51
|
Zeng Z, Maiti A, Herbrich S, Cai T, Cavazos A, Manzella T, Ma H, Hayes K, Matthews J, DiNardo CD, Daver NG, Konopleva MY. Triple combination targeting methyltransferase, BCL-2, and PD-1 facilitates antileukemia responses in acute myeloid leukemia. Cancer 2023; 129:531-540. [PMID: 36477735 DOI: 10.1002/cncr.34566] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/04/2022] [Accepted: 09/23/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND A recent breakthrough therapy combining the BCL-2 inhibitor venetoclax with hypomethylating agents (HMAs) targeting DNA methyltransferase has improved outcomes for patients with acute myeloid leukemia (AML), but the responses and long-term survival in older/unfit patients and in patients with relapsed/refractory AML remain suboptimal. Recent studies showed that inhibition of BCL-2 or DNA methyltransferase modulates AML T-cell immunity. METHODS By using flow cytometry and time-of-flight mass cytometry, the authors examined the effects of the HMA decitabine combined with the BCL-2 inhibitor venetoclax (DAC/VEN therapy) on leukemia cells and T cells in patients with AML who received DAC/VEN therapy in a clinical trial. The authors investigated the response of programmed cell death protein 1 (PD-1) inhibition in the DAC/VEN-treated samples in vitro and investigated the triple combination of PD-1 inhibition with HMA/venetoclax in the trial patients who had AML. RESULTS DAC/VEN therapy effectively targeted leukemia cells and upregulated the expression of the immune checkpoint-inhibitory receptor PD-1 in T cells while preserving CD4-positive and CD8-positive memory T cells in a subset of patients with AML who were tested. In vitro PD-1 inhibition potentiated the antileukemia response in DAC/VEN-treated AML samples. The combined use of azacitidine, venetoclax, and nivolumab eliminated circulating blasts and leukemia stem cells/progenitor cells and expanded the percentage of CD8-positive memory T cells in an illustrative patient with relapsed AML who responded to the regimen in an ongoing clinical trial. CONCLUSIONS Immunomodulation by targeting PD-1 enhances the therapeutic effect of combining an HMA and venetoclax in patients with AML.
Collapse
Affiliation(s)
- Zhihong Zeng
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Abhishek Maiti
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shelley Herbrich
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tianyu Cai
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Antonio Cavazos
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Taylor Manzella
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Helen Ma
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kala Hayes
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jairo Matthews
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Courtney D DiNardo
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naval G Daver
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marina Y Konopleva
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
52
|
Quraish RU, Hirahata T, Quraish AU, ul Quraish S. An Overview: Genetic Tumor Markers for Early Detection and Current Gene Therapy Strategies. Cancer Inform 2023; 22:11769351221150772. [PMID: 36762284 PMCID: PMC9903029 DOI: 10.1177/11769351221150772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/24/2022] [Indexed: 02/04/2023] Open
Abstract
Genomic instability is considered a fundamental factor involved in any neoplastic disease. Consequently, the genetically unstable cells contribute to intratumoral genetic heterogeneity and phenotypic diversity of cancer. These genetic alterations can be detected by several diagnostic techniques of molecular biology and the detection of alteration in genomic integrity may serve as reliable genetic molecular markers for the early detection of cancer or cancer-related abnormal changes in the body cells. These genetic molecular markers can detect cancer earlier than any other method of cancer diagnosis, once a tumor is diagnosed, then replacement or therapeutic manipulation of these cancer-related abnormal genetic changes can be possible, which leads toward effective and target-specific cancer treatment and in many cases, personalized treatment of cancer could be performed without the adverse effects of chemotherapy and radiotherapy. In this review, we describe how these genetic molecular markers can be detected and the possible ways for the application of this gene diagnosis for gene therapy that can attack cancerous cells, directly or indirectly, which lead to overall improved management and quality of life for a cancer patient.
Collapse
Affiliation(s)
| | - Tetsuyuki Hirahata
- Tetsuyuki Hirahata, Hirahata Gene Therapy Laboratory, HIC Clinic #1105, Itocia Office Tower 11F, 2-7-1, Yurakucho, Chiyoda-ku, Tokyo 100-0006, Japan.
| | | | | |
Collapse
|
53
|
Kase AM, George DJ, Ramalingam S. Clear Cell Renal Cell Carcinoma: From Biology to Treatment. Cancers (Basel) 2023; 15:665. [PMID: 36765622 PMCID: PMC9913203 DOI: 10.3390/cancers15030665] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
The majority of kidney cancers are detected incidentally and typically diagnosed at a localized stage, however, the development of regional or distant disease occurs in one-third of patients. Over 90% of kidney tumors are renal cell carcinomas, of which, clear cell is the most predominate histologic subtype. Von Hippel Lindau (VHL) gene alterations result in the overexpression of growth factors that are central to the pathogenesis of clear cell carcinoma. The therapeutic strategies have revolved around this tumor suppressor gene and have led to the approval of tyrosine kinase inhibitors (TKI) targeting the vascular endothelial growth factor (VEGF) axis. The treatment paradigm shifted with the introduction of immune checkpoint inhibitors (ICI) and programed death-1 (PD-1) inhibition, leading to durable response rates and improved survival. Combinations of TKI and/or ICIs have become the standard of care for advanced clear cell renal cell carcinoma (ccRCC), changing the outlook for patients, with several new and promising therapeutic targets under development.
Collapse
Affiliation(s)
- Adam M. Kase
- Mayo Clinic, Division of Hematology Oncology, Jacksonville, FL 32224, USA
| | - Daniel J. George
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sundhar Ramalingam
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
54
|
Fosado R, Soto-Hernández JE, Núñez-Anita RE, Aceves C, Berumen LC, Mendieta I. Neuroendocrine Differentiation of Lung Cancer Cells Impairs the Activation of Antitumor Cytotoxic Responses in Mice. Int J Mol Sci 2023; 24:ijms24020990. [PMID: 36674504 PMCID: PMC9865473 DOI: 10.3390/ijms24020990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
Lung cancer has the highest mortality among all types of cancer; during its development, cells can acquire neural and endocrine properties that affect tumor progression by releasing several factors, some acting as immunomodulators. Neuroendocrine phenotype correlates with invasiveness, metastasis, and low survival rates. This work evaluated the effect of neuroendocrine differentiation of adenocarcinoma on the mouse immune system. A549 cells were treated with FSK (forskolin) and IBMX (3-Isobutyl-1-methylxanthine) for 96 h to induce neuroendocrine differentiation (NED). Systemic effects were assessed by determining changes in circulating cytokines and immune cells of BALB/c mice immunized with PBS, undifferentiated A549 cells, or neuroendocrine A549NED cells. A549 cells increased circulating monocytes, while CD4+CD8- and CD4+CD8+ T cells increased in mice immunized with neuroendocrine cells. IL-2 and IL-10 increased in mice that received untreated A549 cells, suggesting that the immune system mounts a regulated response against adenocarcinoma, which did not occur with A549NED cells. Cocultures demonstrated the cytotoxic capacity of PBMCs when confronted with A549 cells, while in the presence of neuroendocrine cells they not only were unable to show cytolytic activity, but also lost viability. Neuroendocrine differentiation seems to mount less of an immune response when injected in mice, which may contribute to the poor prognosis of cancer patients affected by this pathology.
