51
|
Berton P, Shamshina JL. Ionic Liquids as Tools to Incorporate Pharmaceutical Ingredients into Biopolymer-Based Drug Delivery Systems. Pharmaceuticals (Basel) 2023; 16:272. [PMID: 37259417 PMCID: PMC9963465 DOI: 10.3390/ph16020272] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 04/05/2024] Open
Abstract
This mini-review focuses on the various roles that ionic liquids (ILs) play in the development and applications of biopolymer-based drug delivery systems (DDSs). Biopolymers are particularly attractive as drug delivery matrices due to their biocompatibility, low immunogenicity, biodegradability, and strength, whereas ILs can assist the formation of drug delivery systems. In this work, we showcase the different strategies that were explored using ILs in biopolymer-based DDSs, including impregnation of active pharmaceutical ingredients (APIs)-ILs into biopolymeric materials, employment of the ILs to simplify the process of making the biopolymer-based DDSs, and using the ILs either as dopants or as anchoring agents.
Collapse
Affiliation(s)
- Paula Berton
- Chemical and Petroleum Engineering Department, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Julia L. Shamshina
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
52
|
Monteiro CJP, Neves MGPMS, Nativi C, Almeida A, Faustino MAF. Porphyrin Photosensitizers Grafted in Cellulose Supports: A Review. Int J Mol Sci 2023; 24:3475. [PMID: 36834886 PMCID: PMC9967812 DOI: 10.3390/ijms24043475] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Cellulose is the most abundant natural biopolymer and owing to its compatibility with biological tissues, it is considered a versatile starting material for developing new and sustainable materials from renewable resources. With the advent of drug-resistance among pathogenic microorganisms, recent strategies have focused on the development of novel treatment options and alternative antimicrobial therapies, such as antimicrobial photodynamic therapy (aPDT). This approach encompasses the combination of photoactive dyes and harmless visible light, in the presence of dioxygen, to produce reactive oxygen species that can selectively kill microorganisms. Photosensitizers for aPDT can be adsorbed, entrapped, or linked to cellulose-like supports, providing an increase in the surface area, with improved mechanical strength, barrier, and antimicrobial properties, paving the way to new applications, such as wound disinfection, sterilization of medical materials and surfaces in different contexts (industrial, household and hospital), or prevention of microbial contamination in packaged food. This review will report the development of porphyrinic photosensitizers supported on cellulose/cellulose derivative materials to achieve effective photoinactivation. A brief overview of the efficiency of cellulose based photoactive dyes for cancer, using photodynamic therapy (PDT), will be also discussed. Particular attention will be devoted to the synthetic routes behind the preparation of the photosensitizer-cellulose functional materials.
Collapse
Affiliation(s)
- Carlos J. P. Monteiro
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3010-193 Aveiro, Portugal
| | | | - Cristina Nativi
- Department of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Italy
| | - Adelaide Almeida
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | | |
Collapse
|
53
|
Nikolits I, Radwan S, Liebner F, Dietrich W, Egger D, Chariyev-Prinz F, Kasper C. Hydrogels from TEMPO-Oxidized Nanofibrillated Cellulose Support In Vitro Cultivation of Encapsulated Human Mesenchymal Stem Cells. ACS APPLIED BIO MATERIALS 2023; 6:543-551. [PMID: 36745634 PMCID: PMC9945099 DOI: 10.1021/acsabm.2c00854] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) are the most prominent type of adult stem cells for clinical applications. Three-dimensional (3D) cultivation of MSCs in biomimetic hydrogels provides a more physiologically relevant cultivation microenvironment for in vitro testing and modeling, thus overcoming the limitations of traditional planar cultivation methods. Cellulose nanofibers are an excellent candidate biomaterial for synthesis of hydrogels for this application, due to their biocompatibility, tunable properties, availability, and low cost. Herein, we demonstrate the capacity of hydrogels prepared from 2,2,6,6-tetramethylpiperidine-1-oxyl -oxidized and subsequently individualized cellulose-nanofibrils to support physiologically relevant 3D in vitro cultivation of human MSCs at low solid contents (0.2-0.5 wt %). Our results show that MSCs can spread, proliferate, and migrate inside the cellulose hydrogels, while the metabolic activity and proliferative capacity of the cells as well as their morphological characteristics benefit more in the lower bulk cellulose concentration hydrogels.
Collapse
Affiliation(s)
- Ilias Nikolits
- Institute
of Cell and Tissue Culture Technologies, Department of Biotechnology, University of Natural Resources and Life Sciences
BOKU Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Sara Radwan
- Department
of Life Science Engineering, University
of Applied Sciences Technikum Vienna, Höchstädtplatz 6, 1200 Vienna, Austria
| | - Falk Liebner
- Institute
of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences
BOKU Vienna, Konrad Lorenz Straße 24, 3430 Tulln, Austria
| | - Wolf Dietrich
- Department
of Gynecology and Obstetrics, Karl Landsteiner
University of Health Sciences, Alter Ziegelweg 10, 3430 Tulln, Austria
| | - Dominik Egger
- Institute
of Cell and Tissue Culture Technologies, Department of Biotechnology, University of Natural Resources and Life Sciences
BOKU Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Farhad Chariyev-Prinz
- Institute
of Cell and Tissue Culture Technologies, Department of Biotechnology, University of Natural Resources and Life Sciences
BOKU Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Cornelia Kasper
- Institute
of Cell and Tissue Culture Technologies, Department of Biotechnology, University of Natural Resources and Life Sciences
BOKU Vienna, Muthgasse 18, 1190 Vienna, Austria,
| |
Collapse
|
54
|
The Fabrication of Gelatin-Elastin-Nanocellulose Composite Bioscaffold as a Potential Acellular Skin Substitute. Polymers (Basel) 2023; 15:polym15030779. [PMID: 36772084 PMCID: PMC9920652 DOI: 10.3390/polym15030779] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Gelatin usage in scaffold fabrication is limited due to its lack of enzymatic and thermal resistance, as well as its mechanical weakness. Hence, gelatin requires crosslinking and reinforcement with other materials. This study aimed to fabricate and characterise composite scaffolds composed of gelatin, elastin, and cellulose nanocrystals (CNC) and crosslinked with genipin. The scaffolds were fabricated using the freeze-drying method. The composite scaffolds were composed of different concentrations of CNC, whereas scaffolds made of pure gelatin and a gelatin-elastin mixture served as controls. The physicochemical and mechanical properties of the scaffolds, and their cellular biocompatibility with human dermal fibroblasts (HDF), were evaluated. The composite scaffolds demonstrated higher porosity and swelling capacity and improved enzymatic resistance compared to the controls. Although the group with 0.5% (w/v) CNC recorded the highest pore size homogeneity, the diameters of most of the pores in the composite scaffolds ranged from 100 to 200 μm, which is sufficient for cell migration. Tensile strength analysis revealed that increasing the CNC concentration reduced the scaffolds' stiffness. Chemical analyses revealed that despite chemical and structural alterations, both elastin and CNC were integrated into the gelatin scaffold. HDF cultured on the scaffolds expressed collagen type I and α-SMA proteins, indicating the scaffolds' biocompatibility with HDF. Overall, the addition of elastin and CNC improved the properties of gelatin-based scaffolds. The composite scaffolds are promising candidates for an acellular skin substitute.
Collapse
|
55
|
Cordeiro R, Alvites RD, Sousa AC, Lopes B, Sousa P, Maurício AC, Alves N, Moura C. Cellulose-Based Scaffolds: A Comparative Study for Potential Application in Articular Cartilage. Polymers (Basel) 2023; 15:781. [PMID: 36772083 PMCID: PMC9919712 DOI: 10.3390/polym15030781] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Osteoarthritis is a highly prevalent disease worldwide that leads to cartilage loss. Tissue engineering, involving scaffolds, cells, and stimuli, has shown to be a promising strategy for its repair. Thus, this study aims to manufacture and characterise different scaffolds with poly(ε-caprolactone) (PCL) with commercial cellulose (microcrystalline (McC) and methyl cellulose (MC) or cellulose from agro-industrial residues (corncob (CcC)) and at different percentages, 1%, 2%, and 3%. PCL scaffolds were used as a control. Morphologically, the produced scaffolds presented porosities within the desired for cell incorporation (57% to 65%). When submitted to mechanical tests, the incorporation of cellulose affects the compression resistance of the majority of scaffolds. Regarding tensile strength, McC2% showed the highest values. It was proven that all manufactured scaffolds suffered degradation after 7 days of testing because of enzymatic reactions. This degradation may be due to the dissolution of PCL in the organic solvent. Biological tests revealed that PCL, CcC1%, and McC3% are the best materials to combine with human dental pulp stem/stromal cells. Overall, results suggest that cellulose incorporation in PCL scaffolds promotes cellular adhesion/proliferation. Methyl cellulose scaffolds demonstrated some advantageous compressive properties (closer to native cartilaginous tissue) to proceed to further studies for application in cartilage repair.
