novel downstream factor of Etv1; that may mediate ETV1's significant expansion of hyaluronic acid in PDAC stroma. Conversely, disruption of Etv1 in PDAC mice (Pdx1Cre;Kras(G12D/+);p53(fl/+);Rosa26(YFP);Cre;Etv1(fl/fl)) reduced levels of SPARC and hyaluronic acid in the stroma. CONCLUSIONS ETV1 is critical in the desmoplastic stromal expansion and metastatic progression of pancreatic cancer in mice, mediated functionally in part through Sparc and Has2.
Collapse
Affiliation(s)
- Steffen Heeg
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Medicine II, Medical Center, University of Freiburg; Freiburg, Germany
| | - Koushik K Das
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maximilian Reichert
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; II. Medizinische Klinik, Technical University of Munich, Munich, Germany
| | - Basil Bakir
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shigetsugu Takano
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Julia Caspers
- Department of Medicine II, Medical Center, University of Freiburg; Freiburg, Germany
| | - Nicole M Aiello
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Katherine Wu
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Albrecht Neesse
- Division of Gastroenterology and Gastrointestinal Oncology, University Medical Centre Goettingen, Goettingen, Germany
| | - Anirban Maitra
- University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Christine A Iacobuzio-Donahue
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Philip Hicks
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anil K Rustgi
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
78
|
Chitsazzadeh V, Coarfa C, Drummond JA, Nguyen T, Joseph A, Chilukuri S, Charpiot E, Adelmann CH, Ching G, Nguyen TN, Nicholas C, Thomas VD, Migden M, MacFarlane D, Thompson E, Shen J, Takata Y, McNiece K, Polansky MA, Abbas HA, Rajapakshe K, Gower A, Spira A, Covington KR, Xiao W, Gunaratne P, Pickering C, Frederick M, Myers JN, Shen L, Yao H, Su X, Rapini RP, Wheeler DA, Hawk ET, Flores ER, Tsai KY. Cross-species identification of genomic drivers of squamous cell carcinoma development across preneoplastic intermediates. Nat Commun 2016; 7:12601. [PMID: 27574101 PMCID: PMC5013636 DOI: 10.1038/ncomms12601] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 07/18/2016] [Indexed: 01/21/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cuSCC) comprises 15-20% of all skin cancers, accounting for over 700,000 cases in USA annually. Most cuSCC arise in association with a distinct precancerous lesion, the actinic keratosis (AK). To identify potential targets for molecularly targeted chemoprevention, here we perform integrated cross-species genomic analysis of cuSCC development through the preneoplastic AK stage using matched human samples and a solar ultraviolet radiation-driven Hairless mouse model. We identify the major transcriptional drivers of this progression sequence, showing that the key genomic changes in cuSCC development occur in the normal skin to AK transition. Our data validate the use of this ultraviolet radiation-driven mouse cuSCC model for cross-species analysis and demonstrate that cuSCC bears deep molecular similarities to multiple carcinogen-driven SCCs from diverse sites, suggesting that cuSCC may serve as an effective, accessible model for multiple SCC types and that common treatment and prevention strategies may be feasible.
Collapse
Affiliation(s)
- Vida Chitsazzadeh
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA.,Department of Dermatology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jennifer A Drummond
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Tri Nguyen
- Northwest Diagnostic Clinic, Houston, Texas 77090, USA
| | - Aaron Joseph
- Skin and Laser Surgery Associates, Pasadena, Texas 77505, USA
| | | | | | - Charles H Adelmann
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA.,Department of Dermatology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Grace Ching
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA.,Department of Dermatology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Tran N Nguyen
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Courtney Nicholas
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Valencia D Thomas
- Department of Dermatology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Michael Migden
- Department of Dermatology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Deborah MacFarlane
- Department of Dermatology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Erika Thompson
- Sequencing and Microarray Facility, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Jianjun Shen
- Next Generation Sequencing Facility, Smithville, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Yoko Takata
- Next Generation Sequencing Facility, Smithville, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Kayla McNiece
- Department of Dermatology, University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | - Maxim A Polansky
- Department of Dermatology, University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | - Hussein A Abbas
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Adam Gower
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02215, USA
| | - Avrum Spira
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02215, USA
| | - Kyle R Covington
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Weimin Xiao
- Department of Biology and Biochemistry University of Houston, Houston, Texas 77204, USA
| | - Preethi Gunaratne
- Department of Biology and Biochemistry University of Houston, Houston, Texas 77204, USA
| | - Curtis Pickering
- Department of Head &Neck Surgery, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Mitchell Frederick
- Department of Head &Neck Surgery, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Jeffrey N Myers
- Department of Head &Neck Surgery, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Li Shen
- Department of Bioinformatics &Computational Biology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Hui Yao
- Department of Bioinformatics &Computational Biology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Xiaoping Su
- Department of Bioinformatics &Computational Biology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Ronald P Rapini
- Department of Dermatology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA.,Department of Dermatology, University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | - David A Wheeler
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ernest T Hawk
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Elsa R Flores
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| | - Kenneth Y Tsai
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA.,Department of Dermatology, University of Texas MD Anderson Cancer Center Houston, Houston, Texas 77030, USA
| |
Collapse
|
79
|
Nguyen D, Taheri D, Springer S, Cowan M, Guner G, Mendoza Rodriguez MA, Wang Y, Kinde I, VandenBussche CJ, Olson MT, Ricardo BFP, Cunha I, Fujita K, Ertoy D, Kinzler KW, Bivalacqua TJ, Papadopoulos N, Vogelstein B, Netto GJ. High prevalence of TERT promoter mutations in micropapillary urothelial carcinoma. Virchows Arch 2016; 469:427-34. [PMID: 27520411 DOI: 10.1007/s00428-016-2001-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/16/2016] [Accepted: 08/02/2016] [Indexed: 12/22/2022]
Abstract
Somatic activating mutations in the promoter of the telomerase reverse transcriptase (TERT) gene are the most common genetic alterations in urothelial carcinoma (UC) of the bladder and upper urinary tract. Little is known, however, about TERT-mutation status in the relatively uncommon but clinically aggressive micropapillary (MPC) variant. We evaluated the presence of TERT promoter mutations in MPC of the bladder and upper urinary tract. A retrospective search of our archives for MPC and UC with micropapillary features (2005-2014) was performed. All slides were reviewed to confirm the histologic diagnosis. Thirty-three specimens from 31 patients had FFPE blocks available for DNA analysis and were included in the study. Intratumoral areas of non-micropapillary histology were also evaluated when present. Samples were analyzed with Safe-SeqS, a sequencing error reduction technology, and sequenced using the Illumina MiSeq platform. TERT promoter mutations were detected in all specimens with pure MPC (18 of 18) and UC with focal micropapillary features (15 of 15). Similar to conventional UC, the predominant mutations identified occurred at positions -124 (C228T) (85 %) and -146 (C250T) (12 %) bp upstream of the TERT ATG start site. In heterogeneous tumors with focal variant histology, intratumoral concordant mutations were found in variant (MPC and non-MPC) and corresponding conventional UC. We found TERT promoter mutations, commonly found in conventional UC, to be frequently present in MPC. Our finding of concordant intratumoral mutational alterations in cases with focal variant histology lends support to the common oncogenesis origin of UC and its variant histology.
