51
|
Kailasam A, Langstraat C. Contemporary Use of Hormonal Therapy in Endometrial Cancer: a Literature Review. Curr Treat Options Oncol 2022; 23:1818-1828. [PMID: 36417148 DOI: 10.1007/s11864-022-01031-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 11/24/2022]
Abstract
OPINION STATEMENT Most endometrial cancers are estrogen receptor and progesterone receptor positive. Hormonal therapy in endometrial cancer is best used in patients with low-grade disease and hormone receptor positivity. Though not standard of care, hormonal treatment can be considered in endometrial cancer treatment in both the early-stage upfront setting for patients who are not surgical candidates and in advanced and recurrent endometrial cancer. In patients who desire fertility preservation or who are not surgical candidates, levonorgestrel intrauterine device and oral progesterone are preferred treatment options. In patients with advanced and metastatic disease, there is no standard-of-care second-line treatment, and hormonal treatment is a widely accepted option for low-grade disease. Beyond progesterone, selective estrogen receptor modulators, aromatase inhibitors, gonadotropin-releasing hormone agonists, and fulvestrant are hormonal treatment options. New therapies, such as MTOR inhibitors and CDK 4/6 inhibitors, have been extensively studied in breast cancer and are shown to be useful in conjunction with hormonal therapies particularly when there is suspected resistance to anti-estrogen treatment. Hormonal therapies also tend to be better tolerated than chemotherapy agents, making them a desirable option particularly in patients with lower performance status. Results from ongoing clinical trials will hopefully help shed light on the use of combination treatment in patients with hormone receptor-positive, low-grade metastatic, and recurrent endometrial cancer.
Collapse
|
52
|
Halim F, Azhar Y, Suwarman S, Hernowo B. p53 Mutation as Plausible Predictor for Endocrine Resistance Therapy in Luminal Breast Cancer. F1000Res 2022; 11:330. [PMID: 36519010 PMCID: PMC9718986 DOI: 10.12688/f1000research.108628.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
Endocrine therapy resistance in Luminal Breast Cancer is a significant issue to be tackled, but currently, no specific biomarker could be used to anticipate this event. p53 mutation is widely known as one of Breast Cancer's most prominent genetic alterations. Its mutation could generate various effects in Estrogen Receptor and Progesterone Receptor molecular works, tangled in events leading to the aggravation of endocrine therapy resistance. Hence the possibility of p53 mutation utilization as an endocrine therapy resistance predictive biomarker is plausible. The purpose of this review is to explore the latest knowledge of p53 role in Estrogen Receptor and Progesterone Receptor molecular actions, thus aggravating the Endocrine Therapy resistance in Luminal Breast Cancer, from which we could define possibilities and limitations to utilize p53 as the predictive biomarker of endocrine therapy resistance in Luminal Breast Cancer.
Collapse
Affiliation(s)
- Freda Halim
- Department of Surgery, Pelita Harapan University, Tangerang, Indonesia,
| | - Yohana Azhar
- Department of Surgery - Oncology, Head and Neck Division, Hasan Sadikin General Hospital, Universitas Padjajaran, Bandung, Indonesia
| | - Suwarman Suwarman
- Department of Anesthesiology and Intensive Care, Hasan Sadikin General Hospital, Universitas Padjajaran, Bandung, Indonesia
| | - Bethy Hernowo
- Department of Anatomical Pathology, Universitas Padjajaran, Bandung, West Java, Indonesia
| |
Collapse
|
53
|
Abdelmalak M, Singh R, Anwer M, Ivanchenko P, Randhawa A, Ahmed M, Ashton AW, Du Y, Jiao X, Pestell R. The Renaissance of CDK Inhibitors in Breast Cancer Therapy: An Update on Clinical Trials and Therapy Resistance. Cancers (Basel) 2022; 14:cancers14215388. [PMID: 36358806 PMCID: PMC9655989 DOI: 10.3390/cancers14215388] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Simple Summary Cyclin-dependent kinase inhibitors (palbociclib (Ibrance), ribociclib (Kisqali), and abemaciclib (Verzenio)), targeting aberrant cell-cycle activity have been evaluated extensively in clinical trials. Significant delays in progression free survival and overall survival are now documented with each agent in estrogen receptor positive and human epidermal growth factor receptor two negative advanced breast cancer including luminal B breast cancer. Therapy resistance, driven by chromosomal instability, results in genomic rearrangements, activation of cell-cycle components (cyclin E/cdk2 in Rb− tumors, cyclin D1 in growth factor activated pathways), and the immune response. Molecular analysis of therapy resistant tumors may provide the rational basis for new therapies (brivanib, CYC065, WEE1 kinase and other inhibitors). Luminal B breast cancer is enriched for cyclin D1 overexpression and the chromosomal instability gene signature. The molecular mechanisms governing chromosomal instability in luminal B breast cancer remain poorly understood. Co-targeting of chromosomal instability may potentially reduce the prevalent escape mechanisms that reduce the effectiveness of cyclin-dependent kinase inhibitors. Abstract Cyclin-dependent kinases (CDKs) govern cell-cycle checkpoint transitions necessary for cancer cell proliferation. Recent developments have illustrated nuanced important differences between mono CDK inhibitor (CDKI) treatment and the combination therapies of breast cancers. The CDKIs that are currently FDA-approved for breast cancer therapy are oral agents that selectively inhibit CDK4 and CDK6, include palbociclib (Ibrance), ribociclib (Kisqali), and abemaciclib (Verzenio). CDKI therapy is effective in hormone receptor positive (HR+), and human epidermal growth factor receptor two negative (HER2−) advanced breast cancers (ABC) malignancies, but remains susceptible due to estrogen and progesterone receptor overexpression. Adding a CDK4/6I to endocrine therapy increases efficacy and delays disease progression. Given the side effects of CDKI, identifying potential new treatments to enhance CDKI effectiveness is essential. Recent long-term studies with Palbociclib, including the PALLAS and PENELOPE B, which failed to meet their primary endpoints of influencing progression-free survival, suggest a deeper mechanistic understanding of cyclin/CDK functions is required. The impact of CDKI on the anti-tumor immune response represents an area of great promise. CDKI therapy resistance that arises provides the opportunity for specific types of new therapies currently in clinical trials.
Collapse
Affiliation(s)
- Mary Abdelmalak
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
| | - Rajanbir Singh
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
| | - Mohammed Anwer
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
| | - Pavel Ivanchenko
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
| | - Amritdeep Randhawa
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
| | - Myra Ahmed
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
| | - Anthony W. Ashton
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
- Lankenau Institute for Medical Research Philadelphia, 100 East Lancaster Ave., Wynnewood, PA 19069, USA
| | - Yanming Du
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
- Correspondence: (X.J.); (R.P.)
| | - Richard Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
- The Wistar Cancer Center, Philadelphia, PA 19107, USA
- Correspondence: (X.J.); (R.P.)
| |
Collapse
|
54
|
Roy S, Saha S, Dhar D, Chakraborty P, Singha Roy K, Mukherjee C, Gupta A, Bhattacharyya S, Roy A, Sengupta S, Roychoudhury S, Nath S. Molecular crosstalk between CUEDC2 and ERα influences the clinical outcome by regulating mitosis in breast cancer. Cancer Gene Ther 2022; 29:1697-1706. [PMID: 35732909 DOI: 10.1038/s41417-022-00494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/13/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023]
Abstract
Development of endocrine resistance in hormone-receptor-positive (HR+ve) subtype and lack of definitive target in triple-negative subtype challenge breast cancer management. Contributing to such endocrine resistance is a protein called CUEDC2. It degrades hormone receptors, estrogen receptor-α (ERα) and progesterone receptor. Higher level of CUEDC2 in ERα+ve breast cancer corresponded to poorer disease prognosis. It additionally influences mitotic progression. However, the crosstalk of these two CUEDC2-driven functions in the outcome of breast cancer remained elusive. We showed that CUEDC2 degrades ERα during mitosis, utilising the mitotic-ubiquitination-machinery. We elucidated the importance of mitosis-specific phosphorylation of CUEDC2 in this process. Furthermore, upregulated CUEDC2 overrode mitotic arrest, increasing aneuploidy. Finally, recruiting a prospective cohort of breast cancer, we found significantly upregulated CUEDC2 in HR-ve cases. Moreover, individuals with higher CUEDC2 levels showed a poorer progression-free-survival. Together, our data confirmed that CUEDC2 up-regulation renders ERα+ve malignancies to behave essentially as HR-ve tumors with the prevalence of aneuploidy. This study finds CUEDC2 as a potential prognostic marker and a therapeutic target in the clinical management of breast cancer.
Collapse
Affiliation(s)
- Stuti Roy
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Thakurpukur, Kolkata, India
| | - Suryendu Saha
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Thakurpukur, Kolkata, India
| | - Debanil Dhar
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Thakurpukur, Kolkata, India
| | - Puja Chakraborty
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Thakurpukur, Kolkata, India
| | - Kumar Singha Roy
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | - Arnab Gupta
- Department of Surgery, Saroj Gupta Cancer Centre and Research Institute, Thakurpukur, Kolkata, India
| | - Samir Bhattacharyya
- Department of Surgery, Saroj Gupta Cancer Centre and Research Institute, Thakurpukur, Kolkata, India
| | - Anup Roy
- Department of Pathology, Nil Ratan Sircar Medical College and Hospital, Kolkata, India
| | | | - Susanta Roychoudhury
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Thakurpukur, Kolkata, India.,CSIR-Indian Institute of Chemical Biology, CN-06, CN Block, Sector V, Kolkata, India
| | - Somsubhra Nath
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Thakurpukur, Kolkata, India.
| |
Collapse
|
55
|
K-RAS Associated Gene-Mutation-Based Algorithm for Prediction of Treatment Response of Patients with Subtypes of Breast Cancer and Especially Triple-Negative Cancer. Cancers (Basel) 2022; 14:cancers14215322. [PMID: 36358741 PMCID: PMC9657686 DOI: 10.3390/cancers14215322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose: There is an urgent need for developing new biomarker tools to accurately predict treatment response of breast cancer, especially the deadly triple-negative breast cancer. We aimed to develop gene-mutation-based machine learning (ML) algorithms as biomarker classifiers to predict treatment response of first-line chemotherapy with high precision. Methods: Random Forest ML was applied to screen the algorithms of various combinations of gene mutation profiles of primary tumors at diagnosis using a TCGA Cohort (n = 399) with up to 150 months follow-up as a training set and validated in a MSK Cohort (n = 807) with up to 220 months follow-up. Subtypes of breast cancer including triple-negative and luminal A (ER+, PR+ and HER2−) were also assessed. The predictive performance of the candidate algorithms as classifiers was further assessed using logistic regression, Kaplan−Meier progression-free survival (PFS) plot, and univariate/multivariate Cox proportional hazard regression analyses. Results: A novel algorithm termed the 12-Gene Algorithm based on mutation profiles of KRAS, PIK3CA, MAP3K1, MAP2K4, PTEN, TP53, CDH1, GATA3, KMT2C, ARID1A, RunX1, and ESR1, was identified. The performance of this algorithm to distinguish non-progressed (responder) vs. progressed (non-responder) to treatment in the TCGA Cohort as determined using AUC was 0.96 (95% CI 0.94−0.98). It predicted progression-free survival (PFS) with hazard ratio (HR) of 21.6 (95% CI 11.3−41.5) (p < 0.0001) in all patients. The algorithm predicted PFS in the triple-negative subgroup with HR of 19.3 (95% CI 3.7−101.3) (n = 42, p = 0.000). The 12-Gene Algorithm was validated in the MSK Cohort with a similar AUC of 0.97 (95% CI 0.96−0.98) to distinguish responder vs. non-responder patients, and had a HR of 18.6 (95% CI 4.4−79.2) to predict PFS in the triple-negative subgroup (n = 75, p < 0.0001). Conclusions: The novel 12-Gene algorithm based on multitude gene-mutation profiles identified through ML has a potential to predict breast cancer treatment response to therapies, especially in triple-negative subgroups patients, which may assist personalized therapies and reduce mortality.
Collapse
|
56
|
Ozyurt R, Ozpolat B. Molecular Mechanisms of Anti-Estrogen Therapy Resistance and Novel Targeted Therapies. Cancers (Basel) 2022; 14:5206. [PMID: 36358625 PMCID: PMC9655708 DOI: 10.3390/cancers14215206] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/05/2022] [Accepted: 10/20/2022] [Indexed: 07/29/2023] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer in women, constituting one-third of all cancers in women, and it is the second leading cause of cancer-related deaths in the United States. Anti-estrogen therapies, such as selective estrogen receptor modulators, significantly improve survival in estrogen receptor-positive (ER+) BC patients, which represents about 70% of cases. However, about 60% of patients inevitably experience intrinsic or acquired resistance to anti-estrogen therapies, representing a major clinical problem that leads to relapse, metastasis, and patient deaths. The resistance mechanisms involve mutations of the direct targets of anti-estrogen therapies, compensatory survival pathways, as well as alterations in the expression of non-coding RNAs (e.g., microRNA) that regulate the activity of survival and signaling pathways. Although cyclin-dependent kinase 4/6 and phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) inhibitors have significantly improved survival, the efficacy of these therapies alone and in combination with anti-estrogen therapy for advanced ER+ BC, are not curative in advanced and metastatic disease. Therefore, understanding the molecular mechanisms causing treatment resistance is critical for developing highly effective therapies and improving patient survival. This review focuses on the key mechanisms that contribute to anti-estrogen therapy resistance and potential new treatment strategies alone and in combination with anti-estrogen drugs to improve the survival of BC patients.