Collapse
Affiliation(s)
- Ricardo Fosado
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico
| | - Jazmín E. Soto-Hernández
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico
| | - Rosa Elvira Núñez-Anita
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro 58893, Mexico
| | - Carmen Aceves
- Instituto de Neurobiología, Universidad Nacional Autónoma de México-Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro 76230, Mexico
| | - Laura C. Berumen
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico
| | - Irasema Mendieta
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico
- Instituto de Neurobiología, Universidad Nacional Autónoma de México-Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro 76230, Mexico
- Correspondence: ; Tel.: +52-442-192-12-00 (ext. 5529)
| |
Collapse
|
55
|
Jeon EY, Choi DS, Choi S, Won JY, Jo Y, Kim HB, Jung Y, Shin SC, Min H, Choi HW, Lee MS, Park Y, Chung JJ, Jin HS. Enhancing adoptive T-cell therapy with fucoidan-based IL-2 delivery microcapsules. Bioeng Transl Med 2023; 8:e10362. [PMID: 36684086 PMCID: PMC9842027 DOI: 10.1002/btm2.10362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/20/2022] [Accepted: 06/12/2022] [Indexed: 01/25/2023] Open
Abstract
Adoptive cell therapy (ACT) with antigen-specific T cells is a promising treatment approach for solid cancers. Interleukin-2 (IL-2) has been utilized in boosting the efficacy of ACT. However, the clinical applications of IL-2 in combination with ACT is greatly limited by short exposure and high toxicities. Herein, a complex coacervate was designed to intratumorally deliver IL-2 in a sustained manner and protect against proteolysis. The complex coacervate consisted of fucoidan, a specific IL-2 binding glycosaminoglycan, and poly-l-lysine, a cationic counterpart (FPC2). IL-2-laden FPC2 exhibited a preferential bioactivity in ex vivo expansion of CD8+T cells over Treg cells. Additionally, FPC2 was embedded in pH modulating injectable gel (FPC2-IG) to endure the acidic tumor microenvironment. A single intratumoral administration of FPC2-IG-IL-2 increased expansion of tumor-infiltrating cytotoxic lymphocytes and reduced frequencies of myeloid populations. Notably, the activation and persistency of tumor-reactive T cells were observed only in the tumor site, not in the spleen, confirming a localized effect of FPC2-IG-IL-2. The immune-favorable tumor microenvironment induced by FPC2-IG-IL-2 enabled adoptively transferred TCR-engineered T cells to effectively eradicate tumors. FPC2-IG delivery system is a promising strategy for T-cell-based immunotherapies.
Collapse
Affiliation(s)
- Eun Young Jeon
- Center for Biomaterials Biomedical Research Institute, Korea Institute of Science and Technology (KIST) Seoul South Korea
| | - Da-Som Choi
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center University of Ulsan College of Medicine Seoul South Korea
| | - Seunghyun Choi
- Theragnosis Center Biomedical Research Institute, Korea Institute of Science and Technology (KIST) Seoul South Korea
- Department of Life Sciences Korea University Seoul South Korea
| | - Ju-Young Won
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center University of Ulsan College of Medicine Seoul South Korea
| | - Yunju Jo
- Theragnosis Center Biomedical Research Institute, Korea Institute of Science and Technology (KIST) Seoul South Korea
- Department of Life Sciences Korea University Seoul South Korea
| | - Hye-Bin Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center University of Ulsan College of Medicine Seoul South Korea
| | - Youngmee Jung
- Center for Biomaterials Biomedical Research Institute, Korea Institute of Science and Technology (KIST) Seoul South Korea
- School of Electrical and Electronic Engineering Yonsei University Seoul South Korea
- Yonsei-KIST Convergence Research Institute Seoul South Korea
| | - Sang Chul Shin
- Technology Support Center Korea Institute of Science and Technology (KIST) Seoul South Korea
| | - Hophil Min
- Doping Control Center Korea Institute of Science and Technology (KIST) Seoul South Korea
| | - Hae Woong Choi
- Department of Life Sciences Korea University Seoul South Korea
| | - Myeong Sup Lee
- Department of Biomedical Sciences University of Ulsan College of Medicine Seoul South Korea
| | - Yoon Park
- Theragnosis Center Biomedical Research Institute, Korea Institute of Science and Technology (KIST) Seoul South Korea
| | - Justin J Chung
- Transdisciplinary Department of Medicine and Advanced Technology Seoul National University Hospital Seoul South Korea
- Department of Medicine Seoul National University College of Medicine Seoul South Korea
| | - Hyung-Seung Jin
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center University of Ulsan College of Medicine Seoul South Korea
| |
Collapse
|
56
|
Huang Y, Jia A, Wang Y, Liu G. CD8 + T cell exhaustion in anti-tumour immunity: The new insights for cancer immunotherapy. Immunology 2023; 168:30-48. [PMID: 36190809 DOI: 10.1111/imm.13588] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/29/2022] [Indexed: 12/27/2022] Open
Abstract
CD8+ T cells play a crucial role in anti-tumour immunity, but they often undergo exhaustion, which affects the anti-tumour activity of CD8+ T cells. The effect and mechanism of exhausted CD8+ T cells have become the focus of anti-tumour immunity research. Recently, a large number of studies have confirmed that long-term antigen exposure can induce exhaustion. Cytokines previously have identified their effects (such as IL-2 and IL-10) may play a dual role in the exhaustion process of CD8+ T cells, suggesting a new mechanism of inducing exhaustion. This review just focuses our current understanding of the biology of exhausted CD8+ T cells, including differentiation pathways, cellular characteristics and signalling pathways involved in inducing exhaustion, and summarizes how these can be applied to tumour immunotherapy.