Collapse
Affiliation(s)
- Doreen Nguyen
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Diana Taheri
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA.,Department of Pathology, Isfahan University of Medical Sciences, Isfahan Kidney Diseases Research Center, Isfahan, Iran
| | - Simeon Springer
- Department of Oncology, Johns Hopkins University, Baltimore, MD, 21287, USA.,The Ludwig Center for Cancer Genetics and Therapeutics and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, 21231, USA
| | - Morgan Cowan
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Gunes Guner
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA
| | | | - Yuxuan Wang
- The Ludwig Center for Cancer Genetics and Therapeutics and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, 21231, USA
| | - Isaac Kinde
- The Ludwig Center for Cancer Genetics and Therapeutics and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, 21231, USA
| | | | - Matthew T Olson
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA
| | | | | | | | - Dilek Ertoy
- Department of Pathology, Hacettepe University, Ankara, Turkey
| | - Kenneth W Kinzler
- Department of Oncology, Johns Hopkins University, Baltimore, MD, 21287, USA.,The Ludwig Center for Cancer Genetics and Therapeutics and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, 21231, USA
| | | | - Nickolas Papadopoulos
- Department of Oncology, Johns Hopkins University, Baltimore, MD, 21287, USA.,The Ludwig Center for Cancer Genetics and Therapeutics and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, 21231, USA
| | - Bert Vogelstein
- Department of Oncology, Johns Hopkins University, Baltimore, MD, 21287, USA.,The Ludwig Center for Cancer Genetics and Therapeutics and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, 21231, USA
| | - George J Netto
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA. .,Department of Urology, Johns Hopkins University, Baltimore, MD, 21287, USA. .,Department of Pathology, The Johns Hopkins Hospital, 401 North Broadway Street, Weinberg 2242, Baltimore, MD, 21231, USA.
| |
Collapse
|
80
|
TEL2 suppresses metastasis by down-regulating SERPINE1 in nasopharyngeal carcinoma. Oncotarget 2016; 6:29240-53. [PMID: 26335051 PMCID: PMC4745723 DOI: 10.18632/oncotarget.5074] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/31/2015] [Indexed: 02/06/2023] Open
Abstract
Metastasis is the major cause of treatment failure in patients with nasopharyngeal carcinoma (NPC). However, the molecular mechanisms of NPC metastasis are poorly understood. Here, using our customized gene microarray containing all of the known human transcription factors and the current markers for epithelial-mesenchymal transition, we report that TEL2 was down-regulated in highly metastatic NPC cells and the metastatic tissues in lymph node. Mechanistically, TEL2 inhibits the cell migration and invasion in vitro and metastasis in vivo by releasing its direct suppression on the SERPINE1 promoter in NPC. Consistently, an inverse correlation was observed between the protein levels of TEL2 and SERPINE1 using clinical NPC samples. Collectively, we have provided the first evidence that TEL2 plays a key role in NPC metastasis by directly down-regulating SERPINE1, and that this novel axis of TEL2 / SERPINE1 may be valuable to develop new strategies for treating NPC patients with metastasis.
Collapse
|
81
|
Semenchenko K, Wasylyk C, Cheung H, Tourrette Y, Maas P, Schalken JA, van der Pluijm G, Wasylyk B. XRP44X, an Inhibitor of Ras/Erk Activation of the Transcription Factor Elk3, Inhibits Tumour Growth and Metastasis in Mice. PLoS One 2016; 11:e0159531. [PMID: 27427904 PMCID: PMC4948895 DOI: 10.1371/journal.pone.0159531] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/04/2016] [Indexed: 02/06/2023] Open
Abstract
Transcription factors have an important role in cancer but are difficult targets for the development of tumour therapies. These factors include the Ets family, and in this study Elk3 that is activated by Ras oncogene /Erk signalling, and is involved in angiogenesis, malignant progression and epithelial-mesenchymal type processes. We previously described the identification and in-vitro characterisation of an inhibitor of Ras / Erk activation of Elk3 that also affects microtubules, XRP44X. We now report an initial characterisation of the effects of XRP44X in-vivo on tumour growth and metastasis in three preclinical models mouse models, subcutaneous xenografts, intra-cardiac injection-bone metastasis and the TRAMP transgenic mouse model of prostate cancer progression. XRP44X inhibits tumour growth and metastasis, with limited toxicity. Tumours from XRP44X-treated animals have decreased expression of genes containing Elk3-like binding motifs in their promoters, Elk3 protein and phosphorylated Elk3, suggesting that perhaps XRP44X acts in part by inhibiting the activity of Elk3. Further studies are now warranted to develop XRP44X for tumour therapy.
Collapse
Affiliation(s)
- Kostyantyn Semenchenko
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Christine Wasylyk
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Henry Cheung
- Leiden University Medical Center, Leiden, The Netherlands
| | - Yves Tourrette
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Peter Maas
- SPECS, Kluyverweg 6, 2629 HT Delft, The Netherlands
| | - Jack A Schalken
- Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | | | - Bohdan Wasylyk
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
- * E-mail:
| |
Collapse
|
82
|
Papavassiliou KA, Papavassiliou AG. Transcription Factor Drug Targets. J Cell Biochem 2016; 117:2693-2696. [PMID: 27191703 DOI: 10.1002/jcb.25605] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 01/09/2023]
Abstract
Transcription factors represent the point of convergence of multiple signaling pathways within eukaryotic cells. Deregulated transcription factors contribute to the pathogenesis of a plethora of human diseases, ranging from diabetes, inflammatory disorders and cardiovascular disease to many cancers, and thus these proteins hold great therapeutic potential. Direct modulation of transcription factor function by small molecules is no longer regarded a Sisyphean task, as recent work in drug discovery has revealed that transcription factors are amenable to drug inhibition. Here in we summarize, recent advances regarding the significance of transcription factors in human diseases and we discuss emerging pharmacological strategies to modulate transcription factor function. J. Cell. Biochem. 117: 2693-2696, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kostas A Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| |
Collapse
|
83
|
Li X, Xie Y, Zhu S. Notch maintains Drosophila type II neuroblasts by suppressing expression of the Fez transcription factor Earmuff. Development 2016; 143:2511-21. [PMID: 27151950 DOI: 10.1242/dev.136184] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/26/2016] [Indexed: 01/10/2023]
Abstract
Notch signaling is crucial for maintaining neural stem cell (NSC) self-renewal and heterogeneity; however, the underlying mechanism is not well understood. In Drosophila, loss of Notch prematurely terminates the self-renewal of larval type II neuroblasts (NBs, the Drosophila NSCs) and transforms type II NBs into type I NBs. Here, we demonstrate that Notch maintains type II NBs by suppressing the activation of earmuff (erm) by Pointed P1 (PntP1). We show that loss of Notch or components of its canonical pathway leads to PntP1-dependent ectopic Erm expression in type II NBs. Knockdown of Erm significantly rescues the loss-of-Notch phenotypes, and misexpression of Erm phenocopies the loss of Notch. Ectopically expressed Erm promotes the transformation of type II NBs into type I NBs by inhibiting PntP1 function and expression in type II NBs. Our work not only elucidates a key mechanism of Notch-mediated maintenance of type II NB self-renewal and identity, but also reveals a novel function of Erm.