Collapse
Affiliation(s)
- Rachel Cordeiro
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
| | - Rui D. Alvites
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Ana C. Sousa
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Bruna Lopes
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Patrícia Sousa
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Ana C. Maurício
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal
- Associate Laboratory for Advanced Production and Intelligent Systems (ARISE), 4050-313 Porto, Portugal
| | - Carla Moura
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal
- Associate Laboratory for Advanced Production and Intelligent Systems (ARISE), 4050-313 Porto, Portugal
- Applied Research Institute (i2A), Polytechnic Institute of Coimbra, Rua da Misericórdia, Lagar dos Cortiços–S. Martinho do Bispo, 3045-093 Coimbra, Portugal
| |
Collapse
|
56
|
Janmohammadi M, Nazemi Z, Salehi AOM, Seyfoori A, John JV, Nourbakhsh MS, Akbari M. Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery. Bioact Mater 2023; 20:137-163. [PMID: 35663339 PMCID: PMC9142858 DOI: 10.1016/j.bioactmat.2022.05.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/27/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
Natural bone constitutes a complex and organized structure of organic and inorganic components with limited ability to regenerate and restore injured tissues, especially in large bone defects. To improve the reconstruction of the damaged bones, tissue engineering has been introduced as a promising alternative approach to the conventional therapeutic methods including surgical interventions using allograft and autograft implants. Bioengineered composite scaffolds consisting of multifunctional biomaterials in combination with the cells and bioactive therapeutic agents have great promise for bone repair and regeneration. Cellulose and its derivatives are renewable and biodegradable natural polymers that have shown promising potential in bone tissue engineering applications. Cellulose-based scaffolds possess numerous advantages attributed to their excellent properties of non-toxicity, biocompatibility, biodegradability, availability through renewable resources, and the low cost of preparation and processing. Furthermore, cellulose and its derivatives have been extensively used for delivering growth factors and antibiotics directly to the site of the impaired bone tissue to promote tissue repair. This review focuses on the various classifications of cellulose-based composite scaffolds utilized in localized bone drug delivery systems and bone regeneration, including cellulose-organic composites, cellulose-inorganic composites, cellulose-organic/inorganic composites. We will also highlight the physicochemical, mechanical, and biological properties of the different cellulose-based scaffolds for bone tissue engineering applications.
Collapse
Affiliation(s)
- Mahsa Janmohammadi
- Faculty of New Sciences and Technologies, Semnan University, Semnan, P.O.Box: 19111-35131, Iran
| | - Zahra Nazemi
- Faculty of New Sciences and Technologies, Semnan University, Semnan, P.O.Box: 19111-35131, Iran
| | | | - Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Johnson V. John
- Terasaki Institute for Biomedical Innovations, Los Angeles, CA, 90050, USA
| | - Mohammad Sadegh Nourbakhsh
- Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, P.O.Box: 19111-35131, Iran
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Terasaki Institute for Biomedical Innovations, Los Angeles, CA, 90050, USA
- Biotechnology Center, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
| |
Collapse
|
57
|
Natural Biopolymers as Smart Coating Materials of Mesoporous Silica Nanoparticles for Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15020447. [PMID: 36839771 PMCID: PMC9965229 DOI: 10.3390/pharmaceutics15020447] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
In recent years, the functionalization of mesoporous silica nanoparticles (MSNs) with different types of responsive pore gatekeepers have shown great potential for the formulation of drug delivery systems (DDS) with minimal premature leakage and site-specific controlled release. New nanotechnological approaches have been developed with the objective of utilizing natural biopolymers as smart materials in drug delivery applications. Natural biopolymers are sensitive to various physicochemical and biological stimuli and are endowed with intrinsic biodegradability, biocompatibility, and low immunogenicity. Their use as biocompatible smart coatings has extensively been investigated in the last few years. This review summarizes the MSNs coating procedures with natural polysaccharides and protein-based biopolymers, focusing on their application as responsive materials to endogenous stimuli. Biopolymer-coated MSNs, which conjugate the nanocarrier features of mesoporous silica with the biocompatibility and controlled delivery provided by natural coatings, have shown promising therapeutic outcomes and the potential to emerge as valuable candidates for the selective treatment of various diseases.
Collapse
|
58
|
Gonçalves AM, Leal F, Moreira A, Schellhorn T, Blahnová VH, Zeiringer S, Vocetková K, Tetyczka C, Simaite A, Buzgo M, Roblegg E, Costa PF, Ertl P, Filová E, Kohl Y. Potential of Electrospun Fibrous Scaffolds for Intestinal, Skin, and Lung Epithelial Tissue Modeling. ADVANCED NANOBIOMED RESEARCH 2023. [DOI: 10.1002/anbr.202200104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
| | - Filipa Leal
- BIOFABICS Rua Alfredo Allen 455 4200-135 Porto Portugal
| | | | - Tobias Schellhorn
- Institute of Chemical Technologies and Analytics Vienna University of Technology Getreidemarkt 9/164 1060 Vienna Austria
| | - Veronika Hefka Blahnová
- Institute of Experimental Medicine of the Czech Academy of Sciences Vídeňská 1083 14220 Prague Czechia
| | - Scarlett Zeiringer
- Institute of Pharmaceutical Sciences University of Graz Universitaetsplatz 1 8010 Graz Austria
| | - Karolina Vocetková
- Institute of Experimental Medicine of the Czech Academy of Sciences Vídeňská 1083 14220 Prague Czechia
| | - Carolin Tetyczka
- Institute of Pharmaceutical Sciences University of Graz Universitaetsplatz 1 8010 Graz Austria
| | - Aiva Simaite
- InoCure s.r.o. Politických vězňů 935/13 11000 Praha 1 Prague Czech Republic
| | - Matej Buzgo
- BIOFABICS Rua Alfredo Allen 455 4200-135 Porto Portugal
| | - Eva Roblegg
- Institute of Pharmaceutical Sciences University of Graz Universitaetsplatz 1 8010 Graz Austria
| | | | - Peter Ertl
- Institute of Chemical Technologies and Analytics Vienna University of Technology Getreidemarkt 9/164 1060 Vienna Austria
| | - Eva Filová
- Institute of Experimental Medicine of the Czech Academy of Sciences Vídeňská 1083 14220 Prague Czechia
| | - Yvonne Kohl
- Fraunhofer Institute for Biomedical Engineering IBMT Joseph-von-Fraunhofer-Weg 1 66280 Sulzbach/Saar Germany
| |
Collapse
|
59
|
Current Status of Polysaccharides-Based Drug Delivery Systems for Nervous Tissue Injuries Repair. Pharmaceutics 2023; 15:pharmaceutics15020400. [PMID: 36839722 PMCID: PMC9966335 DOI: 10.3390/pharmaceutics15020400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Neurological disorders affecting both CNS and PNS still represent one of the most critical and challenging pathologies, therefore many researchers have been focusing on this field in recent decades. Spinal cord injury (SCI) and peripheral nerve injury (PNI) are severely disabling diseases leading to dramatic and, in most cases, irreversible sensory, motor, and autonomic impairments. The challenging pathophysiologic consequences involved in SCI and PNI are demanding the development of more effective therapeutic strategies since, as yet, a therapeutic strategy that can effectively lead to a complete recovery from such pathologies is not available. Drug delivery systems (DDSs) based on polysaccharides have been receiving more and more attention for a wide range of applications, due to their outstanding physical-chemical properties. This review aims at providing an overview of the most studied polysaccharides used for the development of DDSs intended for the repair and regeneration of a damaged nervous system, with particular attention to spinal cord and peripheral nerve injury treatments. In particular, DDSs based on chitosan and their association with alginate, dextran, agarose, cellulose, and gellan were thoroughly revised.
Collapse
|
60
|
Development of Scaffolds from Bio-Based Natural Materials for Tissue Regeneration Applications: A Review. Gels 2023; 9:gels9020100. [PMID: 36826270 PMCID: PMC9957409 DOI: 10.3390/gels9020100] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Tissue damage and organ failure are major problems that many people face worldwide. Most of them benefit from treatment related to modern technology's tissue regeneration process. Tissue engineering is one of the booming fields widely used to replace damaged tissue. Scaffold is a base material in which cells and growth factors are embedded to construct a substitute tissue. Various materials have been used to develop scaffolds. Bio-based natural materials are biocompatible, safe, and do not release toxic compounds during biodegradation. Therefore, it is highly recommendable to fabricate scaffolds using such materials. To date, there have been no singular materials that fulfill all the features of the scaffold. Hence, combining two or more materials is encouraged to obtain the desired characteristics. To design a reliable scaffold by combining different materials, there is a need to choose a good fabrication technique. In this review article, the bio-based natural materials and fine fabrication techniques that are currently used in developing scaffolds for tissue regeneration applications, along with the number of articles published on each material, are briefly discussed. It is envisaged to gain explicit knowledge of developing scaffolds from bio-based natural materials for tissue regeneration applications.
Collapse
|
61
|
Zhou Z, Zheng J, Meng X, Wang F. Effects of Electrical Stimulation on Articular Cartilage Regeneration with a Focus on Piezoelectric Biomaterials for Articular Cartilage Tissue Repair and Engineering. Int J Mol Sci 2023; 24:ijms24031836. [PMID: 36768157 PMCID: PMC9915254 DOI: 10.3390/ijms24031836] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
There is increasing evidence that chondrocytes within articular cartilage are affected by endogenous force-related electrical potentials. Furthermore, electrical stimulation (ES) promotes the proliferation of chondrocytes and the synthesis of extracellular matrix (ECM) molecules, which accelerate the healing of cartilage defects. These findings suggest the potential application of ES in cartilage repair. In this review, we summarize the pathogenesis of articular cartilage injuries and the current clinical strategies for the treatment of articular cartilage injuries. We then focus on the application of ES in the repair of articular cartilage in vivo. The ES-induced chondrogenic differentiation of mesenchymal stem cells (MSCs) and its potential regulatory mechanism are discussed in detail. In addition, we discuss the potential of applying piezoelectric materials in the process of constructing engineering articular cartilage, highlighting the important advances in the unique field of tissue engineering.
