51
|
Extra-adrenal glucocorticoid biosynthesis: implications for autoimmune and inflammatory disorders. Genes Immun 2020; 21:150-168. [PMID: 32203088 PMCID: PMC7276297 DOI: 10.1038/s41435-020-0096-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022]
Abstract
Glucocorticoid synthesis is a complex, multistep process that starts with cholesterol being delivered to the inner membrane of mitochondria by StAR and StAR-related proteins. Here its side chain is cleaved by CYP11A1 producing pregnenolone. Pregnenolone is converted to cortisol by the enzymes 3-βHSD, CYP17A1, CYP21A2 and CYP11B1. Glucocorticoids play a critical role in the regulation of the immune system and exert their action through the glucocorticoid receptor (GR). Although corticosteroids are primarily produced in the adrenal gland, they can also be produced in a number of extra-adrenal tissue including the immune system, skin, brain, and intestine. Glucocorticoid production is regulated by ACTH, CRH, and cytokines such as IL-1, IL-6 and TNFα. The bioavailability of cortisol is also dependent on its interconversion to cortisone which is inactive, by 11βHSD1/2. Local and systemic glucocorticoid biosynthesis can be stimulated by ultraviolet B, explaining its immunosuppressive activity. In this review, we want to emphasize that dysregulation of extra-adrenal glucocorticoid production can play a key role in a variety of autoimmune diseases including multiple sclerosis (MS), lupus erythematosus (LE), rheumatoid arthritis (RA), and skin inflammatory disorders such as psoriasis and atopic dermatitis (AD). Further research on local glucocorticoid production and its bioavailability may open doors into new therapies for autoimmune diseases.
Collapse
|
52
|
He N, Liu L, Ding J, Sun Y, Xing H, Wang S. MiR-222-3p ameliorates glucocorticoid-induced inhibition of airway epithelial cell repair through down-regulating GILZ expression. J Recept Signal Transduct Res 2020; 40:301-312. [PMID: 32202184 DOI: 10.1080/10799893.2020.1742739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
GILZ expression is induced by glucocorticoids (GCs) and is involved in the mechanism of airway epithelial cell repair in patients with asthma. The present study aimed to investigate the role of miR-222-3p/GILZ pathway in treatment of airway epithelial cell repair by GCs. 9HTE cells were treated by 10 µmol/L dexamethasone (Dex) for 6, 12, and 24 hours (h). MiR-222-3p mimic and GILZ were used for cell transfection. Cell vitality, migration, and invasion were detected by methyl-thiazolyl tetrazolium (MTT), wound healing, and Transwell. The targeting relationship between miR-222-3p and GILZ was predicted by TargetScan and further confirmed by dual-luciferase reporter assay. The expressions of relative mRNAs or proteins were detected by Western blot and quantitative polymerase chain reaction (qPCR). The results showed that Dex treatment up-regulated the GILZ expression level but inhibited the levels of p-Raf1, p-MEK1/2, p-ERK1/2, and miR-222-3p of the cells, moreover, it also inhibited cell activity, migration, and invasion in a time-dependent manner. MiR-222-3p specifically targeted GILZ. MiR-222-3p mimic ameliorated the cell viability, migration, and invasion reduced by Dex treatment, increased the expression levels of p-Raf1 and p-MEK1/2, p-ERK1/2, and partially reversed the effects of GILZ overexpression on the above indexes. Moreover, GILZ showed the opposite effects to miR-222-3p. MiR-222-3p activated MAPK signaling pathway through inhibiting the GILZ expression, thus promoting the cell viability, migration, and invasion previously reduced by Dex.
Collapse
Affiliation(s)
- Ning He
- Department of Allergy, Yantai Yuhuangding Hospital, Yantai, China
| | - Liping Liu
- Department of Allergy, Yantai Yuhuangding Hospital, Yantai, China
| | - Juan Ding
- Department of Allergy, Yantai Yuhuangding Hospital, Yantai, China
| | - Yuemei Sun
- Department of Allergy, Yantai Yuhuangding Hospital, Yantai, China
| | - Haiyan Xing
- Department of Allergy, Yantai Yuhuangding Hospital, Yantai, China
| | - Shuyun Wang
- Department of Allergy, Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
53
|
Regulation of Innate Lymphoid Cells in Acute Kidney Injury: Crosstalk between Cannabidiol and GILZ. J Immunol Res 2020; 2020:6056373. [PMID: 32185239 PMCID: PMC7060850 DOI: 10.1155/2020/6056373] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/23/2019] [Accepted: 12/31/2019] [Indexed: 12/15/2022] Open
Abstract
Innate lymphoid cells (ILCs) have emerged as largely tissue-resident archetypal cells of the immune system. We tested the hypotheses that renal ischemia-reperfusion injury (IRI) is a contributing factor to polarization of ILCs and that glucocorticoid-induced leucine zipper (GILZ) and cannabidiol regulate them in this condition. Mice subjected to unilateral renal IRI were treated with the following agents before restoration of renal blood flow: cannabidiol, DMSO, transactivator of transcription- (TAT-) GILZ, or the TAT peptide. Thereafter, kidney cells were prepared for flow cytometry analyses. Sham kidneys treated with either cannabidiol or TAT-GILZ displayed similar frequencies of each subset of ILCs compared to DMSO or TAT, respectively. Renal IRI increased ILC1s and ILC3s but reduced ILC2s compared to the sham group. Cannabidiol or TAT-GILZ treatment of IRI kidneys reversed this pattern as evidenced by reduced ILC1s and ILC3s but increased ILC2s compared to their DMSO- or TAT-treated counterparts. While TAT-GILZ treatment did not significantly affect cells positive for cannabinoid receptors subtype 2 (CB2+), cannabidiol treatment increased frequency of both CB2+ and GILZ-positive (GILZ+) cells of IRI kidneys. Subsequent studies showed that IRI reduced GILZ+ subsets of ILCs, an effect less marked for ILC2s. Treatment with cannabidiol increased frequencies of each subset of GILZ+ ILCs, but the effect was more marked for ILC2s. Indeed, cannabidiol treatment increased CB2+ GILZ+ ILC2s. Collectively, the results indicate that both cannabidiol and GILZ regulate ILC frequency and phenotype, in acute kidney injury, and that the effects of cannabidiol likely relate to modulation of endogenous GILZ.
Collapse
|
54
|
Wang T, Yu X, He C. Pro-inflammatory Cytokines: Cellular and Molecular Drug Targets for Glucocorticoid-induced-osteoporosis via Osteocyte. Curr Drug Targets 2020; 20:1-15. [PMID: 29618305 DOI: 10.2174/1389450119666180405094046] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/11/2018] [Accepted: 03/21/2018] [Indexed: 02/08/2023]
Abstract
Glucocorticoids are widely used to treat varieties of allergic and autoimmune diseases, however, long-term application results in glucocorticoid-induced osteoporosis (GIOP). Inflammatory cytokines: tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) play important regulatory roles in bone metabolism, but their roles in GIOP remain largely unknown. Osteocytes can modulate the formation and function of both osteoblasts and osteoclasts, directly via gap junctions, or indirectly by transferring molecule signaling. Apoptotic osteocytes release RANKL, HMGB1 and pro-inflammatory cytokines to stimulate osteoclastogenesis. Moreover, osteocytes can secrete FGF23 to regulate bone metabolism. Exposure to high levels of GCs can drive osteocyte apoptosis and influence gap junctions, leading to bone loss. GCs treatment is regarded to produce more FGF23 to inhibit bone mineralization. GCs also disrupt the vascular to decrease osteocyte feasibility and mineral appositional rate, resulting in a decline in bone strength. Apoptotic bodies from osteocytes induced by GCs treatment can enhance production of TNF-α and IL-6. On the other hand, TNF-α and IL-6 show synergistic effects by altering osteocytes signaling towards osteoclasts and osteoblasts. In addition, TNF-α can induce osteocyte apoptosis and attribute to a worsened bone quality in GCs. IL-6 and osteocytes may interact with each other. Therefore, we hypothesize that GCs regulate osteocyteogenesis through TNF-α and IL-6, which are highly expressed around osteocyte undergoing apoptosis. In the present review, we summarized the roles of osteocytes in regulating osteoblasts and osteoclasts. Furthermore, the mechanism of GCs altered relationship between osteocytes and osteoblasts/osteoclasts. In addition, we discussed the roles of TNF-α and IL-6 in GIOP by modulating osteocytes. Lastly, we discussed the possibility of using pro-inflammatory signaling pathway as therapeutic targets to develop drugs for GIOP.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, China
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
55
|
Ng HP, Jennings S, Nelson S, Wang G. Short-Chain Alcohols Upregulate GILZ Gene Expression and Attenuate LPS-Induced Septic Immune Response. Front Immunol 2020; 11:53. [PMID: 32117233 PMCID: PMC7008712 DOI: 10.3389/fimmu.2020.00053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/09/2020] [Indexed: 12/16/2022] Open
Abstract
Alcohol differentially affects human health, depending on the pattern of exposure. Moderate intake provides beneficial mood modulation and an anti-inflammatory effect, while excessive consumption leads to immunosuppression and various alcohol use disorders. The mechanism underlying this bi-phasic action mode of alcohol has not been clearly defined. Our previous publication demonstrated that ethanol, in the absence of glucocorticoids (GCs), induces expression of Glucocorticoid-Induced Leucine Zipper (GILZ), a key molecule that transduces GC anti-inflammatory effect through a non-canonical activation of glucocorticoid receptor (1). Here we report that similar short-chain alcohols, such as ethanol, propanol and isopropanol, share the same property of upregulating GILZ gene expression, and blunt cell inflammatory response in vitro. When mice were exposed to these alcohols, GILZ gene expression in immune cells was augmented in a dose-dependent manner. Monocytes and neutrophils were most affected. The short-chain alcohols suppressed host inflammatory response to lipopolysaccharide (LPS) and significantly reduced LPS-induced mortality. Intriguingly, propanol and isopropanol displayed more potent protection than ethanol at the same dose. Inhibition of ethanol metabolism enhanced the ethanol protective effect, suggesting that it is ethanol, not its derivatives or metabolites, that induces immune suppression. Taken together, short-chain alcohols per se upregulate GILZ gene expression and provide immune protection against LPS toxicity, suggesting a potential measure to counter LPS septic shock in a resource limited situation.
Collapse
Affiliation(s)
- Hang Pong Ng
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Scott Jennings
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Steve Nelson
- Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Guoshun Wang
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
56
|
Merz T, Denoix N, Wigger D, Waller C, Wepler M, Vettorazzi S, Tuckermann J, Radermacher P, McCook O. The Role of Glucocorticoid Receptor and Oxytocin Receptor in the Septic Heart in a Clinically Relevant, Resuscitated Porcine Model With Underlying Atherosclerosis. Front Endocrinol (Lausanne) 2020; 11:299. [PMID: 32477273 PMCID: PMC7239997 DOI: 10.3389/fendo.2020.00299] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022] Open
Abstract
The pathophysiology of sepsis-induced myocardial dysfunction is not resolved to date and comprises inflammation, barrier dysfunction and oxidative stress. Disease-associated reduction of tissue cystathionine-γ-lyase (CSE) expression, an endogenous H2S-producing enzyme, is associated with oxidative stress, barrier dysfunction and organ injury. CSE-mediated cardio-protection has been suggested to be related the upregulation of oxytocin receptor (OTR). CSE can also mediate glucocorticoid receptor (GR) signaling, which is important for normal heart function. A sepsis-related loss of cardiac CSE expression associated with impaired organ function has been reported previously. The aim of this current post hoc study was to investigate the role of cardiac GR and OTR after polymicrobial sepsis in a clinically relevant, resuscitated, atherosclerotic porcine model. Anesthetized and instrumented FBM (Familial Hypercholesterolemia Bretoncelles Meishan) pigs with high fat diet-induced atherosclerosis underwent poly-microbial septic shock (n = 8) or sham procedure (n = 5), and subsequently received intensive care therapy with fluid and noradrenaline administration for 24 h. Cardiac protein expression and mRNA levels were analyzed. Systemic troponin, a marker of cardiac injury, was significantly increased in septic animals in contrast to sham, whereas OTR and GR expression in septic hearts were reduced, along with a down-regulation of anti-inflammatory GR target genes and the antioxidant transcription factor NRF2. These results suggest a potential interplay between GR, CSE, and OTR in sepsis-mediated oxidative stress, inflammation and cardiac dysfunction.
