51
|
Watanabe R, Berry GJ, Liang DH, Goronzy JJ, Weyand CM. Cellular Signaling Pathways in Medium and Large Vessel Vasculitis. Front Immunol 2020; 11:587089. [PMID: 33072134 PMCID: PMC7544845 DOI: 10.3389/fimmu.2020.587089] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
Autoimmune and autoinflammatory diseases of the medium and large arteries, including the aorta, cause life-threatening complications due to vessel wall destruction but also by wall remodeling, such as the formation of wall-penetrating microvessels and lumen-stenosing neointima. The two most frequent large vessel vasculitides, giant cell arteritis (GCA) and Takayasu arteritis (TAK), are HLA-associated diseases, strongly suggestive for a critical role of T cells and antigen recognition in disease pathogenesis. Recent studies have revealed a growing spectrum of effector functions through which T cells participate in the immunopathology of GCA and TAK; causing the disease-specific patterning of pathology and clinical outcome. Core pathogenic features of disease-relevant T cells rely on the interaction with endothelial cells, dendritic cells and macrophages and lead to vessel wall invasion, formation of tissue-damaging granulomatous infiltrates and induction of the name-giving multinucleated giant cells. Besides antigen, pathogenic T cells encounter danger signals in their immediate microenvironment that they translate into disease-relevant effector functions. Decisive signaling pathways, such as the AKT pathway, the NOTCH pathway, and the JAK/STAT pathway modify antigen-induced T cell activation and emerge as promising therapeutic targets to halt disease progression and, eventually, reset the immune system to reestablish the immune privilege of the arterial wall.
Collapse
Affiliation(s)
- Ryu Watanabe
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Gerald J Berry
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - David H Liang
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Jörg J Goronzy
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Cornelia M Weyand
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
52
|
Park MH, Kwon SY, Choi JE, Gong G, Bae YK. Intratumoral CD103-positive tumour-infiltrating lymphocytes are associated with favourable prognosis in patients with triple-negative breast cancer. Histopathology 2020; 77:560-569. [PMID: 32333690 DOI: 10.1111/his.14126] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/22/2020] [Indexed: 12/18/2022]
Abstract
AIMS Cluster of differentiation 103 (CD103), a marker of tissue resident memory T cells, is expressed on subsets of CD8+ T lymphocytes. We investigated the prognostic significance of CD103+ intra-epithelial tumour-infiltrating lymphocytes (iTILs) in invasive breast cancer (IBC). METHODS AND RESULTS Immunohistochemistry was performed for CD103, CD8 and TGF-β isoforms (1, 2 and 3) on tissue microarrays of 1187 IBC samples. CD103+ and CD8+ iTILs were present in 904 (76.2%) and 854 (74%) cases with an overall mean ± standard deviation of 38.2 ± 100.2/mm2 and 30.4 ± 89.7/mm2 , respectively. The numbers of CD103+ and CD8+ iTILs were positively correlated, and CD103+ iTILs outnumbered CD8+ iTILs in HER2-positive and triple-negative breast cancer (TNBC). CD103+ and CD8+ iTIL densities were significantly higher in tumours of histological grade 3, absence of lymphovascular invasion, high Ki-67 index, high stromal TIL density or TGF-β3 expression. High CD103+ iTIL density was associated with better disease-free survival (DFS, P = 0.007), but no significant association was observed for overall survival (OS). Subgroup analysis by cancer molecular subtype showed that CD103+ iTIL count was prognostic only for TNBC (OS, P = 0.035; DFS, P = 0.009). CD8+ iTIL density was significant for DFS, but not for OS, in the entire cohort and TNBC. In multivariate analysis, CD103+ iTIL density was an independent prognostic factor of OS (P = 0.02) and DFS (P = 0.007) in TNBC, while CD8+ iTIL density was not significant for survival. CONCLUSIONS CD103 iTIL density can serve as a predictor of good prognosis in patients with TNBC.
Collapse
Affiliation(s)
- Min H Park
- Department of Pathology, Yeungnam University College of Medicine, Daegu, South Korea
| | - Sun Y Kwon
- Department of Pathology, Keimyung University School of Medicine, Daegu, South Korea
| | - Jung E Choi
- Department of Surgery, Yeungnam University College of Medicine, Daegu, South Korea
| | - Gyungyub Gong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Young K Bae
- Department of Pathology, Yeungnam University College of Medicine, Daegu, South Korea
| |
Collapse
|
53
|
Impact of Bone Marrow miR-21 Expression on Acute Myeloid Leukemia T Lymphocyte Fragility and Dysfunction. Cells 2020; 9:cells9092053. [PMID: 32911844 PMCID: PMC7563595 DOI: 10.3390/cells9092053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/18/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a hematopoietic malignancy in which antitumor immunity is impaired. The therapeutic management of AML requires understanding the mechanisms involved in the fragility and immune dysfunction of AML T lymphocytes. METHODS In this study, T lymphocytes from healthy donors (HD) and AML patients were used. Extracellular vesicles (EVs) from leukemic cells were screened for their microRNA content and impact on T lymphocytes. Flow cytometry, transcriptomic as well as lentiviral transduction techniques were used to carry out the research. RESULTS We observed increased cell death of T lymphocytes from AML patients. EVs from leukemia myeloid cell lines harbored several miRNAs, including miR-21, and were able to induce T lymphocyte death. Compared to that in HD, miR-21 was overexpressed in both the bone marrow fluid and infiltrating T lymphocytes of AML patients. MiR-21 induces T lymphocyte cell death by upregulating proapoptotic gene expression. It also increases the immunosuppressive profile of T lymphocytes by upregulating the IL13, IL4, IL10, and FoxP3 genes. CONCLUSIONS Our results demonstrate that miR-21 plays a significant role in AML T lymphocyte dysfunction and apoptosis. Targeting miR-21 may be a novel approach to restore the efficacy of the immune response against AML.