Collapse
Affiliation(s)
- Yijin Huang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Anna Jia
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yufei Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
57
|
Khan MM, Mortuza A, Ibrahim M, Mustafa A. Assessment of the role of anthocyanin standardized elderberry (Sambucus nigra) extract as an immune-stimulating nutraceutical of Nile tilapia, Oreochromis niloticus. PLoS One 2022; 17:e0279471. [PMID: 36584192 PMCID: PMC9803303 DOI: 10.1371/journal.pone.0279471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022] Open
Abstract
The study of nutraceuticals and their connection to immunity is an expanding field of research. The use of nutraceuticals to alleviate stress and enhance immunity in adverse aquaculture environments have been examined to a certain extent. To elucidate the understanding, we focused on the immunological effect of membrane-separated 13% anthocyanin standardized elderberry (EB) extract with maltodextrin excipient, widely used first-line nutraceuticals to augment the immunity, in aquaculture fish, Nile tilapia. To evaluate the potential of EB-extract, we assessed their capability to enhance lymphocyte proliferation and interleukin-2 production in an in-vitro condition using spleen and thymus lymphocytes. The experiments on spleen and thymus T-cells demonstrated significantly higher T-cell proliferation by EB-extract when lectin mitogen Con A was present as a stimulator. Likewise, our spleen B-cell proliferation result reveals a significant effect of EB-extracts, along with B-cell stimulator non-lectin mitogen LPS. Further, the quantification of IL-2 indicates elevated IL-2 levels when spleen T-cells were cultured with EB-extracts and with Con A present as a stimulator. These suggest that 13% anthocyanin standardized EB-extracts can aggrandize fish cells' cellular and humoral immune responses. With further research, elderberry extracts could be used to supplement commercial feed in aquaculture to reduce stress and stimulate the immune response.
Collapse
Affiliation(s)
- Md Mursalin Khan
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Asif Mortuza
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Md Ibrahim
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Ahmed Mustafa
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
- * E-mail:
| |
Collapse
|
58
|
Bakhshian Nik A, Alvarez-Argote S, O'Meara CC. Interleukin 4/13 signaling in cardiac regeneration and repair. Am J Physiol Heart Circ Physiol 2022; 323:H833-H844. [PMID: 36149768 PMCID: PMC9602781 DOI: 10.1152/ajpheart.00310.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 12/14/2022]
Abstract
Interleukin 4 (IL4) and interleukin 13 (IL13) are closely related cytokines that have been classically attributed to type II immunity, namely, differentiation of T-helper 2 (TH2) cells and alternative activation of macrophages. Although the role of IL4/13 has been well described in various contexts such as defense against helminth parasites, pathogenesis of allergic disease, and several models of wound healing, relatively little is known about the role of IL4/13 in the heart following injury. Emerging literature has identified various roles for IL4/13 in animal models of cardiac regeneration as well as in the adult mammalian heart following myocardial injury. Notably, although IL4 and IL13 signal to hematopoietic cell types following myocardial infarction (MI) to promote wound healing phenotypes, there is substantial evidence that these cytokines can signal directly to non-hematopoietic cell types in the heart during development, homeostasis, and following injury. Comprehensive understanding of the molecular and cellular actions of IL4/13 in the heart is still lacking, but overall evidence to date suggests that activation of these cytokines results in beneficial outcomes with respect to cardiac repair. Here, we aim to comprehensively review the role of IL4 and IL13 and their prospective mechanisms in cardiac regeneration and repair.
Collapse
Affiliation(s)
- Amirala Bakhshian Nik
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Santiago Alvarez-Argote
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Caitlin C O'Meara
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
59
|
Schwarzfischer M, Niechcial A, Handler K, Morsy Y, Wawrzyniak M, Laimbacher AS, Atrott K, Manzini R, Baebler K, Hering L, Katkeviciutė E, Häfliger J, Lang S, Keller ME, Woodtli J, Eisenbeiss L, Kraemer T, Schraner EM, Wiesendanger M, Zeissig S, Rogler G, Moor AE, Scharl M, Spalinger MR. TiO 2 nanoparticles abrogate the protective effect of the Crohn's disease-associated variation within the PTPN22 gene locus. Gut 2022; 72:1101-1114. [PMID: 36191962 DOI: 10.1136/gutjnl-2021-325911] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/04/2022] [Indexed: 12/08/2022]
Abstract
OBJECTIVE Inflammatory bowel disease (IBD) is a multifactorial condition driven by genetic and environmental risk factors. A genetic variation in the protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene has been associated with autoimmune disorders while protecting from the IBD subtype Crohn's disease. Mice expressing the murine orthologous PTPN22-R619W variant are protected from intestinal inflammation in the model of acute dextran sodium sulfate (DSS)-induced colitis. We previously identified food-grade titanium dioxide (TiO2, E171) as a neglected IBD risk factor. Here, we investigate the interplay of the PTPN22 variant and TiO2-mediated effects during IBD pathogenesis. DESIGN Acute DSS colitis was induced in wild-type and PTPN22 variant mice (PTPN22-R619W) and animals were treated with TiO2 nanoparticles during colitis induction. Disease-triggering mechanisms were investigated using bulk and single-cell RNA sequencing. RESULTS In mice, administration of TiO2 nanoparticles abrogated the protective effect of the variant, rendering PTPN22-R619W mice susceptible to DSS colitis. In early disease, cytotoxic CD8+ T-cells were found to be reduced in the lamina propria of PTPN22-R619W mice, an effect reversed by TiO2 administration. Normalisation of T-cell populations correlated with increased Ifng expression and, at a later stage of disease, the promoted prevalence of proinflammatory macrophages that triggered severe intestinal inflammation. CONCLUSION Our findings indicate that the consumption of TiO2 nanoparticles might have adverse effects on the gastrointestinal health of individuals carrying the PTPN22 variant. This demonstrates that environmental factors interact with genetic risk variants and can reverse a protective mechanism into a disease-promoting effect.