Collapse
Affiliation(s)
- Tamara Merz
- Ulm University Medical Center, Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm, Germany
- *Correspondence: Tamara Merz
| | - Nicole Denoix
- Clinic for Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Daniela Wigger
- Clinic for Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Christiane Waller
- Department of Psychosomatic Medicine and Psychotherapy, Nuremberg General Hospital, Paracelsus Medical University, Nuremberg, Germany
| | - Martin Wepler
- Ulm University Medical Center, Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm, Germany
- Clinic for Anesthesia, Ulm University Medical Center, Ulm, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Peter Radermacher
- Ulm University Medical Center, Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm, Germany
| | - Oscar McCook
- Ulm University Medical Center, Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm, Germany
| |
Collapse
|
57
|
Sasse SK, Gruca M, Allen MA, Kadiyala V, Song T, Gally F, Gupta A, Pufall MA, Dowell RD, Gerber AN. Nascent transcript analysis of glucocorticoid crosstalk with TNF defines primary and cooperative inflammatory repression. Genome Res 2019; 29:1753-1765. [PMID: 31519741 PMCID: PMC6836729 DOI: 10.1101/gr.248187.119] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 09/06/2019] [Indexed: 12/16/2022]
Abstract
The glucocorticoid receptor (NR3C1, also known as GR) binds to specific DNA sequences and directly induces transcription of anti-inflammatory genes that contribute to cytokine repression, frequently in cooperation with NF-kB. Whether inflammatory repression also occurs through local interactions between GR and inflammatory gene regulatory elements has been controversial. Here, using global run-on sequencing (GRO-seq) in human airway epithelial cells, we show that glucocorticoid signaling represses transcription within 10 min. Many repressed regulatory regions reside within "hyper-ChIPable" genomic regions that are subject to dynamic, yet nonspecific, interactions with some antibodies. When this artifact was accounted for, we determined that transcriptional repression does not require local GR occupancy. Instead, widespread transcriptional induction through canonical GR binding sites is associated with reciprocal repression of distal TNF-regulated enhancers through a chromatin-dependent process, as evidenced by chromatin accessibility and motif displacement analysis. Simultaneously, transcriptional induction of key anti-inflammatory effectors is decoupled from primary repression through cooperation between GR and NF-kB at a subset of regulatory regions. Thus, glucocorticoids exert bimodal restraints on inflammation characterized by rapid primary transcriptional repression without local GR occupancy and secondary anti-inflammatory effects resulting from transcriptional cooperation between GR and NF-kB.
Collapse
Affiliation(s)
- Sarah K Sasse
- Department of Medicine, National Jewish Health, Denver, Colorado 80206, USA
| | - Margaret Gruca
- BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, USA
| | - Mary A Allen
- BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, USA
| | - Vineela Kadiyala
- Department of Medicine, National Jewish Health, Denver, Colorado 80206, USA
| | - Tengyao Song
- Department of Medicine, National Jewish Health, Denver, Colorado 80206, USA
| | - Fabienne Gally
- Department of Biomedical Research, National Jewish Health, Denver, Colorado 80206, USA
| | - Arnav Gupta
- Department of Medicine, University of Colorado, Aurora, Colorado 80045, USA
| | - Miles A Pufall
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, USA
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
- Computer Science, University of Colorado, Boulder, Colorado 80309, USA
| | - Anthony N Gerber
- Department of Medicine, National Jewish Health, Denver, Colorado 80206, USA
- Department of Biomedical Research, National Jewish Health, Denver, Colorado 80206, USA
- Department of Medicine, University of Colorado, Aurora, Colorado 80045, USA
| |
Collapse
|
58
|
Maciuszek M, Rydz L, Świtakowska I, Verburg-van Kemenade BML, Chadzińska M. Effects of stress and cortisol on the polarization of carp macrophages. FISH & SHELLFISH IMMUNOLOGY 2019; 94:27-37. [PMID: 31465876 DOI: 10.1016/j.fsi.2019.08.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/06/2019] [Accepted: 08/24/2019] [Indexed: 05/02/2023]
Abstract
In teleost fish, myelopoiesis is maintained both in the head (HK) and trunk kidney (TK), but only the HK holds the endocrine cells that produce the stress hormone cortisol. We now compared the effects of prolonged restraint stress (in vivo) and cortisol (in vitro) on the polarization of HK and TK-derived carp macrophages. Monocytes/macrophages from both sources were treated in vitro with cortisol, lipopolysaccharide or with both factors combined. In vivo, fish were challenged by a prolonged restraint stress. Gene expression of several markers typical for classical M1 and alternative M2 macrophage polarization, as well as glucocorticoid receptors, were measured. Cells from both sources did not differ in the constitutive gene expression of glucocorticoid receptors, whereas they significantly differed in their response to cortisol and stress. In the LPS-stimulated HK monocytes/macrophages, cortisol in vitro counteracted the action of LPS while the effects of cortisol on the activity of TK monocytes/macrophages were less explicit. In vivo, restraint stress up-regulated gene expression of M2 markers in freshly isolated HK monocytes/macrophages, while at the same time it did not affect TK monocytes/macrophages. Moreover, LPS-stimulated HK monocytes/macrophages from stressed animals showed only minor differences in the gene expression of M1 and M2 markers, compared to LPS-treated monocytes/macrophages from control fish. In contrast, stress-induced changes in TK-derived LPS-treated cells were more pronounced. However, these changes did not clearly indicate whether in TK monocytes/macrophages stress will stimulate classical or alternative polarization. Altogether, our results imply that cortisol in vitro and stress in vivo direct HK, but not TK, monocytes/macrophages to the path of alternative polarization. These findings reveal that like in mammals, also in fish the glucocorticoids form important stimulators of alternative macrophage polarization.
Collapse
Affiliation(s)
- Magdalena Maciuszek
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland
| | - Leszek Rydz
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland
| | - Iga Świtakowska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland
| | | | - Magdalena Chadzińska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland.
| |
Collapse
|
59
|
Sevilla LM, Pérez P. Glucocorticoids and Glucocorticoid-Induced-Leucine-Zipper (GILZ) in Psoriasis. Front Immunol 2019; 10:2220. [PMID: 31572404 PMCID: PMC6753639 DOI: 10.3389/fimmu.2019.02220] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/02/2019] [Indexed: 12/20/2022] Open
Abstract
Psoriasis is a prevalent chronic inflammatory human disease initiated by impaired function of immune cells and epidermal keratinocytes, resulting in increased cytokine production and hyperproliferation, leading to skin lesions. Overproduction of Th1- and Th17-cytokines including interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-23, IL-17, and IL-22, is a major driver of the disease. Glucocorticoids (GCs) represent the mainstay protocol for treating psoriasis as they modulate epidermal differentiation and are potent anti-inflammatory compounds. The development of safer GC-based therapies is a high priority due to potentially severe adverse effects associated with prolonged GC use. Specific efforts have focused on downstream anti-inflammatory effectors of GC-signaling such as GC-Induced-Leucine-Zipper (GILZ), which suppresses Th17 responses and antagonizes multiple pro-inflammatory signaling pathways involved in psoriasis, including AP-1, NF-κB, STAT3, and ROR-γt. Here we review evidence regarding defective GC signaling, GC receptor (GR) function, and GILZ in psoriasis. We discuss seemingly contradicting data on the loss- and gain-of-function of GILZ in the imiquimod-induced mouse model of psoriasis. We also present potential therapeutic strategies aimed to restore GC-related pathways.
Collapse
Affiliation(s)
- Lisa M Sevilla
- Animal Models of Skin Pathologies Unit, Instituto de Biomedicina de Valencia (IBV)-CSIC, Valencia, Spain
| | - Paloma Pérez
- Animal Models of Skin Pathologies Unit, Instituto de Biomedicina de Valencia (IBV)-CSIC, Valencia, Spain
| |
Collapse
|
60
|
Stress–glucocorticoid–TSC22D3 axis compromises therapy-induced antitumor immunity. Nat Med 2019; 25:1428-1441. [DOI: 10.1038/s41591-019-0566-4] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
|
61
|
Cannarile L, Delfino DV, Adorisio S, Riccardi C, Ayroldi E. Implicating the Role of GILZ in Glucocorticoid Modulation of T-Cell Activation. Front Immunol 2019; 10:1823. [PMID: 31440237 PMCID: PMC6693389 DOI: 10.3389/fimmu.2019.01823] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoid-induced leucine zipper (GILZ) is a protein with multiple biological roles that is upregulated by glucocorticoids (GCs) in both immune and non-immune cells. Importantly, GCs are immunosuppressive primarily due to their regulation of cell signaling pathways that are crucial for immune system activity. GILZ, which is transcriptionally induced by the glucocorticoid receptor (GR), mediates part of these immunosuppressive, and anti-inflammatory effects, thereby controlling immune cell proliferation, survival, and differentiation. The primary immune cells targeted by the immunosuppressive activity of GCs are T cells. Importantly, the effects of GCs on T cells are partially mediated by GILZ. In fact, GILZ regulates T-cell activation, and differentiation by binding and inhibiting factors essential for T-cell function. For example, GILZ associates with nuclear factor-κB (NF-κB), c-Fos, and c-Jun and inhibits NF-κB-, and AP-1-dependent transcription. GILZ also binds Raf and Ras, inhibits activation of Ras/Raf downstream targets, including mitogen-activated protein kinase 1 (MAPK1). In addition GILZ inhibits forkhead box O3 (FoxO3) without physical interaction. GILZ also promotes the activity of regulatory T cells (Tregs) by activating transforming growth factor-β (TGF-β) signaling. Ultimately, these actions inhibit T-cell activation and modulate the differentiation of T helper (Th)-1, Th-2, Th-17 cells, thereby mediating the immunosuppressive effects of GCs on T cells. In this mini-review, we discuss how GILZ mediates GC activity on T cells, focusing mainly on the therapeutic potential of this protein as a more targeted anti-inflammatory/immunosuppressive GC therapy.
Collapse
Affiliation(s)
- Lorenza Cannarile
- Section of Pharmacology, Department of Medicine, Medical School, University of Perugia, Perugia, Italy
| | - Domenico V Delfino
- Section of Pharmacology, Department of Medicine, Medical School, University of Perugia, Perugia, Italy
| | - Sabrina Adorisio
- Section of Pharmacology, Department of Medicine, Medical School, University of Perugia, Perugia, Italy
| | - Carlo Riccardi
- Section of Pharmacology, Department of Medicine, Medical School, University of Perugia, Perugia, Italy
| | - Emira Ayroldi
- Section of Pharmacology, Department of Medicine, Medical School, University of Perugia, Perugia, Italy
| |
Collapse
|
62
|
Skelly DA, Squiers GT, McLellan MA, Bolisetty MT, Robson P, Rosenthal NA, Pinto AR. Single-Cell Transcriptional Profiling Reveals Cellular Diversity and Intercommunication in the Mouse Heart. Cell Rep 2019; 22:600-610. [PMID: 29346760 DOI: 10.1016/j.celrep.2017.12.072] [Citation(s) in RCA: 352] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/22/2017] [Accepted: 12/20/2017] [Indexed: 12/24/2022] Open
Abstract
Characterization of the cardiac cellulome, the network of cells that form the heart, is essential for understanding cardiac development and normal organ function and for formulating precise therapeutic strategies to combat heart disease. Recent studies have reshaped our understanding of cardiac cellular composition and highlighted important functional roles for non-myocyte cell types. In this study, we characterized single-cell transcriptional profiles of the murine non-myocyte cardiac cellular landscape using single-cell RNA sequencing (scRNA-seq). Detailed molecular analyses revealed the diversity of the cardiac cellulome and facilitated the development of techniques to isolate understudied cardiac cell populations, such as mural cells and glia. Our analyses also revealed extensive networks of intercellular communication and suggested prevalent sexual dimorphism in gene expression in the heart. This study offers insights into the structure and function of the mammalian cardiac cellulome and provides an important resource that will stimulate studies in cardiac cell biology.