Collapse
Affiliation(s)
- Zhengjie Zhou
- The Key Laboratory of Pathobiology Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Jingtong Zheng
- The Key Laboratory of Pathobiology Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xiaoting Meng
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Correspondence: (X.M.); (F.W.); Tel.: +86-0431-8561-9486 (X.M. & F.W.)
| | - Fang Wang
- The Key Laboratory of Pathobiology Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Correspondence: (X.M.); (F.W.); Tel.: +86-0431-8561-9486 (X.M. & F.W.)
| |
Collapse
|
62
|
Sommer K, Van Opdenbosch D, Zollfrank C. Synthesis and Characterization of Functional Cellulose-Ether-Based PCL- and PLA-Grafts-Copolymers. Polymers (Basel) 2023; 15:polym15020455. [PMID: 36679334 PMCID: PMC9861352 DOI: 10.3390/polym15020455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
The use of biodegradable materials such as cellulose and polyesters can be extended through the combination, as well as modification, of these biopolymers. By controlling the molecular structure and composition of copolymers of these components, it should also be possible to tailor their material properties. We hereby report on the synthesis and characterization of cellulose-based graft copolymers with a precise molecular composition and copolymer architecture. To prepare such materials, we initially modified cellulose through the regioselective protection of the 6-OH group using trityl chloride. The 6-O protected compound was then alkylated, and deprotection at the 6-OH group provided the desired 2,3-di-O-alkyl cellulose compounds that were used as macroinitiators for ring opening polymerization. Regioselective modification was hereby necessary to obtain compounds with an exact molecular composition. Ring opening polymerization, catalyzed by Sn(Oct)2, at the primary 6-OH group of the cellulose macroinitiator, using L-lactide or ε-caprolactone, resulted in graft copolymers with the desired functionalization pattern. The materials were characterized using Fourier-transform infrared spectroscopy, 1H- and 13C- nuclear magnetic resonance spectroscopy, size exclusion chromatography as well as X-ray diffraction, and differential scanning calorimetry. PCL-based copolymers exhibited distinct melting point as well as a crystalline phase of up to 47%, while copolymers with PLA segments were highly amorphous, showing a broad amorphous reflex in the XRD spectra, and no melting or crystallization points were discernible using differential scanning calorimetry.
Collapse
|
63
|
Sapuła P, Bialik-Wąs K, Malarz K. Are Natural Compounds a Promising Alternative to Synthetic Cross-Linking Agents in the Preparation of Hydrogels? Pharmaceutics 2023; 15:253. [PMID: 36678882 PMCID: PMC9866639 DOI: 10.3390/pharmaceutics15010253] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
The main aim of this review is to assess the potential use of natural cross-linking agents, such as genipin, citric acid, tannic acid, epigallocatechin gallate, and vanillin in preparing chemically cross-linked hydrogels for the biomedical, pharmaceutical, and cosmetic industries. Chemical cross-linking is one of the most important methods that is commonly used to form mechanically strong hydrogels based on biopolymers, such as alginates, chitosan, hyaluronic acid, collagen, gelatin, and fibroin. Moreover, the properties of natural cross-linking agents and their advantages and disadvantages are compared relative to their commonly known synthetic cross-linking counterparts. Nowadays, advanced technologies can facilitate the acquisition of high-purity biomaterials from unreacted components with no additional purification steps. However, while planning and designing a chemical process, energy and water consumption should be limited in order to reduce the risks associated with global warming. However, many synthetic cross-linking agents, such as N,N'-methylenebisacrylamide, ethylene glycol dimethacrylate, poly (ethylene glycol) diacrylates, epichlorohydrin, and glutaraldehyde, are harmful to both humans and the environment. One solution to this problem could be the use of bio-cross-linking agents obtained from natural resources, which would eliminate their toxic effects and ensure the safety for humans and the environment.
Collapse
Affiliation(s)
- Paulina Sapuła
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
| | - Katarzyna Bialik-Wąs
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
| | - Katarzyna Malarz
- A. Chelkowski Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
64
|
Raut MP, Asare E, Syed Mohamed SMD, Amadi EN, Roy I. Bacterial Cellulose-Based Blends and Composites: Versatile Biomaterials for Tissue Engineering Applications. Int J Mol Sci 2023; 24:986. [PMID: 36674505 PMCID: PMC9865793 DOI: 10.3390/ijms24020986] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Cellulose of bacterial origin, known as bacterial cellulose (BC), is one of the most versatile biomaterials that has a huge potential in tissue engineering due to its favourable mechanical properties, high hydrophilicity, crystallinity, and purity. Additional properties such as porous nano-fibrillar 3D structure and a high degree of polymerisation of BC mimic the properties of the native extracellular matrix (ECM), making it an excellent material for the fabrication of composite scaffolds suitable for cell growth and tissue development. Recently, the fabrication of BC-based scaffolds, including composites and blends with nanomaterials, and other biocompatible polymers has received particular attention owing to their desirable properties for tissue engineering. These have proven to be promising advanced materials in hard and soft tissue engineering. This review presents the latest state-of-the-art modified/functionalised BC-based composites and blends as advanced materials in tissue engineering. Their applicability as an ideal biomaterial in targeted tissue repair including bone, cartilage, vascular, skin, nerve, and cardiac tissue has been discussed. Additionally, this review briefly summarises the latest updates on the production strategies and characterisation of BC and its composites and blends. Finally, the challenges in the future development and the direction of future research are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Ipsita Roy
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield S3 7HQ, UK
| |
Collapse
|
65
|
Cui J, Yu X, Shen Y, Sun B, Guo W, Liu M, Chen Y, Wang L, Zhou X, Shafiq M, Mo X. Electrospinning Inorganic Nanomaterials to Fabricate Bionanocomposites for Soft and Hard Tissue Repair. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:204. [PMID: 36616113 PMCID: PMC9823959 DOI: 10.3390/nano13010204] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Tissue engineering (TE) has attracted the widespread attention of the research community as a method of producing patient-specific tissue constructs for the repair and replacement of injured tissues. To date, different types of scaffold materials have been developed for various tissues and organs. The choice of scaffold material should take into consideration whether the mechanical properties, biodegradability, biocompatibility, and bioresorbability meet the physiological properties of the tissues. Owing to their broad range of physico-chemical properties, inorganic materials can induce a series of biological responses as scaffold fillers, which render them a good alternative to scaffold materials for tissue engineering (TE). While it is of worth to further explore mechanistic insight into the use of inorganic nanomaterials for tissue repair, in this review, we mainly focused on the utilization forms and strategies for fabricating electrospun membranes containing inorganic components based on electrospinning technology. A particular emphasis has been placed on the biological advantages of incorporating inorganic materials along with organic materials as scaffold constituents for tissue repair. As well as widely exploited natural and synthetic polymers, inorganic nanomaterials offer an enticing platform to further modulate the properties of composite scaffolds, which may help further broaden the application prospect of scaffolds for TE.
Collapse
Affiliation(s)
- Jie Cui
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Xiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Yihong Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Binbin Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Wanxin Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Mingyue Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Yujie Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Li Wang
- College of Science, Donghua University, Shanghai 201620, China
| | - Xingping Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Muhammad Shafiq
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
- Department of Biotechnology, Faculty of Science and Technology (FOST), University of Central Punjab (UCP), Lahore 54000, Pakistan
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
66
|
Kazemi Asl S, Rahimzadegan M, Ostadrahimi R. The recent advancement in the chitosan hybrid-based scaffolds for cardiac regeneration after myocardial infarction. Carbohydr Polym 2023; 300:120266. [DOI: 10.1016/j.carbpol.2022.120266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/08/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
|
67
|
Mason J, Öhlund D. Key aspects for conception and construction of co-culture models of tumor-stroma interactions. Front Bioeng Biotechnol 2023; 11:1150764. [PMID: 37091337 PMCID: PMC10119418 DOI: 10.3389/fbioe.2023.1150764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023] Open
Abstract
The tumor microenvironment is crucial in the initiation and progression of cancers. The interplay between cancer cells and the surrounding stroma shapes the tumor biology and dictates the response to cancer therapies. Consequently, a better understanding of the interactions between cancer cells and different components of the tumor microenvironment will drive progress in developing novel, effective, treatment strategies. Co-cultures can be used to study various aspects of these interactions in detail. This includes studies of paracrine relationships between cancer cells and stromal cells such as fibroblasts, endothelial cells, and immune cells, as well as the influence of physical and mechanical interactions with the extracellular matrix of the tumor microenvironment. The development of novel co-culture models to study the tumor microenvironment has progressed rapidly over recent years. Many of these models have already been shown to be powerful tools for further understanding of the pathophysiological role of the stroma and provide mechanistic insights into tumor-stromal interactions. Here we give a structured overview of different co-culture models that have been established to study tumor-stromal interactions and what we have learnt from these models. We also introduce a set of guidelines for generating and reporting co-culture experiments to facilitate experimental robustness and reproducibility.
Collapse
Affiliation(s)
- James Mason
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Daniel Öhlund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- *Correspondence: Daniel Öhlund,
| |
Collapse
|
68
|
Revati R, Majid MSA, Ridzuan MJM, Mamat N, Cheng EM, Alshahrani HA. In vitro biodegradation, cytotoxicity, and biocompatibility of polylactic acid/napier cellulose nanofiber scaffold composites. Int J Biol Macromol 2022; 223:479-489. [PMID: 36368357 DOI: 10.1016/j.ijbiomac.2022.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
Abstract
This study aimed to evaluate the bioactivities and biocompatibilities of porous polylactic acid (PLA) reinforced with cellulose nanofiber (CNF) scaffolds. The in vitro degradation behaviors of the porous PLA/CNF scaffolds were systematically measured for up to 8 weeks in a phosphate-buffered saline medium at 37 °C. The reinforcement of CNF resisted the biodegradation of the scaffolds. The in vitro cytotoxicity and biocompatibility of the scaffolds were determined using the Beas2B American Type Culture Collection cells. The 3-(4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide cytotoxicity and proliferation tests showed that the scaffolds were non-toxic, and epithelial cells grew well on the scaffold after 7 days of culture, whereas the percentage of cell proliferation on the PLA/CNF15 scaffold was the largest, 130 %. A scratch wound-healing assay was performed to evaluate the suitability of the scaffolds for cell migration. The results demonstrated that the scaffolds exhibited good cell migration towards nearly complete wound closure.