Collapse
Affiliation(s)
- Rumeysa Ozyurt
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Houston Methodist Research Institute, Department of Nanomedicine, 6670 Bertner Ave, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Houston Methodist Research Institute, Department of Nanomedicine, 6670 Bertner Ave, Houston, TX 77030, USA
| |
Collapse
|
57
|
Discovery of Highly Functionalized 5-hydroxy-2H-pyrrol-2-ones That Exhibit Antiestrogenic Effects in Breast and Endometrial Cancer Cells and Potentiate the Antitumoral Effect of Tamoxifen. Cancers (Basel) 2022; 14:cancers14215174. [DOI: 10.3390/cancers14215174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
Tamoxifen improves the overall survival rate in hormone receptor-positive breast cancer patients. However, despite the fact that it exerts antagonistic effects on the ERα, it can act as a partial agonist, resulting in tumor growth in estrogen-sensitive tissues. In this study, highly functionalized 5-hydroxy-2H-pyrrol-2-ones were synthesized and evaluated by using ERα- and phenotype-based screening assays. Compounds 32 and 35 inhibited 17β-estradiol (E2)-stimulated ERα-mediated transcription of the luciferase reporter gene in breast cancer cells without inhibition of the transcriptional activity mediated by androgen or glucocorticoid receptors. Compound 32 regulated E2-stimulated ERα-mediated transcription by partial antagonism, whereas compound 35 caused rapid and non-competitive inhibition. Monitoring of 2D and 3D cell growth confirmed potent antitumoral effects of both compounds on ER-positive breast cancer cells. Furthermore, compounds 32 and 35 caused apoptosis and blocked the cell cycle of ER-positive breast cancer cells in the sub-G1 and G0/G1 phases. Interestingly, compound 35 suppressed the functional activity of ERα in the uterus, as demonstrated by the inhibition of E2-stimulated transcription of estrogen and progesterone receptors and alkaline phosphatase enzymatic activity. Compound 35 showed a relatively low binding affinity with ERα. However, its antiestrogenic effect was associated with an increased polyubiquitination and a reduced protein expression of ERα. Clinically relevant, a possible combinatory therapy with compound 35 may enhance the antitumoral efficacy of 4-hydroxy-tamoxifen in ER-positive breast cancer cells. In silico ADME predictions indicated that these compounds exhibit good drug-likeness, which, together with their potential antitumoral effects and their lack of estrogenic activity, offers a pharmacological opportunity to deepen the study of ER-positive breast cancer treatment.
Collapse
|
58
|
HS1BP3, transcriptionally regulated by ESR1, promotes hepatocellular carcinoma progression. Biochem Biophys Res Commun 2022; 623:111-119. [DOI: 10.1016/j.bbrc.2022.07.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 11/23/2022]
|
59
|
Go RE, Lee HK, Kim CW, Kim S, Choi KC. A fungicide, fenhexamid, is involved in the migration and angiogenesis in breast cancer cells expressing estrogen receptors. Life Sci 2022; 305:120754. [PMID: 35780843 DOI: 10.1016/j.lfs.2022.120754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022]
Abstract
Fenhexamid (Fen) is used to eradicate gray mold of fruits and vegetables leading to greater detection of its residual concentration in wine than other fungicides. Here, we further investigated the malign influence of Fen on the migration and angiogenesis via regulation of the estrogen receptor (ER) and phosphoinositide 3-kinase (PI3K) pathways in breast cancer models. ER-positive MCF-7 and ER-negative MDA-MB-231 breast cancer cells were exposed to 17β-estradiol (E2, 10-9 M), Fen (10-5 M and 10-7 M), ICI 182,780 (ICI; an ER antagonist, 10-8 M) or/and Pictilisib (Pic; a PI3K inhibitor, 10-7 M), and subsequently subjected to migration assay, live cell motility monitoring, trans-chamber assay, immunofluorescence, angiogenesis assay, tumor spheroid formation, and Western blot analysis. In MCF-7 cells, E2 and Fen induced cell migration by regulating the cell migration-related proteins. Although expressions of N-cadherin and Vimentin remained unchanged E2 and Fen induced the decrease of E-cadherin and Occludin in the immunofluorescence assay and Western blot analysis. In addition, Fen increased vessel formation in HUVEC cells. Furthermore, Fen treatment induced the formation of larger and denser tumor spheroids in MCF-7 cells. Western blot further confirmed the increased expressions of vascular endothelial growth factor (VEGF) and sex-determining region Y-box 2 (SOX2) after exposure to Fen. We conclude that Fen plays an important role as an endocrine-disrupting chemical in breast cancer migration and metastasis through the regulation of ER and PI3K signaling pathways.
Collapse
Affiliation(s)
- Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hong Kyu Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Cho-Won Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Soochong Kim
- Laboratory of Pathology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
60
|
Kavarthapu R, Dufau ML. Prolactin receptor gene transcriptional control, regulatory modalities relevant to breast cancer resistance and invasiveness. Front Endocrinol (Lausanne) 2022; 13:949396. [PMID: 36187116 PMCID: PMC9520000 DOI: 10.3389/fendo.2022.949396] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/19/2022] [Indexed: 12/04/2022] Open
Abstract
The prolactin receptor (PRLR) is a member of the lactogen/cytokine receptor family, which mediates multiple actions of prolactin (PRL). PRL is a major hormone in the proliferation/differentiation of breast epithelium that is essential for lactation. It is also involved in breast cancer development, tumor growth and chemoresistance. Human PRLR expression is controlled at the transcriptional level by multiple promoters. Each promoter directs transcription/expression of a specific non-coding exon 1, a common non-coding exon 2 and coding exons E3-11. The identification of exon 11 of PRLR led to finding of alternative spliced products and two novel short forms (SF) that can inhibit the long form (LF) of PRLR activity with relevance in physiological regulation and breast cancer. Homo and heterodimers of LF and SF are formed in the absence of PRL that acts as a conformational modifier. Heterodimerization of SF with LF is a major mechanism through which SF inhibits some signaling pathways originating at the LF. Biochemical/molecular modeling approaches demonstrated that the human PRLR conformation stabilized by extracellular intramolecular S-S bonds and several amino acids in the extracellular D1 domain of PRLR SF are required for its inhibitory actions on PRLR LF-mediated functions. Studies in breast cancer cells demonstrated that the transcription of PRLR was directed by the preferentially utilized PIII promoter, which lacks an estrogen responsive element. Complex formation of non-DNA bound ERα dimer with Sp1 and C/EBPβ dimers bound to their sites at the PRLR promoter is required for basal activity. Estradiol induces transcriptional activation/expression of the PRLR gene, and subsequent studies revealed the essential role of autocrine PRL released by breast cancer cells and CDK7 in estradiol-induced PRLR promoter activation and upregulation. Other studies revealed stimulation of the PRLR promoter activity and PRLR LF protein by PRL in the absence of estrogen via the STAT5/phospho-ERα activation loop. Additionally, EGF/ERBB1 can induce the transcription of PRLR independent of estrogen and prolactin. The various regulatory modalities contributing to the upregulation of PRLR provide options for the development of therapeutic approaches to mitigate its participation in breast cancer progression and resistance.
Collapse
Affiliation(s)
| | - Maria L. Dufau
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
61
|
Watson NW, Wander SA, Shatzel JJ, Al-Samkari H. Venous and arterial thrombosis associated with abemaciclib therapy for metastatic breast cancer. Cancer 2022; 128:3224-3232. [PMID: 35767226 PMCID: PMC10042227 DOI: 10.1002/cncr.34367] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/16/2022] [Accepted: 06/06/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND The CDK4/6 inhibitor abemaciclib is a mainstay of treatment for hormone receptor-positive breast cancer. However, increased venous thromboembolism (VTE) rates in multiple clinical trials resulted in a black-box warning for this agent. Thrombosis rates in unselected real-world populations receiving abemaciclib remain ill defined. METHODS A multicenter observational cohort study was conducted of patients with metastatic breast cancer receiving abemaciclib. The primary end point was thrombosis during treatment or within 30 days of discontinuation. Multivariable logistic models assessed predictors of VTE, and a multivariable Cox proportional hazards model assessed mortality. RESULTS A total of 364 patients were included, with a median treatment duration of 5.5 months. Twenty-six patients developed 27 (7.4%) thrombotic events (17 VTE, nine arterial thrombosis, and one with both events). No baseline characteristics were associated with increased VTE risk in multivariable modeling. Patients developing VTE during therapy had a higher risk of death than those who did not (hazard ratio, 2.09; 95% CI, 1.07-4.13). Median survival in patients who developed VTE compared with those who did not was 9.6 vs 25.8 months, respectively. The rate of VTE and any thrombosis during abemaciclib therapy was 9.1 and 13.7 events per 100 person-years, respectively, which is notably higher than rates observed in clinical trials. CONCLUSIONS In a real-world setting, abemaciclib was associated with a VTE rate approximately two-fold greater than the already elevated rates reported in the MONARCH trials. Patients developing thrombosis on abemaciclib had a significantly higher risk of death. Given these findings, studies evaluating the role of thromboprophylaxis in patients receiving abemaciclib are needed.
Collapse
Affiliation(s)
| | - Seth A. Wander
- Harvard Medical School, Boston, MA
- Division of Hematology Oncology, Massachusetts General Hospital, Boston, MA
| | - Joseph J. Shatzel
- Knight Cancer Institute, Oregon Health and Sciences University, Portland, OR
- Division of Biomedical Engineering, Oregon Health and Sciences University, Portland, OR
| | - Hanny Al-Samkari
- Harvard Medical School, Boston, MA
- Division of Hematology Oncology, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
62
|
Xia Y, He X, Renshaw L, Martinez-Perez C, Kay C, Gray M, Meehan J, Parker JS, Perou CM, Carey LA, Dixon JM, Turnbull A. Integrated DNA and RNA Sequencing Reveals Drivers of Endocrine Resistance in Estrogen Receptor-Positive Breast Cancer. Clin Cancer Res 2022; 28:3618-3629. [PMID: 35653148 PMCID: PMC7613305 DOI: 10.1158/1078-0432.ccr-21-3189] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/04/2022] [Accepted: 05/31/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Endocrine therapy resistance (ETR) remains the greatest challenge in treating patients with hormone receptor-positive breast cancer. We set out to identify molecular mechanisms underlying ETR through in-depth genomic analysis of breast tumors. EXPERIMENTAL DESIGN We collected pre-treatment and sequential on-treatment tumor samples from 35 patients with estrogen receptor-positive breast cancer treated with neoadjuvant then adjuvant endocrine therapy; 3 had intrinsic resistance, 19 acquired resistance, and 13 remained sensitive. Response was determined by changes in tumor volume neoadjuvantly and by monitoring for adjuvant recurrence. Twelve patients received two or more lines of endocrine therapy, with subsequent treatment lines being initiated at the time of development of resistance to the previous endocrine therapy. DNA whole-exome sequencing and RNA sequencing were performed on all samples, totalling 169 unique specimens. DNA mutations, copy-number alterations, and gene expression data were analyzed through unsupervised and supervised analyses to identify molecular features related to ETR. RESULTS Mutations enriched in ETR included ESR1 and GATA3. The known ESR1 D538G variant conferring ETR was identified, as was a rarer E380Q variant that confers endocrine hypersensitivity. Resistant tumors which acquired resistance had distinct gene expression profiles compared with paired sensitive tumors, showing elevated pathways including ER, HER2, GATA3, AKT, RAS, and p63 signaling. Integrated analysis in individual patients highlighted the diversity of ETR mechanisms. CONCLUSIONS The mechanisms underlying ETR are multiple and characterized by diverse changes in both somatic genetic and transcriptomic profiles; to overcome resistance will require an individualized approach utilizing genomic and genetic biomarkers and drugs tailored to each patient.