Collapse
Affiliation(s)
| | | | - Micheal A McLellan
- The Jackson Laboratory, Bar Harbor, ME, USA; Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| | | | - Paul Robson
- The Jackson Laboratory, Bar Harbor, ME, USA; The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Genetics and Genome Sciences, University of Connecticut, Farmington, CT, USA
| | - Nadia A Rosenthal
- The Jackson Laboratory, Bar Harbor, ME, USA; Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA; The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia; National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | - Alexander R Pinto
- The Jackson Laboratory, Bar Harbor, ME, USA; Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
63
|
Yang L, Li Z, Song Y, Liu Y, Zhao H, Liu Y, Zhang T, Yuan Y, Cai X, Wang S, Wang P, Gao S, Li L, Li Y, Yu C. Study on urine metabolic profiling and pathogenesis of hyperlipidemia. Clin Chim Acta 2019; 495:365-373. [PMID: 31059703 DOI: 10.1016/j.cca.2019.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/14/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND As a recognized risk factor for cardiovascular disease (CVD), hyperlipidemia (HLP) has developed into a high incidence disease that seriously threatens human health. Finding a new target for effective treatment of HLP will be a powerful way to reduce the incidence of CVD. The purpose of this study was to find potential biomarkers in urine of HLP patients and analyze their metabolic pathways to study the pathogenesis of HLP. METHODS An UPLC-Q-TOF/MS technology was used to detect the metabolites in urine of 60 HLP patients and 60 normal controls. Based on PLS-DA pattern recognition, potential biomarkers related to HLP were screened out. RESULTS 22 potential biomarkers related to HLP were identified, which involved amino acid metabolism, fatty acid metabolism, nucleotide metabolism, steroid hormone metabolism and intestinal flora metabolism, and their possible pathogenesis was found to be related to inflammatory reaction and oxidative stress. CONCLUSION The non-targeted metabolomic method based on UPLC-Q-TOF/MS technology can effectively identify potential biomarkers in the urine of HLP patients and explore the possible pathogenesis. Our research will lay a foundation for finding new targets for the treatment of HLP and provide a basis for clinical research on the treatment of HLP.
Collapse
Affiliation(s)
- Liu Yang
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Zhu Li
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Yanqi Song
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Yijia Liu
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Huan Zhao
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Yuechen Liu
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Tianpu Zhang
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Yu Yuan
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Xuemeng Cai
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Shuo Wang
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Pengwei Wang
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Shan Gao
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Lin Li
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China.
| | - Yubo Li
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China.
| | - Chunquan Yu
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China.
| |
Collapse
|
64
|
Yurtsever T, Streit F, Foo JC, Trifonova S, Kumsta R, Muller CP, Turner JD, Meyer J, Schote AB. Temporal dynamics of cortisol-associated changes in mRNA expression of glucocorticoid responsive genes FKBP5, GILZ, SDPR, PER1, PER2 and PER3 in healthy humans. Psychoneuroendocrinology 2019; 102:63-67. [PMID: 30522007 DOI: 10.1016/j.psyneuen.2018.11.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 01/11/2023]
Abstract
Secretion of the stress hormone cortisol follows a circadian rhythm and is stimulated following stress exposure. Cortisol regulates the transcription of several genes, primarily through activation of the glucocorticoid receptor (GR). Previously, we showed an upregulation of PERIOD genes PER1 and PER3 after pharmacological/glucocorticoid challenge in vivo and in vitro. The current study aims to investigate the temporal association between unstimulated, diurnal cortisol secretion and the expression of selected GR-target genes (PER1, PER2, PER3, FKBP5, GILZ and SDPR) in vivo to determine the timing of the most pronounced coupling between cortisol and mRNA expression. Unstimulated plasma and saliva cortisol concentrations and gene expression levels in whole blood were measured every 15 min from early morning until 16:00 h in 18 healthy men. Time-lagged correlations of cortisol concentrations with mRNA expression levels were assessed allowing lags between -240 and + 240 min. Strong positive correlations at non-zero lags between cortisol levels and the expression of FKBP5 (plasma: r = 0.74 (CI = 0.65-0.81), p < 0.001, lag + 90 min; saliva: r = 0.71 (CI = 0.61-0.78), p < 0.001, lag + 75 min), and GILZ (plasma: r = 0.59 (CI = 0.46-0.69), p < 0.001, lag + 30 min; saliva r = 0.53 (CI = 0.41-0.63), p < 0.001, lag +15 min) were observed. Expressions of PERIOD genes and SDPR correlated only weakly with cortisol (all |r| < 0.25). Our findings demonstrate strong correlations between cortisol secretion and gene expression in humans under unstimulated conditions. The observed time-lags can guide future research aiming to characterize glucocorticoid-dependent gene expression in clinical samples with stress-related disorders.
Collapse
Affiliation(s)
- Türkan Yurtsever
- Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, D-54290, Trier, Germany
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, D-68159, Mannheim, Germany
| | - Jerome C Foo
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, D-68159, Mannheim, Germany
| | - Slavena Trifonova
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, L-4354, Luxembourg; Department of Immunology, Institute of Psychobiology, University of Trier, D-54290, Trier, Germany
| | - Robert Kumsta
- Department of Genetic Psychology, Faculty of Psychology, Ruhr University, Bochum, Germany
| | - Claude P Muller
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, L-4354, Luxembourg; Department of Immunology, Institute of Psychobiology, University of Trier, D-54290, Trier, Germany
| | - Jonathan D Turner
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, L-4354, Luxembourg
| | - Jobst Meyer
- Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, D-54290, Trier, Germany
| | - Andrea B Schote
- Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, D-54290, Trier, Germany.
| |
Collapse
|
65
|
Bereshchenko O, Migliorati G, Bruscoli S, Riccardi C. Glucocorticoid-Induced Leucine Zipper: A Novel Anti-inflammatory Molecule. Front Pharmacol 2019; 10:308. [PMID: 30971930 PMCID: PMC6445858 DOI: 10.3389/fphar.2019.00308] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids (GCs) are the most commonly used drugs for treatment of autoimmune and inflammatory diseases. Their efficacy is due to their ability to bind cytoplasmic receptors (glucocorticoid receptors, GR) and other cytoplasmic proteins, thus regulating gene expression. Although GCs are potent life-saving drugs, their therapeutic effects are transitory and chronic use of GCs is accompanied by serious side effects. Therefore, new drugs are needed to replace GCs. We have identified a gene, glucocorticoid-induced leucine zipper (GILZ or tsc22d3), that is rapidly and invariably induced by GCs. Human GILZ is a 135-amino acid protein that mediates many GC effects, including inhibition of the NF-κB and MAPK pathways. Similar to GCs, GILZ exerts anti-inflammatory activity in experimental disease models, including inflammatory bowel diseases and arthritis. While transgenic mice that overexpress GILZ are more resistant, GILZ knockout mice develop worse inflammatory diseases. Moreover, the anti-inflammatory effect of GCs is attenuated in GILZ-deficient mice. Importantly, in vivo delivery of recombinant GILZ protein cured colitis and facilitated resolution of lipopolysaccharide-induced inflammation without apparent toxic effects. A synthetic GILZ-derived peptide, corresponding to the GILZ region that interacts with NF-κB, was able to suppress experimental autoimmune encephalomyelitis. Collectively, these findings indicate that GILZ is an anti-inflammatory molecule that may serve as the basis for designing new therapeutic approaches to inflammatory diseases.
Collapse
Affiliation(s)
- Oxana Bereshchenko
- Department of Surgery and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Graziella Migliorati
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Stefano Bruscoli
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Carlo Riccardi
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
66
|
Sarlus H, Fontana JM, Tserga E, Meltser I, Cederroth CR, Canlon B. Circadian integration of inflammation and glucocorticoid actions: Implications for the cochlea. Hear Res 2019; 377:53-60. [PMID: 30908966 DOI: 10.1016/j.heares.2019.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/05/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022]
Abstract
Auditory function has been shown to be influenced by the circadian system. Increasing evidence point towards the regulation of inflammation and glucocorticoid actions by circadian rhythms in the cochlea. Yet, how these three systems (circadian, immune and endocrine) converge to control auditory function remains to be established. Here we review the knowledge on immune and glucocorticoid actions, and how they interact with the circadian and the auditory system, with a particular emphasis on cochlear responses to noise trauma. We propose a multimodal approach to understand the mechanisms of noise-induced hearing loss by integrating the circadian, immune and endocrine systems into the bearings of the cochlea. Considering the well-established positive impact of chronotherapeutic approaches in the treatment of cardiovascular, asthma and cancer, an increased knowledge on the mechanisms where circadian, immune and glucocorticoids meet in the cochlea may improve current treatments against hearing disorders.
Collapse
Affiliation(s)
- Heela Sarlus
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden.
| | - Jacopo Maria Fontana
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Evangelia Tserga
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Inna Meltser
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | | | - Barbara Canlon
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| |
Collapse
|
67
|
Monczor F, Chatzopoulou A, Zappia CD, Houtman R, Meijer OC, Fitzsimons CP. A Model of Glucocorticoid Receptor Interaction With Coregulators Predicts Transcriptional Regulation of Target Genes. Front Pharmacol 2019; 10:214. [PMID: 30930776 PMCID: PMC6425864 DOI: 10.3389/fphar.2019.00214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
Regulatory factors that control gene transcription in multicellular organisms are assembled in multicomponent complexes by combinatorial interactions. In this context, nuclear receptors provide well-characterized and physiologically relevant systems to study ligand-induced transcription resulting from the integration of cellular and genomic information in a cell- and gene-specific manner. Here, we developed a mathematical model describing the interactions between the glucocorticoid receptor (GR) and other components of a multifactorial regulatory complex controlling the transcription of GR-target genes, such as coregulator peptides. We support the validity of the model in relation to gene-specific GR transactivation with gene transcription data from A549 cells and in vitro real time quantification of coregulator-GR interactions. The model accurately describes and helps to interpret ligand-specific and gene-specific transcriptional regulation by the GR. The comprehensive character of the model allows future insight into the function and relative contribution of the molecular species proposed in ligand- and gene-specific transcriptional regulation.