Collapse
Affiliation(s)
- R Revati
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Pauh Putra Campus, Arau 02600, Perlis, Malaysia; Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Pauh Putra Campus, Arau 02600, Perlis, Malaysia
| | - M S Abdul Majid
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Pauh Putra Campus, Arau 02600, Perlis, Malaysia.
| | - M J M Ridzuan
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Pauh Putra Campus, Arau 02600, Perlis, Malaysia
| | - N Mamat
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Pauh Putra Campus, Arau 02600, Perlis, Malaysia
| | - E M Cheng
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Pauh Putra Campus, Arau 02600, Perlis, Malaysia
| | - Hassan A Alshahrani
- Department of Mechanical Engineering, College of Engineering, Najran University, Najran 11001, Saudi Arabia
| |
Collapse
|
69
|
Fabrication and characterization of polycaprolactone/cellulose acetate blended nanofiber mats containing sericin and fibroin for biomedical application. Sci Rep 2022; 12:22370. [PMID: 36572729 PMCID: PMC9792555 DOI: 10.1038/s41598-022-26908-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022] Open
Abstract
Polycaprolactone/cellulose acetate blended nanofiber mats containing sericin and fibroin were fabricated by electrospinning process to study the effect of sericin and fibroin on the physical and structural properties, wettability, degradability, elastic modulus, cell adhesion, and cell cytotoxicity of the electrospun nanofibers. Polycaprolactone/cellulose acetate solution was prepared with different percentage ratio of sericin and fibroin to be the running solution. Nanofibers were spun at fixed solution flow rate, flying distance, and operating voltage. The diameter of the obtained nanofibers linearly increases with the increasing of the sericin ratio. The derivative structures of polycaprolactone, cellulose acetate, sericin, and fibroin of the obtained nanofibers were confirmed by FTIR analysis. All acquired nanofibers show superhydrophilicity with adequate time of degradation for L-929 cell adhesion and growth. More elasticity is gained when the sericin ratio decreases. Moreover, all fibers containing sericin/fibroin reveal more elasticity, cell adhesion, and cell growth than that with only polycaprolactone/cellulose acetate. Greater cell adhesion and growth develop when the sericin ratio is lower. All the fabricated nanofibers are low toxic to the cells. Fibers with a mixture of sericin and fibroin at 2.5:2.5 (% w/v) are the most promising and suitable for further clinical development due to their good results in each examination. The novelty found in this study is not only making more value of the sericin, silk industrial waste, and the fibroin, but also getting the preferable biomaterials, scaffold prototype, with much greater mechanical property and slower degradation, which are required and appropriate for cell attachment and proliferation of cell generation process, compared to that obtaining from polycaprolactone/cellulose acetate or sericin/fibroin nanofibers.
Collapse
|
70
|
Iravani S, Varma RS. Cellulose-Based Composites as Scaffolds for Tissue Engineering: Recent Advances. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248830. [PMID: 36557963 PMCID: PMC9784432 DOI: 10.3390/molecules27248830] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Today, numerous studies have focused on the design of novel scaffolds for tissue engineering and regenerative medicine applications; however, several challenges still exist in terms of biocompatibility/cytocompatibility, degradability, cell attachment/proliferation, nutrient diffusion, large-scale production, and clinical translation studies. Greener and safer technologies can help to produce scaffolds with the benefits of cost-effectiveness, high biocompatibility, and biorenewability/sustainability, reducing their toxicity and possible side effects. However, some challenges persist regarding their degradability, purity, having enough porosity, and possible immunogenicity. In this context, naturally derived cellulose-based scaffolds with high biocompatibility, ease of production, availability, sustainability/renewability, and environmentally benign attributes can be applied for designing scaffolds. These cellulose-based scaffolds have shown unique mechanical properties, improved cell attachment/proliferation, multifunctionality, and enhanced biocompatibility/cytocompatibility, which make them promising candidates for tissue engineering applications. Herein, the salient developments pertaining to cellulose-based scaffolds for neural, bone, cardiovascular, and skin tissue engineering are deliberated, focusing on the challenges and opportunities.
Collapse
Affiliation(s)
- Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
- Correspondence: (S.I.); (R.S.V.)
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
- Correspondence: (S.I.); (R.S.V.)
| |
Collapse
|
71
|
Guamba E, Vispo NS, Whitehead DC, Singh AK, Santos-Oliveira R, Niebieskikwiat D, Zamora-Ledezma C, Alexis F. Cellulose-based hydrogels towards an antibacterial wound dressing. Biomater Sci 2022; 11:3461-3468. [PMID: 36475559 DOI: 10.1039/d2bm01369j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hydrogels are promising candidates for wound healing bandages because they can mimic the native skin microenvironment. Additionally, there is increasing growth in the use of naturally derived materials and plant-based biomaterials to produce healthcare products with healing purposes because of their biocompatibility and biodegradation properties. In this study, cellulose extracted from biodiverse sources in Ecuador was used as the raw material for the fabrication of hydrogels with enhanced antifouling properties. Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM) were used to characterize the cellulose and hydrogels. In vitro and ex vivo tests were performed to evaluate the antimicrobial activity of hydrogels against Gram-negative bacteria as a model. Finally, the hydrogel synthesized with cellulose extracted from pitahaya showed improved antibacterial activity when applied over pigskin as a proof of concept for wound dressing. Therefore, the present results suggest that cellulose-based hydrogels are good candidates for application as wound dressings.
Collapse
Affiliation(s)
- Esteban Guamba
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador
| | - Nelson Santiago Vispo
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador
| | - Daniel C Whitehead
- Department of Chemistry, Clemson University, Clemson, South Carolina, 29634, USA
| | - Ajaya Kumar Singh
- Department of Chemistry, Government VYT PG Autonomous College Durg, Chhattisgarh-491001, India.,School of Chemistry & Physics, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Rio de Janeiro, Brazil.,Zona Oeste State University, Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro, Brazil
| | - Dario Niebieskikwiat
- Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito, Departamento de Ingeniería Química, Quito, 170901, Ecuador.
| | - Camilo Zamora-Ledezma
- Green and Innovative Technologies for Food, Environment and Bioengineering Research Group, Faculty of Pharmacy and Nutrition, UCAM - Universidad Católica de Murcia, Avda. Los Jerónimos 135, Guadalupe, 30107, Murcia, Spain
| | - Frank Alexis
- Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito, Departamento de Ingeniería Química, Quito, 170901, Ecuador.
| |
Collapse
|
72
|
Kumari S, Katiyar S, Darshna, Anand A, Singh D, Singh BN, Mallick SP, Mishra A, Srivastava P. Design strategies for composite matrix and multifunctional polymeric scaffolds with enhanced bioactivity for bone tissue engineering. Front Chem 2022; 10:1051678. [PMID: 36518978 PMCID: PMC9742444 DOI: 10.3389/fchem.2022.1051678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/14/2022] [Indexed: 09/19/2023] Open
Abstract
Over the past few decades, various bioactive material-based scaffolds were investigated and researchers across the globe are actively involved in establishing a potential state-of-the-art for bone tissue engineering applications, wherein several disciplines like clinical medicine, materials science, and biotechnology are involved. The present review article's main aim is to focus on repairing and restoring bone tissue defects by enhancing the bioactivity of fabricated bone tissue scaffolds and providing a suitable microenvironment for the bone cells to fasten the healing process. It deals with the various surface modification strategies and smart composite materials development that are involved in the treatment of bone tissue defects. Orthopaedic researchers and clinicians constantly focus on developing strategies that can naturally imitate not only the bone tissue architecture but also its functional properties to modulate cellular behaviour to facilitate bridging, callus formation and osteogenesis at critical bone defects. This review summarizes the currently available polymeric composite matrices and the methods to improve their bioactivity for bone tissue regeneration effectively.
Collapse
Affiliation(s)
- Shikha Kumari
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Soumya Katiyar
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Darshna
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Aditya Anand
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Divakar Singh
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Bhisham Narayan Singh
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sarada Prasanna Mallick
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
| | - Abha Mishra
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | | |
Collapse
|
73
|
Fatema N, Ceballos RM, Fan C. Modifications of cellulose-based biomaterials for biomedical applications. Front Bioeng Biotechnol 2022; 10:993711. [PMID: 36406218 PMCID: PMC9669591 DOI: 10.3389/fbioe.2022.993711] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Cellulose is one of the most abundant organic compounds in nature and is available from diverse sources. Cellulose features tunable properties, making it a promising substrate for biomaterial development. In this review, we highlight advances in the physical processes and chemical modifications of cellulose that enhance its properties for use as a biomaterial. Three cellulosic products are discussed, including nanofibrillated, nanocrystalline, and bacterial cellulose, with a focus on how each may serve as a platform for the development of advanced cellulose-based biomaterials for Biomedical applications. In addition to associating mechanical and chemical properties of cellulosic materials to specific applications, a prospectus is offered for the future development of cellulose-based biomaterials for biomedicine.
Collapse
Affiliation(s)
- Nour Fatema
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
| | - Ruben Michael Ceballos
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Chenguang Fan
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
74
|
Garcia EL, Mojicevic M, Milivojevic D, Aleksic I, Vojnovic S, Stevanovic M, Murray J, Attallah OA, Devine D, Fournet MB. Enhanced Antimicrobial Activity of Biocompatible Bacterial Cellulose Films via Dual Synergistic Action of Curcumin and Triangular Silver Nanoplates. Int J Mol Sci 2022; 23:ijms232012198. [PMID: 36293056 PMCID: PMC9603523 DOI: 10.3390/ijms232012198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Curcumin and triangular silver nanoplates (TSNP)-incorporated bacterial cellulose (BC) films present an ideal antimicrobial material for biomedical applications as they afford a complete set of requirements, including a broad range of long-lasting potency and superior efficacy antimicrobial activity, combined with low toxicity. Here, BC was produced by Komagataeibacter medellinensis ID13488 strain in the presence of curcumin in the production medium (2 and 10%). TSNP were incorporated in the produced BC/curcumin films using ex situ method (21.34 ppm) and the antimicrobial activity was evaluated against Escherichia coli ATCC95922 and Staphylococcus aureus ATCC25923 bacterial strains. Biological activity of these natural products was assessed in cytotoxicity assay against lung fibroblasts and in vivo using Caenorhabditis elegans and Danio rerio as model organisms. Derived films have shown excellent antimicrobial performance with growth inhibition up to 67% for E. coli and 95% for S. aureus. In a highly positive synergistic interaction, BC films with 10% curcumin and incorporated TSNP have shown reduced toxicity with 80% MRC5 cells survival rate. It was shown that only 100% concentrations of film extracts induce low toxicity effect on model organisms’ development. The combined and synergistic advanced anti-infective functionalities of the curcumin and TSNP incorporated in BC have a high potential for development for application within the clinical setting.