Collapse
|
54
|
Manfredi F, Cianciotti BC, Potenza A, Tassi E, Noviello M, Biondi A, Ciceri F, Bonini C, Ruggiero E. TCR Redirected T Cells for Cancer Treatment: Achievements, Hurdles, and Goals. Front Immunol 2020; 11:1689. [PMID: 33013822 PMCID: PMC7494743 DOI: 10.3389/fimmu.2020.01689] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
Adoptive T cell therapy (ACT) is a rapidly evolving therapeutic approach designed to harness T cell specificity and function to fight diseases. Based on the evidence that T lymphocytes can mediate a potent anti-tumor response, initially ACT solely relied on the isolation, in vitro expansion, and infusion of tumor-infiltrating or circulating tumor-specific T cells. Although effective in a subset of cases, in the first ACT clinical trials several patients experienced disease progression, in some cases after temporary disease control. This evidence prompted researchers to improve ACT products by taking advantage of the continuously evolving gene engineering field and by improving manufacturing protocols, to enable the generation of effective and long-term persisting tumor-specific T cell products. Despite recent advances, several challenges, including prioritization of antigen targets, identification, and optimization of tumor-specific T cell receptors, in the development of tools enabling T cells to counteract the immunosuppressive tumor microenvironment, still need to be faced. This review aims at summarizing the major achievements, hurdles and possible solutions designed to improve the ACT efficacy and safety profile in the context of liquid and solid tumors.
Collapse
Affiliation(s)
- Francesco Manfredi
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Beatrice Claudia Cianciotti
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Fondazione Centro San Raffaele, Milan, Italy
| | - Alessia Potenza
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine and Surgery, University of Milano – Bicocca, Milan, Italy
| | - Elena Tassi
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maddalena Noviello
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Biondi
- Clinica Pediatrica Università degli Studi di Milano Bicocca, Fondazione MBBM, Monza, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eliana Ruggiero
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
55
|
Williams SG, Mollaeian A, Katz JD, Gupta S. Immune checkpoint inhibitor-induced inflammatory arthritis: identification and management. Expert Rev Clin Immunol 2020; 16:771-785. [PMID: 32772596 DOI: 10.1080/1744666x.2020.1804362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) have proved to be groundbreaking in the field of oncology. However, immune system overactivation from ICIs has introduced a novel medical entity known as immune-related adverse events (irAEs), that can affect any organ or tissue. ICI-induced inflammatory arthritis (ICI-IIA) is the most common musculoskeletal irAE and can lead to significant morbidity and limitation in anti-cancer therapy. AREAS COVERED In this review, the authors focus on ICI-IIA. Relevant articles were identified through PubMed searches, spanning 2010 to the present. The authors detail the current understanding of its pathogenesis, diagnostic evaluation, and management strategies. EXPERT OPINION ICI-IIA is a complex irAE that we are just beginning to understand mechanistically and pathologically. It often presents later in the disease course than other irAEs and, due to various reasons, is under-recognized. In some patients, ICI-IIA may become a chronic disease, which distinguishes it from most irAEs that resolve after ICI discontinuation. Multiple important questions still demand further research including which patients may develop ICI-IIA? What are possible diagnostic and prognostic markers? Do anti-arthritis therapies interfere with the anti-tumor response? and when should steroid-sparing agents be initiated? Close collaboration and shared decision-making between oncologists, rheumatologists, and the patient are essential when managing this particular irAE.
Collapse
Affiliation(s)
- Sandra G Williams
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH) , Bethesda, MD, USA
| | - Arash Mollaeian
- Department of Medicine, MedStar Health Internal Medicine Residency Program , Baltimore, MD, USA
| | - James D Katz
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH) , Bethesda, MD, USA
| | - Sarthak Gupta
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH) , Bethesda, MD, USA
| |
Collapse
|
56
|
Chu KL, Batista NV, Girard M, Watts TH. Monocyte-Derived Cells in Tissue-Resident Memory T Cell Formation. THE JOURNAL OF IMMUNOLOGY 2020; 204:477-485. [PMID: 31964721 DOI: 10.4049/jimmunol.1901046] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/02/2019] [Indexed: 12/15/2022]
Abstract
There is currently much interest in how different dendritic cell and macrophage populations contribute to T cell-mediated immunity. Although conventional dendritic cell subsets have received much attention for their role in T cell priming, there is emerging evidence for a role for monocyte-derived APC (MoAPC) in tissue-resident memory T cell (Trm) formation. Cells of the monocyte/macrophage lineage play a key role in providing chemokines and cytokines for the localization, differentiation, and survival of Trm and Trm precursors. In addition, inflammatory MoAPC are the key providers of TNF superfamily costimulatory signals, a signal we refer to as signal 4 for T cell activation. Recent evidence suggests that signal 4 from MoAPC occurs postpriming and substantially increases Trm formation. Key questions remain, such as the Ag dependence of signal 4 and the specific mechanisms by which MoAPC-Trm interactions affect the long-term maintenance of Trm.
Collapse
Affiliation(s)
- Kuan-Lun Chu
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Nathália V Batista
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Mélanie Girard
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tania H Watts
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
57
|
Nguyen S, Sada-Japp A, Petrovas C, Betts MR. Jigsaw falling into place: A review and perspective of lymphoid tissue CD8+ T cells and control of HIV. Mol Immunol 2020; 124:42-50. [PMID: 32526556 PMCID: PMC7279761 DOI: 10.1016/j.molimm.2020.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/28/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
CD8+ T cells are crucial for immunity against viral infections, including HIV. Several characteristics of CD8+ T cells, such as polyfunctionality and cytotoxicity, have been correlated with effective control of HIV. However, most of these correlates have been established in the peripheral blood. Meanwhile, HIV primarily replicates in lymphoid tissues. Therefore, it is unclear which aspects of CD8+ T cell biology are shared and which are different between blood and lymphoid tissues in the context of HIV infection. In this review, we will recapitulate the latest advancements of our knowledge on lymphoid tissue CD8+ T cells during HIV infection and discuss the insights these advancements might provide for the development of a HIV cure.