Collapse
Affiliation(s)
- Youli Xia
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Xiaping He
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Lorna Renshaw
- Edinburgh Breast Unit Western General Hospital, Edinburgh, United Kingdom
| | - Carlos Martinez-Perez
- Edinburgh Cancer Research Center, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Charlene Kay
- Edinburgh Cancer Research Center, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark Gray
- Edinburgh Cancer Research Center, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - James Meehan
- Edinburgh Cancer Research Center, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Joel S. Parker
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Charles M. Perou
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Lisa A. Carey
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - J. Michael Dixon
- Edinburgh Breast Unit Western General Hospital, Edinburgh, United Kingdom.,Edinburgh Cancer Research Center, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Arran Turnbull
- Edinburgh Cancer Research Center, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom.,Corresponding Author: Arran Turnbull, Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, 2XU Crewe Road South, Edinburgh, United Kingdom. Phone: 4413-1651-8694; E-mail:
| |
Collapse
|
63
|
Xu L, Jiang W, Li W, Guo C, Luo L, Gao Y, Cao Y. Comparison of a histone deacetylase inhibitor plus exemestane with exemestane alone in hormone receptor‑positive advanced breast cancer that progressed on prior endocrine therapy: A meta‑analysis. Exp Ther Med 2022; 24:575. [PMID: 35949321 PMCID: PMC9353490 DOI: 10.3892/etm.2022.11512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022] Open
Abstract
Currently, endocrine therapy is the standard treatment for hormone receptor-positive advanced breast cancer (ABC). Despite the high sensitivity of anti-estrogen therapy, many breast cancer patients still experience disease progression, relapse, and reduced overall survival (OS) because of endocrine resistance. Several underlying mechanisms of this phenomenon include a change in hormone receptor expression, mutations in ESR1 and modification of important signaling pathways, but thus far none of these can be defined as the complete explanation. Additionally, it has been shown that in some breast cancers, expression of the estrogen receptor (ER) can be repressed by epigenetic modifications such as DNA methylation and histone deacetylation, and this could be a mechanism for endocrine resistance. Interestingly, although the efficacy of the combination of histone deacetylase (HADC) inhibitors and exemestane in hormone receptor-positive ABC that progressed on prior endocrine therapy has been investigated in several studies, whether pharmacologic blocking of HDAC activity acts as a therapeutic strategy remains highly controversial. Herein, we conducted a meta-analysis to evaluate the efficacy and safety of an HDAC inhibitor plus exemestane vs. exemestane alone in this setting. Our meta-analysis demonstrated that the combination group exhibited significantly prolonged progression-free survival (PFS) [hazard ratio (HR)=0.776, 95% confidence interval (CI)=0.675-0.892, P=0.000] and an improved objective response rate (ORR) (RR=1.612, 95% CI=1.085-2.396, P=0.018) compared to those treated with exemestane alone. Additionally, in terms of OS, the combination group failed to achieve a significant clinical OS benefit (HR=0.811, 95% CI=0.596-1.104, P=0.183). Although grade 3/4 toxicities were more common in the combination group, those toxicities were mostly asymptomatic and manageable. In conclusion, the addition of an HDAC inhibitor to exemestane significantly improves PFS over exemestane alone in hormone receptor-positive ABC patients who progressed on previous endocrine therapy. Identification of novel biomarkers to select patients who will benefit from this combination strategy is a high priority.
Collapse
Affiliation(s)
- Liang Xu
- Prevention and Cure Center of Breast Disease, The Third Hospital of Nanchang City, Nanchang, Jiangxi 330009, P.R. China
| | - Weifan Jiang
- Department of Urinary Surgery, The Second Affiliated Hospital, Nanchang University School of Medicine, Nanchang, Jiangxi 330006, P.R. China
| | - Wenwei Li
- Prevention and Cure Center of Breast Disease, The Third Hospital of Nanchang City, Nanchang, Jiangxi 330009, P.R. China
| | - Chungen Guo
- Prevention and Cure Center of Breast Disease, The Third Hospital of Nanchang City, Nanchang, Jiangxi 330009, P.R. China
| | - Lihua Luo
- Prevention and Cure Center of Breast Disease, The Third Hospital of Nanchang City, Nanchang, Jiangxi 330009, P.R. China
| | - Yufeng Gao
- Medical Department, Graduate School of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yali Cao
- Prevention and Cure Center of Breast Disease, The Third Hospital of Nanchang City, Nanchang, Jiangxi 330009, P.R. China
| |
Collapse
|
64
|
García-Sánchez J, Mafla-España MA, Torregrosa MD, Cauli O. Androstenedione and Follicle-Stimulating Hormone Concentration Predict the Progression of Frailty Syndrome at One Year Follow-Up in Patients with Localized Breast Cancer Treated with Aromatase Inhibitors. Biomedicines 2022; 10:biomedicines10071634. [PMID: 35884939 PMCID: PMC9312841 DOI: 10.3390/biomedicines10071634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The standard treatment in postmenopausal women with estrogen- and progesterone-positive localized breast cancer consists of aromatase inhibitors (AROi). The ability of AROi to promote or worsen frailty syndrome over time and the relationship with changes in gonadal hormones concentration in blood have not been investigated. Methods: A prospective study to evaluate the relationship between frailty syndrome and gonadal hormones concentrations in blood at baseline (prior to AROi treatment) and after 6 and 12 months under AROi treatment in post-menopausal women with breast cancer. Frailty syndrome was evaluated by the Fried’ criteria. We evaluated whether hormone concentration at baseline could predict frailty syndrome at follow-up. Results: Multinomial regression analysis showed that of the different hormones, those significantly (p < 0.05) associated to the worsening of frailty syndrome were high androstenedione levels and low follicle-stimulating hormone (FSH) levels in blood. Receiver operating characteristic curve analysis showed both androstenedione and FSH significantly (p < 0.05) discriminate patients who developed or presented worsening of frailty syndrome over time, with acceptable sensitivity (approximately 80% in both cases) but low specificity (40%). Conclusion: Hormonal concentrations before AROi treatment constitute possible biomarkers to predict the progression of frailty syndrome.
Collapse
Affiliation(s)
- Javier García-Sánchez
- Medical Oncology Department, Doctor Peset University Hospital, 46017 Valencia, Spain; (J.G.-S.); (M.D.T.)
- Medical Oncology Department, Hospital Center of Wallonie Picardy, 7500 Tournai, Belgium
| | - Mayra Alejandra Mafla-España
- Frailty Research Organized Group, University of Valencia, 46010 Valencia, Spain;
- Department of Nursing, University of Valencia, 46010 Valencia, Spain
| | - María Dolores Torregrosa
- Medical Oncology Department, Doctor Peset University Hospital, 46017 Valencia, Spain; (J.G.-S.); (M.D.T.)
| | - Omar Cauli
- Frailty Research Organized Group, University of Valencia, 46010 Valencia, Spain;
- Department of Nursing, University of Valencia, 46010 Valencia, Spain
- Correspondence:
| |
Collapse
|
65
|
Neurospora crassa is a potential source of anti-cancer agents against breast cancer. Breast Cancer 2022; 29:1032-1041. [PMID: 35881300 DOI: 10.1007/s12282-022-01383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/23/2022] [Indexed: 11/02/2022]
Abstract
Fungi are an excellent source of pharmaceuticals including anti-tumor agents. Neurospora crassa generates metabolites with diverse structural classes, however, its potential as an anti-tumor agent source has not been explored. The purpose of this study aimed to investigate the potential of Neurospora crassa mixture against breast cancer. The in vitro T-47D and MDA-MB-231 experiments showed that N. crassa mixture at the concentrations of both 1.7 and 0.85 µg/ml significantly inhibited tumor cell proliferation, migration and invasion, and 3D spheroid formation. However, the inhibition rates of MCF-10A ranged 10-20% at concentrations of 0.85 and 1.7 µg/ml. The mixture at the concentration of 0.85 µg/ml could significantly downregulate the expressions of transcription factors of E2F1 and E2F3, cancer stem cell-related genes of LIN28, HIWI, and CD133, and onco-lncRNA HOTAIR, and increase CASP3 activity in either T-47D or MDA-MD-231 breast cancer cell lines. In vivo breast cancer C3H mouse model results showed that N. crassa mixture significantly inhibited tumor growth. These findings suggest that N. crassa contains an antitumor component(s) against breast cancer invasiveness, which may inhibit the self-renewal and differentiation of breast cancer stem cells possibly by downregulating cancer stem cell-associated and/or transcription factor genes and oncogenes, and promoting apoptosis.
Collapse
|
66
|
de Pinho IS, Abreu C, Gomes I, Casimiro S, Pacheco TR, de Sousa RT, Costa L. Exploring new pathways in endocrine-resistant breast cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:337-361. [PMID: 36045911 PMCID: PMC9400750 DOI: 10.37349/etat.2022.00086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/24/2022] [Indexed: 11/19/2022] Open
Abstract
The most common breast cancer (BC) subtypes are hormone-dependent, being either estrogen receptor-positive (ER+), progesterone receptor-positive (PR+), or both, and altogether comprise the luminal subtype. The mainstay of treatment for luminal BC is endocrine therapy (ET), which includes several agents that act either directly targeting ER action or suppressing estrogen production. Over the years, ET has proven efficacy in reducing mortality and improving clinical outcomes in metastatic and nonmetastatic BC. However, the development of ET resistance promotes cancer survival and progression and hinders the use of endocrine agents. Several mechanisms implicated in endocrine resistance have now been extensively studied. Based on the current clinical and pre-clinical data, the present article briefly reviews the well-established pathways of ET resistance and continues by focusing on the three most recently uncovered pathways, which may mediate resistance to ET, namely receptor activator of nuclear factor kappa B ligand (RANKL)/receptor activator of nuclear factor kappa B (RANK), nuclear factor kappa B (NFκB), and Notch. It additionally overviews the evidence underlying the approval of combined therapies to overcome ET resistance in BC, while highlighting the relevance of future studies focusing on putative mediators of ET resistance to uncover new therapeutic options for the disease.
Collapse
Affiliation(s)
- Inês Soares de Pinho
- 1Oncology Division, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal
| | - Catarina Abreu
- 1Oncology Division, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal 2Luis Costa Laboratory, Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina de Lisboa, 1649-028 Lisboa, Portugal
| | - Inês Gomes
- 2Luis Costa Laboratory, Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina de Lisboa, 1649-028 Lisboa, Portugal
| | - Sandra Casimiro
- 2Luis Costa Laboratory, Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina de Lisboa, 1649-028 Lisboa, Portugal
| | - Teresa Raquel Pacheco
- 1Oncology Division, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal 2Luis Costa Laboratory, Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina de Lisboa, 1649-028 Lisboa, Portugal
| | - Rita Teixeira de Sousa
- 1Oncology Division, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal
| | - Luís Costa
- 1Oncology Division, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal 2Luis Costa Laboratory, Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
67
|
Xu J, Iwabuchi E, Miki Y, Kanai A, Takagi K, Suzuki T, Ishida T, Sasano H. FE65 defines the efficacy of tamoxifen treatment via osteopontin expression in estrogen receptor-positive breast cancer. Pathol Res Pract 2022; 234:153898. [DOI: 10.1016/j.prp.2022.153898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
|
68
|
miR-18a Mediates Immune Evasion in ER-Positive Breast Cancer through Wnt Signaling. Cells 2022; 11:cells11101672. [PMID: 35626709 PMCID: PMC9139289 DOI: 10.3390/cells11101672] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/09/2022] [Accepted: 04/25/2022] [Indexed: 01/16/2023] Open
Abstract
ER-positive (ER+) breast cancer is considered immunologically ‘silent’ with fewer tumor-infiltrating immune cells. We have previously demonstrated the role of miR-18a in mediating invasion and poor prognosis in ER+ breast cancer by activation of the Wnt signaling pathway. Here, we explored the immune-modulatory functions of high levels of miR-18a in these tumors. A microarray-based gene expression analysis performed in miR-18a over-expressed ER+ breast cancer cell lines demonstrated dysregulation and suppression of immune-related pathways. Stratification of the ER+ tumor samples by miR-18a levels in the TCGA and METABRIC cohort and immune cell identification performed using CIBERSORT and Immune CellAI algorithms revealed a higher proportion of T-regulatory cells (p < 0.001) and a higher CD4/CD8 ratio (p < 0.01). miR-18a over-expressed MCF7 co-cultured with THP-1 showed decreased antigen presentation abilities and increased invasiveness and survival. They also promoted the differentiation of pro-tumorigenic M2 macrophages. Inhibition of the Wnt pathway in miR-18a over-expressed cells brought about the restoration of TAP-1, a protein critical for antigen presentation. Examination of tumor specimens from our case series showed that miR-18a high ER+ tumors had a dense lymphocyte infiltrate when compared to miR-18a low tumors but expressed a higher CD4/CD8 ratio and the M2 macrophage marker CD206, along with the invasive marker MMP9. We report for the first time an association between miR-18a-mediated Wnt signaling and stromal immune modulation in ER+ tumors. Our results highlight the possibility of formulating specific Wnt pathway inhibitors that may be used in combination with immune checkpoint blockers (ICB) for sensitizing ‘immune-cold’ ER+ tumors to immunotherapy.
Collapse
|
69
|
Li Z, Spoelstra NS, Sikora MJ, Sams SB, Elias A, Richer JK, Lee AV, Oesterreich S. Mutual exclusivity of ESR1 and TP53 mutations in endocrine resistant metastatic breast cancer. NPJ Breast Cancer 2022; 8:62. [PMID: 35538119 PMCID: PMC9090919 DOI: 10.1038/s41523-022-00426-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/31/2022] [Indexed: 12/12/2022] Open
Abstract
Both TP53 and ESR1 mutations occur frequently in estrogen receptor positive (ER+) metastatic breast cancers (MBC) and their distinct roles in breast cancer tumorigenesis and progression are well appreciated. Recent clinical studies discovered mutual exclusivity between TP53 and ESR1 mutations in metastatic breast cancers; however, mechanisms underlying this intriguing clinical observation remain largely understudied and unknown. Here, we explored the interplay between TP53 and ESR1 mutations using publicly available clinical and experimental data sets. We first confirmed the robust mutational exclusivity using six independent cohorts with 1,056 ER+ MBC samples and found that the exclusivity broadly applies to all ER+ breast tumors regardless of their clinical and distinct mutational features. ESR1 mutant tumors do not exhibit differential p53 pathway activity, whereas we identified attenuated ER activity and expression in TP53 mutant tumors, driven by a p53-associated E2 response gene signature. Further, 81% of these p53-associated E2 response genes are either direct targets of wild-type (WT) p53-regulated transactivation or are mutant p53-associated microRNAs, representing bimodal mechanisms of ER suppression. Lastly, we analyzed the very rare cases with co-occurrences of TP53 and ESR1 mutations and found that their simultaneous presence was also associated with reduced ER activity. In addition, tumors with dual mutations showed higher levels of total and PD-L1 positive macrophages. In summary, our study utilized multiple publicly available sources to explore the mechanism underlying the mutual exclusivity between ESR1 and TP53 mutations, providing further insights and testable hypotheses of the molecular interplay between these two pivotal genes in ER+ MBC.