Collapse
Affiliation(s)
- Eduardo Lanzagorta Garcia
- Materials Research Institute, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Marija Mojicevic
- Materials Research Institute, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
- Correspondence: ; Tel.: +353-877-772-272
| | - Dusan Milivojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Ivana Aleksic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - James Murray
- Materials Research Institute, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Olivia Adly Attallah
- Materials Research Institute, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Declan Devine
- Materials Research Institute, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Margaret Brennan Fournet
- Materials Research Institute, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| |
Collapse
|
75
|
Eldeeb AE, Salah S, Elkasabgy NA. Biomaterials for Tissue Engineering Applications and Current Updates in the Field: A Comprehensive Review. AAPS PharmSciTech 2022; 23:267. [PMID: 36163568 PMCID: PMC9512992 DOI: 10.1208/s12249-022-02419-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/09/2022] [Indexed: 01/10/2023] Open
Abstract
Tissue engineering has emerged as an interesting field nowadays; it focuses on accelerating the auto-healing mechanism of tissues rather than organ transplantation. It involves implanting an In Vitro cultured initiative tissue or a scaffold loaded with tissue regenerating ingredients at the damaged area. Both techniques are based on the use of biodegradable, biocompatible polymers as scaffolding materials which are either derived from natural (e.g. alginates, celluloses, and zein) or synthetic sources (e.g. PLGA, PCL, and PLA). This review discusses in detail the recent applications of different biomaterials in tissue engineering highlighting the targeted tissues besides the in vitro and in vivo key findings. As well, smart biomaterials (e.g. chitosan) are fascinating candidates in the field as they are capable of elucidating a chemical or physical transformation as response to external stimuli (e.g. temperature, pH, magnetic or electric fields). Recent trends in tissue engineering are summarized in this review highlighting the use of stem cells, 3D printing techniques, and the most recent 4D printing approach which relies on the use of smart biomaterials to produce a dynamic scaffold resembling the natural tissue. Furthermore, the application of advanced tissue engineering techniques provides hope for the researchers to recognize COVID-19/host interaction, also, it presents a promising solution to rejuvenate the destroyed lung tissues.
Collapse
Affiliation(s)
- Alaa Emad Eldeeb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Salwa Salah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Nermeen A Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| |
Collapse
|
76
|
Chu G, Sohrabi F, Timonen JVI, Rojas OJ. Dispersing swimming microalgae in self-assembled nanocellulose suspension: Unveiling living colloid dynamics in cholesteric liquid crystals. J Colloid Interface Sci 2022; 622:978-985. [PMID: 35569411 DOI: 10.1016/j.jcis.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/13/2022] [Accepted: 05/02/2022] [Indexed: 11/29/2022]
Abstract
Active matter comprises individual energy-consuming components that convert locally stored energy into mechanical motion. Among these, liquid crystal dispersed self-propelled colloids have displayed fascinating dynamic effects and nonequilibrium behaviors. In this work, we introduce a new type of active soft matter based on swimming microalgae and lyotropic nanocellulose liquid crystal. Cellulose is a kind of biocompatible polysaccharide that nontoxic to living biological colloids. In contrast to microalgae locomotion in isotropic and low viscosity media, we demonstrate that the propulsion force of swimming microalgae can overcome the stabilizing elastic force in cholesteric nanocellulose liquid crystal, with the displacement dynamics (gait, direction, frequency, and speed) be altered by the surrounding medium. Simultaneously, the active stress and shear flow exerted by swimming microalgae can introduce local perturbation in surrounding liquid crystal orientation order. The latter effect yields hydrodynamic fluctuations in bulk phase as well as layer undulations, helicoidal axis splay deformation and director bending in the cholesteric assembly, which finally followed by a recovery according to the inherent viscoelasticity of liquid crystal matrix. Our results point to an unorthodox design concept to generate a new type of hybrid soft matter that combines nontoxic cholesteric liquid crystal and active particles, which are expected to open opportunities in biosensing and biomechanical applications.
Collapse
Affiliation(s)
- Guang Chu
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Vuorimiehentie 1, 02510 Espoo, Finland.
| | - Fereshteh Sohrabi
- Department of Applied Physics, Aalto University School of Science, Puumiehenkuja 2, 02150 Espoo, Finland
| | - Jaakko V I Timonen
- Department of Applied Physics, Aalto University School of Science, Puumiehenkuja 2, 02150 Espoo, Finland
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Vuorimiehentie 1, 02510 Espoo, Finland; Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
77
|
Rakib Hasan Khan M, Shankar Hazra R, Nair G, Mohammad J, Jiang L, Reindl K, Khalid Jawed M, Ganai S, Quadir M. Cellulose nanofibers as Scaffold-forming materials for thin film drug delivery systems. Int J Pharm 2022; 627:122189. [PMID: 36100147 DOI: 10.1016/j.ijpharm.2022.122189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 10/31/2022]
Abstract
We explored the potential of cellulose nanofiber (CNF) for designing prolonged-release, thin-film drug delivery systems (TF-DDS). These delivery systems can be used as locally deployable drug-releasing scaffolds for achieving spatial and temporal control over therapeutic concentration in target tissues. Using doxorubicin (DOX) as a model anticancer drug, CNF-based TF-DDS were prepared using different film-formation processes, such as solvent casting and lyophilization. Formulations were prepared with or without the incorporation of additional macromolecular additives, such as gelatin, to include further biomechanical functionality. We studied the films for their mechanical properties, thermal stability, wettability, porosity and in vitro drug release properties. Our experimental results showed that CNF-based films, when prepared via solvent casting method, showed optimized performance in terms of DOX loading, and prolonged-release than those prepared via lyophilization-based fabrication processes. Scanning electron microscopy (SEM) analysis of the CNF-based films showed uniform distribution of fiber entanglement, which provided the scaffolds with sufficient porosity and tortuosity contributing to the sustained release of the drug from the delivery system. We also observed that surface layering of gelatin on CNF films via dip-coating significantly increased the mechanical strength and reduced the wettability of the films, and as such, affected drug release kinetics. The performance of the TF-DDS was evaluated in-vitro against two pancreatic cancer cell lines, i.e. MIA PaCa-2 and PANC-1. We observed that, along with the enhancement of mean dissolution time (MDT) of DOX, CNF-based TF-DDS were able to suppress the proliferation of pancreatic cancer cells in a time-dependent fashion, indicating that the drug liberated from the films were therapeutically active against cancer cells. Additionally, TF-DDS were also tested ex-vivo on patient-derived xenograft (PDX) model of pancreatic ductal adenocarcinoma (PDAC). We observed that DOX released from the TF-DDS was able to reduce Ki-67 positive, pancreatic cancer cells in these models.
Collapse
Affiliation(s)
- Md Rakib Hasan Khan
- Biomedical Engineering Program, North Dakota State University, Fargo, ND 58105, USA
| | - Raj Shankar Hazra
- Materials and Nanotechnology Program, North Dakota State University, Fargo, ND 58105, USA
| | - Gauthami Nair
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Jiyan Mohammad
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Long Jiang
- Department of Mechanical Engineering, North Dakota State University, Fargo, ND 58105, USA
| | - Katie Reindl
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Mohammad Khalid Jawed
- Department of Mechanical & Aerospace Engineering, University of California, Los Angeles, CA 90095, USA
| | - Sabha Ganai
- Division of Surgical Oncology, Sanford Research, Fargo, ND 58122, USA
| | - Mohiuddin Quadir
- Biomedical Engineering Program, North Dakota State University, Fargo, ND 58105, USA; Materials and Nanotechnology Program, North Dakota State University, Fargo, ND 58105, USA; Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA.