Collapse
Affiliation(s)
- Son Nguyen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alberto Sada-Japp
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Constantinos Petrovas
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
58
|
MicroRNA-21-Enriched Exosomes as Epigenetic Regulators in Melanomagenesis and Melanoma Progression: The Impact of Western Lifestyle Factors. Cancers (Basel) 2020; 12:cancers12082111. [PMID: 32751207 PMCID: PMC7464294 DOI: 10.3390/cancers12082111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
DNA mutation-induced activation of RAS-BRAF-MEK-ERK signaling associated with intermittent or chronic ultraviolet (UV) irradiation cannot exclusively explain the excessive increase of malignant melanoma (MM) incidence since the 1950s. Malignant conversion of a melanocyte to an MM cell and metastatic MM is associated with a steady increase in microRNA-21 (miR-21). At the epigenetic level, miR-21 inhibits key tumor suppressors of the RAS-BRAF signaling pathway enhancing proliferation and MM progression. Increased MM cell levels of miR-21 either result from endogenous upregulation of melanocytic miR-21 expression or by uptake of miR-21-enriched exogenous exosomes. Based on epidemiological data and translational evidence, this review provides deeper insights into environmentally and metabolically induced exosomal miR-21 trafficking beyond UV-irradiation in melanomagenesis and MM progression. Sources of miR-21-enriched exosomes include UV-irradiated keratinocytes, adipocyte-derived exosomes in obesity, airway epithelium-derived exosomes generated by smoking and pollution, diet-related exosomes and inflammation-induced exosomes, which may synergistically increase the exosomal miR-21 burden of the melanocyte, the transformed MM cell and its tumor environment. Several therapeutic agents that suppress MM cell growth and proliferation attenuate miR-21 expression. These include miR-21 antagonists, metformin, kinase inhibitors, beta-blockers, vitamin D, and plant-derived bioactive compounds, which may represent new options for the prevention and treatment of MM.
Collapse
|
59
|
Chen J, Meng X, Zhou Q, Feng J, Zheng W, Wang Z, Wang J, Wang Y. Effect of CXCR5-Positive Cell Infiltration on the Immune Contexture and Patient Prognosis in Head and Neck Squamous Cell Carcinoma. Onco Targets Ther 2020; 13:5869-5877. [PMID: 32606797 PMCID: PMC7319516 DOI: 10.2147/ott.s248958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/22/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose CXCR5-positive (CXCR5+) tumor cell infiltration has different prognostic values in different types of cancer. The objective was to evaluate the effect of CXCR5+ cell infiltration in head and neck squamous cell carcinoma (HNSCC). Patients and Methods The study included two patient cohorts: The Cancer Genome Atlas cohort (TCGA, n = 472) and the Renji Hospital cohort (RJHC, n = 201). The TCGA and RJHC cohorts were analyzed for CXCR5-related mRNAs and CXCR5+ cell infiltration, respectively. We then evaluated the correlation between CXCR5 mRNA and CXCR5+ cell infiltration in terms of overall survival and the immune contexture. Results The 5-year overall survival rate was significantly correlated with high CXCR5 mRNA expression and CXCR5+ cell infiltration in the TCGA and RJHC cohorts, respectively (p < 0.01), even after adjusting for confounders. Moreover, high CXCR5 mRNA expression was associated with more CD4+ T cells, CD8+ T cells, plasma cells, and less dendritic cells. A high CXCR5 mRNA expression was also correlated with increased expression of cytotoxic IFNG, TNFSF11 (RANKL), GZMA, GZMB, GZMK, GZMM, and PRF1 and increased expression of the immunosuppressive gene PDCD1 (PD-1), CD274 (PD-L1), CTLA4, LAG3, HAVCR2 (TIM-3), BTLA, and TIGIT. Conclusion HNSCC patients with a high intratumoral CXCR5 expression had a better prognosis than those with low intratumoral CXCR5 expression. Moreover, CXCR5+ cell infiltration could be used as an independent prognostic biomarker or as a potential therapeutic target. The presence of CXCR5+ cells affects the infiltration of immunocytes in head and neck cancer, differently from what was reported in other cancer types. Further randomized controlled trials or studies with more patients are needed to validate our results.
Collapse
Affiliation(s)
- Jun Chen
- Head and Neck Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiangchao Meng
- Bone and Joint Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Qinyi Zhou
- Head and Neck Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jialin Feng
- Head and Neck Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wenjie Zheng
- Head and Neck Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhuoying Wang
- Head and Neck Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jiadong Wang
- Head and Neck Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - You Wang
- Bone and Joint Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
60
|
Beltrán E, Gerdes LA, Hansen J, Flierl-Hecht A, Krebs S, Blum H, Ertl-Wagner B, Barkhof F, Kümpfel T, Hohlfeld R, Dornmair K. Early adaptive immune activation detected in monozygotic twins with prodromal multiple sclerosis. J Clin Invest 2020; 129:4758-4768. [PMID: 31566584 DOI: 10.1172/jci128475] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/01/2019] [Indexed: 12/31/2022] Open
Abstract
Multiple sclerosis (MS) is a disabling disease of the CNS. Inflammatory features of MS include lymphocyte accumulations in the CNS and cerebrospinal fluid (CSF). The preclinical events leading to established MS are still enigmatic. Here we compared gene expression patterns of CSF cells from MS-discordant monozygotic twin pairs. Six "healthy" co-twins, who carry a maximal familial risk for developing MS, showed subclinical neuroinflammation (SCNI) with small MRI lesions. Four of these subjects had oligoclonal bands (OCBs). By single-cell RNA sequencing of 2752 CSF cells, we identified clonally expanded CD8+ T cells, plasmablasts, and, to a lesser extent, CD4+ T cells not only from MS patients but also from subjects with SCNI. In contrast to nonexpanded T cells, clonally expanded T cells showed characteristics of activated tissue-resident memory T (TRM) cells. The TRM-like phenotype was detectable already in cells from SCNI subjects but more pronounced in cells from patients with definite MS. Expanded plasmablast clones were detected only in MS and SCNI subjects with OCBs. Our data provide evidence for very early concomitant activation of 3 components of the adaptive immune system in MS, with a notable contribution of clonally expanded TRM-like CD8+ cells.