Collapse
Affiliation(s)
- Zheqi Li
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Women's Cancer Research Center, Magee Women's Research Institute, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Nicole S Spoelstra
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew J Sikora
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sharon B Sams
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anthony Elias
- School of Medicine, Division of Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Adrian V Lee
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Women's Cancer Research Center, Magee Women's Research Institute, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- Women's Cancer Research Center, Magee Women's Research Institute, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
70
|
Willman M, Willman J, Lucke-Wold B. Endocrine resistant breast cancer: brain metastasis. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:240-251. [PMID: 35505937 PMCID: PMC9060566 DOI: 10.37349/etat.2022.00081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/09/2022] [Indexed: 02/05/2023] Open
Abstract
Endocrine resistant breast cancer metastasis continues to serve as a significant clinical challenge with high morbidity and mortality for patients. As the number of breast cancer cases continues to rise, the rate of brain metastasis has also increased. For single lesions or a large symptomatic lesion with other smaller lesions, surgical resection is a viable option in non-eloquent regions. Stereotactic radiosurgery is a great option for post-operative therapy or for 10 or fewer small lesions (< 3 cm in size). Whole-brain radiation can be used sparingly for large tumor burdens but should encompass hippocampus sparing techniques. Chemotherapy options have remained relatively limited due to decreased permeability of the blood-brain barrier. Emerging monoclonal antibody treatments have offered initial promise, especially for endocrine resistant breast cancer metastasis.
Collapse
Affiliation(s)
- Matthew Willman
- Department of Neurosurgery, University of Florida, Gainesville, FL 32610-0265, USA
| | - Jonathan Willman
- Department of Neurosurgery, University of Florida, Gainesville, FL 32610-0265, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32610-0265, USA
| |
Collapse
|
71
|
Sharma M, Bakshi AK, Mittapelly N, Gautam S, Marwaha D, Rai N, Singh N, Tiwari P, Aggarwal N, Kumar A, Mishra PR. Recent updates on innovative approaches to overcome drug resistance for better outcomes in cancer. J Control Release 2022; 346:43-70. [DOI: 10.1016/j.jconrel.2022.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 02/07/2023]
|
72
|
Araújo R, Fabris V, Lamb CA, Lanari C, Helguero LA, Gil AM. Metabolic Adaptations in an Endocrine-Related Breast Cancer Mouse Model Unveil Potential Markers of Tumor Response to Hormonal Therapy. Front Oncol 2022; 12:786931. [PMID: 35299741 PMCID: PMC8921989 DOI: 10.3389/fonc.2022.786931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/02/2022] [Indexed: 11/26/2022] Open
Abstract
Breast cancer (BC) is the most common type of cancer in women and, in most cases, it is hormone-dependent (HD), thus relying on ovarian hormone activation of intracellular receptors to stimulate tumor growth. Endocrine therapy (ET) aimed at preventing hormone receptor activation is the primary treatment strategy, however, about half of the patients, develop resistance in time. This involves the development of hormone independent tumors that initially are ET-responsive (HI), which may subsequently become resistant (HIR). The mechanisms that promote the conversion of HI to HIR tumors are varied and not completely understood. The aim of this work was to characterize the metabolic adaptations accompanying this conversion through the analysis of the polar metabolomes of tumor tissue and non-compromised mammary gland from mice implanted subcutaneously with HD, HI and HIR tumors from a medroxyprogesterone acetate (MPA)-induced BC mouse model. This was carried out by nuclear magnetic resonance (NMR) spectroscopy of tissue polar extracts and data mining through multivariate and univariate statistical analysis. Initial results unveiled marked changes between global tumor profiles and non-compromised mammary gland tissues, as expected. More importantly, specific metabolic signatures were found to accompany progression from HD, through HI and to HIR tumors, impacting on amino acids, nucleotides, membrane percursors and metabolites related to oxidative stress protection mechanisms. For each transition, sets of polar metabolites are advanced as potential markers of progression, including acquisition of resistance to ET. Putative biochemical interpretation of such signatures are proposed and discussed.
Collapse
Affiliation(s)
- Rita Araújo
- Department of Chemistry and CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Victoria Fabris
- Instituto de Biología y Medicina Experimental (IByME), Buenos Aires, Argentina
| | - Caroline A Lamb
- Instituto de Biología y Medicina Experimental (IByME), Buenos Aires, Argentina
| | - Claudia Lanari
- Instituto de Biología y Medicina Experimental (IByME), Buenos Aires, Argentina
| | - Luisa A Helguero
- Institute of Biomedicine (iBIMED), Department of Medical Sciences, Universidade de Aveiro, Aveiro, Portugal
| | - Ana M Gil
- Department of Chemistry and CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
73
|
Nguyen E, Richerolle A, Sánchez-Bellver J, Varennes J, Ségal-Bendirdjian E. hTERT DNA Methylation Analysis Identifies a Biomarker for Retinoic Acid-Induced hTERT Repression in Breast Cancer Cell Lines. Biomedicines 2022; 10:biomedicines10030695. [PMID: 35327497 PMCID: PMC8945736 DOI: 10.3390/biomedicines10030695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 11/16/2022] Open
Abstract
Telomerase reactivation is responsible for telomere preservation in about 90% of cancers, providing cancer cells an indefinite proliferating potential. Telomerase consists of at least two main subunits: a catalytic reverse transcriptase protein (hTERT) and an RNA template subunit. Strategies to inhibit hTERT expression seem promising for cancer treatment. Previous works showed that all-trans retinoic acid (ATRA) induces hTERT repression in acute promyelocytic leukemia cells, resulting in their death. Here, we investigated the effects of ATRA in a subset of breast cancer cell lines. The mutational status of hTERT promoter and the methylation patterns at a single CpG resolution were assessed. We observed an inverse relationship between hTERT expression after ATRA treatment and the methylation level of a specific CpG at chr5: 1,300,438 in a region of hTERT gene at −5 kb of the transcription initiation site. This observation highlighted the significance of this region, whose methylation profile could represent a promising biomarker to predict the sensitivity to ATRA-induced hTERT repression in specific breast cancer subtypes. As hTERT repression promotes drug-induced cell death, checking the methylation status of this unique region and the specific CpG included can help in decision-making to include ATRA in combination therapy and contributes to a better clinical outcome.
Collapse
Affiliation(s)
- Eric Nguyen
- Université Paris Cité, INSERM, CNRS, T3S “Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers”, F-75006 Paris, France; (E.N.); (A.R.); (J.V.)
| | - Andréa Richerolle
- Université Paris Cité, INSERM, CNRS, T3S “Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers”, F-75006 Paris, France; (E.N.); (A.R.); (J.V.)
- Ecole Pratique des Hautes Etudes, F-75014 Paris, France
| | | | - Jacqueline Varennes
- Université Paris Cité, INSERM, CNRS, T3S “Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers”, F-75006 Paris, France; (E.N.); (A.R.); (J.V.)
| | - Evelyne Ségal-Bendirdjian
- Université Paris Cité, INSERM, CNRS, T3S “Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers”, F-75006 Paris, France; (E.N.); (A.R.); (J.V.)
- Correspondence: ; Tel.: +33-1-42-86-22-46
| |
Collapse
|
74
|
Bergamino MA, Morani G, Parker J, Schuster EF, Leal MF, López-Knowles E, Tovey H, Bliss JM, Robertson JF, Smith IE, Dowsett M, Cheang MC. Impact of Duration of Neoadjuvant Aromatase Inhibitors on Molecular Expression Profiles in Estrogen Receptor-positive Breast Cancers. Clin Cancer Res 2022; 28:1217-1228. [PMID: 34965950 PMCID: PMC7612503 DOI: 10.1158/1078-0432.ccr-21-2718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/18/2021] [Accepted: 12/16/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Aromatase inhibitor (AI) treatment is the standard of care for postmenopausal women with primary estrogen receptor-positive breast cancer. The impact of duration of neoadjuvant endocrine therapy (NET) on molecular characteristics is still unknown. We evaluated and compared changes of gene expression profiles under short-term (2-week) versus longer-term neoadjuvant AIs. EXPERIMENTAL DESIGN Global gene expression profiles from the PeriOperative Endocrine Therapy for Individualised Care (POETIC) trial (137 received 2 weeks of AIs and 47 received no treatment) and targeted gene expression from 80 patients with breast cancer treated with NET for more than 1 month (NeoAI) were assessed. Intrinsic subtyping, module scores covering different cancer pathways and immune-related genes were calculated for pretreated and posttreated tumors. RESULTS The differences in intrinsic subtypes after NET were comparable between the two cohorts, with most Luminal B (90.0% in the POETIC trial and 76.3% in NeoAI) and 50.0% of HER2 enriched at baseline reclassified as Luminal A or normal-like after NET. Downregulation of proliferative-related pathways was observed after 2 weeks of AIs. However, more changes in genes from cancer-signaling pathways such as MAPK and PI3K/AKT/mTOR and immune response/immune-checkpoint components that were associated with AI-resistant tumors and differential outcome were observed in the NeoAI study. CONCLUSIONS Tumor transcriptional profiles undergo bigger changes in response to longer NET. Changes in HER2-enriched and Luminal B subtypes are similar between the two cohorts, thus AI-sensitive intrinsic subtype tumors associated with good survival might be identified after 2 weeks of AI. The changes of immune-checkpoint component expression in early AI resistance and its impact on survival outcome warrants careful investigation in clinical trials.
Collapse
Affiliation(s)
- Milana A. Bergamino
- Clinical Trials and Statistics Unit (ICR-CTSU)- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Gabriele Morani
- Clinical Trials and Statistics Unit (ICR-CTSU)- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Joel Parker
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | | - Holly Tovey
- Clinical Trials and Statistics Unit (ICR-CTSU)- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Judith M. Bliss
- Clinical Trials and Statistics Unit (ICR-CTSU)- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - John F.R. Robertson
- Faculty of Medicine & Health Sciences, Queen's Medical Centre, Nottingham, United Kingdom
| | | | - Mitch Dowsett
- Royal Marsden Hospital, London, United Kingdom.,Breast Cancer Now Research Centre, The Institute of Cancer Research, Sutton, London, United Kingdom
| | - Maggie C.U. Cheang
- Clinical Trials and Statistics Unit (ICR-CTSU)- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom.,Corresponding Author: Maggie C.U. Cheang, Clinical Trials and Statistics Unit (ICR-CTSU), The Institute of Cancer Research, 15 Cotswold Rd, Sutton SM2 5NG, United Kingdom. Phone: 4420-8722-4552; E-mail:
| |
Collapse
|
75
|
Lasagna M, Ventura C, Hielpos MS, Mardirosian MN, Martín G, Miret N, Randi A, Núñez M, Cocca C. Endocrine disruptor chlorpyrifos promotes migration, invasion, and stemness phenotype in 3D cultures of breast cancer cells and induces a wide range of pathways involved in cancer progression. ENVIRONMENTAL RESEARCH 2022; 204:111989. [PMID: 34506784 DOI: 10.1016/j.envres.2021.111989] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Organophosphorus chlorpyrifos (CPF) is currently considered an endocrine disruptor (ED), as it can imitate hormone actions both in vitro and in vivo. We recently reported that CPF induces migration and invasion in 2D cultures and changes the expression of key molecular markers involved in epithelial mesenchymal transition in MCF-7 and MDA-MB-231 cell lines. In this study, we investigated whether CPF could behave as a predisposing factor for tumors to become more metastatic and aggressive using 3D culture models. In MCF-7 cells, 0.05 μM CPF induced an increase in the number and size of mammospheres via estrogen receptor alpha (ERα) and c-SRC. Furthermore, 0.05 μM CPF increased the area of spheroids generated from MCF-7 cells, induced invasion using both Matrigel® and type 1 collagen matrices, and increased cell migration capacity via ERα in this 3D model. In turn, 50 μM CPF increased cell migration capacity and invasion using type 1 collagen matrix. In monolayers, CPF increased the phosphorylation and membrane translocation of c-SRC at both concentrations assayed. CPF at 0.05 μM boosted p-AKT, p-GSK-3β and p-P38. While p-AKT rose in a ERα-dependent way, p-GSK-3β was dependent on ERα- and c-SRC, and p-P38 was only dependent on c-SRC. On the other hand, the increase in p-AKT and p-P38 induced by 50 μM CPF was dependent on the c-SRC pathway. We also observed that 0.05 μM CPF increased IGF-1R and IRS-1 expression and that 50 μM CPF induced IGF-1Rβ phosphorylation. In the MDA-MB-231 cell line, 0.05 and 50 μM CPF increased p-c-SRC. Finally, p-AKT and p-GSK-3β were also induced by CPF at 0.05 and 50 μM, and an increase in p-P38 was observed at 50 μM. Taken together, these data provide support for the notion that CPF may represent a risk factor for breast cancer development and progression.