Collapse
Affiliation(s)
- Federico Monczor
- Laboratorio de Farmacología de Receptores, Instituto de Investigaciones Farmacológicas, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Antonia Chatzopoulou
- Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
| | - Carlos Daniel Zappia
- Laboratorio de Farmacología de Receptores, Instituto de Investigaciones Farmacológicas, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - René Houtman
- PamGene International B.V., 's-Hertogenbosch, Netherlands
| | - Onno C Meijer
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Centre, Leiden, Netherlands
| | - Carlos P Fitzsimons
- Neuroscience Collaboration, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
68
|
Sugimoto MA, Vago JP, Perretti M, Teixeira MM. Mediators of the Resolution of the Inflammatory Response. Trends Immunol 2019; 40:212-227. [DOI: 10.1016/j.it.2019.01.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 02/06/2023]
|
69
|
Glantschnig C, Koenen M, Gil‐Lozano M, Karbiener M, Pickrahn I, Williams‐Dautovich J, Patel R, Cummins CL, Giroud M, Hartleben G, Vogl E, Blüher M, Tuckermann J, Uhlenhaut H, Herzig S, Scheideler M. A miR‐29a‐driven negative feedback loop regulates peripheral glucocorticoid receptor signaling. FASEB J 2019; 33:5924-5941. [DOI: 10.1096/fj.201801385rr] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Christina Glantschnig
- Institute for Diabetes and Cancer (IDC)Helmholtz Center Munich Neuherberg Germany
- Joint Heidelberg‐IDC, Inner Medicine 1Heidelberg University Hospital Heidelberg Germany
- German Center for Diabetes Research (DZD) Neuherberg Germany
| | - Mascha Koenen
- Institute of Comparative Molecular EndocrinologyUlm University Ulm Germany
| | - Manuel Gil‐Lozano
- Institute for Diabetes and Cancer (IDC)Helmholtz Center Munich Neuherberg Germany
- Joint Heidelberg‐IDC, Inner Medicine 1Heidelberg University Hospital Heidelberg Germany
- German Center for Diabetes Research (DZD) Neuherberg Germany
| | - Michael Karbiener
- Division of Phoniatrics, Speech, and SwallowingDepartment of OtorhinolaryngologyUniversity HospitalMedical University of Graz Graz Austria
| | - Ines Pickrahn
- Department of Legal MedicineUniversity of Salzburg Salzburg Austria
| | | | - Rucha Patel
- Department of Pharmaceutical SciencesUniversity of Toronto Toronto Ontario Canada
| | - Carolyn L. Cummins
- Department of Pharmaceutical SciencesUniversity of Toronto Toronto Ontario Canada
| | - Maude Giroud
- Institute for Diabetes and Cancer (IDC)Helmholtz Center Munich Neuherberg Germany
- Joint Heidelberg‐IDC, Inner Medicine 1Heidelberg University Hospital Heidelberg Germany
- German Center for Diabetes Research (DZD) Neuherberg Germany
| | - Götz Hartleben
- Institute for Diabetes and Cancer (IDC)Helmholtz Center Munich Neuherberg Germany
- Joint Heidelberg‐IDC, Inner Medicine 1Heidelberg University Hospital Heidelberg Germany
- German Center for Diabetes Research (DZD) Neuherberg Germany
| | - Elena Vogl
- Institute for Diabetes and Cancer (IDC)Helmholtz Center Munich Neuherberg Germany
- Joint Heidelberg‐IDC, Inner Medicine 1Heidelberg University Hospital Heidelberg Germany
- German Center for Diabetes Research (DZD) Neuherberg Germany
| | - Matthias Blüher
- Clinic for Endocrinology and NephrologyMedical Research Center Leipzig Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular EndocrinologyUlm University Ulm Germany
| | - Henriette Uhlenhaut
- Research Group Molecular EndocrinologyHelmholtz Center Munich Neuherberg Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC)Helmholtz Center Munich Neuherberg Germany
- Joint Heidelberg‐IDC, Inner Medicine 1Heidelberg University Hospital Heidelberg Germany
- German Center for Diabetes Research (DZD) Neuherberg Germany
- School of MedicineTechnical University Munich Munich Germany
| | - Marcel Scheideler
- Institute for Diabetes and Cancer (IDC)Helmholtz Center Munich Neuherberg Germany
- Joint Heidelberg‐IDC, Inner Medicine 1Heidelberg University Hospital Heidelberg Germany
- German Center for Diabetes Research (DZD) Neuherberg Germany
| |
Collapse
|
70
|
How Glucocorticoids Affect the Neutrophil Life. Int J Mol Sci 2018; 19:ijms19124090. [PMID: 30563002 PMCID: PMC6321245 DOI: 10.3390/ijms19124090] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 02/07/2023] Open
Abstract
Glucocorticoids are hormones that regulate several functions in living organisms and synthetic glucocorticoids are the most powerful anti-inflammatory pharmacological tool that is currently available. Although glucocorticoids have an immunosuppressive effect on immune cells, they exert multiple and sometimes contradictory effects on neutrophils. From being extremely sensitive to the anti-inflammatory effects of glucocorticoids to resisting glucocorticoid-induced apoptosis, neutrophils are proving to be more complex than they were earlier thought to be. The aim of this review is to explain these complex pathways by which neutrophils respond to endogenous or to exogenous glucocorticoids, both under physiological and pathological conditions.
Collapse
|
71
|
Gentili M, Ronchetti S, Ricci E, Di Paola R, Gugliandolo E, Cuzzocrea S, Bereshchenko O, Migliorati G, Riccardi C. Selective CB2 inverse agonist JTE907 drives T cell differentiation towards a Treg cell phenotype and ameliorates inflammation in a mouse model of inflammatory bowel disease. Pharmacol Res 2018; 141:21-31. [PMID: 30552973 DOI: 10.1016/j.phrs.2018.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
Abstract
Cannabinoids are known to possess anti-inflammatory and immunomodulatory properties, but the mechanisms involved are not fully understood. CB2 is the cannabinoid receptor that is expressed primarily on hematopoietic cells and mediates the immunoregulatory functions of cannabinoids. In order to study the effect of JTE907, a selective/inverse agonist of CB2 with anti-inflammatory properties, on the differentiation of T cell subtypes, we used an in vitro system of Th lineage-specific differentiation of naïve CD4+ T lymphocytes isolated from the mouse spleen. The results indicate that JTE907 was able to induce the differentiation of Th0 cells into the Treg cell phenotype, which was characterized by the expression of FoxP3, TGF-β and IL-10. P38 phosphorylation and STAT5A activation were found to mediate the signaling pathway triggered by JTE907 via the CB2 receptor in Th0 lymphocytes. In mice with DNBS-induced colitis, JTE907 treatment was able to induce an increase in the number of CD4+CD25+FoxP3+ cells in the lamina propria after 24 h of disease onset and reduce disease severity after 48 h. Further, longer JTE907 treatment resulted in less severe colitis even when administered orally, resulting in less body weight loss, reduction of the disease score, prevention of NF-κB activation, and reduction of the expression of adhesion molecules. Collectively, the results of this study indicate that specific signals delivered through the CB2 receptor can drive the immune response towards the Treg cell phenotype. Thus, ligands such as JTE907 may have use as potential therapeutic agents in autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Marco Gentili
- Department of Medicine, Section of Pharmacology, University of Perugia, Italy
| | - Simona Ronchetti
- Department of Medicine, Section of Pharmacology, University of Perugia, Italy.
| | - Erika Ricci
- Department of Medicine, Section of Pharmacology, University of Perugia, Italy
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Oxana Bereshchenko
- Department of Medicine, Section of Pharmacology, University of Perugia, Italy
| | | | - Carlo Riccardi
- Department of Medicine, Section of Pharmacology, University of Perugia, Italy
| |
Collapse
|
72
|
Ricci E, Ronchetti S, Gabrielli E, Pericolini E, Gentili M, Roselletti E, Vecchiarelli A, Riccardi C. GILZ restrains neutrophil activation by inhibiting the MAPK pathway. J Leukoc Biol 2018; 105:187-194. [PMID: 30371949 DOI: 10.1002/jlb.3ab0718-255r] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/11/2018] [Accepted: 10/04/2018] [Indexed: 01/09/2023] Open
Abstract
Glucocorticoid-induced leucine zipper (GILZ) exerts anti-inflammatory effects on the immune cells. However, less is known about GILZ function in neutrophils. We aimed to define the specific role of GILZ in basal neutrophil activity during an inflammatory response. GILZ knockdown resulted in a persistent activation state of neutrophils, as evidenced by increased phagocytosis, killing activity, and oxidative burst in GILZ-knockout (KO) neutrophils. This enhanced response caused severe disease in a dinitrobenzene sulfonic acid (DNBS)-induced colitis model, where GILZ-KO mice had prominent granulocytic infiltrate and excessive inflammatory state. We used a Candida albicans intraperitoneal infection model to unravel the intracellular pathways affected by GILZ expression in activated neutrophils. GILZ-KO neutrophils had stronger ability to clear the infectious agent than the wild-type (WT) neutrophils, and there was more activation of the NOX2 (NADPH oxidase 2) and p47phox proteins, which are directly involved in oxidative burst. Similarly, the MAPK pathway components, that is, ERK and p38, which are involved in the oxidative burst pathway, were highly phosphorylated in GILZ-KO neutrophils. Evaluation of GILZ expression kinetics during C. albicans infection revealed down-regulation that correlated inversely with the state of neutrophil activation, which was evaluated as oxidative burst. Overall, our findings define GILZ as a regulator of neutrophil functions, as its expression contributes to limiting neutrophil activation by reducing the activation of the signaling pathways that control the basal neutrophil functions. Controlling GILZ expression could help regulate a continuous inflammatory state that can result in chronic inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Erika Ricci
- Department of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Simona Ronchetti
- Department of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Elena Gabrielli
- Department of Medicine, Microbiology Section, University of Perugia, Perugia, Italy
| | - Eva Pericolini
- Department of Diagnostic, Clinic and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Gentili
- Department of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Elena Roselletti
- Department of Medicine, Microbiology Section, University of Perugia, Perugia, Italy
| | - Anna Vecchiarelli
- Department of Medicine, Microbiology Section, University of Perugia, Perugia, Italy
| | - Carlo Riccardi
- Department of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| |
Collapse
|
73
|
Rytkönen KT, Erkenbrack EM, Poutanen M, Elo LL, Pavlicev M, Wagner GP. Decidualization of Human Endometrial Stromal Fibroblasts is a Multiphasic Process Involving Distinct Transcriptional Programs. Reprod Sci 2018; 26:323-336. [PMID: 30309298 DOI: 10.1177/1933719118802056] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Decidual stromal cells differentiate from endometrial stromal fibroblasts (ESFs) under the influence of progesterone and cyclic adenosine monophosphate (cAMP) and are essential for implantation and the maintenance of pregnancy. They evolved in the stem lineage of placental (eutherian) mammals coincidental with the evolution of implantation. Here we use the well-established in vitro decidualization protocol to compare early (3 days) and late (8 days) gene transcription patterns in immortalized human ESF. We document extensive, dynamic changes in the early and late decidual cell transcriptomes. The data suggest the existence of an early signal transducer and activator of transcription (STAT) pathway dominated state and a later nuclear factor κB (NFKB) pathway regulated state. Transcription factor expression in both phases is characterized by putative or known progesterone receptor ( PGR) target genes, suggesting that both phases are under progesterone control. Decidualization leads to proliferative quiescence, which is reversible by progesterone withdrawal after 3 days but to a lesser extent after 8 days of decidualization. In contrast, progesterone withdrawal induces cell death at comparable levels after short or long exposure to progestins and cAMP. We conclude that decidualization is characterized by a biphasic gene expression dynamic that likely corresponds to different phases in the establishment of the fetal-maternal interface.
Collapse
Affiliation(s)
- Kalle T Rytkönen
- 1 Yale Systems Biology Institute, West Haven, CT, USA.,2 Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.,3 Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu, Finland.,4 Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Eric M Erkenbrack
- 1 Yale Systems Biology Institute, West Haven, CT, USA.,2 Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Matti Poutanen
- 3 Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu, Finland
| | - Laura L Elo
- 4 Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Mihaela Pavlicev
- 5 Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, USA
| | - Günter P Wagner
- 1 Yale Systems Biology Institute, West Haven, CT, USA.,2 Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.,6 Department of Obstetrics, Yale Medical School, New Haven, CT, USA.,7 Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
74
|
Baban B, Marchetti C, Khodadadi H, Malik A, Emami G, Lin PC, Arbab AS, Riccardi C, Mozaffari MS. Glucocorticoid-Induced Leucine Zipper Promotes Neutrophil and T-Cell Polarization with Protective Effects in Acute Kidney Injury. J Pharmacol Exp Ther 2018; 367:483-493. [PMID: 30301736 DOI: 10.1124/jpet.118.251371] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/01/2018] [Indexed: 12/11/2022] Open
Abstract
The glucocorticoid-induced leucine zipper (GILZ) mediates anti-inflammatory effects of glucocorticoids. Acute kidney injury (AKI) mobilizes immune/inflammatory mechanisms, causing tissue injury, but the impact of GILZ in AKI is not known. Neutrophils play context-specific proinflammatory [type 1 neutrophil (N1)] and anti-inflammatory [type 2 neutrophil (N2)] functional roles. Also, regulatory T lymphocytes (Tregs) and regulatory T-17 (Treg17) cells exert counterinflammatory effects, including the suppression of effector T lymphocytes [e.g., T-helper (Th) 17 cells]. Thus, utilizing cell preparations of mice kidneys subjected to AKI or sham operation, we determined the effects of GILZ on T cells and neutrophil subtypes in the context of its renoprotective effect; these studies used the transactivator of transcription (TAT)-GILZ or the TAT peptide. AKI increased N1 and Th-17 cells but reduced N2, Tregs, and Treg17 cells in association with increased interleukin (IL)-17+ but reduced IL-10+ cells accompanied with the disruption of mitochondrial membrane potential (ψ m) and increased apoptosis/necrosis compared with sham kidneys. TAT-GILZ, compared with TAT, treatment reduced N1 and Th-17 cells but increased N2 and Tregs, without affecting Treg17 cells, in association with a reduction in IL-17+ cells but an increase in IL-10+ cells; TAT-GILZ caused less disruption of ψ m and reduced cell death in AKI. Importantly, TAT-GILZ increased perfusion of the ischemic-reperfused kidney but reduced tissue edema compared with TAT. Utilizing splenic T cells and bone marrow-derived neutrophils, we further showed marked reduction in the proliferation of Th cells in response to TAT-GILZ compared with response to TAT. Collectively, the results indicate that GILZ exerts renoprotection accompanied by the upregulation of the regulatory/suppressive arm of immunity in AKI, likely via regulating cross talk between T cells and neutrophils.