Collapse
Affiliation(s)
- Eduardo Beltrán
- Institute of Clinical Neuroimmunology, Biomedical Center and Hospital
| | - Lisa Ann Gerdes
- Institute of Clinical Neuroimmunology, Biomedical Center and Hospital
| | - Julia Hansen
- Institute of Clinical Neuroimmunology, Biomedical Center and Hospital
| | | | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center; and
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center; and
| | - Birgit Ertl-Wagner
- Department of Radiology, Grosshadern Medical Campus; Ludwig Maximilian University of Munich, Munich, Germany.,Department of Medical Imaging, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, Netherlands.,UCL Institutes of Neurology and Healthcare Engineering, University College London, London, United Kingdom
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, Biomedical Center and Hospital
| | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, Biomedical Center and Hospital.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, Biomedical Center and Hospital.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
61
|
Rodriguez-Garcia M, Shen Z, Fortier JM, Wira CR. Differential Cytotoxic Function of Resident and Non-resident CD8+ T Cells in the Human Female Reproductive Tract Before and After Menopause. Front Immunol 2020; 11:1096. [PMID: 32582183 PMCID: PMC7287154 DOI: 10.3389/fimmu.2020.01096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/06/2020] [Indexed: 01/22/2023] Open
Abstract
The functional characterization and regulation of tissue resident and non-resident CD8+ T cells in the human female reproductive tract (FRT) as women age remains a gap in our knowledge. Here we characterized the cytotoxic activity and granular contents of CD8+ T cells from the FRT in pre- and postmenopausal women. We found that under steady-state conditions, CD8+ T cells from endometrium (EM), endocervix and ectocervix displayed direct cytotoxic activity, and that cytotoxicity increased in the EM after menopause. Cytotoxic activity was sensitive to suppression by TGFβ exclusively in the EM, and sensitivity to TGFβ was reduced after menopause. Under steady-state conditions, cytotoxic activity (measured as direct killing activity), cytotoxic potential (measured as content of cytotoxic molecules) and proliferation are enhanced in non-resident CD8+ (CD103−) T cells compared to tissue resident (CD103+) T cells. Upon activation, CD103+ T cells displayed greater degranulation compared to CD103− T cells, however the granular content of perforin, granzyme A (GZA) or granzyme B (GZB) was significantly lower. After menopause, degranulation significantly increased, and granular release switched from predominantly GZB in premenopausal to GZA in postmenopausal women. Postmenopausal changes affected both CD103+ and CD103− subpopulations. Finally, CD103+ T cells displayed reduced proliferation compared to CD103− T cells, but after proliferation, cytotoxic molecules were similar in each population. Our results highlight the complexity of regulation of cytotoxic function in the FRT before and after menopause, and are relevant to the development of protective strategies against genital infections and gynecological cancers as women age.
Collapse
Affiliation(s)
- Marta Rodriguez-Garcia
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States.,Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | - Zheng Shen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Jared M Fortier
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Charles R Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
62
|
Manipulation of Metabolic Pathways and Its Consequences for Anti-Tumor Immunity: A Clinical Perspective. Int J Mol Sci 2020; 21:ijms21114030. [PMID: 32512898 PMCID: PMC7312891 DOI: 10.3390/ijms21114030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
In the relatively short history of anti-tumor treatment, numerous medications have been developed against a variety of targets. Intriguingly, although many anti-tumor strategies have failed in their clinical trials, metformin, an anti-diabetic medication, demonstrated anti-tumor effects in observational studies and even showed its synergistic potential with immune checkpoint inhibitors (ICIs) in subsequent clinical studies. Looking back from bedside-to-bench, it may not be surprising that the anti-tumor effect of metformin derives largely from its ability to rewire aberrant metabolic pathways within the tumor microenvironment. As one of the most promising breakthroughs in oncology, ICIs were also found to exert their immune-stimulatory effects at least partly via rewiring metabolic pathways. These findings underscore the importance of correcting metabolic pathways to achieve sufficient anti-tumor immunity. Herein, we start by introducing the tumor microenvironment, and then we review the implications of metabolic syndrome and treatments for targeting metabolic pathways in anti-tumor therapies. We further summarize the close associations of certain aberrant metabolic pathways with impaired anti-tumor immunity and introduce the therapeutic effects of targeting these routes. Lastly, we go through the metabolic effects of ICIs and conclude an overall direction to manipulate metabolic pathways in favor of anti-tumor responses.
Collapse
|
63
|
Mazzoni A, Maggi L, Montaini G, Ramazzotti M, Capone M, Vanni A, Locatello LG, Barra G, De Palma R, Gallo O, Cosmi L, Liotta F, Annunziato F. Human T cells interacting with HNSCC-derived mesenchymal stromal cells acquire tissue-resident memory like properties. Eur J Immunol 2020; 50:1571-1579. [PMID: 32441311 DOI: 10.1002/eji.202048544] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/14/2020] [Indexed: 11/06/2022]
Abstract
Tissue-resident memory (Trm) cells are specialized components of both CD4+ and CD8+ T cell subsets that persist in peripheral nonlymphoid tissues following infections and provide fast response in case of a secondary invasion by the same pathogen. Trm cells express the surface markers CD69, CD103, and the immune checkpoint molecule PD-1. Trm cells develop not only in the context of infections but also in tumors, where they can provide a line of defense as suggested by the positive correlation between the frequency of tumor-infiltrating Trm cells and patients' survival. Trm cells persistence in peripheral tissues depends on their adaptation to the local microenvironment and the presence of survival factors, mainly IL-7, IL-15, and Notch ligands. However, the cell sources of these factors are largely unknown, especially in the context of tumors. Here, we show that head-neck squamous cell carcinoma (HNSCC) is enriched in CD4+ and CD8+ T cells with a Trm phenotype. Moreover, we show that mesenchymal stromal cells that accumulate in HNSCC are a source of survival factors and allow proper expression of Trm-typical markers in a VCAM1-dependent manner.