Collapse
Affiliation(s)
- M Lasagna
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Física, Laboratorio de Radioisótopos, Buenos Aires, Argentina
| | - C Ventura
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Física, Laboratorio de Radioisótopos, Buenos Aires, Argentina; Universidad Nacional de La Plata-CONICET, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), La Plata, Argentina
| | - M S Hielpos
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Física, Laboratorio de Radioisótopos, Buenos Aires, Argentina
| | - M N Mardirosian
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - G Martín
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Física, Laboratorio de Radioisótopos, Buenos Aires, Argentina
| | - N Miret
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Física, Laboratorio de Radioisótopos, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - A Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - M Núñez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Física, Laboratorio de Radioisótopos, Buenos Aires, Argentina
| | - C Cocca
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Física, Laboratorio de Radioisótopos, Buenos Aires, Argentina.
| |
Collapse
|
76
|
Valla M, Klæstad E, Ytterhus B, Bofin AM. CCND1 Amplification in Breast Cancer -associations With Proliferation, Histopathological Grade, Molecular Subtype and Prognosis. J Mammary Gland Biol Neoplasia 2022; 27:67-77. [PMID: 35459982 PMCID: PMC9135839 DOI: 10.1007/s10911-022-09516-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/05/2022] [Indexed: 11/25/2022] Open
Abstract
CCND1 is located on 11q13. Increased CCND1 copy number (CN) in breast cancer (BC) is associated with high histopathological grade, high proliferation, and Luminal B subtype. In this study of CCND1 in primary BCs and corresponding axillary lymph node metastases (LNM),we examine associations between CCND1 CN in primary BCs and proliferation status, molecular subtype, and prognosis. Furthermore, we studied associations between CCND1 CN and CNs of FGFR1 and ZNF703, both of which are located on 8p12. Fluorescence in situ hybridization probes for CCND1 and chromosome 11 centromere were used on tissue microarrays comprising 526 BCs and 123 LNM. We assessed associations between CCND1 CN and tumour characteristics using Pearson's χ2 test, and estimated cumulative risks of death from BC and hazard ratios in analysis of prognosis. We found CCND1 CN ≥ 4 < 6 in 45 (8.6%) tumours, and ≥ 6 in 42 (8.0%). CCND1 CN (≥ 6) was seen in all molecular subtypes, most frequently in Luminal B (HER2-) (20/126; 16%). Increased CCND1 CN was associated with high histopathological grade, high Ki-67, and high mitotic count, but not prognosis. CCND1 CN ≥ 6 was accompanied by CN increase of FGFR1 in 6/40 cases (15.0%) and ZNF703 in 5/38 cases (13.2%). Three cases showed CN increase of all three genes. High CCND1 CN was most frequent in Luminal B (HER2-) tumours. Good correlation between CCND1 CNs in BCs and LNM was observed. Despite associations between high CCND1 CN and aggressive tumour characteristics, the prognostic impact of CCND1 CN remains unresolved.
Collapse
Affiliation(s)
- Marit Valla
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim University Hospital, 7006, Trondheim, Norway
| | - Elise Klæstad
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Borgny Ytterhus
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anna M Bofin
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
77
|
Moore KM, Cerqueira V, MacLeod KG, Mullen P, Hayward RL, Green S, Harrison DJ, Cameron DA, Langdon SP. Collateral-resistance to estrogen and HER-activated growth is associated with modified AKT, ERα, and cell-cycle signaling in a breast cancer model. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:97-116. [PMID: 35441158 PMCID: PMC7612628 DOI: 10.37349/etat.2022.00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Aim: A model of progressively endocrine-resistant breast cancer was investigated to identify changes that can occur in signaling pathways after endocrine manipulation. Methods: The MCF7 breast cancer model is sensitive to estrogens and anti-estrogens while variant lines previously derived from wild-type MCF7 are either relatively 17β-estradiol (E2
)-insensitive (LCC1) or fully resistant to estrogen and anti-estrogens (LCC9). Results: In LCC1 and LCC9 cell lines, loss of estrogen sensitivity was accompanied by loss of growth response to transforming growth factor alpha (TGFα), heregulin-beta and pertuzumab. LCC1 and LCC9 cells had enhanced AKT phosphorylation relative to MCF7 which was reflected in downstream activation of phospho-mechanistic target of rapamycin (mTOR), phospho-S6, and phospho-estrogen receptor alpha Ser167 [ERα(Ser167)]. Both AKT2 and AKT3 were phosphorylated in the resistant cell lines, but small interfering RNA (siRNA) knockdown suggested that all three AKT isoforms contributed to growth response. ERα(Ser118) phosphorylation was increased by E2 and TGFα in MCF7, by E2 only in LCC1, but by neither in LCC9 cells. Multiple alterations in E2-mediated cell cycle control were identified in the endocrine-resistant cell lines including increased expression of MYC, cyclin A1, cyclin D1, cyclin-dependent kinase 1 (CDK1), CDK2, and hyperphosphorylated retinoblastoma protein (ppRb), whereas p21 and p27 were reduced. Estrogen modulated expression of these regulators in MCF7 and LCC1 cells but not in LCC9 cells. Seliciclib inhibited CDK2 activation in MCF7 cells but not in resistant variants; in all lines, it reduced ppRb, increased p53 associated responses including p21, p53 up-regulated modulator of apoptosis (PUMA), and p53 apoptosis-inducing protein 1 (p53AIP1), inhibited growth, and produced G2/M block and apoptosis. Conclusions: Multiple changes occur with progression of endocrine resistance in this model with AKT activation contributing to E2 insensitivity and loss of ERα(Ser118) phosphorylation being associated with full resistance. Cell cycle regulation is modified in endocrine-resistant breast cancer cells, and seliciclib is effective in both endocrine-sensitive and resistant diseases.
Collapse
Affiliation(s)
- Kate M. Moore
- 1Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XR Edinburgh, UK 2Cancer Research UK Barts Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, EC1M 6BQ London, UK
| | - Vera Cerqueira
- 1Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XR Edinburgh, UK 3West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, G51 4TF Glasgow, UK
| | - Kenneth G. MacLeod
- 1Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XR Edinburgh, UK
| | - Peter Mullen
- 4School of Medicine, University of St Andrews, North Haugh, KY16 9TF St Andrews, UK
| | - Richard L. Hayward
- 1Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XR Edinburgh, UK
| | - Simon Green
- 5Cyclacel Ltd, James Lindsay Place, Dundee Technopole, DD1 5JJ Dundee, UK
| | - David J. Harrison
- 4School of Medicine, University of St Andrews, North Haugh, KY16 9TF St Andrews, UK
| | - David A. Cameron
- 1Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XR Edinburgh, UK
| | - Simon P. Langdon
- 1Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XR Edinburgh, UK
| |
Collapse
|
78
|
Zhao X, Jiang Y, Xu M, Hu J, Feng N, Deng H, Lu C, Huang T. Indoleamine 2,3-dioxygenase 1 regulates breast cancer tamoxifen resistance through interleukin-6/signal transducer and activator of transcription 3. Toxicol Appl Pharmacol 2022; 440:115921. [DOI: 10.1016/j.taap.2022.115921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 11/25/2022]
|
79
|
Hermansyah D, Zulhendri F, Perera CO, Firsty NN, Chandrasekaran K, Abdulah R, Herman H, Lesmana R. The Potential Use of Propolis as an Adjunctive Therapy in Breast Cancers. Integr Cancer Ther 2022; 21:15347354221096868. [PMID: 35593403 PMCID: PMC9127854 DOI: 10.1177/15347354221096868] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 04/10/2022] [Indexed: 11/24/2022] Open
Abstract
Propolis is a resinous beehive product that has a wide range of biological activities, namely antimicrobial, antioxidant, and anti-inflammatory properties. Propolis is collected by the bees from plant resin and exudates to protect hives and maintain hive homeostasis. The aim of the present systematic scoping review is to explore the potential and suitability of propolis as an adjunctive treatment in breast cancers, based on the latest available experimental evidence (2012-2021). After applying the exclusion criteria, a total of 83 research publications were identified and retrieved from Scopus, Web of Science, and Pubmed. Several relevant key themes identified from the included studies were cytotoxicity, synergistic/combination treatment, improvement in bioavailability, human clinical trials, and others. A majority of the studies identified were still in the in vitro and in vivo stages. Nonetheless, we managed to identify 4 human clinical trials that demonstrated the successful use of propolis in alleviating side effects of chemotherapy and radiotherapy while increasing the quality of life of breast cancer patients, with minimal adverse effects. In conclusion, propolis, as an adjunctive treatment, may have therapeutic benefits in alleviating symptoms related to breast cancers. However, further clinical trials, preferably with higher number of participants/subjects/patients, are urgently needed.
Collapse
Affiliation(s)
| | - Felix Zulhendri
- Universitas Padjadjaran, Bandung, Indonesia
- Kebun Efi, Kabanjahe, Indonesia
| | | | | | | | | | | | | |
Collapse
|
80
|
Liu Q, Palmgren VA, Danen EHJ, Le Dévédec SE. Acute vs. chronic vs. intermittent hypoxia in breast Cancer: a review on its application in in vitro research. Mol Biol Rep 2022; 49:10961-10973. [PMID: 36057753 PMCID: PMC9618509 DOI: 10.1007/s11033-022-07802-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022]
Abstract
Hypoxia has been linked to elevated instances of therapeutic resistance in breast cancer. The exposure of proliferating cancer cells to hypoxia has been shown to induce an aggressive phenotype conducive to invasion and metastasis. Regions of the primary tumors in the breast may be exposed to different types of hypoxia including acute, chronic or intermittent. Intermittent hypoxia (IH), also called cyclic hypoxia, is caused by exposure to cycles of hypoxia and reoxygenation (H-R cycles). Importantly, there is currently no consensus amongst the scientific community on the total duration of hypoxia, the oxygen level, and the possible presence of H-R cycles. In this review, we discuss current methods of hypoxia research, to explore how exposure regimes used in experiments are connected to signaling by different hypoxia inducible factors (HIFs) and to distinct cellular responses in the context of the hallmarks of cancer. We highlight discrepancies in the existing literature on hypoxia research within the field of breast cancer in particular and propose a clear definition of acute, chronic, and intermittent hypoxia based on HIF activation and cellular responses: (i) acute hypoxia is when the cells are exposed for no more than 24 h to an environment with 1% O2 or less; (ii) chronic hypoxia is when the cells are exposed for more than 48 h to an environment with 1% O2 or less and (iii) intermittent hypoxia is when the cells are exposed to at least two rounds of hypoxia (1% O2 or less) separated by at least one period of reoxygenation by exposure to normoxia (8.5% O2 or higher). Our review provides for the first time a guideline for definition of hypoxia related terms and a clear foundation for hypoxia related in vitro (breast) cancer research.
Collapse
Affiliation(s)
- Qiuyu Liu
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Victoria A.C. Palmgren
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Erik HJ Danen
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Sylvia E. Le Dévédec
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
81
|
Mery B, Poulard C, Le Romancer M, Trédan O. Targeting AKT in ER-Positive HER2-Negative Metastatic Breast Cancer: From Molecular Promises to Real Life Pitfalls? Int J Mol Sci 2021; 22:13512. [PMID: 34948307 PMCID: PMC8706716 DOI: 10.3390/ijms222413512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023] Open
Abstract
The AKT protein kinase plays a central role in several interconnected molecular pathways involved in growth, apoptosis, angiogenesis, and cell metabolism. It thereby represents a therapeutic target, especially in hormone receptor-positive (HR) breast cancers, where the PI3K/AKT signaling pathway is largely hyperactivated. Moreover, resistance to therapeutic classes, including endocrine therapy, is associated with the constitutive activation of the PI3K/AKT pathway. Improved knowledge on the molecular mechanisms underlying resistance to endocrine therapy has led to the diversification of the therapeutic arsenal, notably with the development of PI3K and mTOR inhibitors, which are currently approved for the treatment of advanced HR-positive breast cancer patients. AKT itself constitutes a novel pharmacological target for which AKT inhibitors have been developed and tested in clinical trials. However, despite its pivotal role in cell survival and anti-apoptotic mechanisms, as well as in endocrine therapy resistance, few drugs have been developed and are available for clinical practice. The scope of the present review is to focus on the pivotal role of AKT in metastatic breast cancer through the analysis of its molecular features and to discuss clinical implications and remaining challenges in the treatment of HR-positive metastatic breast cancer.
Collapse
Affiliation(s)
- Benoîte Mery
- Medical Oncology Department, Centre Léon Bérard, F-69000 Lyon, France;
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France; (C.P.); (M.L.R.)
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Coralie Poulard
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France; (C.P.); (M.L.R.)
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Université de Lyon, F-69000 Lyon, France
| | - Muriel Le Romancer
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France; (C.P.); (M.L.R.)