Collapse
Affiliation(s)
- Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia (B.B., H.K., A.M., G.E., M.S.M.) and Georgia Cancer Center (P.-C.L., A.S.A.), Augusta University, Augusta, Georgia; and Department of Medicine, University of Perugia, Perugia, Italy (C.M., C.R.)
| | - Cristina Marchetti
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia (B.B., H.K., A.M., G.E., M.S.M.) and Georgia Cancer Center (P.-C.L., A.S.A.), Augusta University, Augusta, Georgia; and Department of Medicine, University of Perugia, Perugia, Italy (C.M., C.R.)
| | - Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia (B.B., H.K., A.M., G.E., M.S.M.) and Georgia Cancer Center (P.-C.L., A.S.A.), Augusta University, Augusta, Georgia; and Department of Medicine, University of Perugia, Perugia, Italy (C.M., C.R.)
| | - Aneeq Malik
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia (B.B., H.K., A.M., G.E., M.S.M.) and Georgia Cancer Center (P.-C.L., A.S.A.), Augusta University, Augusta, Georgia; and Department of Medicine, University of Perugia, Perugia, Italy (C.M., C.R.)
| | - Golnaz Emami
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia (B.B., H.K., A.M., G.E., M.S.M.) and Georgia Cancer Center (P.-C.L., A.S.A.), Augusta University, Augusta, Georgia; and Department of Medicine, University of Perugia, Perugia, Italy (C.M., C.R.)
| | - Ping-Chang Lin
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia (B.B., H.K., A.M., G.E., M.S.M.) and Georgia Cancer Center (P.-C.L., A.S.A.), Augusta University, Augusta, Georgia; and Department of Medicine, University of Perugia, Perugia, Italy (C.M., C.R.)
| | - Ali S Arbab
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia (B.B., H.K., A.M., G.E., M.S.M.) and Georgia Cancer Center (P.-C.L., A.S.A.), Augusta University, Augusta, Georgia; and Department of Medicine, University of Perugia, Perugia, Italy (C.M., C.R.)
| | - Carlo Riccardi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia (B.B., H.K., A.M., G.E., M.S.M.) and Georgia Cancer Center (P.-C.L., A.S.A.), Augusta University, Augusta, Georgia; and Department of Medicine, University of Perugia, Perugia, Italy (C.M., C.R.)
| | - Mahmood S Mozaffari
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia (B.B., H.K., A.M., G.E., M.S.M.) and Georgia Cancer Center (P.-C.L., A.S.A.), Augusta University, Augusta, Georgia; and Department of Medicine, University of Perugia, Perugia, Italy (C.M., C.R.)
| |
Collapse
|
75
|
Navarro-Barriuso J, Mansilla MJ, Martínez-Cáceres EM. Searching for the Transcriptomic Signature of Immune Tolerance Induction-Biomarkers of Safety and Functionality for Tolerogenic Dendritic Cells and Regulatory Macrophages. Front Immunol 2018; 9:2062. [PMID: 30298066 PMCID: PMC6160751 DOI: 10.3389/fimmu.2018.02062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022] Open
Abstract
The last years have witnessed a breakthrough in the development of cell-based tolerance-inducing cell therapies for the treatment of autoimmune diseases and solid-organ transplantation. Indeed, the use of tolerogenic dendritic cells (tolDC) and regulatory macrophages (Mreg) is currently being tested in Phase I and Phase II clinical trials worldwide, with the aim of finding an effective therapy able to abrogate the inflammatory processes causing these pathologies without compromising the protective immunity of the patients. However, there exists a wide variety of different protocols to generate human tolDC and Mreg and, consequently, the characteristics of each product are heterogeneous. For this reason, the identification of biomarkers able to define their functionality (tolerogenicity) is of great relevance, on the one hand, to guarantee the safety of tolDC and Mreg before administration and, on the other hand, to compare the results between different cell products and laboratories. In this article, we perform an exhaustive review of protocols generating human tolDC and Mreg in the literature, aiming to elucidate if there are any common transcriptomic signature or potential biomarkers of tolerogenicity among the different approaches. However, and although several effectors seem to be induced in common in some of the most reported protocols to generate both tolDC or Mreg, the transcriptomic profile of these cellular products strongly varies depending on the approach used to generate them.
Collapse
Affiliation(s)
- Juan Navarro-Barriuso
- Division of Immunology, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María José Mansilla
- Division of Immunology, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eva M Martínez-Cáceres
- Division of Immunology, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
76
|
Mylka V, Deckers J, Ratman D, De Cauwer L, Thommis J, De Rycke R, Impens F, Libert C, Tavernier J, Vanden Berghe W, Gevaert K, De Bosscher K. The autophagy receptor SQSTM1/p62 mediates anti-inflammatory actions of the selective NR3C1/glucocorticoid receptor modulator compound A (CpdA) in macrophages. Autophagy 2018; 14:2049-2064. [PMID: 30215534 PMCID: PMC6984772 DOI: 10.1080/15548627.2018.1495681] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Glucocorticoids are widely used to treat inflammatory disorders; however, prolonged use of glucocorticoids results in side effects including osteoporosis, diabetes and obesity. Compound A (CpdA), identified as a selective NR3C1/glucocorticoid receptor (nuclear receptor subfamily 3, group C, member 1) modulator, exhibits an inflammation-suppressive effect, largely in the absence of detrimental side effects. To understand the mechanistic differences between the classic glucocorticoid dexamethasone (DEX) and CpdA, we looked for proteins oppositely regulated in bone marrow-derived macrophages using an unbiased proteomics approach. We found that the autophagy receptor SQSTM1 but not NR3C1 mediates the anti-inflammatory action of CpdA. CpdA drives SQSTM1 upregulation by recruiting the NFE2L2 transcription factor to its promoter. In contrast, the classic NR3C1 ligand dexamethasone recruits NR3C1 to the Sqstm1 promoter and other NFE2L2-controlled gene promoters, resulting in gene downregulation. Both DEX and CpdA induce autophagy, with marked different autophagy characteristics and morphology. Suppression of LPS-induced Il6 and Ccl2 genes by CpdA in macrophages is hampered upon Sqstm1 silencing, confirming that SQSTM1 is essential for the anti-inflammatory capacity of CpdA, at least in this cell type. Together, these results demonstrate how off-target mechanisms of selective NR3C1 ligands may contribute to a more efficient anti-inflammatory therapy.
Collapse
Affiliation(s)
- Viacheslav Mylka
- a Receptor Research Laboratories, Nuclear Receptor Lab , Ghent University , Ghent , Belgium.,c Department of Biochemistry , VIB-UGent Center for Medical Biotechnology , Ghent , Belgium.,d Department of Biochemistry , Ghent University , Ghent , Belgium
| | - Julie Deckers
- a Receptor Research Laboratories, Nuclear Receptor Lab , Ghent University , Ghent , Belgium.,c Department of Biochemistry , VIB-UGent Center for Medical Biotechnology , Ghent , Belgium.,d Department of Biochemistry , Ghent University , Ghent , Belgium.,f Inflammation Research Center , VIB, Ghent University , Ghent , Belgium
| | - Dariusz Ratman
- a Receptor Research Laboratories, Nuclear Receptor Lab , Ghent University , Ghent , Belgium.,c Department of Biochemistry , VIB-UGent Center for Medical Biotechnology , Ghent , Belgium.,d Department of Biochemistry , Ghent University , Ghent , Belgium
| | - Lode De Cauwer
- a Receptor Research Laboratories, Nuclear Receptor Lab , Ghent University , Ghent , Belgium.,c Department of Biochemistry , VIB-UGent Center for Medical Biotechnology , Ghent , Belgium.,d Department of Biochemistry , Ghent University , Ghent , Belgium
| | - Jonathan Thommis
- a Receptor Research Laboratories, Nuclear Receptor Lab , Ghent University , Ghent , Belgium.,c Department of Biochemistry , VIB-UGent Center for Medical Biotechnology , Ghent , Belgium.,d Department of Biochemistry , Ghent University , Ghent , Belgium
| | - Riet De Rycke
- f Inflammation Research Center , VIB, Ghent University , Ghent , Belgium.,g Department of Biomedical Molecular Biology , Ghent University , Ghent , Belgium.,h Department of Plant Systems Biology , VIB , Ghent , Belgium.,i Department of Plant Biotechnology and Bioinformatics , Ghent University , Ghent , Belgium
| | - Francis Impens
- c Department of Biochemistry , VIB-UGent Center for Medical Biotechnology , Ghent , Belgium.,d Department of Biochemistry , Ghent University , Ghent , Belgium.,j VIB Proteomics Core , VIB , Ghent , Belgium
| | - Claude Libert
- f Inflammation Research Center , VIB, Ghent University , Ghent , Belgium.,g Department of Biomedical Molecular Biology , Ghent University , Ghent , Belgium
| | - Jan Tavernier
- b Receptor Research Laboratories, Cytokine Receptor Lab , Ghent University , Ghent , Belgium.,c Department of Biochemistry , VIB-UGent Center for Medical Biotechnology , Ghent , Belgium.,d Department of Biochemistry , Ghent University , Ghent , Belgium
| | - Wim Vanden Berghe
- e PPES lab Protein Science, Proteomics & Epigenetic Signaling , Department Biomedical Sciences - University of Antwerp , Wilrijk , Belgium
| | - Kris Gevaert
- c Department of Biochemistry , VIB-UGent Center for Medical Biotechnology , Ghent , Belgium.,d Department of Biochemistry , Ghent University , Ghent , Belgium
| | - Karolien De Bosscher
- a Receptor Research Laboratories, Nuclear Receptor Lab , Ghent University , Ghent , Belgium.,c Department of Biochemistry , VIB-UGent Center for Medical Biotechnology , Ghent , Belgium.,d Department of Biochemistry , Ghent University , Ghent , Belgium
| |
Collapse
|
77
|
Song D, DuBois DC, Almon RR, Jusko WJ. Modeling Sex Differences in Anti-inflammatory Effects of Dexamethasone in Arthritic Rats. Pharm Res 2018; 35:203. [PMID: 30191329 DOI: 10.1007/s11095-018-2483-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/21/2018] [Indexed: 12/29/2022]
Abstract
PURPOSE Collagen-induced arthritic (CIA) rats are used commonly for preclinical pharmacologic research into rheumatoid arthritis (RA). Dexamethasone (DEX), a potent corticosteroid (CS), remains an important component in combination therapy for RA. Although sex differences in RA and CS pharmacokinetics/pharmacodynamics (PK/PD) have been documented in humans, there has been no such comprehensive evaluation of sex differences in CIA rats. METHODS Paw size measurements were obtained for males and females from four groups of animals: healthy controls, non-drug treated arthritic animals, and both 0.225 and 2.25 mg/kg DEX-treated arthritic animals. A turnover model for disease progression, minimal PBPK model for drug concentrations, and inhibitory indirect response model were applied using population PK/PD modeling. RESULTS The clearances of DEX were 43% greater in males, but other PK parameters were similar. The temporal profiles of paw swelling exhibited earlier progression, peak edema times, and disease remission in females. DEX suppressed paw edema well in both males and females with similar capacity (Imax) values (=1.0), but DEX potency was less in females with higher IC50 values (0.101 versus 0.015 ng/mL). CONCLUSIONS The pharmacology of DEX was well characterized in CIA rats. This study addresses knowledge gaps about sex differences and can be a guide for more mechanistic assessment of sex, drug, and disease differences in RA.