Collapse
Affiliation(s)
- Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy
| | - Gianni Montaini
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Firenze, Italy
| | - Manuela Capone
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy
| | - Anna Vanni
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy
| | - Luca Giovanni Locatello
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy.,SOD Otorinolaringoiatria, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Giusi Barra
- Institute of Biomolecular Chemistry, National Research Council (CNR), Naples, Italy
| | - Raffaele De Palma
- Institute of Biomolecular Chemistry, National Research Council (CNR), Naples, Italy.,Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Oreste Gallo
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy.,SOD Otorinolaringoiatria, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy.,SOD Immunologia e Terapie Cellulari, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy.,SOD Immunologia e Terapie Cellulari, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,SOD Centro diagnostico di citofluorimetria e immunoterapia, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy.,SOD Centro diagnostico di citofluorimetria e immunoterapia, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| |
Collapse
|
64
|
Morris SE, Farber DL, Yates AJ. Tissue-Resident Memory T Cells in Mice and Humans: Towards a Quantitative Ecology. THE JOURNAL OF IMMUNOLOGY 2020; 203:2561-2569. [PMID: 31685700 DOI: 10.4049/jimmunol.1900767] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
In recent years, tissue-resident memory T cells (TRM) have emerged as essential components of immunological memory. Following antigenic challenge, TRM remain in nonlymphoid tissues and defend against re-exposure. Although accumulating evidence suggests important roles for TRM in mediating protective immunity, fundamental aspects of the population biology of TRM remain poorly understood. In this article, we discuss how results from different systems shed light on the ecological dynamics of TRM in mice and humans. We highlight the importance of dissecting processes contributing to TRM maintenance, and how these might vary across phenotypically and spatially heterogeneous subsets. We also discuss how the diversity of TRM communities within specific tissues may evolve under competition and in response to antigenic perturbation. Throughout, we illustrate how mathematical models can clarify inferences obtained from experimental data and help elucidate the homeostatic mechanisms underpinning the ecology of TRM populations.
Collapse
Affiliation(s)
- Sinead E Morris
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032
| | - Donna L Farber
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032.,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032; and.,Department of Surgery, Columbia University Medical Center, New York, NY 10032
| | - Andrew J Yates
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032;
| |
Collapse
|
65
|
Sawada M, Goto K, Morimoto-Okazawa A, Haruna M, Yamamoto K, Yamamoto Y, Nakagawa S, Hiramatsu K, Matsuzaki S, Kobayashi E, Kawashima A, Hirata M, Iwahori K, Kimura T, Ueda Y, Kimura T, Wada H. PD-1+ Tim3+ tumor-infiltrating CD8 T cells sustain the potential for IFN-γ production, but lose cytotoxic activity in ovarian cancer. Int Immunol 2020; 32:397-405. [PMID: 32009163 DOI: 10.1093/intimm/dxaa010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/01/2020] [Indexed: 12/24/2022] Open
Abstract
Persistent exposure to tumor antigens results in exhausted tumor-infiltrating T cells (TILs) that express the immune checkpoint molecules, PD-1 and Tim3, and lack anti-tumor immunity. To examine the exhausted status of TILs in ovarian cancer, the potential for cytokine production, proliferation and cytotoxicity by purified PD-1+ Tim3+ CD8 TILs was assessed. The production of IFN-γ and TNF-α by PD-1+ Tim3+ CD8 TILs remained the same in an intracellular cytokine staining assay and was higher in a cytokine catch assay than that by PD-1- Tim3- and PD-1+ Tim3- CD8 TILs. %Ki67+ was higher in PD-1+ Tim3+ CD8 TILs than in PD-1- Tim3- CD8 TILs. However, patients with high PD-1+ Tim3+ CD8 TILs had a poor prognosis. The potential for cytotoxicity was then examined. %Perforin+ and %granzyme B+ were lower in PD-1+ Tim3+ CD8 TILs than in PD-1- Tim3- and PD-1+ Tim3- CD8 TILs. To observe the potential for direct cytotoxicity by T cells, a target cell line expressing membrane-bound anti-CD3scFv was newly established and a cytotoxic assay targeting these cells was performed. The cytotoxicity of PD-1+ Tim3+ CD8 TILs was significantly lower than that of PD-1- Tim3- and PD-1+ Tim3- CD8 TILs. Even though PD-1+ Tim3+ CD8 TILs in ovarian cancer showed a sustained potential for cytokine production and proliferation, cytotoxicity was markedly impaired, which may contribute to the poor prognosis of patients with ovarian cancer. Among the impaired functions of exhausted TILs, cytotoxicity may be an essential target for cancer immunotherapy.