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Université de Lyon, F-69000 Lyon, France
| | - Olivier Trédan
- Medical Oncology Department, Centre Léon Bérard, F-69000 Lyon, France;
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France; (C.P.); (M.L.R.)
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Université de Lyon, F-69000 Lyon, France
| |
Collapse
|
82
|
Ribociclib Induces Broad Chemotherapy Resistance and EGFR Dependency in ESR1 Wildtype and Mutant Breast Cancer. Cancers (Basel) 2021; 13:cancers13246314. [PMID: 34944934 PMCID: PMC8699146 DOI: 10.3390/cancers13246314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/05/2021] [Accepted: 12/11/2021] [Indexed: 12/24/2022] Open
Abstract
While endocrine therapy is highly effective for the treatment of oestrogen receptor-α (ERα)-positive breast cancer, a significant number of patients will eventually experience disease progression and develop treatment-resistant, metastatic cancer. The majority of resistant tumours remain dependent on ERα-action, with activating ESR1 gene mutations occurring in 15-40% of advanced cancers. Therefore, there is an urgent need to discover novel effective therapies that can eradicate cancer cells with aberrant ERα and to understand the cellular response underlying their action. Here, we evaluate the response of MCF7-derived, CRISPR-Cas9-generated cell lines expressing mutant ERα (Y537S) to a large number of drugs. We report sensitivity to numerous clinically approved inhibitors, including CDK4/6 inhibitor ribociclib, which is a standard-of-care therapy in the treatment of metastatic ERα-positive breast cancer and currently under evaluation in the neoadjuvant setting. Ribociclib treatment induces senescence in both wildtype and mutant ERα breast cancer models and leads to a broad-range drug tolerance. Strikingly, viability of cells undergoing ribociclib-induced cellular senescence is maintained via engagement of EGFR signalling, which may be therapeutically exploited in both wildtype and mutant ERα-positive breast cancer. Our study highlights a wide-spread reduction in sensitivity to anti-cancer drugs accompanied with an acquired vulnerability to EGFR inhibitors following CDK4/6 inhibitor treatment.
Collapse
|
83
|
Miranda F, Prazeres H, Mendes F, Martins D, Schmitt F. Resistance to endocrine therapy in HR + and/or HER2 + breast cancer: the most promising predictive biomarkers. Mol Biol Rep 2021; 49:717-733. [PMID: 34739691 DOI: 10.1007/s11033-021-06863-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 10/20/2021] [Indexed: 01/04/2023]
Abstract
Breast cancer is the most common cancer in women. It is a heterogeneous disease, encompassing different biological subtypes that differ in histological features, outcomes, clinical behaviour and different molecular subtypes. Therapy has progressed substantially over the past years with a reduction both for locoregional and systemic therapy. Endocrine therapies have considerably reduced cancer recurrence and mortality. Despite the major diagnostic and therapeutic innovations, resistance to therapy has become a main challenge, especially in metastatic breast cancer, and became a major factor limiting the use of endocrine therapeutic agents in ER positive breast cancers. Approximately 50% of patients with ER positive metastatic disease achieve a complete or partial response with endocrine therapy. However, in the remaining patients, the benefit is limited due to resistance, intrinsic or acquired, resulting in disease progression and poor outcome.Tumour heterogeneity as well as acquired genetic changes and therapeutics pressure have been involved in the endocrine therapy resistance. Nowadays, targeted sequencing of genes involved in cancer has provided insights about genomic tumour evolution throughout treatment and resistance driver mutations. Several studies have described multiple alterations in receptor tyrosine kinases, signalling pathways such as Phosphoinositide-3-kinase-protein kinase B/Akt/mTOR (PI3K/Akt/mTOR) and Mitogen-activated protein kinase (MAPK), cell cycle machinery and their implications in endocrine treatment failure.One of the current concern in cancer is personalized therapy. The focus has been the discovery of new potentially predictive biomarkers capable to identify reliably the most appropriate therapy regimen and which patients will experience disease relapse. The major concern is also to avoid overtreatment/undertreatment and development of resistance.This review focuses on the most promising predictive biomarkers of resistance in estrogen receptor-positive breast cancer and the emerging role of circulating free-DNA as a powerful tool for longitudinal monitoring of tumour molecular profile throughout treatment.
Collapse
Affiliation(s)
- Flávia Miranda
- Politécnico de Coimbra, ESTeSC, DCBL, Rua 5 de Outubro-SM Bispo, Apartado, 7006, 3046-854, Coimbra, Portugal
| | - Hugo Prazeres
- i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,U-Monitor Lda, Porto, Portugal.,Department of Molecular Pathology, Portuguese Institute of Oncology, Coimbra, Portugal
| | - Fernando Mendes
- Politécnico de Coimbra, ESTeSC, DCBL, Rua 5 de Outubro-SM Bispo, Apartado, 7006, 3046-854, Coimbra, Portugal.,University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,European Association for Professions in Biomedical Sciences, Brussels, Belgique
| | - Diana Martins
- Politécnico de Coimbra, ESTeSC, DCBL, Rua 5 de Outubro-SM Bispo, Apartado, 7006, 3046-854, Coimbra, Portugal. .,i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal. .,University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Coimbra, Portugal. .,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal. .,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
| | - Fernando Schmitt
- i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
| |
Collapse
|
84
|
NRIP1 is activated by C-JUN/C-FOS and activates the expression of PGR, ESR1 and CCND1 in luminal A breast cancer. Sci Rep 2021; 11:21159. [PMID: 34707101 PMCID: PMC8551324 DOI: 10.1038/s41598-021-00291-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/29/2021] [Indexed: 12/04/2022] Open
Abstract
Using chip array assays, we identified differentially expressed genes via a comparison between luminal A breast cancer subtype and normal mammary ductal cells from healthy donors. In silico analysis confirmed by western blot and immunohistochemistry revealed that C-JUN and C-FOS transcription factors are activated in luminal A patients as potential upstream regulators of these differentially expressed genes. Using a chip-on-chip assay, we identified potential C-JUN and C-FOS targets. Among these genes, the NRIP1 gene was revealed to be targeted by C-JUN and C-FOS. This was confirmed after identification and validation with transfection assays specific binding of C-JUN and C-FOS at consensus binding sites. NRIP1 is not only upregulated in luminal A patients and cell lines but also regulates breast cancer-related genes, including PR, ESR1 and CCND1. These results were confirmed by NRIP1 siRNA knockdown and chip array assays, thus highlighting the putative role of NRIP1 in PGR, ESR1 and CCND1 transcriptional regulation and suggesting that NRIP1 could play an important role in breast cancer ductal cell initiation.
Collapse
|
85
|
Kaboli PJ, Imani S, Jomhori M, Ling KH. Chemoresistance in breast cancer: PI3K/Akt pathway inhibitors vs the current chemotherapy. Am J Cancer Res 2021; 11:5155-5183. [PMID: 34765318 PMCID: PMC8569340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023] Open
Abstract
Breast cancer is the most prevalent type of cancer among women. Several types of drugs, targeting the specific proteins expressed on the breast cancer cell surface (such as receptor tyrosine kinases and immune checkpoint regulators) and proteins involved in cell cycle and motility (including cyclin-dependent kinases, DNA stabilisers, and cytoskeleton modulators) are approved for different subtypes of breast cancer. However, breast cancer also has a poor response to conventional chemotherapy due to intrinsic and acquired resistance, and an Akt fingerprint is detectable in most drug-resistant cases. Overactivation of Akt and its upstream and downstream regulators in resistant breast cancer cells is considered a major potential target for novel anti-cancer therapies, suggesting that Akt signalling acts as a cellular mechanism against chemotherapy. The present review has shown that sustained activation of Akt results in resistance to different types of chemotherapy. Akt signalling plays a cellular defence role against chemotherapy and (1) enhances multi-drug resistance, (2) increases reactive oxygen species at breast tumor microenvironment, (3) enhances anaerobic metabolism, (4) inhibits the tricarboxylic cycle, (5) promotes PD-L1 upregulation, (6) inhibits apoptosis, (7) increases glucose uptake, and more importantly (8) recruits and interconnects the plasma membrane, nucleus, endoplasmic reticulum, and mitochondria to hijack breast cancer cells and rescue these cells from chemotherapy. Therefore, Akt signalling is considered a cellular defence mechanism employed against chemotherapeutic effects. In addition, interfering roles of PI3K/Akt signalling on the current cytotoxic and molecularly targeted therapy as well as immunotherapy of breast cancer are discussed with a clinical approach. Although, alpelisib, a PIK3CA inhibitor, is the only PI3K/Akt pathway inhibitor approved for breast cancer, we also highlight well-evaluated inhibitors of PI3K/Akt signalling based on different subtypes of breast cancer, which are under clinical trials whether as monotherapy or in combination with other types of chemotherapy.
Collapse
Affiliation(s)
- Parham Jabbarzadeh Kaboli
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical UniversityTaichung 404, Taiwan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra MalaysiaSerdang, Selangor 43400, Malaysia
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical UniversityLuzhou, Sichuan 646000, P. R. China
| | - Masume Jomhori
- Department of Biotechnology Research, Razi Vaccine and Serum Research InstituteMashhad, Iran
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra MalaysiaSerdang, Selangor 43400, Malaysia
- Department of Genetics, Harvard Medical SchoolBoston, MA 02115, USA
| |
Collapse
|
86
|
Escher TE, Dandawate P, Sayed A, Hagan CR, Anant S, Lewis-Wambi J. Enhanced IFNα Signaling Promotes Ligand-Independent Activation of ERα to Promote Aromatase Inhibitor Resistance in Breast Cancer. Cancers (Basel) 2021; 13:5130. [PMID: 34680281 PMCID: PMC8534010 DOI: 10.3390/cancers13205130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 01/07/2023] Open
Abstract
Aromatase inhibitors (AIs) reduce estrogen levels up to 98% as the standard practice to treat postmenopausal women with estrogen receptor-positive (ER+) breast cancer. However, approximately 30% of ER+ breast cancers develop resistance to treatment. Enhanced interferon-alpha (IFNα) signaling is upregulated in breast cancers resistant to AIs, which drives expression of a key regulator of survival, interferon-induced transmembrane protein 1 (IFITM1). However, how upregulated IFNα signaling mediates AI resistance is unknown. In this study, we utilized MCF-7:5C cells, a breast cancer cell model of AI resistance, and demonstrate that these cells exhibit enhanced IFNα signaling and ligand-independent activation of the estrogen receptor (ERα). Experiments demonstrated that STAT1, the mediator of intracellular signaling for IFNα, can interact directly with ERα. Notably, inhibition of IFNα signaling significantly reduced ERα protein expression and ER-regulated genes. In addition, loss of ERα suppressed IFITM1 expression, which was associated with cell death. Notably, chromatin immunoprecipitation experiments validated that both ERα and STAT1 associate with ERE sequences in the IFITM1 promoter. Overall, hyperactivation of IFNα signaling enhances ligand-independent activation of ERα, which promotes ER-regulated, and interferon stimulated gene expression to promote survival in AI-resistant breast cancer cells.
Collapse
Affiliation(s)
- Taylor E. Escher
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; (T.E.E.); (P.D.); (A.S.); (C.R.H.); (S.A.)
| | - Prasad Dandawate
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; (T.E.E.); (P.D.); (A.S.); (C.R.H.); (S.A.)
- The University of Kansas Cancer Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Afreen Sayed
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; (T.E.E.); (P.D.); (A.S.); (C.R.H.); (S.A.)
| | - Christy R. Hagan
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; (T.E.E.); (P.D.); (A.S.); (C.R.H.); (S.A.)
- The University of Kansas Cancer Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; (T.E.E.); (P.D.); (A.S.); (C.R.H.); (S.A.)
- The University of Kansas Cancer Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Joan Lewis-Wambi
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; (T.E.E.); (P.D.); (A.S.); (C.R.H.); (S.A.)