Collapse
Affiliation(s)
- Xiaosu Li
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Yonggang Xie
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Sijun Zhu
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
84
|
Yokota T, Kanakura Y. Genetic abnormalities associated with acute lymphoblastic leukemia. Cancer Sci 2016; 107:721-5. [PMID: 26991355 PMCID: PMC4968601 DOI: 10.1111/cas.12927] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 12/27/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) occurs with high frequency in childhood and is associated with high mortality in adults. Recent technical advances in next‐generation sequencing have shed light on genetic abnormalities in hematopoietic stem/progenitor cells as the precursor to ALL pathogenesis. Based on these genetic abnormalities, ALL is now being reclassified into newly identified subtypes. Philadelphia chromosome‐like B‐lineage ALL is one of the new high‐risk subtypes characterized by genetic alterations that activate various signaling pathways, including those involving cytokine receptors, tyrosine kinases, and epigenetic modifiers. Philadelphia chromosome‐like ALL is essentially heterogeneous; however, deletion mutations in the IKZF1 gene encoding the transcription factor IKAROS underlie many cases as a key factor inducing aggressive phenotypes and poor treatment responses. Whole‐genome sequencing studies of ALL patients and ethnically matched controls also identified inherited genetic variations in lymphoid neoplasm‐related genes, which are likely to increase ALL susceptibility. These findings are directly relevant to clinical hematology, and further studies on this aspect could contribute to accurate diagnosis, effective monitoring of residual disease, and patient‐oriented therapies.
Collapse
Affiliation(s)
- Takafumi Yokota
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuzuru Kanakura
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
85
|
Mapp AK, Pricer R, Sturlis S. Targeting transcription is no longer a quixotic quest. Nat Chem Biol 2016; 11:891-4. [PMID: 26575226 DOI: 10.1038/nchembio.1962] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anna K Mapp
- Life Sciences Institute and the Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Rachel Pricer
- Life Sciences Institute and the Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Steven Sturlis
- Life Sciences Institute and the Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
86
|
Yachida S, Wood LD, Suzuki M, Takai E, Totoki Y, Kato M, Luchini C, Arai Y, Nakamura H, Hama N, Elzawahry A, Hosoda F, Shirota T, Morimoto N, Hori K, Funazaki J, Tanaka H, Morizane C, Okusaka T, Nara S, Shimada K, Hiraoka N, Taniguchi H, Higuchi R, Oshima M, Okano K, Hirono S, Mizuma M, Arihiro K, Yamamoto M, Unno M, Yamaue H, Weiss MJ, Wolfgang CL, Furukawa T, Nakagama H, Vogelstein B, Kiyono T, Hruban RH, Shibata T. Genomic Sequencing Identifies ELF3 as a Driver of Ampullary Carcinoma. Cancer Cell 2016; 29:229-40. [PMID: 26806338 PMCID: PMC5503303 DOI: 10.1016/j.ccell.2015.12.012] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 09/16/2015] [Accepted: 12/21/2015] [Indexed: 02/07/2023]
Abstract
Ampullary carcinomas are highly malignant neoplasms that can have either intestinal or pancreatobiliary differentiation. To characterize somatic alterations in ampullary carcinomas, we performed whole-exome sequencing and DNA copy-number analysis on 60 ampullary carcinomas resected from clinically well-characterized Japanese and American patients. We next selected 92 genes and performed targeted sequencing to validate significantly mutated genes in an additional 112 cancers. The prevalence of driver gene mutations in carcinomas with the intestinal phenotype is different from those with the pancreatobiliary phenotype. We identified a characteristic significantly mutated driver gene (ELF3) as well as previously known driver genes (TP53, KRAS, APC, and others). Functional studies demonstrated that ELF3 silencing in normal human epithelial cells enhances their motility and invasion.
Collapse
Affiliation(s)
- Shinichi Yachida
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo 1040045, Japan; Division of Cancer Genomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 1040045, Japan.