Collapse
Affiliation(s)
- Masaaki Sawada
- Department of Clinical Research in Tumor Immunology, Osaka, Japan
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kumiko Goto
- Department of Clinical Research in Tumor Immunology, Osaka, Japan
- Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd, Toyonaka, Japan
| | - Akiko Morimoto-Okazawa
- Department of Clinical Research in Tumor Immunology, Osaka, Japan
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Miya Haruna
- Department of Clinical Research in Tumor Immunology, Osaka, Japan
- Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd, Toyonaka, Japan
| | - Kei Yamamoto
- Department of Clinical Research in Tumor Immunology, Osaka, Japan
| | - Yoko Yamamoto
- Department of Clinical Research in Tumor Immunology, Osaka, Japan
| | - Satoshi Nakagawa
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kosuke Hiramatsu
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinya Matsuzaki
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eiji Kobayashi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsunari Kawashima
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Michinari Hirata
- Department of Clinical Research in Tumor Immunology, Osaka, Japan
- Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd, Toyonaka, Japan
| | - Kota Iwahori
- Department of Clinical Research in Tumor Immunology, Osaka, Japan
| | - Toshihiro Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yutaka Ueda
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hisashi Wada
- Department of Clinical Research in Tumor Immunology, Osaka, Japan
| |
Collapse
|
66
|
George JA, Park SO, Choi JY, Uyangaa E, Eo SK. Double-faced implication of CD4 + Foxp3 + regulatory T cells expanded by acute dengue infection via TLR2/MyD88 pathway. Eur J Immunol 2020; 50:1000-1018. [PMID: 32125695 DOI: 10.1002/eji.201948420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/29/2020] [Accepted: 02/27/2020] [Indexed: 01/03/2023]
Abstract
Dengue infection causes dengue fever (DF) and dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). CD4+ Foxp3+ Tregs are expanded in patients during dengue infection, and appear to be associated with clinical severity. However, molecular pathways involved in Treg proliferation and the reason for their insufficient control of severe diseases are poorly understood. Here, dengue infection induced the proliferation of functional CD4+ Foxp3+ Tregs via TLR2/MyD88 pathway. Surface TLR2 on Tregs was responsible for their proliferation, and dengue-expanded Tregs subverted in vivo differentiation of effector CD8+ T cells. An additional interesting finding was that dengue-infected hosts displayed changed levels of susceptibility to other diseases in TLR2-dependent manner. This change included enhanced susceptibility to tumors and bacterial infection, but highly enhanced resistance to viral infection. Further, the transfer of dengue-proliferated Tregs protected the recipients from dengue-induced DHF/DSS and LPS-induced sepsis. In contrast, dengue-infected hosts were more susceptible to sepsis, an effect attributable to early TLR2-dependent production of proinflammatory cytokines. These facts may explain the reason why in some patients, dengue-proliferated Tregs is insufficient to control DF and DHF/DSS. Also, our observations lead to new insights into Treg responses activated by dengue infection in a TLR2-dependent manner, which could differentially act on subsequent exposure to other disease-producing situations.
Collapse
Affiliation(s)
- Junu A George
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Seong Ok Park
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Jin Young Choi
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Erdenebelig Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| |
Collapse
|
67
|
Lin R, Zhang H, Yuan Y, He Q, Zhou J, Li S, Sun Y, Li DY, Qiu HB, Wang W, Zhuang Z, Chen B, Huang Y, Liu C, Wang Y, Cai S, Ke Z, He W. Fatty Acid Oxidation Controls CD8 + Tissue-Resident Memory T-cell Survival in Gastric Adenocarcinoma. Cancer Immunol Res 2020; 8:479-492. [PMID: 32075801 DOI: 10.1158/2326-6066.cir-19-0702] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/22/2019] [Accepted: 02/14/2020] [Indexed: 01/12/2023]
Abstract
The success of checkpoint inhibitors in cancer treatment is associated with the infiltration of tissue-resident memory T (Trm) cells. In this study, we found that about 30% of tumor-infiltrating lymphocytes (TIL) in the tumor microenvironment of gastric adenocarcinoma were CD69+CD103+ Trm cells. Trm cells were low in patients with metastasis, and the presence of Trm cells was associated with better prognosis in patients with gastric adenocarcinoma. Trm cells expressed high PD-1, TIGIT, and CD39 and represented tumor-reactive TILs. Instead of utilizing glucose, Trm cells relied on fatty acid oxidation for cell survival. Deprivation of fatty acid resulted in Trm cell death. In a tumor cell-T-cell coculture system, gastric adenocarcinoma cells outcompeted Trm cells for lipid uptake and induced Trm cell death. Targeting PD-L1 decreased fatty acid binding protein (Fabp) 4 and Fabp5 expression in tumor cells of gastric adenocarcinoma. In contrast, the blockade of PD-L1 increased Fabp4/5 expression in Trm cells, promoting lipid uptake by Trm cells and resulting in better survival of Trm cells in vitro and in vivo. PD-L1 blockade unleashed Trm cells specifically in the patient-derived xenograft (PDX) mice. PDX mice that did not respond to PD-L1 blockade had less Trm cells than responders. Together, these data demonstrated that Trm cells represent a subset of TILs in the antitumor immune response and that metabolic reprogramming could be a promising way to prolong the longevity of Trm cells and enhance antitumor immunity in gastric adenocarcinoma.
Collapse
Affiliation(s)
- Run Lin
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hui Zhang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yujie Yuan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiong He
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianwen Zhou
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuhua Li
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Sun
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Daniel Y Li
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Hai-Bo Qiu
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Wei Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhehong Zhuang
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Bin Chen
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yonghui Huang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chuwei Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingzhao Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shirong Cai
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Zunfu Ke
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China. .,Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weiling He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
68
|
De Guillebon E, Dardenne A, Saldmann A, Séguier S, Tran T, Paolini L, Lebbe C, Tartour E. Beyond the concept of cold and hot tumors for the development of novel predictive biomarkers and the rational design of immunotherapy combination. Int J Cancer 2020; 147:1509-1518. [DOI: 10.1002/ijc.32889] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/28/2019] [Accepted: 01/15/2020] [Indexed: 12/12/2022]
Affiliation(s)
| | - Antoine Dardenne
- Department of Gastro‐enterology and Gastro‐intestinal OncologyHopital Européen Georges Pompidou, APHP Paris France
| | - Antonin Saldmann
- Université de Paris, PARCC, INSERM Paris France
- Department of Immunology, AP‐HPHopital Européen Georges Pompidou Paris France
| | - Sylvie Séguier
- Université de Paris, PARCC, INSERM Paris France
- Faculté de Chirurgie DentaireHôpital Louis Mourier Montrouge France
| | - Thi Tran
- Université de Paris, PARCC, INSERM Paris France
| | - Lea Paolini
- Université de Paris, PARCC, INSERM Paris France
| | - Celeste Lebbe
- Department of DermatologySaint‐Louis University Hospital Paris France
- Université de Paris, INSERM U976 Paris France
| | - Eric Tartour
- Université de Paris, PARCC, INSERM Paris France
- Department of Immunology, AP‐HPHopital Européen Georges Pompidou Paris France
- Equipe Labellisée Ligue Contre le Cancer Paris France
| |
Collapse
|
69
|
Local heroes or villains: tissue-resident memory T cells in human health and disease. Cell Mol Immunol 2020; 17:113-122. [PMID: 31969685 DOI: 10.1038/s41423-019-0359-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
Tissue-resident memory T (TRM) cells are increasingly associated with the outcomes of health and disease. TRM cells can mediate local immune protection against infections and cancer, which has led to interest in TRM cells as targets for vaccination and immunotherapies. However, these cells have also been implicated in mediating detrimental pro-inflammatory responses in autoimmune skin diseases such as psoriasis, alopecia areata, and vitiligo. Here, we summarize the biology of TRM cells established in animal models and in translational human studies. We review the beneficial effects of TRM cells in mediating protective responses against infection and cancer and the adverse role of TRM cells in driving pathology in autoimmunity. A further understanding of the breadth and mechanisms of TRM cell activity is essential for the safe design of strategies that manipulate TRM cells, such that protective responses can be enhanced without unwanted tissue damage, and pathogenic TRM cells can be eliminated without losing local immunity.