Collapse
Affiliation(s)
- Dawei Song
- Department of Pharmaceutical Sciences School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, 14214, USA
| | - Debra C DuBois
- Department of Pharmaceutical Sciences School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, 14214, USA
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, 14260, USA
| | - Richard R Almon
- Department of Pharmaceutical Sciences School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, 14214, USA
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, 14260, USA
| | - William J Jusko
- Department of Pharmaceutical Sciences School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, 14214, USA.
| |
Collapse
|
78
|
Jurberg AD, Cotta-de-Almeida V, Temerozo JR, Savino W, Bou-Habib DC, Riederer I. Neuroendocrine Control of Macrophage Development and Function. Front Immunol 2018; 9:1440. [PMID: 29988513 PMCID: PMC6026652 DOI: 10.3389/fimmu.2018.01440] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/11/2018] [Indexed: 12/25/2022] Open
Abstract
Macrophages carry out numerous physiological activities that are essential for both systemic and local homeostasis, as well as innate and adaptive immune responses. Their biology is intricately regulated by hormones, neuropeptides, and neurotransmitters, establishing distinct neuroendocrine axes. The control is pleiotropic, including maturation of bone marrow-derived myeloid precursors, cell differentiation into functional subpopulations, cytotoxic activity, phagocytosis, production of inflammatory mediators, antigen presentation, and activation of effector lymphocytes. Additionally, neuroendocrine components modulate macrophage ability to influence tumor growth and to prevent the spreading of infective agents. Interestingly, macrophage-derived factors enhance glucocorticoid production through the stimulation of the hypothalamic–pituitary–adrenal axis. These bidirectional effects highlight a tightly controlled balance between neuroendocrine stimuli and macrophage function in the development of innate and adaptive immune responses. Herein, we discuss how components of neuroendocrine axes impact on macrophage development and function and may ultimately influence inflammation, tissue repair, infection, or cancer progression. The knowledge of the crosstalk between macrophages and endocrine or brain-derived components may contribute to improve and create new approaches with clinical relevance in homeostatic or pathological conditions.
Collapse
Affiliation(s)
- Arnon Dias Jurberg
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Vinícius Cotta-de-Almeida
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Jairo Ramos Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Dumith Chequer Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Ingo Riederer
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
79
|
Bereshchenko O, Bruscoli S, Riccardi C. Glucocorticoids, Sex Hormones, and Immunity. Front Immunol 2018; 9:1332. [PMID: 29946321 PMCID: PMC6006719 DOI: 10.3389/fimmu.2018.01332] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/29/2018] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoid hormones regulate essential body functions in mammals, control cell metabolism, growth, differentiation, and apoptosis. Importantly, they are potent suppressors of inflammation, and multiple immune-modulatory mechanisms involving leukocyte apoptosis, differentiation, and cytokine production have been described. Due to their potent anti-inflammatory and immune-suppressive activity, synthetic glucocorticoids (GCs) are the most prescribed drugs used for treatment of autoimmune and inflammatory diseases. It is long been noted that males and females exhibit differences in the prevalence in several autoimmune diseases (AD). This can be due to the role of sexual hormones in regulation of the immune responses, acting through their endogenous nuclear receptors to mediate gene expression and generate unique gender-specific cellular environments. Given the fact that GCs are the primary physiological anti-inflammatory hormones, and that sex hormones may also exert immune-modulatory functions, the link between GCs and sex hormones may exist. Understanding the nature of this possible crosstalk is important to unravel the reason of sexual disparity in AD and to carefully prescribe these drugs for the treatment of inflammatory diseases. In this review, we discuss similarities and differences between the effects of sex hormones and GCs on the immune system, to highlight possible axes of functional interaction.
Collapse
Affiliation(s)
- Oxana Bereshchenko
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy.,Department of Surgery and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Stefano Bruscoli
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Carlo Riccardi
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
80
|
Ayroldi E, Cannarile L, Delfino DV, Riccardi C. A dual role for glucocorticoid-induced leucine zipper in glucocorticoid function: tumor growth promotion or suppression? Cell Death Dis 2018; 9:463. [PMID: 29695779 PMCID: PMC5916931 DOI: 10.1038/s41419-018-0558-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/27/2018] [Accepted: 03/30/2018] [Indexed: 02/06/2023]
Abstract
Glucocorticoids (GCs), important therapeutic tools to treat inflammatory and immunosuppressive diseases, can also be used as part of cancer therapy. In oncology, GCs are used as anticancer drugs for lymphohematopoietic malignancies, while in solid neoplasms primarily to control the side effects of chemo/radiotherapy treatments. The molecular mechanisms underlying the effects of GCs are numerous and often overlapping, but not all have been elucidated. In normal, cancerous, and inflammatory tissues, the response to GCs differs based on the tissue type. The effects of GCs are dependent on several factors: the tumor type, the GC therapy being used, the expression level of the glucocorticoid receptor (GR), and the presence of any other stimuli such as signals from immune cells and the tumor microenvironment. Therefore, GCs may either promote or suppress tumor growth via different molecular mechanisms. Stress exposure results in dysregulation of the hypothalamic-pituitary-adrenal axis with increased levels of endogenous GCs that promote tumorigenesis, confirming the importance of GCs in tumor growth. Most of the effects of GCs are genomic and mediated by the modulation of GR gene transcription. Moreover, among the GR-induced genes, glucocorticoid-induced leucine zipper (GILZ), which was cloned and characterized primarily in our laboratory, mediates many GC anti-inflammatory effects. In this review, we analyzed the possible role for GILZ in the effects GCs have on tumors cells. We also suggest that GILZ, by affecting the immune system, tumor microenvironment, and directly cancer cell biology, has a tumor-promoting function. However, it may also induce apoptosis or decrease the proliferation of cancer cells, thus inhibiting tumor growth. The potential therapeutic implications of GILZ activity on tumor cells are discussed here.
Collapse
Affiliation(s)
- Emira Ayroldi
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy.
| | - Lorenza Cannarile
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy
| | - Domenico V Delfino
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy
| | - Carlo Riccardi
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy
| |
Collapse
|
81
|
Gu R, Ding X, Tang W, Lei B, Jiang C, Xu G. A Synthesized Glucocorticoid- Induced Leucine Zipper Peptide Inhibits Retinal Müller Cell Gliosis. Front Pharmacol 2018; 9:331. [PMID: 29681857 PMCID: PMC5897418 DOI: 10.3389/fphar.2018.00331] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/21/2018] [Indexed: 12/23/2022] Open
Abstract
Purpose: The anti-inflammatory activities of protein glucocorticoid-induced leucine zipper (GILZ) have been demonstrated in vivo and in vitro. Here, we examined the potential effect of a synthetic peptide derived from the leucine zipper motif and proline-rich region of GILZ on suppressing inflammatory responses in primary cultured rat Müller cells. Methods: Peptides were selected from amino acids 98–134 of the GILZ protein (GILZ-p). Solid-phase peptide synthesis was used to generate the cell-penetrating peptide TAT, which was bound to the amino terminus of GILZ-p. Primary cultured retinal Müller cells were stimulated with lipopolysaccharide (LPS) alone or in combination with different concentrations of GILZ-p, and the interaction of GILZ-p with nuclear factor (NF)-κB p65 in Müller cells was investigated by western blotting, immunoprecipitation, and immunofluorescence. The expression of the Müller cell gliosis marker glial fibrillary acidic protein (GFAP), functional protein aquaporin (AQP)-4, and the inflammatory cytokines interleukin (IL)-1β, tumor necrosis factor (TNF) α, intercellular adhesion molecule (ICAM)-1, and monocyte chemoattractant protein (MCP)-1 was measured by Western Blotting. The concentration of those cytokines in culture medium was measured by using Enzyme-Linked Immunosorbent Assay. Results: The synthesized GILZ-p, which was water-soluble, entered cells and bound with NF-κB p65, inhibiting p65 nuclear translocation. GILZ-p inhibited the LPS-induced expression of GFAP, IL-1β, TNFα, ICAM-1, and MCP-1 in Müller cells and prevented the LPS-induced downregulation of AQP4. Conclusions: These results indicate that GILZ-p interacted with NF-κB p65 and suppressed p65 nuclear translocation, thereby inhibiting inflammatory cytokine release and Müller cell gliosis.
Collapse
Affiliation(s)
- Ruiping Gu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Xinyi Ding
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Wenyi Tang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Boya Lei
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Chen Jiang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Gezhi Xu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.,Key Laboratory of Myopia of State Health Ministry, Fudan University, Shanghai, China
| |
Collapse
|
82
|
Liberman AC, Budziñski ML, Sokn C, Gobbini RP, Steininger A, Arzt E. Regulatory and Mechanistic Actions of Glucocorticoids on T and Inflammatory Cells. Front Endocrinol (Lausanne) 2018; 9:235. [PMID: 29867767 PMCID: PMC5964134 DOI: 10.3389/fendo.2018.00235] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/25/2018] [Indexed: 12/24/2022] Open
Abstract
Glucocorticoids (GCs) play an important role in regulating the inflammatory and immune response and have been used since decades to treat various inflammatory and autoimmune disorders. Fine-tuning the glucocorticoid receptor (GR) activity is instrumental in the search for novel therapeutic strategies aimed to reduce pathological signaling and restoring homeostasis. Despite the primary anti-inflammatory actions of GCs, there are studies suggesting that under certain conditions GCs may also exert pro-inflammatory responses. For these reasons the understanding of the GR basic mechanisms of action on different immune cells in the periphery (e.g., macrophages, dendritic cells, neutrophils, and T cells) and in the brain (microglia) contexts, that we review in this chapter, is a continuous matter of interest and may reveal novel therapeutic targets for the treatment of immune and inflammatory response.
Collapse
Affiliation(s)
- Ana C. Liberman
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Maia L. Budziñski
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Clara Sokn
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Romina Paula Gobbini
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Anja Steininger
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Eduardo Arzt,
| |
Collapse
|
83
|
Glucocorticoid-induced phosphorylation by CDK9 modulates the coactivator functions of transcriptional cofactor GRIP1 in macrophages. Nat Commun 2017; 8:1739. [PMID: 29170386 PMCID: PMC5700924 DOI: 10.1038/s41467-017-01569-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 09/30/2017] [Indexed: 12/20/2022] Open
Abstract
The glucocorticoid (GC) receptor (GR) suppresses inflammation by activating anti-inflammatory and repressing pro-inflammatory genes. GR-interacting protein-1 (GRIP1) is a GR corepressor in macrophages, however, whether GRIP1 mediates GR-activated transcription, and what dictates its coactivator versus corepressor properties is unknown. Here we report that GRIP1 loss in macrophages attenuates glucocorticoid induction of several anti-inflammatory targets, and that GC treatment of quiescent macrophages globally directs GRIP1 toward GR binding sites dominated by palindromic GC response elements (GRE), suggesting a non-redundant GRIP1 function as a GR coactivator. Interestingly, GRIP1 is phosphorylated at an N-terminal serine cluster by cyclin-dependent kinase-9 (CDK9), which is recruited into GC-induced GR:GRIP1:CDK9 hetero-complexes, producing distinct GRE-specific GRIP1 phospho-isoforms. Phosphorylation potentiates GRIP1 coactivator but, remarkably, not its corepressor properties. Consistently, phospho-GRIP1 and CDK9 are not detected at GR transrepression sites near pro-inflammatory genes. Thus, GR restricts actions of its own coregulator via CDK9-mediated phosphorylation to a subset of anti-inflammatory genes. Glucocorticoid reduces inflammation by both inducing anti-inflammatory genes and suppressing pro-inflammatory genes, but how these two functions are dictated is unclear. Here the authors show that phosphorylated glucocorticoid receptor-interacting protein 1 (GRIP1) serves as a coactivator for this response in macrophage.