| | - Laura D Wood
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Masami Suzuki
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo 1040045, Japan
| | - Erina Takai
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo 1040045, Japan
| | - Yasushi Totoki
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo 1040045, Japan
| | - Mamoru Kato
- Department of Bioinformatics, National Cancer Center Research Institute, Tokyo 1040045, Japan
| | - Claudio Luchini
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yasuhito Arai
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo 1040045, Japan
| | - Hiromi Nakamura
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo 1040045, Japan
| | - Natsuko Hama
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo 1040045, Japan
| | - Asmaa Elzawahry
- Department of Bioinformatics, National Cancer Center Research Institute, Tokyo 1040045, Japan
| | - Fumie Hosoda
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo 1040045, Japan
| | - Tomoki Shirota
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo 1040045, Japan
| | - Nobuhiko Morimoto
- Division of Medical Elemental Technology Development, Department of Advanced Analysis Technology, R&D Group, Olympus Corporation, Tokyo 1630914, Japan
| | - Kunio Hori
- Division of Medical Elemental Technology Development, Department of Advanced Analysis Technology, R&D Group, Olympus Corporation, Tokyo 1630914, Japan
| | - Jun Funazaki
- Division of Medical Elemental Technology Development, Department of Advanced Analysis Technology, R&D Group, Olympus Corporation, Tokyo 1630914, Japan
| | - Hikaru Tanaka
- Division of Virology, National Cancer Center Research Institute, Tokyo 1040045, Japan
| | - Chigusa Morizane
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo 1040045, Japan
| | - Takuji Okusaka
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo 1040045, Japan
| | - Satoshi Nara
- Hepatobiliary and Pancreatic Surgery Division, National Cancer Center Hospital, Tokyo 1040045, Japan
| | - Kazuaki Shimada
- Hepatobiliary and Pancreatic Surgery Division, National Cancer Center Hospital, Tokyo 1040045, Japan
| | - Nobuyoshi Hiraoka
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo 1040045, Japan
| | - Hirokazu Taniguchi
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo 1040045, Japan
| | - Ryota Higuchi
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo 1628666, Japan
| | - Minoru Oshima
- Department of Gastroenterological Surgery, Kagawa University, Kagawa 7610793, Japan
| | - Keiichi Okano
- Department of Gastroenterological Surgery, Kagawa University, Kagawa 7610793, Japan
| | - Seiko Hirono
- Second Department of Surgery, Wakayama Medical University, Wakayama 6418509, Japan
| | - Masamichi Mizuma
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai Miyagi 9808575, Japan
| | - Koji Arihiro
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima 7348551, Japan
| | - Masakazu Yamamoto
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo 1628666, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai Miyagi 9808575, Japan
| | - Hiroki Yamaue
- Second Department of Surgery, Wakayama Medical University, Wakayama 6418509, Japan
| | - Matthew J Weiss
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Christopher L Wolfgang
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Toru Furukawa
- Institute for Integrated Medical Science, Tokyo Women's Medical University, Tokyo 1628666, Japan
| | - Hitoshi Nakagama
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo 1040045, Japan
| | - Bert Vogelstein
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Ludwig Center and The Howard Hughes Medical Institute at Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21287, USA
| | - Tohru Kiyono
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo 1040045, Japan
| | - Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo 1040045, Japan; Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
| |
Collapse
|
87
|
Piggin CL, Roden DL, Gallego-Ortega D, Lee HJ, Oakes SR, Ormandy CJ. ELF5 isoform expression is tissue-specific and significantly altered in cancer. Breast Cancer Res 2016; 18:4. [PMID: 26738740 PMCID: PMC4704400 DOI: 10.1186/s13058-015-0666-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/16/2015] [Indexed: 12/14/2022] Open
Abstract
Background E74-like factor 5 (ELF5) is an epithelial-specific member of the E26 transforming sequence (ETS) transcription factor family and a critical regulator of cell fate in the placenta, pulmonary bronchi, and milk-producing alveoli of the mammary gland. ELF5 also plays key roles in malignancy, particularly in basal-like and endocrine-resistant forms of breast cancer. Almost all genes undergo alternative transcription or splicing, which increases the diversity of protein structure and function. Although ELF5 has multiple isoforms, this has not been considered in previous studies of ELF5 function. Methods RNA-sequencing data for 6757 samples from The Cancer Genome Atlas were analyzed to characterize ELF5 isoform expression in multiple normal tissues and cancers. Extensive in vitro analysis of ELF5 isoforms, including a 116-gene quantitative polymerase chain reaction panel, was performed in breast cancer cell lines. Results ELF5 isoform expression was found to be tissue-specific due to alternative promoter use but altered in multiple cancer types. The normal breast expressed one main isoform, while in breast cancer there were subtype-specific alterations in expression. Expression of other ETS factors was also significantly altered in breast cancer, with the basal-like subtype demonstrating a distinct ETS expression profile. In vitro inducible expression of the full-length isoforms 1 and 2, as well as isoform 3 (lacking the Pointed domain) had similar phenotypic and transcriptional effects. Conclusions Alternative promoter use, conferring differential regulatory responses, is the main mechanism governing ELF5 action rather than differential transcriptional activity of the isoforms. This understanding of expression and function at the isoform level is a vital first step in realizing the potential of transcription factors such as ELF5 as prognostic markers or therapeutic targets in cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0666-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Catherine L Piggin
- Cancer Division, Garvan Institute of Medical Research/The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia.
| | - Daniel L Roden
- Cancer Division, Garvan Institute of Medical Research/The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia.
| | - David Gallego-Ortega
- Cancer Division, Garvan Institute of Medical Research/The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia.
| | - Heather J Lee
- Cancer Division, Garvan Institute of Medical Research/The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia. .,Babraham Institute, Cambridge, CB22 3AT, UK.
| | - Samantha R Oakes
- Cancer Division, Garvan Institute of Medical Research/The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia.
| | - Christopher J Ormandy
- Cancer Division, Garvan Institute of Medical Research/The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia.
| |
Collapse
|
88
|
Moriyama T, Metzger ML, Wu G, Nishii R, Qian M, Devidas M, Yang W, Cheng C, Cao X, Quinn E, Raimondi S, Gastier-Foster JM, Raetz E, Larsen E, Martin PL, Bowman WP, Winick N, Komada Y, Wang S, Edmonson M, Xu H, Mardis E, Fulton R, Pui CH, Mullighan C, Evans WE, Zhang J, Hunger SP, Relling MV, Nichols KE, Loh ML, Yang JJ. Germline genetic variation in ETV6 and risk of childhood acute lymphoblastic leukaemia: a systematic genetic study. Lancet Oncol 2015; 16:1659-66. [PMID: 26522332 PMCID: PMC4684709 DOI: 10.1016/s1470-2045(15)00369-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/11/2015] [Accepted: 09/21/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND Hereditary predisposition is rarely suspected for childhood acute lymphoblastic leukaemia (ALL). Recent reports of germline ETV6 variations associated with substantial familial clustering of haematological malignancies indicated that this gene is a potentially important genetic determinant for ALL susceptibility. Our aims in this study were to comprehensively identify ALL predisposition variants in ETV6 and to determine the extent to which they contributed to the overall risk of childhood ALL. METHODS Whole-exome sequencing of an index family with several cases of ALL was done to identify causal variants for ALL predisposition. Targeted sequencing of ETV6 was done in children from the Children's Oncology Group and St Jude Children's Research Hospital front-line ALL trials. Patients were included in this study on the basis of their enrolment in these clinical trials and the availability of germline DNA. ETV6 variant genotypes were compared with non-ALL controls to define ALL-related germline risk variants. ETV6 variant function was characterised bioinformatically and correlated with clinical and demographic features in children with ALL. FINDINGS We identified a novel non-sense ETV6 variant (p.Arg359X) with a high penetrance in an index family. Subsequent targeted sequencing of ETV6 in 4405 childhood ALL cases identified 31 exonic variants (four non-sense, 21 missense, one splice site, and five frameshift variants) that were potentially related to ALL risk in 35 cases (1%). 15 (48%) of 31 ALL-related ETV6 variants clustered in the erythroblast transformation specific domain and were predicted to be highly deleterious. Children with ALL-related ETV6 variants were significantly older at leukaemia diagnosis than those without (10·2 years [IQR 5·3-13·8] vs 4·7 years [3·0-8·7]; p=0·017). The hyperdiploid leukaemia karyotype was highly over-represented in ALL cases harbouring germline ETV6 risk variants compared with the wild-type group (nine [64%] of 14 cases vs 538 [27%] of 2007 cases; p=0·0050). INTERPRETATION Our findings indicated germline ETV6 variations as the basis of a novel genetic syndrome associated with predisposition to childhood ALL. The development of recommendations for clinical interventions and surveillance for individuals harbouring ALL-related ETV6 variants are needed. FUNDING US National Institutes of Health and American Lebanese Syrian Associated Charities.