- The University of Kansas Cancer Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
87
|
Petri BJ, Piell KM, South Whitt GC, Wilt AE, Poulton CC, Lehman NL, Clem BF, Nystoriak MA, Wysoczynski M, Klinge CM. HNRNPA2B1 regulates tamoxifen- and fulvestrant-sensitivity and hallmarks of endocrine resistance in breast cancer cells. Cancer Lett 2021; 518:152-168. [PMID: 34273466 PMCID: PMC8358706 DOI: 10.1016/j.canlet.2021.07.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/31/2022]
Abstract
Despite new combination therapies improving survival of breast cancer patients with estrogen receptor α (ER+) tumors, the molecular mechanisms for endocrine-resistant disease remain unresolved. Previously we demonstrated that expression of the RNA binding protein and N6-methyladenosine (m6A) reader HNRNPA2B1 (A2B1) is higher in LCC9 and LY2 tamoxifen (TAM)-resistant ERα breast cancer cells relative to parental TAM-sensitive MCF-7 cells. Here we report that A2B1 protein expression is higher in breast tumors than paired normal breast tissue. Modest stable overexpression of A2B1 in MCF-7 cells (MCF-7-A2B1 cells) resulted in TAM- and fulvestrant- resistance whereas knockdown of A2B1 in LCC9 and LY2 cells restored TAM and fulvestrant, endocrine-sensitivity. MCF-7-A2B1 cells gained hallmarks of TAM-resistant metastatic behavior: increased migration and invasion, clonogenicity, and soft agar colony size, which were attenuated by A2B1 knockdown in MCF-7-A2B1 and the TAM-resistant LCC9 and LY2 cells. MCF-7-A2B1, LCC9, and LY2 cells have a higher proportion of CD44+/CD24-/low cancer stem cells (CSC) compared to MCF-7 cells. MCF-7-A2B1 cells have increased ERα and reduced miR-222-3p that targets ERα. Like LCC9 cells, MCF-7-A2B1 have activated AKT and MAPK that depend on A2B1 expression and are growth inhibited by inhibitors of these pathways. These data support that targeting A2B1 could provide a complimentary therapeutic approach to reduce acquired endocrine resistance.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Kellianne M Piell
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Gordon C South Whitt
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Ali E Wilt
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Claire C Poulton
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Norman L Lehman
- Department of Pathology and Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Brian F Clem
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Matthew A Nystoriak
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Marcin Wysoczynski
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
88
|
Kowalczyk W, Waliszczak G, Jach R, Dulińska-Litewka J. Steroid Receptors in Breast Cancer: Understanding of Molecular Function as a Basis for Effective Therapy Development. Cancers (Basel) 2021; 13:4779. [PMID: 34638264 PMCID: PMC8507808 DOI: 10.3390/cancers13194779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
Breast cancer remains one of the most important health problems worldwide. The family of steroid receptors (SRs), which comprise estrogen (ER), progesterone (PR), androgen (AR), glucocorticoid (GR) and mineralocorticoid (MR) receptors, along with a receptor for a secosteroid-vitamin D, play a crucial role in the pathogenesis of the disease. They function predominantly as nuclear receptors to regulate gene expression, however, their full spectrum of action reaches far beyond this basic mechanism. SRs are involved in a vast variety of interactions with other proteins, including extensive crosstalk with each other. How they affect the biology of a breast cell depends on such factors as post-translational modifications, expression of coregulators, or which SR isoform is predominantly synthesized in a given cellular context. Although ER has been successfully utilized as a breast cancer therapy target for years, research on therapeutic application of other SRs is still ongoing. Designing effective hormone therapies requires thorough understanding of the molecular function of the SRs. Over the past decades, huge amount of data was obtained in multiple studies exploring this field, therefore in this review we attempt to summarize the current knowledge in a comprehensive way.
Collapse
Affiliation(s)
- Wojciech Kowalczyk
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Kraków, Poland; (W.K.); (G.W.)
| | - Grzegorz Waliszczak
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Kraków, Poland; (W.K.); (G.W.)
| | - Robert Jach
- Department of Gynecology and Obstetrics, Jagiellonian University Medical College, 23 Kopernika St., 31-501 Kraków, Poland;
| | - Joanna Dulińska-Litewka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Kraków, Poland; (W.K.); (G.W.)
| |
Collapse
|
89
|
Lin YZ, Lee CC, Cho DY, Wang YL, Chen CY, Weng CY, Chiu SC, Hung MC, Wang SC. Suppression of breast cancer cells resistant to a pure anti-estrogen with CAR-transduced natural killer cells. Am J Cancer Res 2021; 11:4455-4469. [PMID: 34659898 PMCID: PMC8493389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 05/04/2021] [Indexed: 06/13/2023] Open
Abstract
Anti-estrogens as hormone therapy are the mainstay treatment for estrogen receptor (ER)-positive breast cancer. ER inhibitors through modulating the transcriptional function of ER have been the frontline anti-estrogens to which refractory phenotype often developed in advanced cancer. The anti-estrogen fulvestrant is currently the only clinically approved pure anti-estrogen which causes ER degradation. However, resistance to fulvestrant still occurs and unfortunately it leaves few choices other than chemotherapy as the later-line treatments to fulvestrant-resistant tumors. Here we show that fulvestrant resistance was accompanied by increased expression of a number of innate immune response genes including the natural killer (NK) cell ligand B7-H6 on the cell surface. In an attempt to overcome the drug resistance phenotype, a NK-based molecular approach taking advantage of a chimeric antigen receptor (CAR) system targeting B7-H6 was established and tested in cells with acquired resistance to fulvestrant. The results demonstrate that the cell therapy approach as a single agent can effectively induce cell death of the resistant cancer cells which is enhanced by the increased expression of cell surface B7-H6. This approach departs from the traditional strategies of conquering anti-estrogen resistant breast cancer and offers a new avenue to eradicate hormone-refractory malignant solid tumors.
Collapse
Affiliation(s)
- You-Zhe Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichung 40402, Taiwan
| | - Chuan-Chun Lee
- Center for Molecular Medicine, China Medical University HospitalTaichung 404332, Taiwan
| | - Der-Yang Cho
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichung 40402, Taiwan
- Translational Cell Therapy Center, Department of Medical Research, China Medical University HospitalTaichung 404332, Taiwan
- Department of Neurosurgery, China Medical University HospitalTaichung 404332, Taiwan
| | - Yuan-Liang Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University HospitalTaichung 404332, Taiwan
| | - Chia-Yun Chen
- Department of Medicine, College of Medicine, China Medical UniversityTaichung 40402, Taiwan
| | - Ching-Yu Weng
- Department of Medicine, College of Medicine, China Medical UniversityTaichung 40402, Taiwan
| | - Shao-Chih Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichung 40402, Taiwan
- Translational Cell Therapy Center, Department of Medical Research, China Medical University HospitalTaichung 404332, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University HospitalTaichung 404332, Taiwan
- Research Center for Cancer Biology, China Medical UniversityTaichung 40402, Taiwan
- Department of Biotechnology, Asia UniversityTaichung 41354, Taiwan
| | - Shao-Chun Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University HospitalTaichung 404332, Taiwan
- Research Center for Cancer Biology, China Medical UniversityTaichung 40402, Taiwan
- Cancer Biology and Drug Discovery Ph.D. Program, China Medical UniversityTaichung 40402, Taiwan
- Department of Biotechnology, Asia UniversityTaichung 41354, Taiwan
- Department of Cancer Biology, University of CincinnatiCincinnati, OH 45267, USA
| |
Collapse
|
90
|
Yamamura J, Miyamura Y, Kamigaki S, Fujita J, Osato H, Manabe H, Tanaka Y, Shinzaki W, Hahimot Y, Ito T, Komoike Y. Relationship between endocrine resistance and the periods of adjuvant endocrine treatment for hormone receptor-positive, HER2-negative breast cancer. Breast Dis 2021; 41:109-114. [PMID: 34420939 DOI: 10.3233/bd-210027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Current guidelines define primary and secondary endocrine resistance according to the periods of adjuvant endocrine therapy (adj-ET); however, the relationship between adj-ET period and endocrine resistance remains unclear. OBJECTIVE We examined progression-free survival (PFS) after primary ET for recurrent hormone receptor-positive/HER2-negative breast cancer, and evaluated the relationship between endocrine resistance and the periods of adj-ET. METHODS We assessed PFS among 183 patients who received ET as primary treatment for the first recurrence, according to the period of adj-ET (adj-ET < 1 year, 1-2 years, ≥2 years, and completion). RESULTS Patients who relapsed during the first year of adj-ET had the significantly shortest PFS. PFS did not significantly differ between patients who relapsed at 1-2 years of adj-ET and patients who relapsed while on adj-ET but after the first 2 years. CONCLUSIONS Relapse at 1-2 years after adj-ET initiation might be better classified as secondary endocrine resistance rather than primary endocrine resistance.
Collapse
Affiliation(s)
- Jun Yamamura
- Department of Surgery, Sakai City Medical Center, Osaka, Japan.,Division of Breast and Endocrine Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yukiko Miyamura
- Department of Surgery, Sakai City Medical Center, Osaka, Japan
| | - Shunji Kamigaki
- Department of Surgery, Sakai City Medical Center, Osaka, Japan
| | - Junya Fujita
- Department of Surgery, Sakai City Medical Center, Osaka, Japan
| | - Hiroki Osato
- Department of Surgery, Sakai City Medical Center, Osaka, Japan
| | - Hironobu Manabe
- Division of Breast and Endocrine Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yumiko Tanaka
- Division of Breast and Endocrine Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Wataru Shinzaki
- Division of Breast and Endocrine Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yukihiko Hahimot
- Division of Breast and Endocrine Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Toshikazu Ito
- Division of Breast and Endocrine Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yoshifumi Komoike
- Division of Breast and Endocrine Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
91
|
Molecular epigenetic dynamics in breast carcinogenesis. Arch Pharm Res 2021; 44:741-763. [PMID: 34392501 DOI: 10.1007/s12272-021-01348-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022]
Abstract
Breast cancer has become one of the most common dreadful diseases that target women across the globe. The most obvious reasons we associate with it are either genetic mutations or dysregulation of pathways. However, there is yet another domain that has a significant role in influencing the genetic mutations and pathways. Epigenetic mechanisms influence these pathways either independently or in association with genetic mutations, thereby expediting the process of breast carcinogenesis. Breast cancer is governed by various transduction pathways such as PI3K/AKT/mTOR, NOTCH, β Catenin, NF-kB, Hedgehog, etc. There are many proteins as well that serve to be tumor suppressors but somehow lose their ability to function. This may be because of either genetic mutation or a process that represses their function. Apart from these, there are a lot of individual factors like puberty, breastfeeding, abortion, parity, circadian rhythm, alcohol consumption, pollutants, and obesity that drive these mutations and hence alter the pathways. Epigenetic mechanisms like DNA methylation, histone modifications, and lncRNAs directly or indirectly bring alterations in the proteins that are involved in the pathways. They do this by either promoting the transcription of genes or by repressing it at the ground genetic level that advances breast carcinogenesis. Epigenetics precedes genetic mutation in driving carcinogenesis and so, it needs to be explored further to diversify the possibilities of target specific treatments. In this review, the general role of DNA methylation, histone modification, and lncRNAs in breast cancer and their role in influencing the oncogenic signaling pathways along with the various factors governing them have been discussed for a better understanding of the role of epigenetics in breast carcinogenesis.
Collapse
|
92
|
Chien TJ. A review of the endocrine resistance in hormone-positive breast cancer. Am J Cancer Res 2021; 11:3813-3831. [PMID: 34522451 PMCID: PMC8414389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023] Open
Abstract
Hormone-positive breast cancer (BC) is a unique heterogeneous disease with a favorable prognosis compared to other types of breast cancer. As tumor biology influences the prognosis and clinical treatment, a deep understanding of how the molecular mechanisms regulate hormone sensitivity or resistance is critical in improving the efficacy and overcoming the endocrine resistance. This article comprehensively reviews the endocrine resistance in hormone-positive BC from a molecular and genetic perspective, encompassing the updated treatment and developing direction. This review includes the mechanisms of hormone resistance, which vary from epigenetic changes, crosstalk between signaling networks, cell cycle aberrance, and even change in the tumor microenvironment (TME) or stem cell. These mechanisms may contribute to treatment resistance. Current targeted therapy for hormone-resistant tumors includes PI3K/AKT/mTOR and cdk4/6 inhibitors. Several relevant pathways, biomarkers, and predictor genes have also been identified. Immunotherapy so far has a relatively less crucial role in hormone-positive than in triple-negative BC. Furthermore, the methodology to identify the PDL1 is not standardized. In a molecule and gene study, next-generation sequencing with circulating tumor DNA (ctDNA) has recently appeared as a sensitive and minimally invasive tool worth investigating.
Collapse
Affiliation(s)
- Tsai-Ju Chien
- Division of Hemato-Oncology, Department of Internal Medicine, Branch of Zhong-Zhou, Taipei City HospitalTaipei, Taiwan
- Division of Hemato-Oncology, Department of Internal Medicine, Branch of Jen-Ai, Taipei City HospitalTaipei, Taiwan
- Institute of Traditional Medicine, National Yang-Ming Chiao Tung UniversityTaipei, Taiwan
| |
Collapse
|
93
|
Dastmalchi N, Safaralizadeh R, Latifi-Navid S, Banan Khojasteh SM, Mahmud Hussen B, Teimourian S. An updated review of the role of lncRNAs and their contribution in various molecular subtypes of breast cancer. Expert Rev Mol Diagn 2021; 21:1025-1036. [PMID: 34334086 DOI: 10.1080/14737159.2021.1962707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Breast cancer (BC) is the most significant threat to women's life. To demonstrate its molecular mechanisms, which results in BC progression, it is crucial to develop approaches to enhance prognosis and survival in BC cases.Areas covered: In the current study, we aimed to highlight the updated data on the oncogenic and tumor suppressive roles of lncRNAs in the progression of various subtypes of BC by specifically putting importance on the functional characteristics, modulatory agents, therapeutic potential, future perspectives and challenges of lncRNAs in BC. We reviewed recent studies published between 2019 and 2020.Expert opinion: The latest investigations have demonstrated that the long non-coding RNAs (lncRNAs) participate in different BC molecular subtypes via different molecular mechanisms; however, the exact functional information of the lncRNAs has yet to be elucidated. The studied lncRNAs could be more applicable as therapeutic targets in BC treatment after pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Narges Dastmalchi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | | | - Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Shahram Teimourian
- Department of Medical Genetics, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
94
|
Rasha F, Sharma M, Pruitt K. Mechanisms of endocrine therapy resistance in breast cancer. Mol Cell Endocrinol 2021; 532:111322. [PMID: 34000350 DOI: 10.1016/j.mce.2021.111322] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/29/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023]
Abstract
The most commonly diagnosed breast cancer (BC) subtype is characterized by estrogen receptor (ER) expression. Treatment of this BC subtype typically involves modalities that either suppress the production of estrogen or impede the binding of estrgen to its receptors, constituting the basis for endocrine therapy. While many patients have benefitted from endocrine therapy with clear reduction in mortality and cancer recurrence, one of the clinical hurdles that remain involves overcoming intrinsic (de novo) or acquired resistance to endocrine therapy driven by diverse and complex changes occurring in the tumor microenvironment. Moreover, such resistance may persist even after progression through additional antiestrogen therapies thus demonstrating the importance of further investigation of mechanisms of ER modulation. Here, we discuss a number of advances that provide a better understanding of the complex mechanistic basis for resistance to endocrine therapy as well as future therapeutic maneuvers that may break this resistance.