Collapse
|
70
|
Abstract
The adaptive immune response is a 500-million-year-old (the "Big Bang" of Immunology) collective set of rearranged and/or selected receptors capable of recognizing soluble and cell surface molecules or shape (B cells, antibody), endogenous and extracellular peptides presented by Major Histocompatibility (MHC) molecules including Class I and Class II (conventional αβ T cells), lipid in the context of MHC-like molecules of the CD1 family (NKT cells), metabolites and B7 family molecules/butyrophilins with stress factors (γδT cells), and stress ligands and absence of MHC molecules (natural killer, NK cells). What makes tumor immunogenic is the recruitment of initially innate immune cells to sites of stress or tissue damage with release of Damage-Associated Molecular Pattern (DAMP) molecules. Subsequent maintenance of a chronic inflammatory state, representing a balance between mature, normalized blood vessels, innate and adaptive immune cells and the tumor provides a complex tumor microenvironment serving as the backdrop for Darwinian selection, tumor elimination, tumor equilibrium, and ultimately tumor escape. Effective immunotherapies are still limited, given the complexities of this highly evolved and selected tumor microenvironment. Cytokine therapies and Immune Checkpoint Blockade (ICB) enable immune effector function and are largely dependent on the shape and size of the B and T cell repertoires (the "adaptome"), now accessible by Next-Generation Sequencing (NGS) and dimer-avoidance multiplexed PCR. How immune effectors access the tumor (infiltrated, immune sequestered, and immune desserts), egress and are organized within the tumor are of contemporary interest and substantial investigation.
Collapse
|
71
|
Zhao Y, Yang Q, Jin C, Feng Y, Xie S, Xie H, Qi Y, Qiu H, Chen H, Tao A, Mu J, Qin W, Huang J. Changes of CD103-expressing pulmonary CD4 + and CD8 + T cells in S. japonicum infected C57BL/6 mice. BMC Infect Dis 2019; 19:999. [PMID: 31775660 PMCID: PMC6880605 DOI: 10.1186/s12879-019-4633-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 11/13/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Recent studies have shown that CD103 is an important marker for tissue-resident memory T cells (TRM) which plays an important role in anti-infection. However, the role of CD103+ TRM was not elucidated in the progress of S. japonicum infection induced disease. METHODS 6-8 weeks old C57BL/6 mice were infected by S. japonicum. Mice were sacrificed and the lungs were removed 5-6 weeks after infection. Immunofluorescent staining and Q-PCR were performed to identify the expression of CD103 molecule. Single cellular populations were made, percentages of CD103 on both CD4+ and CD8+ T lymphocytes were dynamical observed by flow cytometry (FCM). Moreover, the expression of memory T cells related molecules CD69 and CD62L, T cell function associated molecules CD107a, IFN-γ, IL-4, IL-9, and IL-10 were compared between CD103+ CD4+ and CD8+ T cells by FCM. RESULTS CD103+ cells were emerged in the lung of both naive and S. japonicum infected mice. Both the percentage and the absolute numbers of pulmonary CD4+ and CD8+ cells were increased after S. japonicum infection (P < 0.05). The percentage of CD103+ cells in CD8+ T cells decreased significantly at the early stage of S. japonicum infection (P < 0.05). Increased CD69, decreased CD62L and CD107a expressions were detected on both CD4+ and CD8+ CD103+ T cells in the lungs of infected mice (P < 0.05). Compared to CD8+ CD103+ T cells, CD4+ CD103+ T cells from infected mice expressed higher level of CD69 and lower level CD62L molecules (P < 0.05). Moreover, higher percentage of IL-4+, IL-9+ and IL-10+ cells on CD4+ CD103+ pulmonary T cells was found in infected mice (P < 0.05). Significantly increased IL-4 and IL-9, and decreased IFN-γ expressing cells were detected in CD8+CD103+ cells of infected mice (P < 0.05). CONCLUSIONS CD103-expressing pulmonary CD4+ and CD8+ T cells play important roles in mediating S. japonicum infection induced granulomatous inflammation in the lung.