Collapse
Affiliation(s)
- Marlene Schwarzfischer
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anna Niechcial
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kristina Handler
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Yasser Morsy
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marcin Wawrzyniak
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andrea S Laimbacher
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kirstin Atrott
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Roberto Manzini
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Katharina Baebler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Larissa Hering
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Egle Katkeviciutė
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Janine Häfliger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Silvia Lang
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Maja E Keller
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Jérôme Woodtli
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Lisa Eisenbeiss
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Elisabeth M Schraner
- Institutes of Veterinary Anatomy and Virology, University of Zurich, Zurich, Switzerland
| | - Mahesa Wiesendanger
- Institutes of Veterinary Anatomy and Virology, University of Zurich, Zurich, Switzerland
| | - Sebastian Zeissig
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, and Department of Medicine I, University Medical Center Dresden, Dresden, Germany
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marianne R Spalinger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
60
|
Huang J, Leary S, Xiang J. Distinct strengths of mTORC1 control T-cell memory via transcriptional FOXO1 and metabolic AMPKα1 pathways in linear cell differentiation and asymmetric cell division models. Cell Mol Immunol 2022; 19:1073-1076. [PMID: 35589987 PMCID: PMC9508075 DOI: 10.1038/s41423-022-00879-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 01/26/2023] Open
Affiliation(s)
- Junqiong Huang
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, SK, Canada
- Department of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Blood Transfusion, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Scot Leary
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jim Xiang
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, SK, Canada.
- Department of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
61
|
Tumor Infiltrating Lymphocyte (TIL) Therapy for Solid Tumor Treatment: Progressions and Challenges. Cancers (Basel) 2022; 14:cancers14174160. [PMID: 36077696 PMCID: PMC9455018 DOI: 10.3390/cancers14174160] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 12/15/2022] Open
Abstract
Over the past decade, immunotherapy, especially cell-based immunotherapy, has provided new strategies for cancer therapy. Recent clinical studies demonstrated that adopting cell transfer of tumor-infiltrating lymphocytes (TILs) for advanced solid tumors showed good efficacy. TIL therapy is a type of cell-based immunotherapy using the patient’s own immune cells from the microenvironment of the solid tumor to kill tumor cells. In this review, we provide a comprehensive summary of the current strategies and challenges in TIL isolation and generation. Moreover, the current clinical experience of TIL therapy is summarized and discussed, with an emphasis on lymphodepletion regimen, the use of interleukin-2, and related toxicity. Furthermore, we highlight the clinical trials where TIL therapy is used independently and in combination with other types of therapy for solid cancers. Finally, the limitations, future potential, and directions of TIL therapy for solid tumor treatment are also discussed.
Collapse
|
62
|
Sarraf TR, Sen M. Wnt5A signaling supports antigen processing and CD8 T cell activation. Front Immunol 2022; 13:960060. [PMID: 36091060 PMCID: PMC9459031 DOI: 10.3389/fimmu.2022.960060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Antigen processing and antigen-specific CD8 T cell activation form part and parcel of cell-mediated immunity to infections. Yet, several lacunae remain in our understanding of how antigen processing and CD8 T cell response are coordinated. In this study, using mouse bone marrow-derived dendritic cells (BMDC) as antigen-presenting cells and Ovalbumin (OVA)/DQ-Ovalbumin (DQ-OVA) as model antigen we demonstrated that Wnt5A signaling in BMDC supports antigen processing/presentation and concomitant CD8 T cell activation through regulation of actin and proteasome dynamics. Recombinant Wnt5A conditioning of BMDC and associated actin assembly facilitated DQ-OVA processing, which was inhibited by the proteasome inhibitor MG132. Moreover, Wnt5A depletion led to a significant reduction in OVA processing and presentation. Impaired DQ-OVA processing in Wnt5A depleted BMDC correlated with altered dynamics of both actin and the proteasome regulator PA28α-PA28β, and reduced association of DQ-OVA with actin and proteasome subunits. Inhibited OVA processing/presentation in the Wnt5A depleted BMDC also resulted in subdued activation of OVA-sensitized CD8 T cells in co-culture with the BMDC. In concurrence with these findings, we demonstrated reduced OVA processing and impaired CD8 T cell response to OVA immunization in Wnt5A heterozygous mice lacking a copy of the Wnt5A gene in comparison to the wild-type cohorts. Taken together, our results reveal a crucial requirement of Wnt5A signaling in antigen processing/presentation and CD8 T cell activation, thus unveiling a vital regulatory node of cell-mediated immunity, unidentified thus far.
Collapse
|
63
|
Miura H, Jimbo I, Oda M, Noguchi M, Kawasaki K, Osada-Oka M, Tsukahara T, Inoue R. Effect of Porcine Colostral Exosomes on T Cells in the Peripheral Blood of Suckling Piglets. Animals (Basel) 2022; 12:ani12172172. [PMID: 36077893 PMCID: PMC9455021 DOI: 10.3390/ani12172172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Exosomes in porcine colostrum have gained attention as the possible key compounds involved in the growth and/or development of suckling piglets. In this study, peripheral blood mononuclear cells (PBMCs) from suckling piglets were cultured with or without milk-derived exosomes (control) in vitro. Porcine colostral exosomes increased the proportion of cytotoxic T (Tc) cells, while this phenomenon was not observed in PBMC whose endocytosis was inhibited. Moreover, exosome-treated PBMCs had a higher cytokine IL-2 concentration in the culture supernatant than the control. The present study demonstrated that porcine colostral exosomes could increase the Tc cell proportion in the peripheral blood of a suckling piglet, with the underlying mechanism believed to be the stimulation of IL-2 production in PBMCs via endocytosis. Abstract Growing evidence indicates that porcine colostral exosomes may contribute to the healthy development of piglets. Here, we evaluated in vitro the effect of porcine milk-derived exosomes, in particular colostral exosomes, on T cells in the peripheral blood of suckling piglets. A total of seven sows and thirteen suckling piglets were used. Peripheral blood mononuclear cells (PBMCs) from suckling piglets were cultured with or without milk-derived exosomes (control). Using flow cytometry, the proportion of each T cell subset in cultured PBMCs was analyzed three days post-incubation. PBMCs cultured with porcine colostral exosomes had a higher proportion of CD3+CD4−CD8+ T cells (cytotoxic T cells; Tc) than the control. However, exosomes induced no increase in the Tc cell population in PBMC whose endocytosis was inhibited. We further measured the concentrations of cytokines in the culture supernatant. Exosome-treated PBMCs had a higher cytokine IL-2 concentration than the control. The present study demonstrated that porcine colostral exosomes could increase the Tc cell proportion in the peripheral blood of suckling piglets, with the underlying mechanism believed to be the stimulation of IL-2 production in PBMCs via endocytosis. Moreover, our results suggested that porcine colostral exosomes were involved in the development of cellular immunity in suckling piglets.