Collapse
Affiliation(s)
- Takaya Moriyama
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA; Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Monika L Metzger
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Gang Wu
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Rina Nishii
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA; Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University Graduate School of Medicine, Tokyo, Japan
| | - Maoxiang Qian
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Meenakshi Devidas
- Department of Biostatistics, College of Medicine, Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Wenjian Yang
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Cheng Cheng
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Xueyuan Cao
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Emily Quinn
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Susana Raimondi
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Julie M Gastier-Foster
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, and Departments of Pathology and Pediatrics, Ohio State University, Columbus, OH, USA
| | - Elizabeth Raetz
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Eric Larsen
- Maine Children's Cancer Program, Scarborough, ME, USA
| | - Paul L Martin
- Department of Pediatrics, Duke University, Durham, NC, USA
| | | | - Naomi Winick
- Pediatric Hematology Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yoshihiro Komada
- Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Shuoguo Wang
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael Edmonson
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Heng Xu
- Department of Laboratory Medicine, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Elaine Mardis
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
| | - Robert Fulton
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
| | - Ching-Hon Pui
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA; Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA; Hematological Malignancies Program, Comprehensive Cancer Center, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles Mullighan
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA; Hematological Malignancies Program, Comprehensive Cancer Center, St Jude Children's Research Hospital, Memphis, TN, USA
| | - William E Evans
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA; Hematological Malignancies Program, Comprehensive Cancer Center, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jinghui Zhang
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephen P Hunger
- Department of Pediatrics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mary V Relling
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA; Hematological Malignancies Program, Comprehensive Cancer Center, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Kim E Nichols
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA; Hematological Malignancies Program, Comprehensive Cancer Center, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
89
|
Malemud CJ, Lewis AC, Wylie MA, Meszaros EC, Skomorovska-Prokvolit Y, Mesiano S. U0126, an Inhibitor of MEK1/2, Increases Tumor Necrosis Factor-α-Induced Apoptosis, but not Interleukin-6 Induced Apoptosis in C-28/I2 Human Chondrocytes. ACTA ACUST UNITED AC 2015; 1. [PMID: 26855970 DOI: 10.21767/2471-8153.100004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Activation of the SAPK/MAPK signaling pathway by pro-inflammatory cytokines is known to induce apoptosis in cultured articular chondrocytes. C-28/I2, an immortalized human juvenile chondrocyte cell line was employed to determine the extent to which recombinant human (rh) forms of the pro-inflammatory cytokines, tumor necrosis factor-α (rhTNF-α,), interleukin-6 (rhIL-6) and oncostatin M (rhOSM) induced apoptosis. METHODS The induction of apoptosis in the presence or absence of these cytokines was measured by the DAPI/TUNEL assay, by whether or not pro-caspase-3 was activated and by the extent to which poly-ADP-ribose polymerase (PARP) was degraded. FINDINGS Only rhTNF-α, and rhIL-6 significantly increased apoptosis in C-28/I2 chondrocytes, although rhOSM exhibited a strong trend (p=0.067) towards increasing the frequency of apoptotic chondrocytes. The number of apoptotic C28/I2 chondrocytes was significantly increased (p=1.3 × 10-5) by the combination of rhTNF-α and U0126 (10 μM) compared to rhTNF-α alone. However apoptosis was not further increased by combining rhIL-6 with U0126. The LI-COR® western blot system showed that U0126 (10 μM) inhibited the phosphorylation of extracellular signal-regulated kinase-2 (p-ERK2) by phorbol myristate acetate-treated immortalized myometrial cells, U0126 (10 μM) did not alter total U-ERK2. Western blot analysis also revealed that the increased frequency of apoptotic C-28/I2 chondrocytes induced by rhTNF-α and rhOSM, but not rhIL-6, was associated with PARP degradation. However, none of the cytokines resulted in pro-caspase-3 activation. CONCLUSION These results showed that rhTNF-α and rhIL-6 were strong inducers of apoptosis in the immortalized C-28/I2 human chondrocyte cell line. They also suggested that inhibiting ERK2 phosphorylation via U0126-mediated inhibition of MEK1/2 activity, increased rhTNF-α-induced C-28/I2 chondrocyte apoptosis.
Collapse
Affiliation(s)
- Charles J Malemud
- Arthritis Research Laboratory, Department of Medicine, Division of Rheumatic Diseases; Department of Anatomy, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 USA
| | - Aaron C Lewis
- Arthritis Research Laboratory, Department of Medicine, Division of Rheumatic Diseases
| | - Meredith A Wylie
- Arthritis Research Laboratory, Department of Medicine, Division of Rheumatic Diseases
| | - Evan C Meszaros
- Arthritis Research Laboratory, Department of Medicine, Division of Rheumatic Diseases
| | | | - Sam Mesiano
- Department of Reproductive Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 USA
| |
Collapse
|
90
|
Dittmer J. The role of the transcription factor Ets1 in carcinoma. Semin Cancer Biol 2015; 35:20-38. [PMID: 26392377 DOI: 10.1016/j.semcancer.2015.09.010] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 12/12/2022]
Abstract
Ets1 belongs to the large family of the ETS domain family of transcription factors and is involved in cancer progression. In most carcinomas, Ets1 expression is linked to poor survival. In breast cancer, Ets1 is primarily expressed in the triple-negative subtype, which is associated with unfavorable prognosis. Ets1 contributes to the acquisition of cancer cell invasiveness, to EMT (epithelial-to-mesenchymal transition), to the development of drug resistance and neo-angiogenesis. The aim of this review is to summarize the current knowledge on the functions of Ets1 in carcinoma progression and on the mechanisms that regulate Ets1 activity in cancer.