| |
Collapse
|
78
|
Tamo AK, Tran TA, Doench I, Jahangir S, Lall A, David L, Peniche-Covas C, Walther A, Osorio-Madrazo A. 3D Printing of Cellulase-Laden Cellulose Nanofiber/Chitosan Hydrogel Composites: Towards Tissue Engineering Functional Biomaterials with Enzyme-Mediated Biodegradation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6039. [PMID: 36079419 PMCID: PMC9456765 DOI: 10.3390/ma15176039] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 05/18/2023]
Abstract
The 3D printing of a multifunctional hydrogel biomaterial with bioactivity for tissue engineering, good mechanical properties and a biodegradability mediated by free and encapsulated cellulase was proposed. Bioinks of cellulase-laden and cellulose nanofiber filled chitosan viscous suspensions were used to 3D print enzymatic biodegradable and biocompatible cellulose nanofiber (CNF) reinforced chitosan (CHI) hydrogels. The study of the kinetics of CNF enzymatic degradation was studied in situ in fibroblast cell culture. To preserve enzyme stability as well as to guarantee its sustained release, the cellulase was preliminarily encapsulated in chitosan-caseinate nanoparticles, which were further incorporated in the CNF/CHI viscous suspension before the 3D printing of the ink. The incorporation of the enzyme within the CHI/CNF hydrogel contributed to control the decrease of the CNF mechanical reinforcement in the long term while keeping the cell growth-promoting property of chitosan. The hydrolysis kinetics of cellulose in the 3D printed scaffolds showed a slow but sustained degradation of the CNFs with enzyme, with approximately 65% and 55% relative activities still obtained after 14 days of incubation for the encapsulated and free enzyme, respectively. The 3D printed composite hydrogels showed excellent cytocompatibility supporting fibroblast cell attachment, proliferation and growth. Ultimately, the concomitant cell growth and biodegradation of CNFs within the 3D printed CHI/CNF scaffolds highlights the remarkable potential of CHI/CNF composites in the design of tissue models for the development of 3D constructs with tailored in vitro/in vivo degradability for biomedical applications.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Laboratory for Bioinspired Materials BMBT, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany or
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Tuan Anh Tran
- Laboratory for Bioinspired Materials BMBT, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany or
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Ingo Doench
- Laboratory for Bioinspired Materials BMBT, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany or
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Shaghayegh Jahangir
- Laboratory for Bioinspired Materials BMBT, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany or
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Aastha Lall
- Laboratory for Bioinspired Materials BMBT, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany or
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Laurent David
- Polymer Materials Engineering IMP CNRS UMR 5223, Université Lyon, Université Claude Bernard Lyon 1, Université Jean Monnet St Etienne, INSA de Lyon, CNRS, 69622 Villeurbanne, France
| | - Carlos Peniche-Covas
- Center of Biomaterials, Faculty of Chemistry, University of Havana, Havana 10400, Cuba
| | - Andreas Walther
- ABMS Lab, Active, Adaptive and Autonomous Bioinspired Materials, Department of Chemistry, University of Mainz, 55128 Mainz, Germany
| | - Anayancy Osorio-Madrazo
- Laboratory for Bioinspired Materials BMBT, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany or
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
79
|
Masek A, Kosmalska A. Technological limitations in obtaining and using cellulose biocomposites. Front Bioeng Biotechnol 2022; 10:912052. [PMID: 36061440 PMCID: PMC9429818 DOI: 10.3389/fbioe.2022.912052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Among the many possible types of polymer composite materials, the most important are nanocomposites and biocomposites, which have received tremendous attention in recent years due to their unique properties. The fundamental benefits of using biocomposites as alternative materials to “petroleum-based” products are certainly shaping current development trends and setting directions for future research and applications of polymer composites. A dynamic growth of the production and sale of biocomposites is observed in the global market, which results not only from the growing interest and demand for this type of materials, but also due to the fact that for the developed and modified, thus improved materials, the area of their application is constantly expanding. Already today, polymer composites with plant raw materials are used in various sectors of the economy. In particular, this concerns the automotive and construction industries, as well as widely understood packaging. Bacterial cellulose, for example, also known as bionanocellulose, as a natural polymer with specific and unique properties, has been used extensively,primarily in numerous medical applications. Intensive research is also being carried out into composites with natural fibres composed mainly of organic compounds such as cellulose, hemicellulose and lignin. However, three aspects seem to be associated with the popularisation of biopolymers: performance, processing and cost. This article provides a brief overview of the topic under discussion. What can be the technological limitations considering the methods of obtaining polymer composites with the use of plant filler and the influence on their properties? What properties of cellulose constitute an important issue from the point of view of its applicability in polymers, in the context of compatibility with the polymer matrix and processability? What can be the ways of changing these properties through modifications, which may be crucial from the point of view of the development directions of biopolymers and bioplastics, whose further new applications will be related, among others, to the enhancement of properties? There still seems to be considerable potential to improve the cellulose material composites being produced, as well as to improve the efficiency of their manufacturing. Nevertheless, the material still needs to be well optimized before it can replace conventional materials at the industrial level in the near future. Typically, various studies discuss their comparison in terms of production, properties and highly demanding applications of plant or bacterial nanocellulose. Usually, aspects of each are described separately in the literature. In the present review, several important data are gathered in one place, providing a basis for comparing the types of cellulose described. On the one hand, this comparison aims to demonstrate the advantage of bacterial cellulose over plant cellulose, due to environmental protection and its unique properties. On the other hand, it aims to prepare a more comprehensive point of view that can objectively help in deciding which cellulosic raw material may be more suitable for a particular purpose, bacterial cellulose or plant cellulose.
Collapse
|
80
|
Recent Advances in Cellulose-Based Hydrogels for Tissue Engineering Applications. Polymers (Basel) 2022; 14:polym14163335. [PMID: 36015592 PMCID: PMC9415052 DOI: 10.3390/polym14163335] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 02/08/2023] Open
Abstract
In recent years, cellulose has attracted much attention because of its excellent properties, such as its hydrophilicity, mechanical properties, biodegradability, biocompatibility, low cost and low toxicity. In addition, cellulose and its derivatives contain abundant hydrophilic functional groups (such as hydroxyl, carboxyl and aldehyde groups), which are good raw materials for synthesizing biocompatible hydrogels. In this paper, the application prospects of cellulose and its derivatives-based hydrogels in biomedical tissue engineering are summarized and discussed through the analysis of recent research. Firstly, we discuss the structure and properties of cellulose, nano celluloses (NC) from different sources (including cellulose nanocrystals (CNC), cellulose nanofibrils (CNF) and bacterial nano celluloses (BNC)) and cellulose derivatives (including cellulose ethers and cellulose esters) obtained by different modification methods. Then, the properties and preparation methods of physical and chemical cellulose hydrogels are described, respectively. The application of cellulose-based hydrogels as a tissue engineering scaffold (skin, bone and cartilage) in the biomedical field is introduced. Finally, the challenges and prospects of cellulose-based hydrogels in tissue engineering are summarized.
Collapse
|
81
|
Su C, Chen Y, Tian S, Lu C, Lv Q. Research Progress on Emerging Polysaccharide Materials Applied in Tissue Engineering. Polymers (Basel) 2022; 14:polym14163268. [PMID: 36015525 PMCID: PMC9413976 DOI: 10.3390/polym14163268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/24/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
The development and application of polysaccharide materials are popular areas of research. Emerging polysaccharide materials have been widely used in tissue engineering fields such as in skin trauma, bone defects, cartilage repair and arthritis due to their stability, good biocompatibility and reproducibility. This paper reviewed the recent progress of the application of polysaccharide materials in tissue engineering. Firstly, we introduced polysaccharide materials and their derivatives and summarized the physicochemical properties of polysaccharide materials and their application in tissue engineering after modification. Secondly, we introduced the processing methods of polysaccharide materials, including the processing of polysaccharides into amorphous hydrogels, microspheres and membranes. Then, we summarized the application of polysaccharide materials in tissue engineering. Finally, some views on the research and application of polysaccharide materials are presented. The purpose of this review was to summarize the current research progress on polysaccharide materials with special attention paid to the application of polysaccharide materials in tissue engineering.
Collapse
Affiliation(s)
- Chunyu Su
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Yutong Chen
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Shujing Tian
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Chunxiu Lu
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin 537000, China
- Correspondence:
| |
Collapse
|
82
|
Velasco-Salgado C, Pontes-Quero GM, García-Fernández L, Aguilar MR, de Wit K, Vázquez-Lasa B, Rojo L, Abradelo C. The Role of Polymeric Biomaterials in the Treatment of Articular Osteoarthritis. Pharmaceutics 2022; 14:pharmaceutics14081644. [PMID: 36015270 PMCID: PMC9413163 DOI: 10.3390/pharmaceutics14081644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 12/03/2022] Open
Abstract
Osteoarthritis is a high-prevalence joint disease characterized by the degradation of cartilage, subchondral bone thickening, and synovitis. Due to the inability of cartilage to self-repair, regenerative medicine strategies have become highly relevant in the management of osteoarthritis. Despite the great advances in medical and pharmaceutical sciences, current therapies stay unfulfilled, due to the inability of cartilage to repair itself. Additionally, the multifactorial etiology of the disease, including endogenous genetic dysfunctions and exogenous factors in many cases, also limits the formation of new cartilage extracellular matrix or impairs the regular recruiting of chondroprogenitor cells. Hence, current strategies for osteoarthritis management involve not only analgesics, anti-inflammatory drugs, and/or viscosupplementation but also polymeric biomaterials that are able to drive native cells to heal and repair the damaged cartilage. This review updates the most relevant research on osteoarthritis management that employs polymeric biomaterials capable of restoring the viscoelastic properties of cartilage, reducing the symptomatology, and favoring adequate cartilage regeneration properties.
Collapse
Affiliation(s)
- Carmen Velasco-Salgado
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcon, Spain
| | - Gloria María Pontes-Quero
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - Luis García-Fernández
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - María Rosa Aguilar
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - Kyra de Wit
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Blanca Vázquez-Lasa
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - Luis Rojo
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
- Correspondence: (L.R.); (C.A.)
| | - Cristina Abradelo
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcon, Spain
- Correspondence: (L.R.); (C.A.)
| |
Collapse
|
83
|
Abdelbasset WK, Jasim SA, Bokov DO, Shalaby MN, Opulencia MJC, Thangavelu L, Alkadir OKA, Ansari MJ, Kzar HH, Al-Gazally ME. Polysaccharides, as biological macromolecule-based platforms in skeletal muscle tissue engineering: a systematic review. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2090940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
- Federal Research Center of Nutrition, Biotechnology and Food Safety, Laboratory of Food Chemistry, Moscow, Russia
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Sheikh Zayed City, Egypt
| | | | - Lakshmi Thangavelu
- Department of Pharmacology, Center for Transdisciplinary Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | | | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Hamzah H. Kzar
- College of Veterinary Medicine, Al Qasim Green University, Iraq
| | | |
Collapse
|
84
|
CyMAD bioreactor: A cyclic magnetic actuation device for magnetically mediated mechanical stimulation of 3D bioprinted hydrogel scaffolds. J Mech Behav Biomed Mater 2022; 131:105253. [DOI: 10.1016/j.jmbbm.2022.105253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 12/23/2022]
|
85
|
Shahriari-Khalaji M, Li G, Liu L, Sattar M, Chen L, Zhong C, Hong FF. A poly-l-lysine-bonded TEMPO-oxidized bacterial nanocellulose-based antibacterial dressing for infected wound treatment. Carbohydr Polym 2022; 287:119266. [DOI: 10.1016/j.carbpol.2022.119266] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/03/2022] [Accepted: 02/16/2022] [Indexed: 12/17/2022]
|
86
|
Characterization and Evaluation of Commercial Carboxymethyl Cellulose Potential as an Active Ingredient for Cosmetics. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136560] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Carboxymethyl cellulose is the most used water-soluble cellulose with applications in industries such as food, cosmetics, and tissue engineering. However, due to a perceived lack of biological activity, carboxymethyl cellulose is mostly used as a structural element. As such, this work sought to investigate whether CMC possesses relevant biological properties that could grant it added value as a cosmeceutical ingredient in future skincare formulations. To that end, CMC samples (Mw between 471 and 322 kDa) skin cell cytotoxicity, impact upon pro-collagen I α I production, and inflammatory response were evaluated. Results showed that samples were not cytotoxic towards HaCat and HDFa up to 10 mg/mL while simultaneously promoting intracellular production of pro-collagen I α I up by 228% relative to the basal metabolism, which appeared to be related to the highest DS and Mw. Additionally, CMC samples modulated HaCat immune response as they decreased by ca. 1.4-fold IL-8 production and increased IL-6 levels by ca. five fold. Despite this increase, only two samples presented IL-6 levels similar to those of the inflammation control. Considering these results, CMC showed potential to be a more natural alternative to traditional bioactive cosmetic ingredients and, as it is capable of being a bioactive and structural ingredient, it may play a key role in future skincare formulations.