Collapse
Affiliation(s)
- Hiroto Miura
- Laboratory of Animal Science, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Itsuki Jimbo
- Laboratory of Animal Science, Kyoto Prefectural University, Kyoto, Kyoto 606-8522, Japan
| | - Machi Oda
- Laboratory of Animal Science, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Michiko Noguchi
- Laboratory of Theriogenology, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Kiyonori Kawasaki
- Graduate School of Agriculture, Kagawa University, Kita, Kagawa 761-0795, Japan
| | - Mayuko Osada-Oka
- Food Hygiene and Environmental Health, Faculty of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Kyoto 606-8522, Japan
| | | | - Ryo Inoue
- Laboratory of Animal Science, Setsunan University, Hirakata, Osaka 573-0101, Japan
- Laboratory of Animal Science, Kyoto Prefectural University, Kyoto, Kyoto 606-8522, Japan
- Correspondence: ; Tel.: +81-(0)-728965469
| |
Collapse
|
64
|
du Preez HN, Aldous C, Kruger HG, Johnson L. N-Acetylcysteine and Other Sulfur-Donors as a Preventative and Adjunct Therapy for COVID-19. Adv Pharmacol Pharm Sci 2022; 2022:4555490. [PMID: 35992575 PMCID: PMC9385285 DOI: 10.1155/2022/4555490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/07/2022] [Indexed: 12/11/2022] Open
Abstract
The airway epithelial glycocalyx plays an important role in preventing severe acute respiratory syndrome coronavirus 2 entry into the epithelial cells, while the endothelial glycocalyx contributes to vascular permeability and tone, as well as modulating immune, inflammatory, and coagulation responses. With ample evidence in the scientific literature that coronavirus disease 2019 (COVID-19) is related to epithelial and endothelial dysfunction, preserving the glycocalyx should be the main focus of any COVID-19 treatment protocol. The most studied functional unit of the glycocalyx is the glycosaminoglycan heparan sulfate, where the degree and position of the sulfate groups determine the biological activity. N-acetylcysteine (NAC) and other sulfur donors contribute to the inorganic sulfate pool, the rate-limiting molecule in sulfation. NAC is not only a precursor to glutathione but also converts to hydrogen sulfide, inorganic sulfate, taurine, Coenzyme A, and albumin. By optimising inorganic sulfate availability, and therefore sulfation, it is proposed that COVID-19 can be prevented or at least most of the symptoms attenuated. A comprehensive COVID-19 treatment protocol is needed to preserve the glycocalyx in both the prevention and treatment of COVID-19. The use of NAC at a dosage of 600 mg bid for the prevention of COVID-19 is proposed, but a higher dosage of NAC (1200 mg bid) should be administered upon the first onset of symptoms. In the severe to critically ill, it is advised that IV NAC should be administered immediately upon hospital admission, and in the late stage of the disease, IV sodium thiosulfate should be considered. Doxycycline as a protease inhibitor will prevent shedding and further degradation of the glycocalyx.
Collapse
Affiliation(s)
- Heidi N du Preez
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Colleen Aldous
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Lin Johnson
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
65
|
Abstract
This study analyzed whole blood samples (n = 56) retrieved from 30 patients at 1 to 21 (median 9) mo after verified COVID-19 to determine the polarity and duration of antigen-specific T cell reactivity against severe acute respiratory syndrome coronavirus 2–derived antigens. Multimeric peptides spanning the entire nucleocapsid protein triggered strikingly synchronous formation of interleukin (IL)-4, IL-12, IL-13, and IL-17 ex vivo until ∼70 d after confirmed infection, whereafter this reactivity was no longer inducible. In contrast, levels of nucleocapsid-induced IL-2 and interferon-γ remained stable and highly correlated at 3 to 21 mo after infection. Similar cytokine dynamics were observed in unvaccinated, convalescent patients using whole-blood samples stimulated with peptides spanning the N-terminal portion of the spike 1 protein. These results unravel two phases of T cell reactivity following natural COVID-19: an early, synchronous response indicating transient presence of multipolar, antigen-specific T helper (TH) cells followed by an equally synchronous and durable TH1-like reactivity reflecting long-lasting T cell memory.
Collapse
|
66
|
Zöphel D, Angenendt A, Kaschek L, Ravichandran K, Hof C, Janku S, Hoth M, Lis A. Faster cytotoxicity with age: Increased perforin and granzyme levels in cytotoxic CD8 + T cells boost cancer cell elimination. Aging Cell 2022; 21:e13668. [PMID: 35818124 PMCID: PMC9381916 DOI: 10.1111/acel.13668] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 05/19/2022] [Accepted: 06/24/2022] [Indexed: 11/28/2022] Open
Abstract
A variety of intrinsic and extrinsic factors contribute to the altered efficiency of CTLs in elderly organisms. In particular, the efficacy of antiviral CD8+ T cells responses in the elderly has come back into focus since the COVID‐19 pandemic outbreak. However, the exact molecular mechanisms leading to alterations in T cell function and the origin of the observed impairments have not been fully explored. Therefore, we investigated whether intrinsic changes affect the cytotoxic ability of CD8+ T cells in aging. We focused on the different subpopulations and time‐resolved quantification of cytotoxicity during tumor cell elimination. We report a surprising result: Killing kinetics of CD8+ T cells from elderly mice are much faster than those of CD8+ T cells from adult mice. This is true not only in the total CD8+ T cell population but also for their effector (TEM) and central memory (TCM) T cell subpopulations. TIRF experiments reveal that CD8+ T cells from elderly mice possess comparable numbers of fusion events per cell, but significantly increased numbers of cells with granule fusion. Analysis of the cytotoxic granule (CG) content shows significantly increased perforin and granzyme levels and turns CD8+ T cells of elderly mice into very efficient killers. This highlights the importance of distinguishing between cell‐intrinsic alterations and microenvironmental changes in elderly individuals. Our results also stress the importance of analyzing the dynamics of CTL cytotoxicity against cancer cells because, with a simple endpoint lysis analysis, cytotoxic differences could have easily been overlooked.