Collapse
Affiliation(s)
- Jürgen Dittmer
- Clinic for Gynecology, Martin Luther University Halle-Wittenberg, Germany.
| |
Collapse
|
91
|
Non-canonical NF-κB signalling and ETS1/2 cooperatively drive C250T mutant TERT promoter activation. Nat Cell Biol 2015; 17:1327-38. [PMID: 26389665 DOI: 10.1038/ncb3240] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/19/2015] [Indexed: 12/13/2022]
Abstract
Transcriptional reactivation of TERT, the catalytic subunit of telomerase, is necessary for cancer progression in about 90% of human cancers. The recent discovery of two prevalent somatic mutations-C250T and C228T-in the TERT promoter in various cancers has provided insight into a plausible mechanism of TERT reactivation. Although the two hotspot mutations create a similar binding motif for E-twenty-six (ETS) transcription factors, we show that they are functionally distinct, in that the C250T unlike the C228T TERT promoter is driven by non-canonical NF-κB signalling. We demonstrate that binding of ETS to the mutant TERT promoter is insufficient in driving its transcription but this process requires non-canonical NF-κB signalling for stimulus responsiveness, sustained telomerase activity and hence cancer progression. Our findings highlight a previously unrecognized role of non-canonical NF-κB signalling in tumorigenesis and elucidate a fundamental mechanism for TERT reactivation in cancers, which if targeted could have immense therapeutic implications.
Collapse
|
92
|
Liu M, Gao W, van Velkinburgh JC, Wu Y, Ni B, Tian Y. Role of Ets Proteins in Development, Differentiation, and Function of T-Cell Subsets. Med Res Rev 2015; 36:193-220. [PMID: 26301869 DOI: 10.1002/med.21361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 07/12/2015] [Accepted: 07/23/2015] [Indexed: 12/18/2022]
Abstract
Through positive selection, double-positive cells in the thymus differentiate into CD4(+) or CD8(+) T single-positive cells that subsequently develop into different types of effective T cells, such as T-helper and cytotoxic T lymphocyte cells, that play distinctive roles in the immune system. Development, differentiation, and function of thymocytes and CD4(+) and CD8(+) T cells are controlled by a multitude of secreted and intracellular factors, ranging from cytokine signaling modules to transcription factors and epigenetic modifiers. Members of the E26 transformation specific (Ets) family of transcription factors, in particular, are potent regulators of these CD4(+) or CD8(+) T-cell processes. In this review, we summarize and discuss the functions and underlying mechanisms of the Ets family members that have been characterized as involved in these processes. Ongoing research of these factors is expected to identify practical applications for the Ets family members as novel therapeutic targets for inflammation-related diseases.
Collapse
Affiliation(s)
- Mian Liu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, P.R. China.,Battalion 10 of Cadet Brigade, Third Military Medical University, Chongqing, 400038, P.R. China
| | - Weiwu Gao
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, P.R. China
| | | | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, P.R. China
| | - Bing Ni
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, P.R. China
| | - Yi Tian
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, P.R. China
| |
Collapse
|
93
|
Noetzli L, Lo RW, Lee-Sherick AB, Callaghan M, Noris P, Savoia A, Rajpurkar M, Jones K, Gowan K, Balduini C, Pecci A, Gnan C, De Rocco D, Doubek M, Li L, Lu L, Leung R, Landolt-Marticorena C, Hunger S, Heller P, Gutierrez-Hartmann A, Xiayuan L, Pluthero FG, Rowley JW, Weyrich AS, Kahr WHA, Porter CC, Di Paola J. Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia. Nat Genet 2015; 47:535-538. [PMID: 25807284 PMCID: PMC4631613 DOI: 10.1038/ng.3253] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/25/2015] [Indexed: 12/19/2022]
Abstract
Some familial platelet disorders are associated with predisposition to leukemia, myelodysplastic syndrome (MDS) or dyserythropoietic anemia. We identified a family with autosomal dominant thrombocytopenia, high erythrocyte mean corpuscular volume (MCV) and two occurrences of B cell-precursor acute lymphoblastic leukemia (ALL). Whole-exome sequencing identified a heterozygous single-nucleotide change in ETV6 (ets variant 6), c.641C>T, encoding a p.Pro214Leu substitution in the central domain, segregating with thrombocytopenia and elevated MCV. A screen of 23 families with similar phenotypes identified 2 with ETV6 mutations. One family also had a mutation encoding p.Pro214Leu and one individual with ALL. The other family had a c.1252A>G transition producing a p.Arg418Gly substitution in the DNA-binding domain, with alternative splicing and exon skipping. Functional characterization of these mutations showed aberrant cellular localization of mutant and endogenous ETV6, decreased transcriptional repression and altered megakaryocyte maturation. Our findings underscore a key role for ETV6 in platelet formation and leukemia predisposition.
Collapse
Affiliation(s)
- Leila Noetzli
- Department of Pediatrics, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado, CO, USA
- Human Medical Genetics and Genomics Program, University of Colorado AMC, Aurora, Colorado, USA
| | - Richard W. Lo
- Program in Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Alisa B. Lee-Sherick
- Department of Pediatrics, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado, CO, USA
| | - Michael Callaghan
- Children's Hospital of Michigan, Wayne State University, Detroit, MI, USA
| | - Patrizia Noris
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Anna Savoia
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health- IRCCS Burlo Garofolo, Trieste, Italy
| | - Madhvi Rajpurkar
- Children's Hospital of Michigan, Wayne State University, Detroit, MI, USA
| | - Kenneth Jones
- Department of Biochemistry and Molecular Genetics, University of Colorado AMC, Aurora, Colorado, USA
| | - Katherine Gowan
- Department of Biochemistry and Molecular Genetics, University of Colorado AMC, Aurora, Colorado, USA
| | - Carlo Balduini
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Alessandro Pecci
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Chiara Gnan
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health- IRCCS Burlo Garofolo, Trieste, Italy
| | - Daniela De Rocco
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health- IRCCS Burlo Garofolo, Trieste, Italy
| | - Michael Doubek
- Department of Internal Medicine, Haematology/Oncology, University Hospital Brno, CZ
| | - Ling Li
- Program in Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lily Lu
- Program in Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Richard Leung
- Program in Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Carolina Landolt-Marticorena
- Department of Medicine, University of Toronto, Division of Rheumatology University Health Network, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Stephen Hunger
- Department of Pediatrics, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado, CO, USA
| | - Paula Heller
- Instituto de Investigaciones Medicas Alfredo Lanari, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Arthur Gutierrez-Hartmann
- Department of Biochemistry and Molecular Genetics, University of Colorado AMC, Aurora, Colorado, USA
- Departments of Medicine, University of Colorado, AMC, Aurora, Colorado, USA
| | - Liang Xiayuan
- Department of Pathology, University of Colorado, AMC, Aurora, Colorado, USA
| | - Fred G. Pluthero