Collapse
Affiliation(s)
- Fahmida Rasha
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA
| | - Monica Sharma
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA
| | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA.
| |
Collapse
|
95
|
Hormonresistenz in der Mammakarzinomtherapie. GYNAKOLOGISCHE ENDOKRINOLOGIE 2021. [DOI: 10.1007/s10304-021-00392-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
96
|
Cao J, Wu D, Wu G, Wang Y, Ren T, Wang Y, Lv Y, Sun W, Wang J, Qian C, He L, Yang K, Li H, Gu H. USP35, regulated by estrogen and AKT, promotes breast tumorigenesis by stabilizing and enhancing transcriptional activity of estrogen receptor α. Cell Death Dis 2021; 12:619. [PMID: 34131114 PMCID: PMC8206120 DOI: 10.1038/s41419-021-03904-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/15/2022]
Abstract
Although endocrine therapies targeting estrogen receptor α (ERα) are effective in managing ER positive (+) breast cancer, many patients have primary resistance or develop resistance to endocrine therapies. In addition, ER+ breast cancer with PIK3CA activating mutations and 11q13-14 amplification have poor survival with unclear mechanism. We uncovered that higher expression of deubiquitinase USP35, located in 11q14.1, was associated with ER+ breast cancer and poor survival. Estrogen enhanced USP35 protein levels by downregulating USP35-targeting miRNA-140-3p and miRNA-26a-5p. USP35 promoted the growth of ER+ breast cancer in vitro and in vivo, and reduced the sensitivity of ER+ breast cancer cells to endocrine therapies such as tamoxifen and fulvestrant. Mechanistically, USP35 enhanced ERα stability by interacting and deubiquitinating ERα, and transcriptional activity of ERα by interacting with ERα in DNA regions containing estrogen response element. In addition, AKT, a key effector of PI3K, phosphorylated USP35 at Serine613, which promoted USP35 nuclear translocation, ERα transcriptional activity, and the growth of ER+ breast cancer cells. Our data indicate that USP35 and ERα form a positive feedback loop in promoting the growth of ER+ breast cancer. USP35 may be a treatment target for ER+ breast cancer with endocrine resistance or with PIK3CA mutations or hyperactivation of the PI3K pathway.
Collapse
Affiliation(s)
- Jiawei Cao
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Du Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Guang Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yaqi Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Tianhao Ren
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yang Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yingshuai Lv
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Wei Sun
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jieyi Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Changrui Qian
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Licai He
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Kaiyan Yang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Hongzhi Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Haihua Gu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
97
|
Wu DP, Zhou Y, Hou LX, Zhu XX, Yi W, Yang SM, Lin TY, Huang JL, Zhang B, Yin XX. Cx43 deficiency confers EMT-mediated tamoxifen resistance to breast cancer via c-Src/PI3K/Akt pathway. Int J Biol Sci 2021; 17:2380-2398. [PMID: 34326682 PMCID: PMC8315014 DOI: 10.7150/ijbs.55453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/30/2021] [Indexed: 12/25/2022] Open
Abstract
Tamoxifen (TAM) resistance has indicated a significant challenge during endocrine therapy for hormone-sensitive breast cancer. Thus, it is significant to elucidate the molecular events endowing TAM resistance to endocrine therapy. In this study, we found that epithelial-mesenchymal transition (EMT) was an important event to confer TAM resistance, and attenuating EMT by elevating connexin (Cx) 43 expression could reverse TAM resistance. Specifically, Cx43 overexpression improved TAM sensitivity, while Cx43 depletion facilitated TAM insensitivity by modulating EMT in T47D TAM-resistant and -sensitive cells, and transplanted xenografts. Importantly, we found a novel reciprocal regulation between Cx43 and c-Src/PI3K/Akt pathway contributing to EMT and TAM resistance in breast cancer. Moreover, we identified that Cx43 deficiency was significantly correlated with poor relapse-free survival in patients undergoing TAM treatment. Therefore, Cx43 represents a prognostic marker and an attractive target for breast cancer treatments. Therapeutic strategies designed to increase or maintain Cx43 function may be beneficial to overcome TAM resistance.
Collapse
Affiliation(s)
- Deng-Pan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
- Department of Pharmacology, Pharmacy School of Xuzhou Medical University, 221004, Xuzhou City, Jiangsu Province, P.R. China
| | - Yan Zhou
- Clinical Pharmacy, Jingjiang People's Hospital, 214500, Jingjiang City, Jiangsu Province, P.R. China
| | - Li-Xiang Hou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Xiao-Xiao Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Wen Yi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Si-Man Yang
- Scientific research center of traditional Chinese medicine, Guangxi University of Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, P.R. China
| | - Tian-Yu Lin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Jin-Lan Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
- Department of Pharmacology, Pharmacy School of Xuzhou Medical University, 221004, Xuzhou City, Jiangsu Province, P.R. China
| | - Bei Zhang
- Department of gynaecology and obstetrics, Xuzhou Central Hospital, 221009, Xuzhou City, Jiangsu Province, P.R. China
| | - Xiao-Xing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| |
Collapse
|
98
|
Venetis K, Piciotti R, Sajjadi E, Invernizzi M, Morganti S, Criscitiello C, Fusco N. Breast Cancer with Bone Metastasis: Molecular Insights and Clinical Management. Cells 2021; 10:cells10061377. [PMID: 34199522 PMCID: PMC8229615 DOI: 10.3390/cells10061377] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Despite the remarkable advances in the diagnosis and treatment of breast cancer patients, the presence or development of metastasis remains an incurable condition. Bone is one of the most frequent sites of distant dissemination and negatively impacts on patient's survival and overall frailty. The interplay between tumor cells and the bone microenvironment induces bone destruction and tumor progression. To date, the clinical management of bone metastatic breast cancer encompasses anti-tumor systemic therapies along with bone-targeting agents, aimed at slowing bone resorption to reduce the risk of skeletal-related events. However, their effect on patients' survival remains controversial. Unraveling the biology that governs the interplay between breast neoplastic cells and bone tissue would provide means for the development of new therapeutic agents. This article outlines the state-of-the art in the characterization and targeting the bone metastasis in breast cancer, focusing on the major clinical and translational studies on this clinically relevant topic.
Collapse
Affiliation(s)
- Konstantinos Venetis
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (K.V.); (R.P.); (E.S.); (S.M.)
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Roberto Piciotti
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (K.V.); (R.P.); (E.S.); (S.M.)
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Elham Sajjadi
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (K.V.); (R.P.); (E.S.); (S.M.)
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Marco Invernizzi
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy;
- Infrastruttura Ricerca Formazione Innovazione (IRFI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Stefania Morganti
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (K.V.); (R.P.); (E.S.); (S.M.)
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Carmen Criscitiello
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (K.V.); (R.P.); (E.S.); (S.M.)
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Correspondence: (C.C.); (N.F.); Tel.: +39-02-9437-2079 (N.F.)
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (K.V.); (R.P.); (E.S.); (S.M.)
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Correspondence: (C.C.); (N.F.); Tel.: +39-02-9437-2079 (N.F.)
| |
Collapse
|
99
|
Griffiths JI, Chen J, Cosgrove PA, O’Dea A, Sharma P, Ma C, Trivedi M, Kalinsky K, Wisinski KB, O’Regan R, Makhoul I, Spring LM, Bardia A, Adler FR, Cohen AL, Chang JT, Khan QJ, Bild AH. Serial single-cell genomics reveals convergent subclonal evolution of resistance as early-stage breast cancer patients progress on endocrine plus CDK4/6 therapy. NATURE CANCER 2021; 2:658-671. [PMID: 34712959 PMCID: PMC8547038 DOI: 10.1038/s43018-021-00215-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Combining cyclin-dependent kinase (CDK) inhibitors with endocrine therapy improves outcomes for metastatic estrogen receptor positive (ER+) breast cancer patients but its value in earlier stage patients is unclear. We examined evolutionary trajectories of early-stage breast cancer tumors, using single cell RNA sequencing (scRNAseq) of serial biopsies from the FELINE clinical trial (#NCT02712723) of endocrine therapy (letrozole) alone or combined with the CDK inhibitor ribociclib. Despite differences in subclonal diversity evolution across patients and treatments, common resistance phenotypes emerged. Resistant tumors treated with combination therapy showed accelerated loss of estrogen signaling with convergent up-regulation of JNK signaling through growth factor receptors. In contrast, cancer cells maintaining estrogen signaling during mono- or combination therapy showed potentiation of CDK4/6 activation and ERK upregulation through ERBB4 signaling. These results indicate that combination therapy in early-stage ER+ breast cancer leads to emergence of resistance through a shift from estrogen to alternative growth signal-mediated proliferation.
Collapse
Affiliation(s)
- Jason I. Griffiths
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA.,Department of Mathematics, University of Utah 155 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Jinfeng Chen
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Patrick A. Cosgrove
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Anne O’Dea
- Division of Medical Oncology, University of Kansas Medical Center, Westwood, KS, 66160, USA
| | - Priyanka Sharma
- Division of Medical Oncology, University of Kansas Medical Center, Westwood, KS, 66160, USA
| | - Cynthia Ma
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63130, USA
| | - Meghna Trivedi
- Department of Medicine, Columbia University Irving Medical Center, NY, 10032, USA
| | - Kevin Kalinsky
- Department of Medicine, Columbia University Irving Medical Center, NY, 10032, USA
| | - Kari B. Wisinski
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Carbone Cancer Center, WI, 53726, USA
| | - Ruth O’Regan
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Carbone Cancer Center, WI, 53726, USA
| | - Issam Makhoul
- Division of Internal Medical Oncology, University of Arkansas for Medical Sciences, AR, 72205, USA
| | - Laura M. Spring
- Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, MA, 02114, USA
| | - Aditya Bardia
- Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, MA, 02114, USA
| | - Frederick R. Adler
- Department of Mathematics, University of Utah 155 South 1400 East, Salt Lake City, UT, 84112, USA.,School of Biological Sciences, University of Utah 257 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Adam L. Cohen
- Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Jeffrey T. Chang
- Department of Integrative Biology and Pharmacology, School of Medicine, School of Biomedical Informatics, UT Health Sciences Center at Houston, Houston, TX, 77030, USA
| | - Qamar J. Khan
- Division of Medical Oncology, University of Kansas Medical Center, Westwood, KS, 66160, USA.,To whom correspondence should be addressed: Andrea Bild () and Qamar Khan ()
| | - Andrea H. Bild
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA.,To whom correspondence should be addressed: Andrea Bild () and Qamar Khan ()
| |
Collapse
|
100
|
Dimitrakopoulos FI, Kottorou A, Tzezou A. Endocrine resistance and epigenetic reprogramming in estrogen receptor positive breast cancer. Cancer Lett 2021; 517:55-65. [PMID: 34077785 DOI: 10.1016/j.canlet.2021.05.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/08/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
Despite the enormous advances during the last three decades, breast cancer continues to be the most frequent type of cancer as well as one of the most frequent cancer-related causes of death in women. Therapeutic management of patients with hormone receptor-positive breast cancer becomes very often a challenge, since de novo or acquired resistance deprives a significant percentage of the patients from the clinical benefit of the well-tolerated hormone therapy. Several molecular mechanisms are implicated in resistance to endocrine therapy, including changes in hormone receptor signaling, activation of parallel signaling pathways, modifications of cell cycle regulators, activation of different transcription factors as well as changes in stem cells activity. In addition, a growing number of studies supports the pivotal role of epigenetic changes not only in the initiation and progression of breast cancer, but also in resistance to endocrine therapy. These changes refer to DNA methylation, histone post-translational modifications as well as to ncRNAs alterations. In this review, we provide an overview of epigenetic mechanisms underlying the endocrine resistance focusing exclusively on breast cancer patients.
Collapse
Affiliation(s)
- Foteinos-Ioannis Dimitrakopoulos
- Molecular Oncology Laboratory, Medical School of Patras, University of Patras, 26500, Patras, Greece; Division of Oncology, University Hospital of Patras, 26500, Patras, Greece
| | - Anastasia Kottorou
- Molecular Oncology Laboratory, Medical School of Patras, University of Patras, 26500, Patras, Greece; Division of Oncology, University Hospital of Patras, 26500, Patras, Greece
| | - Aspasia Tzezou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500, Larissa, Greece; Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500, Larissa, Greece.
| |
Collapse
|