Collapse
|
84
|
Ribeiro SB, de Araújo AA, de Araújo Júnior RF, Brito GADC, Leitão RC, Barbosa MM, Garcia VB, Medeiros AC, de Medeiros CACX. Protective effect of dexamethasone on 5-FU-induced oral mucositis in hamsters. PLoS One 2017; 12:e0186511. [PMID: 29059216 PMCID: PMC5653368 DOI: 10.1371/journal.pone.0186511] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/03/2017] [Indexed: 01/23/2023] Open
Abstract
Oral mucositis (OM) is an important side effect of cancer treatment, characterized by ulcerative lesions in the mucosa of patients undergoing radiotherapy or chemotherapy, which has marked effects on patient quality of life and cancer therapy continuity. Considering that few protocols have demonstrated efficacy in preventing this side effect, the aim of this study was to examine the effect of dexamethasone (DEX) on OM induced by 5-fluorouracil (5-FU) in hamsters by studying signaling pathways. OM was induced in hamsters by 5-FU followed by mechanical trauma (MT) on day 4. On day 10, the animals were euthanized. The experimental groups included saline, MT, 5-FU, and DEX (0.25, 0.5, or 1 mg/kg). Macroscopic, histopathological, and immunohistochemical analyses as well as immunofluorescence experiments were performed on the oral mucosa of the animals. The oral mucosal samples were analyzed by enzyme-linked immunosorbent assays, and quantitative real-time polymerase chain reaction (qPCR). DEX (0.5 or 1 mg/kg) reduced inflammation and ulceration of the oral mucosa of hamsters. In addition, DEX (1 mg/kg) reduced the cytokine levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and macrophage migration inhibitory factor (MIF). DEX (1 mg/kg) also reduced the immunoexpression of cyclooxygenase (COX)-2, matrix metalloproteinase (MMP)-2, transforming growth factor (TGF)-β, MIF, Smad 2/3, Smad 2/3 phosphorylated and NFκB p65 in the jugal mucosa. Finally, DEX (1 mg/kg) increased interleukin-1 receptor-associated kinase 3 (IRAK-M), glucocorticoid-induced leucine zipper (GILZ), and mitogen-activated protein kinase (MKP1) gene expression and reduced NFκB p65 and serine threonine kinase (AKt) gene expression, relative to the 5-FU group. Thus, DEX improved OM induced by 5-FU in hamsters.
Collapse
Affiliation(s)
| | - Aurigena Antunes de Araújo
- Post Graduation Program Public Health/Post Graduation Program in Pharmaceutical Science/Department of Biophysics and Pharmacology, UFRN, Natal, RN, Brazil
| | - Raimundo Fernandes de Araújo Júnior
- Post Graduation Program in Functional and Structural Biology/Post Graduation Program Health Science/Department of Morphology, UFRN, Natal, RN, Brazil
| | | | - Renata Carvalho Leitão
- Post Graduation Program of Morphological Science/Department of Morphology, UFC, Fortaleza, CE, Brazil
| | | | | | - Aldo Cunha Medeiros
- Post Graduation Program Health Science, Department of Surgery, UFRN, Natal, RN, Brazil
| | | |
Collapse
|
85
|
Ricci E, Ronchetti S, Pericolini E, Gabrielli E, Cari L, Gentili M, Roselletti E, Migliorati G, Vecchiarelli A, Riccardi C. Role of the glucocorticoid-induced leucine zipper gene in dexamethasone-induced inhibition of mouse neutrophil migration via control of annexin A1 expression. FASEB J 2017; 31:3054-3065. [PMID: 28373208 DOI: 10.1096/fj.201601315r] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/13/2017] [Indexed: 12/15/2022]
Abstract
The glucocorticoid-induced leucine zipper (GILZ) gene is a pivotal mediator of the anti-inflammatory effects of glucocorticoids (GCs) that are known to regulate the function of both adaptive and innate immunity cells. Our aim was to investigate the role of GILZ in GC-induced inhibition of neutrophil migration, as this role has not been investigated before. We found that GILZ expression was induced by dexamethasone (DEX), a synthetic GC, in neutrophils, and that it regulated migration of these cells into inflamed tissues under DEX treatment. Of note, inhibition of neutrophil migration was not observed in GILZ-knockout mice with peritonitis that were treated by DEX. This was because DEX was unable to up-regulate annexin A1 (Anxa1) expression in the absence of GILZ. Furthermore, we showed that GILZ mediates Anxa1 induction by GCs by transactivating Anxa1 expression at the promoter level via binding with the transcription factor, PU.1. The present findings shed light on the role of GILZ in the mechanism of induction of Anxa1 by GCs. As Anxa1 is an important protein for the resolution of inflammatory response, GILZ may represent a new pharmacologic target for treatment of inflammatory diseases.-Ricci, E., Ronchetti, S., Pericolini, E., Gabrielli, E., Cari, L., Gentili, M., Roselletti, E., Migliorati, G., Vecchiarelli, A., Riccardi, C. Role of the glucocorticoid-induced leucine zipper gene in dexamethasone-induced inhibition of mouse neutrophil migration via control of annexin A1 expression.
Collapse
Affiliation(s)
- Erika Ricci
- Pharmacology Section, Department of Medicine, University of Perugia, Perugia, Italy
| | - Simona Ronchetti
- Pharmacology Section, Department of Medicine, University of Perugia, Perugia, Italy
| | - Eva Pericolini
- Microbiology Section, Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Department of Diagnostic, Clinic, and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Gabrielli
- Microbiology Section, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Luigi Cari
- Pharmacology Section, Department of Medicine, University of Perugia, Perugia, Italy
| | - Marco Gentili
- Pharmacology Section, Department of Medicine, University of Perugia, Perugia, Italy
| | - Elena Roselletti
- Microbiology Section, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Graziella Migliorati
- Pharmacology Section, Department of Medicine, University of Perugia, Perugia, Italy
| | - Anna Vecchiarelli
- Microbiology Section, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Carlo Riccardi
- Pharmacology Section, Department of Medicine, University of Perugia, Perugia, Italy;
| |
Collapse
|
86
|
Abstract
Glucocorticoids (GCs; referred to clinically as corticosteroids) are steroid hormones with potent anti-inflammatory and immune modulatory profiles. Depending on the context, these hormones can also mediate pro-inflammatory activities, thereby serving as primers of the immune system. Their target receptor, the GC receptor (GR), is a multi-tasking transcription factor, changing its role and function depending on cellular and organismal needs. To get a clearer idea of how to improve the safety profile of GCs, recent studies have investigated the complex mechanisms underlying GR functions. One of the key findings includes both pro- and anti-inflammatory roles of GR, and a future challenge will be to understand how such paradoxical findings can be reconciled and how GR ultimately shifts the balance to a net anti-inflammatory profile. As such, there is consensus that GR deserves a second life as a drug target, with either refined classic GCs or a novel generation of nonsteroidal GR-targeting molecules, to meet the increasing clinical needs of today to treat inflammation and cancer.
Collapse
|
87
|
Popović V, Goeman J, Thommis J, Heyerick A, Caroen J, Van der Eycken J, De Bosscher K. Daucane esters from laserwort (Laserpitium latifolium L.) inhibit cytokine and chemokine production in human lung epithelial cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 26:28-36. [PMID: 28257662 DOI: 10.1016/j.phymed.2017.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/21/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND Laserwort, Laserpitium latifolium L. (Apiaceae), is a European medicinal plant. Its roots and rhizomes were traditionally used as a general tonic and to treat inflammatory and infective diseases. PURPOSE The anti-inflammatory potential of daucane esters, isolated from underground parts extract of L. latifolium and specific structural features that contribute to their activity were investigated. In addition, we studied their interference with the transactivation capacity of the Glucocorticoid Receptor when added together with a classic glucocorticoid (GC), dexamethasone (DEX). This particular property may be relevant in combination strategies, attempting to circumvent diabetogenic side effects of glucocorticoids upon long-term anti-inflammatory treatments. MATERIALS AND METHODS Nine L. latifolium daucane esters were isolated and elucidated as derivatives of desoxodehydrolaserpitin, laserpitin and a novel 2β-esterified laserpitinol analogue. Of all compounds effects on NF-κB- and AP-1-driven pro-inflammatory pathways were assessed using TNF- or PMA-induced reporter gene analysis in A549 cells. Daucanes with a strong and concentration-dependent inhibition of both NF-κB and AP-1, were tested for a potential effect on DEX-stimulated GR-driven Glucocorticoid Response Element (GRE) reporter gene activity. In addition, GRE-driven anti-inflammatory mRNA expression was determined (GILZ and DUSP1). Also anti-inflammatory properties were validated by monitoring effects on CCL-2, IL-6, IL-1β mRNA expression levels (qPCR) and on CCL-2 chemokine production (ELISA). RESULTS Daucanes featuring an ester moiety and/or a hydroxy group at positions 2β, 6α and 10α and especially the novel 2β-esterified laserpitinol derivative that, in comparison to other isolated compounds, features an additional 9α-hydroxy group, demonstrated suppression of both NF-κB- and AP-1-dependent pro-inflammatory pathways. Remarkably, those entities competitively and concentration-dependently repressed GR-driven GRE-dependent reporter gene activities. The most active compounds inhibited CCL-2 protein excretion and compound 4 downregulated genes coding for IL-1β and IL-6 induced upon TNF treatment in A549. In absence of TNF, compound 4 upregulated the GRE-mediated anti-inflammatory gene GILZ, but not DUSP1. CONCLUSIONS Daucane esters are novel anti-inflammatory agents that may, in combination with GCs, potentially improve therapeutic benefit. These results contribute to the ongoing search for novel anti-inflammatory agents as safer alternatives to, or with, GCs.
Collapse
Affiliation(s)
- Višnja Popović
- Receptor Research Laboratories, Nuclear Receptor Lab, VIB-Medical Biotechnology Center, VIB, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium; Laboratory for Organic and Bio-Organic Synthesis, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Jan Goeman
- Laboratory for Organic and Bio-Organic Synthesis, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Jonathan Thommis
- Receptor Research Laboratories, Nuclear Receptor Lab, VIB-Medical Biotechnology Center, VIB, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Arne Heyerick
- Reliable Cancer Therapies, Boechoutlaan 221, B-1853 Strombeek-Bever, Belgium
| | - Jurgen Caroen
- Laboratory for Organic and Bio-Organic Synthesis, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Johan Van der Eycken
- Laboratory for Organic and Bio-Organic Synthesis, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Karolien De Bosscher
- Receptor Research Laboratories, Nuclear Receptor Lab, VIB-Medical Biotechnology Center, VIB, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium; Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
88
|
Zinni M, Zuena AR, Marconi V, Petrella C, Fusco I, Giuli C, Canu N, Severini C, Broccardo M, Theodorou V, Lattanzi R, Casolini P. Maternal exposure to low levels of corticosterone during lactation protects adult rat progeny against TNBS-induced colitis: A study on GR-mediated anti-inflammatory effect and prokineticin system. PLoS One 2017; 12:e0173484. [PMID: 28267767 PMCID: PMC5340375 DOI: 10.1371/journal.pone.0173484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 02/22/2017] [Indexed: 01/01/2023] Open
Abstract
The early phase of life represents a critical period for the development of an organism. Interestingly, early life experiences are able to influence the development of the gastrointestinal tract and the reactivity to colonic inflammatory stress. We recently demonstrated that adult male rats exposed to low doses of corticosterone during lactation (CORT-nursed rats) are protected against experimental colitis induced by the intracolonic infusion of 2,4,6-trinitrobenzenesulfonic acid (TNBS). Based on these interesting results, we wanted to better investigate which cellular actors could be involved in the protection of CORT-nursed rats from TNBS-induced experimental colitis. Therefore, in the present work, we focused our attention on different factors implicated in GR-mediated anti-inflammatory effect. To address this issue, colonic tissues, collected from control and CORT-nursed healthy animals and from control and CORT-nursed colitic rats, were processed and the following inflammatory factors were evaluated: the expression of (i) glucocorticoid receptors (GR), (ii) glucocorticoid-induced leucine zipper (GILZ), (iii) phospho-p65NF-κB, (iv) the pro-inflammatory cytokines IL-1β and TNF-α, (v) the prokineticins PK2 and PK2L and (vi) their receptors PKR1 and PKR2. We found that adult CORT-nursed rats, in comparison to controls, showed increased expression of colonic GR and reduced expression of pro-inflammatory molecules (IL-1β, TNF-α, PK2 and PK2L) in response to inflammatory colitis. The observed changes were associated with an increase in GILZ colonic expression and with a reduction in phospo-p65NF-κB colonic expression.