- Program in Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jesse W. Rowley
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Andrew S. Weyrich
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Walter H. A. Kahr
- Program in Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Paediatrics, Division of Haematology/Oncology, University of Toronto and The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christopher C. Porter
- Department of Pediatrics, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado, CO, USA
| | - Jorge Di Paola
- Department of Pediatrics, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado, CO, USA
- Human Medical Genetics and Genomics Program, University of Colorado AMC, Aurora, Colorado, USA
| |
Collapse
|
94
|
Winter AD, Gillan V, Maitland K, Emes RD, Roberts B, McCormack G, Weir W, Protasio AV, Holroyd N, Berriman M, Britton C, Devaney E. A novel member of the let-7 microRNA family is associated with developmental transitions in filarial nematode parasites. BMC Genomics 2015; 16:331. [PMID: 25896062 PMCID: PMC4428239 DOI: 10.1186/s12864-015-1536-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/13/2015] [Indexed: 12/18/2022] Open
Abstract
Background Filarial nematodes are important pathogens in the tropics transmitted to humans via the bite of blood sucking arthropod vectors. The molecular mechanisms underpinning survival and differentiation of these parasites following transmission are poorly understood. microRNAs are small non-coding RNA molecules that regulate target mRNAs and we set out to investigate whether they play a role in the infection event. Results microRNAs differentially expressed during the early post-infective stages of Brugia pahangi L3 were identified by microarray analysis. One of these, bpa-miR-5364, was selected for further study as it is upregulated ~12-fold at 24 hours post-infection, is specific to clade III nematodes, and is a novel member of the let-7 family, which are known to have key developmental functions in the free-living nematode Caenorhabditis elegans. Predicted mRNA targets of bpa-miR-5364 were identified using bioinformatics and comparative genomics approaches that relied on the conservation of miR-5364 binding sites in the orthologous mRNAs of other filarial nematodes. Finally, we confirmed the interaction between bpa-miR-5364 and three of its predicted targets using a dual luciferase assay. Conclusions These data provide new insight into the molecular mechanisms underpinning the transmission of third stage larvae of filarial nematodes from vector to mammal. This study is the first to identify parasitic nematode mRNAs that are verified targets of specific microRNAs and demonstrates that post-transcriptional control of gene expression via stage-specific expression of microRNAs may be important in the success of filarial infection. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1536-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alan D Winter
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Bearsden Road, Glasgow, G61 1QH, UK.
| | - Victoria Gillan
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Bearsden Road, Glasgow, G61 1QH, UK.
| | - Kirsty Maitland
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Bearsden Road, Glasgow, G61 1QH, UK.
| | - Richard D Emes
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK. .,Advanced Data Analysis Centre, University of Nottingham, Nottingham, UK.
| | - Brett Roberts
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Bearsden Road, Glasgow, G61 1QH, UK.
| | - Gillian McCormack
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Bearsden Road, Glasgow, G61 1QH, UK.
| | - William Weir
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Bearsden Road, Glasgow, G61 1QH, UK.
| | - Anna V Protasio
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
| | - Nancy Holroyd
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
| | - Collette Britton
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Bearsden Road, Glasgow, G61 1QH, UK.
| | - Eileen Devaney
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Bearsden Road, Glasgow, G61 1QH, UK.
| |
Collapse
|
95
|
Emerging interplay of genetics and epigenetics in gliomas: a new hope for targeted therapy. Semin Pediatr Neurol 2015; 22:14-22. [PMID: 25976256 DOI: 10.1016/j.spen.2014.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diffusely infiltrating gliomas are inherently heterogeneous tumors, and there are ongoing efforts to establish a classification scheme that incorporates new molecular and traditional histologic features. In less than a decade, high-throughput sequencing of gliomas has transformed the field, uncovering several pivotal, highly prevalent genetic alterations that stratify patients into different prognostic and treatment-response categories. We highlight the genetic aberrations recently discovered in isocitrate dehydrogenase, alpha thalassemia/mental retardation syndrome X-linked, death-domain-associated protein, histone H3.3, and telomerase reverse transcriptase and discuss how these mutations lead to unexpected changes in the epigenetic landscape in gliomas. We describe the opportunities these discoveries might provide for the development of novel targeted therapy aimed at reversing early epigenetic aberrations in glioma precursor cells. Finally, we discuss the challenges for effective treatment of this fatal disease posed by intratumoral heterogeneity and clonal evolution.
Collapse
|
96
|
Craig MP, Grajevskaja V, Liao HK, Balciuniene J, Ekker SC, Park JS, Essner JJ, Balciunas D, Sumanas S. Etv2 and fli1b function together as key regulators of vasculogenesis and angiogenesis. Arterioscler Thromb Vasc Biol 2015; 35:865-76. [PMID: 25722433 DOI: 10.1161/atvbaha.114.304768] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The E26 transformation-specific domain transcription factor Etv2/Etsrp/ER71 is a master regulator of vascular endothelial differentiation during vasculogenesis, although its later role in sprouting angiogenesis remains unknown. Here, we investigated in the zebrafish model a role for Etv2 and related E26 transformation-specific factors, Fli1a and Fli1b in developmental angiogenesis. APPROACH AND RESULTS Zebrafish fli1a and fli1b mutants were obtained using transposon-mediated gene trap approach. Individual fli1a and fli1b homozygous mutant embryos display normal vascular patterning, yet the angiogenic recovery observed in older etv2 mutant embryos does not occur in embryos lacking both etv2 and fli1b. Etv2 and fli1b double-deficient embryos fail to form any angiogenic sprouts and show greatly increased apoptosis throughout the axial vasculature. In contrast, fli1a mutation did not affect the recovery of etv2 mutant phenotype. Overexpression analyses indicate that both etv2 and fli1b, but not fli1a, induce the expression of multiple vascular markers and of each other. Temporal inhibition of Etv2 function using photoactivatable morpholinos indicates that the function of Etv2 and Fli1b during angiogenesis is independent from the early requirement of Etv2 during vasculogenesis. RNA-Seq analysis and chromatin immunoprecipitation suggest that Etv2 and Fli1b share the same transcriptional targets and bind to the same E26 transformation-specific sites. CONCLUSIONS Our data argue that there are 2 phases of early vascular development with distinct requirements of E26 transformation-specific transcription factors. Etv2 alone is required for early vasculogenesis, whereas Etv2 and Fli1b function redundantly during late vasculogenesis and early embryonic angiogenesis.