Collapse
|
87
|
Chung CK, Beekmann U, Kralisch D, Bierau K, Chan A, Ossendorp F, Cruz LJ. Bacterial Cellulose as Drug Delivery System for Optimizing Release of Immune Checkpoint Blocking Antibodies. Pharmaceutics 2022; 14:1351. [PMID: 35890247 PMCID: PMC9316226 DOI: 10.3390/pharmaceutics14071351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Immune checkpoint blocking therapy is a promising cancer treatment modality, though it has limitations such as systemic toxicity, which can often be traced to uncontrolled antibody spread. Controlling antibody release with delivery systems is, therefore, an attractive approach to reduce systemic antibody spread and potentially mitigate the side effects of checkpoint immunotherapy. Here, bacterial cellulose (BC) was produced and investigated as a delivery system for optimizing checkpoint-blocking antibody delivery. BC was produced in 24-well plates, and afterward, the edges were removed to obtain square-shaped BC samples with a surface of ~49 mm2. This customization was necessary to allow smooth in vivo implantation. Scanning electron microscopy revealed the dense cellulose network within BC. Human IgG antibody was included as the model antibody for loading and release studies. IgG antibody solution was injected into the center of BC samples. In vitro, all IgG was released within 24 to 48 h. Cell culture experiments demonstrated that BC neither exerted cytotoxic effects nor induced dendritic cell activation. Antibody binding assays demonstrated that BC does not hamper antibody function. Finally, antibody-loaded BC was implanted in mice, and serum measurements revealed that BC significantly reduced IgG and anti-CTLA-4 spread in mice. BC implantation did not induce side effects in mice. Altogether, BC is a promising and safe delivery system for optimizing the delivery and release of checkpoint-blocking antibodies.
Collapse
Affiliation(s)
- Chih Kit Chung
- Department of Radiology, Division Translational Nanobiomaterials and Imaging, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
- Percuros B.V., Zernikedreef 8, 2333 CL Leiden, The Netherlands;
- JeNaCell GmbH, Göschwitzer Straße 22, 07745 Jena, Germany; (U.B.); (D.K.)
| | - Uwe Beekmann
- JeNaCell GmbH, Göschwitzer Straße 22, 07745 Jena, Germany; (U.B.); (D.K.)
| | - Dana Kralisch
- JeNaCell GmbH, Göschwitzer Straße 22, 07745 Jena, Germany; (U.B.); (D.K.)
| | - Katja Bierau
- Pilotality, Eerbeeklaan 42, 2573 HT Gravenhage, The Netherlands;
| | - Alan Chan
- Percuros B.V., Zernikedreef 8, 2333 CL Leiden, The Netherlands;
| | - Ferry Ossendorp
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Luis J. Cruz
- Department of Radiology, Division Translational Nanobiomaterials and Imaging, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| |
Collapse
|
88
|
Cellulose electrospinning from ionic liquids: The effects of ionic liquid removal on the fiber morphology. Carbohydr Polym 2022; 285:119260. [DOI: 10.1016/j.carbpol.2022.119260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/27/2022] [Accepted: 02/13/2022] [Indexed: 11/02/2022]
|
89
|
Dong Q, Wu D, Li M, Dong W. Polysaccharides, as biological macromolecule-based scaffolding biomaterials in cornea tissue engineering: A review. Tissue Cell 2022; 76:101782. [PMID: 35339801 DOI: 10.1016/j.tice.2022.101782] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022]
Abstract
Corneal-related diseases and injuries are the leading causes of vision loss, estimated to affect over 10 million people worldwide. Currently, cadaveric corneal grafts are considered the gold standard of treatment to restore cornea-related vision. However, this treatment modality faces different challenges such as donor shortage and graft failure. Therefore, the need for alternative solutions continues to grow. Tissue engineering has dramatically progressed to produce artificial cornea implants in order to repair, regenerate, or replace the damaged cornea. In this regard, a variety of polysaccharides such as cellulose, chitosan, alginate, agarose, and hyaluronic acid have been widely explored as scaffolding biomaterials for the production of tissue-engineered cornea. These polymers are known for their excellent biocompatibility, versatile properties, and processability. Recent progress and future perspectives of polysaccharide-based biomaterials in cornea tissue engineering is reviewed here.
Collapse
Affiliation(s)
- Qiwei Dong
- School of medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Dingkun Wu
- Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian, Liaoning, China, 116024
| | - Moqiu Li
- Center for Cancer Prevention Research, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Wei Dong
- School of Mathematics Sciences, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
90
|
Crossing Phylums: Butterfly Wing as a Natural Perfusable Three-Dimensional (3D) Bioconstruct for Bone Tissue Engineering. J Funct Biomater 2022; 13:jfb13020068. [PMID: 35735923 PMCID: PMC9225241 DOI: 10.3390/jfb13020068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 12/02/2022] Open
Abstract
Despite the advent of promising technologies in tissue engineering, finding a biomimetic 3D bio-construct capable of enhancing cell attachment, maintenance, and function is still a challenge in producing tailorable scaffolds for bone regeneration. Here, osteostimulatory effects of the butterfly wings as a naturally porous and non-toxic chitinous scaffold on mesenchymal stromal cells are assessed. The topographical characterization of the butterfly wings implied their ability to mimic bone tissue microenvironment, whereas their regenerative potential was validated after a 14-day cell culture. In vivo analysis showed that the scaffold induced no major inflammatory response in Wistar rats. Topographical features of the bioconstruct upregulated the osteogenic genes, including COL1A1, ALP, BGLAP, SPP1, SP7, and AML3 in differentiated cells compared to the cells cultured in the culture plate. However, butterfly wings were shown to provide a biomimetic microstructure and proper bone regenerative capacity through a unique combination of various structural and material properties. Therefore, this novel platform can be confidently recommended for bone tissue engineering applications.
Collapse
|
91
|
Cordeiro R, Henriques M, Silva JC, Antunes F, Alves N, Moura C. Corncob Cellulose Scaffolds: A New Sustainable Temporary Implant for Cartilage Replacement. J Funct Biomater 2022; 13:63. [PMID: 35645271 PMCID: PMC9149862 DOI: 10.3390/jfb13020063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 01/16/2023] Open
Abstract
Tissue engineering using scaffolds is a promising strategy to repair damaged articular cartilage, whose self-repair is inefficient. Cellulose properties have been recognized for their application in the biomedical field. The aim of this study was to fabricate and characterize novel scaffolds based on poly(ɛ-caprolactone) (PCL) and sustainable cellulose. Thus, the performance of corncob-derived cellulose (CC) in scaffolds as an alternative to wood cellulose (WC) was also investigated to reduce the environmental footprint. Two concentrations of CC in scaffolds were tested, 1% and 2% (w/w), and commercial WC using the same concentrations, as a control. Morphologically, all the developed scaffolds presented pore sizes of ~300 µm, 10 layers, a circular shape and well-dispersed cellulose. Thus, all of these characteristics and properties provide the manufactured scaffolds suitable for use in cartilage-replacement strategies. The use of 2% CC results in higher porosity (54.24%), which promotes cell infiltration/migration and nutrient exchange, and has similar mechanical properties to WC. As for the effects of enzymatic degradation of the scaffolds, no significant changes (p > 0.05) were observed in resistance over time. However, the obtained compressive modulus of the scaffold with 2% CC was similar to that of WC. Overall, our results suggest that the integration of 2% corncob cellulose in PCL scaffolds could be a novel way to replace wood-cellulose-containing scaffolds, highlighting its potential for cartilage-replacement strategies.
Collapse
Affiliation(s)
- Rachel Cordeiro
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal; (R.C.); (J.C.S.); (N.A.)
| | - Marta Henriques
- Polytechnic Institute of Coimbra, Coimbra Agriculture School, 3045-601 Coimbra, Portugal;
- Research Centre for Natural Resources, Environment and Society (CERNAS), Polytechnic Institute of Coimbra, 3045-601 Coimbra, Portugal
| | - João C. Silva
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal; (R.C.); (J.C.S.); (N.A.)
- IBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Filipe Antunes
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
- Science 351, Instituto Pedro Nunes, Ed C, 3030-199 Coimbra, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal; (R.C.); (J.C.S.); (N.A.)
| | - Carla Moura
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal; (R.C.); (J.C.S.); (N.A.)
| |
Collapse
|
92
|
Fan J, Abedi-Dorcheh K, Sadat Vaziri A, Kazemi-Aghdam F, Rafieyan S, Sohrabinejad M, Ghorbani M, Rastegar Adib F, Ghasemi Z, Klavins K, Jahed V. A Review of Recent Advances in Natural Polymer-Based Scaffolds for Musculoskeletal Tissue Engineering. Polymers (Basel) 2022; 14:polym14102097. [PMID: 35631979 PMCID: PMC9145843 DOI: 10.3390/polym14102097] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
The musculoskeletal (MS) system consists of bone, cartilage, tendon, ligament, and skeletal muscle, which forms the basic framework of the human body. This system plays a vital role in appropriate body functions, including movement, the protection of internal organs, support, hematopoiesis, and postural stability. Therefore, it is understandable that the damage or loss of MS tissues significantly reduces the quality of life and limits mobility. Tissue engineering and its applications in the healthcare industry have been rapidly growing over the past few decades. Tissue engineering has made significant contributions toward developing new therapeutic strategies for the treatment of MS defects and relevant disease. Among various biomaterials used for tissue engineering, natural polymers offer superior properties that promote optimal cell interaction and desired biological function. Natural polymers have similarity with the native ECM, including enzymatic degradation, bio-resorb and non-toxic degradation products, ability to conjugate with various agents, and high chemical versatility, biocompatibility, and bioactivity that promote optimal cell interaction and desired biological functions. This review summarizes recent advances in applying natural-based scaffolds for musculoskeletal tissue engineering.
Collapse
Affiliation(s)
- Jingzhi Fan
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia;
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia
| | - Keyvan Abedi-Dorcheh
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Asma Sadat Vaziri
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Fereshteh Kazemi-Aghdam
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Saeed Rafieyan
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Masoume Sohrabinejad
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Mina Ghorbani
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Fatemeh Rastegar Adib
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Zahra Ghasemi
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Kristaps Klavins
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia;
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia
- Correspondence: (K.K.); (V.J.)
| | - Vahid Jahed
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia;
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia
- Correspondence: (K.K.); (V.J.)
| |
Collapse
|
93
|
Affiliation(s)
- Mohamed S. Hasanin
- Cellulose & Paper Dept. National Research Centre El‐Buhouth St. Dokki 12622 Egypt
| |
Collapse
|
94
|
Kodavaty J. Poly (vinyl alcohol) and hyaluronic acid hydrogels as potential biomaterial systems - A comprehensive review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
95
|
Machado TO, Grabow J, Sayer C, de Araújo PHH, Ehrenhard ML, Wurm FR. Biopolymer-based nanocarriers for sustained release of agrochemicals: A review on materials and social science perspectives for a sustainable future of agri- and horticulture. Adv Colloid Interface Sci 2022; 303:102645. [PMID: 35358807 DOI: 10.1016/j.cis.2022.102645] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 11/20/2022]
Abstract
Devastating plant diseases and soil depletion rationalize an extensive use of agrochemicals to secure the food production worldwide. The sustained release of fertilizers and pesticides in agriculture is a promising solution to the eco-toxicological impacts and it might reduce the amount and increase the effectiveness of agrochemicals administration in the field. This review article focusses on carriers with diameters below 1 μm, such as capsules, spheres, tubes and micelles that promote the sustained release of actives. Biopolymer nanocarriers represent a potentially environmentally friendly alternative due to their renewable origin and biodegradability, which prevents the formation of microplastics. The social aspects, economic potential, and success of commercialization of biopolymer based nanocarriers are influenced by the controversial nature of nanotechnology and depend on the use case. Nanotechnology's enormous innovative power is only able to unfold its potential to limit the effects of climate change and to counteract current environmental developments if the perceived risks are understood and mitigated.
Collapse
Affiliation(s)
- Thiago O Machado
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, PO Box 476, Florianópolis, SC 88040-900, Brazil
| | - Justin Grabow
- Sustainable Polymer Chemistry Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, PO Box 217, 7500 AE Enschede, The Netherlands; Faculty of Behavioural Management and Social Sciences, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, PO Box 476, Florianópolis, SC 88040-900, Brazil
| | - Pedro H H de Araújo
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, PO Box 476, Florianópolis, SC 88040-900, Brazil
| | - Michel L Ehrenhard
- Faculty of Behavioural Management and Social Sciences, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| | - Frederik R Wurm
- Sustainable Polymer Chemistry Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
96
|
Fan Y, Zhi Y, He M, Ahmadzadeh B, Rohani S. Cellulose acetate/Plerixafor wound dressings for transplantation of menstrual blood stem cells: Potential treatment modality for diabetic wounds. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
97
|
Silk Fibroin-Based Biomaterials for Tissue Engineering Applications. Molecules 2022; 27:molecules27092757. [PMID: 35566110 PMCID: PMC9103528 DOI: 10.3390/molecules27092757] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/08/2022] [Accepted: 04/21/2022] [Indexed: 12/21/2022] Open
Abstract
Tissue engineering (TE) involves the combination of cells with scaffolding materials and appropriate growth factors in order to regenerate or replace damaged and degenerated tissues and organs. The scaffold materials serve as templates for tissue formation and play a vital role in TE. Among scaffold materials, silk fibroin (SF), a naturally occurring protein, has attracted great attention in TE applications due to its excellent mechanical properties, biodegradability, biocompatibility, and bio-absorbability. SF is usually dissolved in an aqueous solution and can be easily reconstituted into different forms, including films, mats, hydrogels, and sponges, through various fabrication techniques, including spin coating, electrospinning, freeze drying, and supercritical CO2-assisted drying. Furthermore, to facilitate the fabrication of more complex SF-based scaffolds, high-precision techniques such as micro-patterning and bio-printing have been explored in recent years. These processes contribute to the diversity of surface area, mean pore size, porosity, and mechanical properties of different silk fibroin scaffolds and can be used in various TE applications to provide appropriate morphological and mechanical properties. This review introduces the physicochemical and mechanical properties of SF and looks into a range of SF-based scaffolds that have recently been developed. The typical applications of SF-based scaffolds for TE of bone, cartilage, teeth and mandible tissue, cartilage, skeletal muscle, and vascular tissue are highlighted and discussed followed by a discussion of issues to be addressed in future studies.
Collapse
|
98
|
Electrospun Polysaccharides for Periodontal Tissue Engineering: A Review of Recent Advances and Future Perspectives. Ann Biomed Eng 2022; 50:769-793. [DOI: 10.1007/s10439-022-02952-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/16/2022] [Indexed: 12/18/2022]
|
99
|
Recent Advances in Development of Natural Cellulosic Non-Woven Scaffolds for Tissue Engineering. Polymers (Basel) 2022; 14:polym14081531. [PMID: 35458282 PMCID: PMC9030052 DOI: 10.3390/polym14081531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 04/07/2022] [Indexed: 12/28/2022] Open
Abstract
In recent years, tissue engineering researchers have exploited a variety of biomaterials that can potentially mimic the extracellular matrix (ECM) for tissue regeneration. Natural cellulose, mainly obtained from bacterial (BC) and plant-based (PC) sources, can serve as a high-potential scaffold material for different regenerative purposes. Natural cellulose has drawn the attention of researchers due to its advantages over synthetic cellulose including its availability, cost effectiveness, perfusability, biocompatibility, negligible toxicity, mild immune response, and imitation of native tissues. In this article, we review recent in vivo and in vitro studies which aimed to assess the potential of natural cellulose for the purpose of soft (skin, heart, vein, nerve, etc.) and hard (bone and tooth) tissue engineering. Based on the current research progress report, it is sensible to conclude that this emerging field of study is yet to satisfy the clinical translation criteria, though reaching that level of application does not seem far-fetched.
Collapse
|
100
|
Ealla KKR, Veeraraghavan VP, Ravula NR, Durga CS, Ramani P, Sahu V, Poola PK, Patil S, Panta P. Silk Hydrogel for Tissue Engineering: A Review. J Contemp Dent Pract 2022; 23:467-477. [PMID: 35945843 DOI: 10.5005/jp-journals-10024-3322] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
AIM This review aims to explore the importance of silk hydrogel and its potential in tissue engineering (TE). BACKGROUND Tissue engineering is a procedure that incorporates cells into the scaffold materials with suitable growth factors to regenerate injured tissue. For tissue formation in TE, the scaffold material plays a key role. Different forms of silk fibroin (SF), such as films, mats, hydrogels, and sponges, can be easily manufactured when SF is disintegrated into an aqueous solution. High precision procedures such as micropatterning and bioprinting of SF-based scaffolds have been used for enhanced fabrication. REVIEW RESULTS In this narrative review, SF physicochemical and mechanical properties have been presented. We have also discussed SF fabrication techniques like electrospinning, spin coating, freeze-drying, and physiochemical cross-linking. The application of SF-based scaffolds for skeletal, tissue, joint, muscle, epidermal, tissue repair, and tympanic membrane regeneration has also been addressed. CONCLUSION SF has excellent mechanical properties, tunability, biodegradability, biocompatibility, and bioresorbability. CLINICAL SIGNIFICANCE Silk hydrogels are an ideal scaffold matrix material that will significantly impact tissue engineering applications, given the rapid scientific advancements in this field.
Collapse
Affiliation(s)
- Kranti Kiran Reddy Ealla
- Department of Oral and Maxillofacial Pathology, Saveetha Dental College and Hospital, SIMATS, Chennai, Tamil Nadu, India; Department of Oral Pathology and Microbiology, Malla Reddy Institute of Dental Sciences, Hyderabad, Telangana, India, e-mail:
| | | | - Nikitha Reddy Ravula
- Center for Research Development and Sustenance, Malla Reddy Health City, Hyderabad, Telangana, India
| | | | - Pratibha Ramani
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu, India
| | - Vikas Sahu
- Center for Research Development and Sustenance, Malla Reddy Health City, Hyderabad, Telangana, India
| | | | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Prashanth Panta
- Department of Oral Medicine and Radiology, Malla Reddy Institute of Dental Sciences, Hyderabad, Telangana, India, e-mail:
| |
Collapse
|