Collapse
Affiliation(s)
- Dorina Zöphel
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Adrian Angenendt
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Lea Kaschek
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Keerthana Ravichandran
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Chantal Hof
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Sandra Janku
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Markus Hoth
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Annette Lis
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
67
|
Pichler AC, Cannons JL, Schwartzberg PL. The Road Less Taken: Less Appreciated Pathways for Manipulating CD8 + T Cell Exhaustion. Front Immunol 2022; 13:926714. [PMID: 35874734 PMCID: PMC9297918 DOI: 10.3389/fimmu.2022.926714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Exhausted CD8+ T (Tex) cells are a distinct cell population that arise during persistent antigen exposure in the context of chronic infections and cancers. Although characterized by progressive loss of effector functions, high and sustained inhibitory receptor expression and distinct transcriptional and epigenetic programs, Tex cells are heterogeneous. Among these, a self-renewing TCF-1+ Tex population, having unique characteristics and the ability to respond to immune-checkpoint blockade, gives rise to TCF-1- terminally Tex cells. These TCF-1+ cells have stem cell-like properties similar to memory T cell populations, but the signals that regulate the developmental pathways and relationships among exhausted cell populations are still unclear. Here, we review our current understanding of Tex cell biology, and discuss some less appreciated molecules and pathways affecting T cell exhaustion. We highlight two co-stimulatory receptors, CD226 and CD137, and their role in inducing or restraining T cell exhaustion, as well as signaling pathways that may be amenable to pharmacological inhibition with a focus on Phosphoinositide-3 Kinase and IL-2 partial agonists. Finally, we discuss novel methods that may increase TCF-1+ populations and therefore improve immunotherapy responsiveness. Understanding features of and pathways to exhaustion has important implications for the success of immunotherapy, including checkpoint blockade and adoptive T-cell transfer therapies.
Collapse
Affiliation(s)
- Andrea C. Pichler
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jennifer L. Cannons
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Pamela L. Schwartzberg
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
68
|
Bian H, Wang L, Gao C, Liu Z, Sun Y, Hu M, Xiao Y, Hao F, Ma Y, Zhao X. Expression and Clinical Significance of Th1/Th2/Th17 Cytokines and Lymphocyte Subsets in PCNSL. J Inflamm Res 2022; 15:3815-3828. [PMID: 35836720 PMCID: PMC9273637 DOI: 10.2147/jir.s366761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/29/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose Primary central nervous system lymphoma (PCNSL) responds favorably to radiation, chemotherapy and targeted drug therapy. However survival is usually worse, the treatment-related drug resistance and recurrence are still clinical problems to be solved urgently. Studies have shown that cytokines are expressed in varying degrees in patients with lymphoma, which is significantly related to the progression, poor prognosis and drug resistance of lymphoma. We explore the expression and clinical significance of Th1/Th2/Th17 cytokines and lymphocyte subsets in patients with PCNSL to provide a more sufficient theoretical basis for its diagnosis and treatment. Patients and Methods We measured and analysed the levels of Th1/Th2/Th17 cytokines and the distribution of lymphocyte subsets (including Treg cells, CD3+, CD4+, CD8+, CD19+, and CD4+/CD8+) in 39 patients with PCNSL and 96 patients with diffuse large B-cell lymphoma (DLBCL) without central nervous system involvement. The cytokines of 13 healthy people and the lymphocyte subsets of 27 healthy people were measured as the control group. Results We found a significant difference in the level of Th1/Th2/Th17 cytokines and lymphocyte subsets between PCNSL and healthy controls, especially IL-2, after treatment, which was significantly higher than before treatment (p<0.01). However, the level of CD19+ and CD4+/CD8+ decreased while CD8+ and CD3+ increased after treatment (regardless of whether the treatment was effective), and the difference was statistically significant. In addition, our analysis of different prognostic factors found that HD-MTX-based chemotherapy appears to have a longer progression-free survival and overall survival than osimertinib-based chemotherapy. Conclusion There are significant differences in Th1/Th2/Th17 cytokines and lymphocyte subsets among PCNSL, DLBCL, and healthy controls, and their detection is helpful for the diagnosis, treatment, and prognosis of PCNSL. HD-MTX-based chemotherapy may still be the first choice for PCNSL.
Collapse
Affiliation(s)
- Haiyan Bian
- Department of Hematology, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Lisheng Wang
- Laboratory of Molecular Diagnosis and Regenerative Medicine, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Chengwen Gao
- Laboratory of Medical Biology, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Zhihe Liu
- Department of Hematology, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Yang Sun
- Laboratory of Molecular Diagnosis and Regenerative Medicine, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Minghui Hu
- Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Yujing Xiao
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Fengyun Hao
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Yushuo Ma
- Department of Hematology, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Xia Zhao
- Department of Hematology, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Correspondence: Xia Zhao, Department of Hematology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, People’s Republic of China, Email
| |
Collapse
|
69
|
A novel lipidic peptide with potential to promote balanced effector-regulatory T cell responses. Sci Rep 2022; 12:11185. [PMID: 35778468 PMCID: PMC9249808 DOI: 10.1038/s41598-022-15455-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/23/2022] [Indexed: 11/08/2022] Open
Abstract
T cell-dendritic cell (DC) interactions contribute to reciprocal stimulation leading to DC maturation that results in production of interleukin-12 (IL-12) and interferon-gamma (IFN-γ). Both cytokines have been implicated in autoimmune diseases while being necessary for effective immune responses against foreign antigens. We describe a lipidic peptide, designated IK14004, that modifies crosstalk between T cells and DCs resulting in suppression of IL-12p40/IFN-γ production. T cell production of interleukin-2 (IL-2) and IFN-γ is uncoupled and IL-12p70 production is enhanced. IK14004 induces expression of activating co-receptors in CD8+ T cells and increases the proportion of Foxp3-expressing CD4+ T regulatory cells. The potential for IK14004 to impact on signalling pathways required to achieve a balanced immune response upon stimulation of DCs and T cells is highlighted. This novel compound provides an opportunity to gain further insights into the complexity of T cell-DC interactions relevant to autoimmunity associated with malignancies and may have therapeutic benefit.
Collapse
|
70
|
Huang H, Guo F, Deng X, Yan M, Wang D, Sun Z, Yuan C, Zhou Q. Modulation of T Cell Responses by Fucoidan to Inhibit Osteogenesis. Front Immunol 2022; 13:911390. [PMID: 35812368 PMCID: PMC9260855 DOI: 10.3389/fimmu.2022.911390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Fucoidan has sparked considerable interest in biomedical applications because of its inherent (bio)physicochemical characteristics, particularly immunomodulatory effects on macrophages, neutrophils, and natural killer cells. However, the effect of fucoidan on T cells and the following regulatory interaction on cellular function has not been reported. In this work, the effect of sterile fucoidan on the T-cell response and the subsequent modulation of osteogenesis is investigated. The physicochemical features of fucoidan treated by high-temperature autoclave sterilization are characterized by UV–visible spectroscopy, X-ray diffraction, Fourier transform infrared and nuclear magnetic resonance analysis. It is demonstrated that high-temperature autoclave treatment resulted in fucoidan depolymerization, with no change in its key bioactive groups. Further, sterile fucoidan promotes T cells proliferation and the proportion of differentiated T cells decreases with increasing concentration of fucoidan. In addition, the supernatant of T cells co-cultured with fucoidan greatly suppresses the osteogenic differentiation of MC3T3-E1 by downregulating the formation of alkaline phosphatase and calcium nodule compared with fucoidan. Therefore, our work offers new insight into the fucoidan-mediated T cell and osteoblast interplay.