Collapse
Affiliation(s)
- Manuela Zinni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Anna Rita Zuena
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Veronica Marconi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Carla Petrella
- Institute of Cell Biology and Neurobiology, CNR, Rome, Italy
| | - Ilaria Fusco
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Chiara Giuli
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Nadia Canu
- Institute of Cell Biology and Neurobiology, CNR, Rome, Italy
- Department of System Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Cinzia Severini
- Institute of Cell Biology and Neurobiology, CNR, Rome, Italy
| | - Maria Broccardo
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Vassilia Theodorou
- INRA, EI-Purpan, UMR 1331 TOXALIM Neuro-Gastroenterology and Nutrition Team, Toulouse, France
| | - Roberta Lattanzi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Paola Casolini
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
- * E-mail:
| |
Collapse
|
89
|
André F, Trinh A, Balayssac S, Maboudou P, Dekiouk S, Malet-Martino M, Quesnel B, Idziorek T, Kluza J, Marchetti P. Metabolic rewiring in cancer cells overexpressing the glucocorticoid-induced leucine zipper protein (GILZ): Activation of mitochondrial oxidative phosphorylation and sensitization to oxidative cell death induced by mitochondrial targeted drugs. Int J Biochem Cell Biol 2017; 85:166-174. [PMID: 28259749 DOI: 10.1016/j.biocel.2017.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/17/2017] [Accepted: 02/24/2017] [Indexed: 12/31/2022]
Abstract
Cancer cell metabolism is largely controlled by oncogenic signals and nutrient availability. Here, we highlighted that the glucocorticoid-induced leucine zipper (GILZ), an intracellular protein influencing many signaling pathways, reprograms cancer cell metabolism to promote proliferation. We provided evidence that GILZ overexpression induced a significant increase of mitochondrial oxidative phosphorylation as evidenced by the augmentation in basal respiration, ATP-linked respiration as well as respiratory capacity. Pharmacological inhibition of glucose, glutamine and fatty acid oxidation reduced the activation of GILZ-induced mitochondrial oxidative phosphorylation. At glycolysis level, GILZ-overexpressing cells enhanced the expression of glucose transporters in their plasmatic membrane and showed higher glycolytic reserve. 1H NMR metabolites quantification showed an up-regulation of amino acid biosynthesis. The GILZ-induced metabolic reprograming is present in various cancer cell lines regardless of their driver mutations status and is associated with higher proliferation rates persisting under metabolic stress conditions. Interestingly, high levels of OXPHOS made GILZ-overexpressing cells vulnerable to cell death induced by mitochondrial pro-oxidants. Altogether, these data indicate that GILZ reprograms cancer metabolism towards mitochondrial OXPHOS and sensitizes cancer cells to mitochondria-targeted drugs with pro-oxidant activities.
Collapse
Affiliation(s)
- Fanny André
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172, JPArc, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Anne Trinh
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172, JPArc, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Stéphane Balayssac
- Laboratoire SPCMIB, UMR CNRS 5068 Université Paul Sabatier, 118 route de Narbonne, 31062, Toulouse Cedex 9, France
| | - Patrice Maboudou
- CHU Lille, Centre de Biologie-Pathologie, Biologie et Thérapie cellulaire & Banque de Tissus, F-59000, Lille, France
| | - Salim Dekiouk
- CHU Lille, Centre de Biologie-Pathologie, Biologie et Thérapie cellulaire & Banque de Tissus, F-59000, Lille, France
| | - Myriam Malet-Martino
- Laboratoire SPCMIB, UMR CNRS 5068 Université Paul Sabatier, 118 route de Narbonne, 31062, Toulouse Cedex 9, France
| | - Bruno Quesnel
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172, JPArc, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Thierry Idziorek
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172, JPArc, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Jérome Kluza
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172, JPArc, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Philippe Marchetti
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172, JPArc, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France; CHU Lille, Centre de Biologie-Pathologie, Biologie et Thérapie cellulaire & Banque de Tissus, F-59000, Lille, France.
| |
Collapse
|
90
|
Overexpression of Glucocorticoid-induced Leucine Zipper (GILZ) increases susceptibility to Imiquimod-induced psoriasis and involves cutaneous activation of TGF-β1. Sci Rep 2016; 6:38825. [PMID: 27934944 PMCID: PMC5146970 DOI: 10.1038/srep38825] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/15/2016] [Indexed: 12/20/2022] Open
Abstract
Psoriasis vulgaris is a chronic inflammatory skin disease affecting millions of people. Its pathophysiology is complex and involves a skin compartment with epidermal and immune cells which produce cytokines, e.g. belonging to the IL-23–Th17-cell axis. Glucocorticoids (GCs) are the most common therapeutics used in cutaneous inflammatory disorders and GC-induced leucine zipper (GILZ) has emerged as a mediator of GCs due to its anti-inflammatory actions, theoretically lacking GC side-effects. We evaluated whether GILZ may provide a better therapeutic index in comparison to GCs during the onset and progression of psoriasis by generating and characterizing a mouse model with generalized overexpression of this protein (GILZ-Tg mice) and the imiquimod (IMQ) psoriasis model. Unexpectedly, in GILZ-Tg mice, the severity of IMQ-induced psoriasis-like skin lesions as well as induction of cytokines commonly up-regulated in human psoriasis (Il-17, Il-22, Il-23, Il-6, S100a8/a9, and Stat3) was significantly more pronounced relative to GILZ-Wt mice. The increased susceptibility to IMQ-induced psoriasis of GILZ-Tg mice was significantly associated with skin-specific over-activation of TGF-β1-mediated signaling via SMAD2/3. Our findings demonstrate that GILZ may behave as pro-inflammatory protein in certain tissues and that, similar to prolonged GC therapy, GILZ as an alternative treatment for psoriasis may also have adverse effects.
Collapse
|
91
|
Epidermal Mineralocorticoid Receptor Plays Beneficial and Adverse Effects in Skin and Mediates Glucocorticoid Responses. J Invest Dermatol 2016; 136:2417-2426. [PMID: 27464843 DOI: 10.1016/j.jid.2016.07.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/30/2016] [Accepted: 07/11/2016] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GCs) regulate skin homeostasis and combat cutaneous inflammatory diseases; however, adverse effects of chronic GC treatments limit their therapeutic use. GCs bind and activate the GC receptor and the mineralocorticoid receptor (MR), transcription factors that recognize identical hormone responsive elements. Whether epidermal MR mediates beneficial or deleterious GC effects is of great interest for improving GC-based skin therapies. MR epidermal knockout mice exhibited increased keratinocyte proliferation and differentiation and showed resistance to GC-induced epidermal thinning. However, crucially, loss of epidermal MR rendered mice more sensitive to inflammatory stimuli and skin damage. MR epidermal knockout mice showed increased susceptibility to phorbol 12-myristate 13-acetate-induced inflammation with higher cytokine induction. Likewise, cultured MR epidermal knockout keratinocytes had increased phorbol 12-myristate 13-acetate-induced NF-κB activation, highlighting an anti-inflammatory function for MR. GC-induced transcription was reduced in MR epidermal knockout keratinocytes, at least partially due to decreased recruitment of GC receptor to hormone responsive element-containing sequences. Our results support a role for epidermal MR in adult skin homeostasis and demonstrate nonredundant roles for MR and GC receptor in mediating GC actions.
Collapse
|
92
|
Sugimoto MA, Sousa LP, Pinho V, Perretti M, Teixeira MM. Resolution of Inflammation: What Controls Its Onset? Front Immunol 2016. [PMID: 27199985 DOI: 10.3389/fimmu.2016.00.00160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
An effective resolution program may be able to prevent the progression from non-resolving acute inflammation to persistent chronic inflammation. It has now become evident that coordinated resolution programs initiate shortly after inflammatory responses begin. In this context, several mechanisms provide the fine-tuning of inflammation and create a favorable environment for the resolution phase to take place and for homeostasis to return. In this review, we focus on the events required for an effective transition from the proinflammatory phase to the onset and establishment of resolution. We suggest that several mediators that promote the inflammatory phase of inflammation can simultaneously initiate a program for active resolution. Indeed, several events enact a decrease in the local chemokine concentration, a reduction which is essential to inhibit further infiltration of neutrophils into the tissue. Interestingly, although neutrophils are cells that characteristically participate in the active phase of inflammation, they also contribute to the onset of resolution. Further understanding of the molecular mechanisms that initiate resolution may be instrumental to develop pro-resolution strategies to treat complex chronic inflammatory diseases, in humans. The efforts to develop strategies based on resolution of inflammation have shaped a new area of pharmacology referred to as "resolution pharmacology."
Collapse
Affiliation(s)
- Michelle A Sugimoto
- Laboratório de Sinalização Inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia P Sousa
- Laboratório de Sinalização Inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Resolução da Resposta Inflamatória, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London , London , UK
| | - Mauro M Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| |
Collapse
|
93
|
Sugimoto MA, Sousa LP, Pinho V, Perretti M, Teixeira MM. Resolution of Inflammation: What Controls Its Onset? Front Immunol 2016; 7:160. [PMID: 27199985 PMCID: PMC4845539 DOI: 10.3389/fimmu.2016.00160] [Citation(s) in RCA: 409] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/12/2016] [Indexed: 12/12/2022] Open
Abstract
An effective resolution program may be able to prevent the progression from non-resolving acute inflammation to persistent chronic inflammation. It has now become evident that coordinated resolution programs initiate shortly after inflammatory responses begin. In this context, several mechanisms provide the fine-tuning of inflammation and create a favorable environment for the resolution phase to take place and for homeostasis to return. In this review, we focus on the events required for an effective transition from the proinflammatory phase to the onset and establishment of resolution. We suggest that several mediators that promote the inflammatory phase of inflammation can simultaneously initiate a program for active resolution. Indeed, several events enact a decrease in the local chemokine concentration, a reduction which is essential to inhibit further infiltration of neutrophils into the tissue. Interestingly, although neutrophils are cells that characteristically participate in the active phase of inflammation, they also contribute to the onset of resolution. Further understanding of the molecular mechanisms that initiate resolution may be instrumental to develop pro-resolution strategies to treat complex chronic inflammatory diseases, in humans. The efforts to develop strategies based on resolution of inflammation have shaped a new area of pharmacology referred to as “resolution pharmacology.”
Collapse
Affiliation(s)
- Michelle A Sugimoto
- Laboratório de Sinalização Inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia P Sousa
- Laboratório de Sinalização Inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Resolução da Resposta Inflamatória, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London , London , UK
| | - Mauro M Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| |
Collapse
|
94
|
Xavier AM, Anunciato AKO, Rosenstock TR, Glezer I. Gene Expression Control by Glucocorticoid Receptors during Innate Immune Responses. Front Endocrinol (Lausanne) 2016; 7:31. [PMID: 27148162 PMCID: PMC4835445 DOI: 10.3389/fendo.2016.00031] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 04/04/2016] [Indexed: 01/06/2023] Open
Abstract
Glucocorticoids (GCs) are potent anti-inflammatory compounds that have been extensively used in clinical practice for several decades. GC's effects on inflammation are generally mediated through GC receptors (GRs). Signal transduction through these nuclear receptors leads to dramatic changes in gene expression programs in different cell types, typically due to GR binding to DNA or to transcription modulators. During the last decade, the view of GCs as exclusive anti-inflammatory molecules has been challenged. GR negative interference in pro-inflammatory gene expression was a landmark in terms of molecular mechanisms that suppress immune activity. In fact, GR can induce varied inhibitory molecules, including a negative regulator of Toll-like receptors pathway, or subject key transcription factors, such as NF-κB and AP-1, to a repressor mechanism. In contrast, the expression of some acute-phase proteins and other players of innate immunity generally requires GR signaling. Consequently, GRs must operate context-dependent inhibitory, permissive, or stimulatory effects on host defense signaling triggered by pathogens or tissue damage. This review aims to disclose how contradictory or comparable effects on inflammatory gene expression can depend on pharmacological approach (including selective GC receptor modulators; SEGRMs), cell culture, animal treatment, or transgenic strategies used as models. Although the current view of GR-signaling integrated many advances in the field, some answers to important questions remain elusive.
Collapse
Affiliation(s)
- Andre Machado Xavier
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | - Isaias Glezer
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- *Correspondence: Isaias Glezer,
| |
Collapse
|