Collapse
Affiliation(s)
- Yi Zhao
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Quan Yang
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Chenxi Jin
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yuanfa Feng
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Shihao Xie
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Hongyan Xie
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yanwei Qi
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Huaina Qiu
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Hongyuan Chen
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ailin Tao
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wenjuan Qin
- Department of Radiation Oncology, Zhongshan Hospital Xiamen University, Xiamen, 361004, China
| | - Jun Huang
- Sino-French Hoffmann Institute, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
72
|
Marchini A, Daeffler L, Pozdeev VI, Angelova A, Rommelaere J. Immune Conversion of Tumor Microenvironment by Oncolytic Viruses: The Protoparvovirus H-1PV Case Study. Front Immunol 2019; 10:1848. [PMID: 31440242 PMCID: PMC6692828 DOI: 10.3389/fimmu.2019.01848] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/23/2019] [Indexed: 12/21/2022] Open
Abstract
Cancer cells utilize multiple mechanisms to evade and suppress anticancer immune responses creating a “cold” immunosuppressive tumor microenvironment. Oncolytic virotherapy is emerging as a promising approach to revert tumor immunosuppression and enhance the efficacy of other forms of immunotherapy. Growing evidence indicates that oncolytic viruses (OVs) act in a multimodal fashion, inducing immunogenic cell death and thereby eliciting robust anticancer immune responses. In this review, we summarize information about OV-mediated immune conversion of the tumor microenvironment. As a case study we focus on the rodent protoparvovirus H-1PV and its dual role as an oncolytic and immune modulatory agent. Potential strategies to improve H-1PV anticancer efficacy are also discussed.
Collapse
Affiliation(s)
- Antonio Marchini
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, Heidelberg, Germany
| | - Laurent Daeffler
- Université de Strasbourg, IPHC, Strasbourg, France.,CNRS, UMR7178, Strasbourg, France
| | - Vitaly I Pozdeev
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Assia Angelova
- Infection, Inflammation and Cancer Program, German Cancer Research Center, Heidelberg, Germany
| | - Jean Rommelaere
- Infection, Inflammation and Cancer Program, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
73
|
Audrito V, Managò A, Gaudino F, Sorci L, Messana VG, Raffaelli N, Deaglio S. NAD-Biosynthetic and Consuming Enzymes as Central Players of Metabolic Regulation of Innate and Adaptive Immune Responses in Cancer. Front Immunol 2019; 10:1720. [PMID: 31402913 PMCID: PMC6671870 DOI: 10.3389/fimmu.2019.01720] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/09/2019] [Indexed: 12/15/2022] Open
Abstract
Cancer cells, particularly in solid tumors, are surrounded by non-neoplastic elements, including endothelial and stromal cells, as well as cells of immune origin, which can support tumor growth by providing the right conditions. On the other hand, local hypoxia, and lack of nutrients induce tumor cells to reprogram their metabolism in order to survive, proliferate, and disseminate: the same conditions are also responsible for building a tumor-suppressive microenvironment. In addition to tumor cells, it is now well-recognized that metabolic rewiring occurs in all cellular components of the tumor microenvironment, affecting epigenetic regulation of gene expression and influencing differentiation/proliferation decisions of these cells. Nicotinamide adenine dinucleotide (NAD) is an essential co-factor for energy transduction in metabolic processes. It is also a key component of signaling pathways, through the regulation of NAD-consuming enzymes, including sirtuins and PARPs, which can affect DNA plasticity and accessibility. In addition, both NAD-biosynthetic and NAD-consuming enzymes can be present in the extracellular environment, adding a new layer of complexity to the system. In this review we will discuss the role of the “NADome” in the metabolic cross-talk between cancer and infiltrating immune cells, contributing to cancer growth and immune evasion, with an eye to therapeutic implications.
Collapse
Affiliation(s)
- Valentina Audrito
- Department of Medical Sciences, University of Turin, Turin, Italy.,Italian Institute for Genomic Medicine, Turin, Italy
| | - Antonella Managò
- Department of Medical Sciences, University of Turin, Turin, Italy.,Italian Institute for Genomic Medicine, Turin, Italy
| | - Federica Gaudino
- Department of Medical Sciences, University of Turin, Turin, Italy.,Italian Institute for Genomic Medicine, Turin, Italy
| | - Leonardo Sorci
- Division of Bioinformatics and Biochemistry, Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Ancona, Italy
| | - Vincenzo Gianluca Messana
- Department of Medical Sciences, University of Turin, Turin, Italy.,Italian Institute for Genomic Medicine, Turin, Italy
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Turin, Italy.,Italian Institute for Genomic Medicine, Turin, Italy
| |
Collapse
|
74
|
Zhou AC, Batista NV, Watts TH. 4-1BB Regulates Effector CD8 T Cell Accumulation in the Lung Tissue through a TRAF1-, mTOR-, and Antigen-Dependent Mechanism to Enhance Tissue-Resident Memory T Cell Formation during Respiratory Influenza Infection. THE JOURNAL OF IMMUNOLOGY 2019; 202:2482-2492. [PMID: 30867239 DOI: 10.4049/jimmunol.1800795] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 02/11/2019] [Indexed: 01/01/2023]
Abstract
The TNFR superfamily member 4-1BB is important in the establishment of tissue-resident memory T cells (Trm) in the lung tissue following influenza infection. Moreover, supraphysiological boosting of 4-1BB in the airways during the boost phase of a prime-boost immunization regimen increases the long-lived Trm population, correlating with increased protection against heterotypic challenge. However, little is known about how 4-1BB contributes to the establishment of the lung Trm population. In this study, we show that effects of 4-1BB on lung Trm accumulation are already apparent at the effector stage, suggesting that the major role of 4-1BB in Trm formation is to allow persistence of CD8 T effector cells in the lung as they transition to Trm. Using supraphysiological stimulation of 4-1BB in the boost phase of a prime-boost immunization, we show that the effect of 4-1BB on Trm generation requires local delivery of both Ag and costimulation, is inhibited by rapamycin treatment during secondary CD8 effector T cell expansion, and is dependent on the signaling adaptor TRAF1. The decrease in lung Trm following early rapamycin treatment is accompanied by increased circulating memory T cells, as well as fewer effectors, suggesting a role for mammalian target of rapamycin (mTOR) in the formation of Trm through effects on the accumulation of effector precursors. Taken together, these data point to an important role for 4-1BB, TRAF1, and mTOR in the persistence of CD8 effector T cells in the lung parenchyma, thereby allowing the transition to Trm.
Collapse
Affiliation(s)
- Angela C Zhou
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Nathália V Batista
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tania H Watts
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|