Collapse
Affiliation(s)
- Hailin Huang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Fangze Guo
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Xuyang Deng
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Mingzhe Yan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Danyang Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Zhanyi Sun
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co., Ltd., Qingdao, China
| | - Changqing Yuan
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- *Correspondence: Changqing Yuan, ; Qihui Zhou,
| | - Qihui Zhou
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
71
|
Canine Cytokines Profile in an Endemic Region of L. infantum: Related Factors. Vet Sci 2022; 9:vetsci9060305. [PMID: 35737357 PMCID: PMC9231092 DOI: 10.3390/vetsci9060305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 01/22/2023] Open
Abstract
Canine leishmaniosis is caused by infection with parasite Leishmania infantum, which are transmitted by sandflies Phlebotomus. Canine leishmaniosis is an endemic disease in the Mediterranean region. The immune response could vary between hosts and determines the severity of the disease and clinical features. The aim of this study was to analyze the serum levels of cytokines TNF-α, IFN-γ, IL-2, IL-6, and IL-8, which are related to the activation of Th1 or Th2 immune responses in dogs living in the L. infantum endemic region. Moreover, we intend to relate and correlate these levels with different factors, such as sex, age, diet, lifestyle, and breed. Epidemiological data and serum were recovered for seventy-eight dogs, and serum levels of cytokines described previously were analyzed by using the ELISA method. The results showed differences in serum levels of IFN-γ, IL-2, and IL-8 between breeds. The lifestyle also affected serum levels of IL-2. The main conclusion of this study is that Ibizan hounds and crossbred dogs have a serological profile of cytokines that seems to indicate certain protections against infection by L. infantum compared to boxer and purebred breeds.
Collapse
|
72
|
Najafabadi MM, Soleimani M, Ahmadvand M, Zomorrod MS, Mousavi SA. In Vitro Generation of BK polyomavirus-specific T cells for adoptive cell therapy in refractory cystitis hemorrhagic patients after hematopoietic stem cell transplantation. BMC Immunol 2022; 23:31. [PMID: 35689183 PMCID: PMC9188250 DOI: 10.1186/s12865-022-00497-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/04/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction BKPyV associated hemorrhagic cystitis (BKPyV-HC) is a major and prevalent outcome of hematopoietic stem cell transplantation (HSCT) with no standard treatment option. Adoptive T cell therapy (ACT) against transplant-associated viruses has shown promising potential. We sought to produce virus-specific T cells (VSTs) against BKPyV with the aim of treating refractory HSCT-associated HC. Methods Peripheral blood mononuclear cells (PBMC) from healthy donors were isolated by Ficoll-Hypaque density gradient centrifugation. BKPyV-pulsed, monocyte-derived dendritic cells (mo-DCs) and T cells were co-cultured and expanded over 2–3 weeks with the addition of IL-2. The T cells were examined for various functional assays. Results Comparison analysis of Carboxyfluorescein diacetate succinimidyl ester (CFSE) indicated that the percentage of proliferated cells were significantly higher in donors (49.62 ± 7.09%) than controls (7.96 ± 4.55%). Furthermore, expanded T cells exhibited specificity to BKPyV antigens by IFN-γ ELISPOT assay. The expanded cells showed cytotoxic function versus human lymphoblastoid cell line (LCL). Final VST products mainly comprised of CD8/CD69 double-positive T cells, which were significantly higher in donors (46.8 ± 7.1%) than controls (16.91 ± 3.40%). Conclusion In this study we demonstrated the feasibility of producing functional BKPyV-specific T cells in healthy donors using BKPyV PepMixes. These functional cells were able to proliferate and produce IFN-γ cytokine in response to BKPyV PepMixes. In addition, these T cells had cytotoxic ability against BKPyV antigen-expressing target cells.
Collapse
Affiliation(s)
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
| | - Mohammad Ahmadvand
- Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mina Soufi Zomorrod
- Applied Cell Sciences Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seied Asadollah Mousavi
- Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
73
|
Lagumdzic E, Pernold C, Viano M, Olgiati S, Schmitt MW, Mair KH, Saalmüller A. Transcriptome Profiling of Porcine Naïve, Intermediate and Terminally Differentiated CD8 + T Cells. Front Immunol 2022; 13:849922. [PMID: 35265090 PMCID: PMC8900158 DOI: 10.3389/fimmu.2022.849922] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022] Open
Abstract
The pig has the potential to become a leading research model for human diseases, pharmacological and transplantation studies. Since there are many similarities between humans and pigs, especially concerning anatomy, physiology and metabolism, there is necessity for a better understanding of the porcine immune system. In adaptive immunity, cytotoxic T lymphocytes (CTLs) are essential for host defense. However, most data on CTLs come from studies in mice, non-human primates and humans, while detailed information about porcine CD8+ CTLs is still sparse. Aim of this study was to analyze transcriptomes of three subsets of porcine CD8β+ T-cell subsets by using next-generation sequencing technology. Specifically, we described transcriptional profiles of subsets defined by their CD11a/CD27 expression pattern, postulated as naïve (CD8β+CD27+CD11alow), intermediate differentiated (CD8β+CD27dimCD11a+), and terminally differentiated cells (CD8β+CD27-CD11ahigh). Cells were analyzed in ex vivo condition as well as upon in vitro stimulation with concanavalin A (ConA) and PMA/ionomycin. Our analyses show that the highest number of differentially expressed genes was identified between naïve and terminally differentiated CD8+ T-cell subsets, underlining their difference in gene expression signature and respective differentiation stages. Moreover, genes related to early (IL7-R, CCR7, SELL, TCF7, LEF1, BACH2, SATB1, ZEB1 and BCL2) and late (KLRG1, TBX21, PRDM1, CX3CR1, ZEB2, ZNF683, BATF, EZH2 and ID2) stages of CD8+ T-cell differentiation were highly expressed in the naïve and terminally differentiated CD8+ T-cell subsets, respectively. Intermediate differentiated CD8+ T-cell subsets shared a more comparable gene expression profile associated with later stages of T-cell differentiation. Genes associated with cytolytic activity (GNLY, PRF1, GZMB, FASL, IFNG and TNF) were highly expressed in terminally and intermediate differentiated CD8+ T-cell subsets, while naïve CD8+ T cells lacked expression even after in vitro stimulation. Overall, PMA/ionomycin stimulation induced much stronger upregulation of genes compared to stimulation with ConA. Taken together, we provided comprehensive results showing transcriptional profiles of three differentiation stages of porcine CD8+ T-cell subsets. In addition, our study provides a powerful toolbox for the identification of candidate markers to characterize porcine immune cell subsets in more detail.