Collapse
Affiliation(s)
- Michael P Craig
- From the Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, OH (M.P.C.); Division of Developmental Biology (M.P.C., J.-S.P.), Department of Pediatrics (S.S.), Department of Pediatric Urology (J.-S.P.), Cincinnati Children's Hospital Medical Center, OH; Department of Biology, Temple University, Philadelphia, PA (V.G., J.B., D.B.); Department of Genetics, Development and Cell Biology, Iowa State University, Ames (H.-K.L., J.J.E.); Department of Zoology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania (V.G.); and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN (S.C.E.)
| | - Viktorija Grajevskaja
- From the Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, OH (M.P.C.); Division of Developmental Biology (M.P.C., J.-S.P.), Department of Pediatrics (S.S.), Department of Pediatric Urology (J.-S.P.), Cincinnati Children's Hospital Medical Center, OH; Department of Biology, Temple University, Philadelphia, PA (V.G., J.B., D.B.); Department of Genetics, Development and Cell Biology, Iowa State University, Ames (H.-K.L., J.J.E.); Department of Zoology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania (V.G.); and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN (S.C.E.)
| | - Hsin-Kai Liao
- From the Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, OH (M.P.C.); Division of Developmental Biology (M.P.C., J.-S.P.), Department of Pediatrics (S.S.), Department of Pediatric Urology (J.-S.P.), Cincinnati Children's Hospital Medical Center, OH; Department of Biology, Temple University, Philadelphia, PA (V.G., J.B., D.B.); Department of Genetics, Development and Cell Biology, Iowa State University, Ames (H.-K.L., J.J.E.); Department of Zoology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania (V.G.); and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN (S.C.E.)
| | - Jorune Balciuniene
- From the Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, OH (M.P.C.); Division of Developmental Biology (M.P.C., J.-S.P.), Department of Pediatrics (S.S.), Department of Pediatric Urology (J.-S.P.), Cincinnati Children's Hospital Medical Center, OH; Department of Biology, Temple University, Philadelphia, PA (V.G., J.B., D.B.); Department of Genetics, Development and Cell Biology, Iowa State University, Ames (H.-K.L., J.J.E.); Department of Zoology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania (V.G.); and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN (S.C.E.)
| | - Stephen C Ekker
- From the Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, OH (M.P.C.); Division of Developmental Biology (M.P.C., J.-S.P.), Department of Pediatrics (S.S.), Department of Pediatric Urology (J.-S.P.), Cincinnati Children's Hospital Medical Center, OH; Department of Biology, Temple University, Philadelphia, PA (V.G., J.B., D.B.); Department of Genetics, Development and Cell Biology, Iowa State University, Ames (H.-K.L., J.J.E.); Department of Zoology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania (V.G.); and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN (S.C.E.)
| | - Joo-Seop Park
- From the Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, OH (M.P.C.); Division of Developmental Biology (M.P.C., J.-S.P.), Department of Pediatrics (S.S.), Department of Pediatric Urology (J.-S.P.), Cincinnati Children's Hospital Medical Center, OH; Department of Biology, Temple University, Philadelphia, PA (V.G., J.B., D.B.); Department of Genetics, Development and Cell Biology, Iowa State University, Ames (H.-K.L., J.J.E.); Department of Zoology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania (V.G.); and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN (S.C.E.)
| | - Jeffrey J Essner
- From the Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, OH (M.P.C.); Division of Developmental Biology (M.P.C., J.-S.P.), Department of Pediatrics (S.S.), Department of Pediatric Urology (J.-S.P.), Cincinnati Children's Hospital Medical Center, OH; Department of Biology, Temple University, Philadelphia, PA (V.G., J.B., D.B.); Department of Genetics, Development and Cell Biology, Iowa State University, Ames (H.-K.L., J.J.E.); Department of Zoology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania (V.G.); and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN (S.C.E.)
| | - Darius Balciunas
- From the Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, OH (M.P.C.); Division of Developmental Biology (M.P.C., J.-S.P.), Department of Pediatrics (S.S.), Department of Pediatric Urology (J.-S.P.), Cincinnati Children's Hospital Medical Center, OH; Department of Biology, Temple University, Philadelphia, PA (V.G., J.B., D.B.); Department of Genetics, Development and Cell Biology, Iowa State University, Ames (H.-K.L., J.J.E.); Department of Zoology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania (V.G.); and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN (S.C.E.)
| | - Saulius Sumanas
- From the Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, OH (M.P.C.); Division of Developmental Biology (M.P.C., J.-S.P.), Department of Pediatrics (S.S.), Department of Pediatric Urology (J.-S.P.), Cincinnati Children's Hospital Medical Center, OH; Department of Biology, Temple University, Philadelphia, PA (V.G., J.B., D.B.); Department of Genetics, Development and Cell Biology, Iowa State University, Ames (H.-K.L., J.J.E.); Department of Zoology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania (V.G.); and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN (S.C.E.).
| |
Collapse
|
97
|
β6 integrin induces the expression of metalloproteinase-3 and metalloproteinase-9 in colon cancer cells via ERK-ETS1 pathway. Cancer Lett 2014; 354:427-37. [PMID: 25135220 DOI: 10.1016/j.canlet.2014.08.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 08/12/2014] [Accepted: 08/12/2014] [Indexed: 01/09/2023]
Abstract
We previously reported that β6 integrin played an important role in the progression of colon cancer. In this study, we demonstrated that β6 integrin induced the expression of MMP-3/MMP-9 and the invasion of colon cancer cells. Moreover, that function was abolished by the inhibition of ERK/MAPK pathways or knockdown of ETS1, an important transcription factor of MMP genes. Here, we showed that β6 induced phosphorylation of ETS1 via the ERK/MAPK pathways, through which the MMP-3/MMP-9 promoters were stimulated, thereby leading to the up-regulation of MMP-3/MMP-9, and subsequent the invasion of colon cancer cells.
Collapse
|
98
|
Heidenreich B, Rachakonda PS, Hemminki K, Kumar R. TERT promoter mutations in cancer development. Curr Opin Genet Dev 2013; 24:30-7. [PMID: 24657534 DOI: 10.1016/j.gde.2013.11.005] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/18/2013] [Accepted: 11/03/2013] [Indexed: 12/20/2022]
Abstract
Human telomerase reverse transcriptase (TERT) encodes a rate-limiting catalytic subunit of telomerase that maintains genomic integrity. TERT expression is mostly repressed in somatic cells with exception of proliferative cells in self-renewing tissues and cancer. Immortality associated with cancer cells has been attributed to telomerase over-expression. The precise mechanism behind the TERT activation in cancers has mostly remained unknown. The newly described germline and recurrent somatic mutations in melanoma and other cancers in the TERT promoter that create de novo E-twenty six/ternary complex factors (Ets/TCF) binding sites, provide an insight into the possible cause of tumor-specific increased TERT expression. In this review we discuss the discovery and possible implications of the TERT promoter mutations in melanoma and other cancers.
Collapse
Affiliation(s)
- Barbara Heidenreich
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - P Sivaramakrishna Rachakonda
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany.
| |
Collapse
|