Collapse
Affiliation(s)
- Emil Lagumdzic
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine, Vienna, Austria
| | - Clara Pernold
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine, Vienna, Austria
| | - Marta Viano
- Istituto di Ricerche Biomediche "A. Marxer" RBM S.p.A., Torino, Italy
| | - Simone Olgiati
- Istituto di Ricerche Biomediche "A. Marxer" RBM S.p.A., Torino, Italy
| | - Michael W Schmitt
- Merck Healthcare KGaA, Chemical & Preclinical Safety, Darmstadt, Germany
| | - Kerstin H Mair
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine, Vienna, Austria.,Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine, Vienna, Austria
| | - Armin Saalmüller
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
74
|
Petkau G, Mitchell TJ, Chakraborty K, Bell SE, D Angeli V, Matheson L, Turner DJ, Saveliev A, Gizlenci O, Salerno F, Katsikis PD, Turner M. The timing of differentiation and potency of CD8 effector function is set by RNA binding proteins. Nat Commun 2022; 13:2274. [PMID: 35477960 PMCID: PMC9046422 DOI: 10.1038/s41467-022-29979-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 03/30/2022] [Indexed: 01/08/2023] Open
Abstract
CD8+ T cell differentiation into effector cells is initiated early after antigen encounter by signals from the T cell antigen receptor and costimulatory molecules. The molecular mechanisms that establish the timing and rate of differentiation however are not defined. Here we show that the RNA binding proteins (RBP) ZFP36 and ZFP36L1 limit the rate of differentiation of activated naïve CD8+ T cells and the potency of the resulting cytotoxic lymphocytes. The RBP function in an early and short temporal window to enforce dependency on costimulation via CD28 for full T cell activation and effector differentiation by directly binding mRNA of NF-κB, Irf8 and Notch1 transcription factors and cytokines, including Il2. Their absence in T cells, or the adoptive transfer of small numbers of CD8+ T cells lacking the RBP, promotes resilience to influenza A virus infection without immunopathology. These findings highlight ZFP36 and ZFP36L1 as nodes for the integration of the early T cell activation signals controlling the speed and quality of the CD8+ T cell response.
Collapse
Affiliation(s)
- Georg Petkau
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Twm J Mitchell
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Krishnendu Chakraborty
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Sarah E Bell
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Vanessa D Angeli
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Louise Matheson
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - David J Turner
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Alexander Saveliev
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Ozge Gizlenci
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Fiamma Salerno
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Peter D Katsikis
- Department of Immunology, Erasmus University Medical Center, P.O. Box 2040, 3000CA, Rotterdam, Netherlands
| | - Martin Turner
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| |
Collapse
|
75
|
Ulrich-Lewis JT, Draves KE, Roe K, O’Connor MA, Clark EA, Fuller DH. STING Is Required in Conventional Dendritic Cells for DNA Vaccine Induction of Type I T Helper Cell- Dependent Antibody Responses. Front Immunol 2022; 13:861710. [PMID: 35529875 PMCID: PMC9072870 DOI: 10.3389/fimmu.2022.861710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/14/2022] [Indexed: 02/02/2023] Open
Abstract
DNA vaccines elicit antibody, T helper cell responses and CD8+ T cell responses. Currently, little is known about the mechanism that DNA vaccines employ to induce adaptive immune responses. Prior studies have demonstrated that stimulator of interferon genes (STING) and conventional dendritic cells (cDCs) play critical roles in DNA vaccine induced antibody and T cell responses. STING activation by double stranded (dsDNA) sensing proteins initiate the production of type I interferon (IFN),but the DC-intrinsic effect of STING signaling is still unclear. Here, we investigated the role of STING within cDCs on DNA vaccine induction of antibody and T cell responses. STING knockout (STING-/- ) and conditional knockout mice that lack STING in cDCs (cDC STING cKO), were immunized intramuscularly with a DNA vaccine that expressed influenza A nucleoprotein (pNP). Both STING-/- and cDC STING cKO mice had significantly lower type I T helper (Th1) type antibody (anti-NP IgG2C) responses and lower frequencies of Th1 associated T cells (NP-specific IFN-γ+CD4+ T cells) post-immunization than wild type (WT) and cDC STING littermate control mice. In contrast, all mice had similar Th2-type NP-specific (IgG1) antibody titers. STING-/- mice developed significantly lower polyfunctional CD8+ T cells than WT, cDC STING cKO and cDC STING littermate control mice. These findings suggest that STING within cDCs mediates DNA vaccine induction of type I T helper responses including IFN-γ+CD4+ T cells, and Th1-type IgG2C antibody responses. The induction of CD8+ effector cell responses also require STING, but not within cDCs. These findings are the first to show that STING is required within cDCs to mediate DNA vaccine induced Th1 immune responses and provide new insight into the mechanism whereby DNA vaccines induce Th1 responses.
Collapse
Affiliation(s)
- Justin Theophilus Ulrich-Lewis
- Department of Microbiology, University of Washington, Seattle, WA, United States,Department of Immunology, University of Washington, Seattle, WA, United States
| | - Kevin E. Draves
- Department of Microbiology, University of Washington, Seattle, WA, United States,Department of Immunology, University of Washington, Seattle, WA, United States
| | - Kelsey Roe
- Department of Immunology, University of Washington, Seattle, WA, United States,Seattle Children's Hospital Center for Immunity and Immunotherapies Children’s Hospital, Seattle, WA, United States
| | - Megan A. O’Connor
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Edward A. Clark
- Department of Microbiology, University of Washington, Seattle, WA, United States,Department of Immunology, University of Washington, Seattle, WA, United States
| | - Deborah Heydenburg Fuller
- Department of Microbiology, University of Washington, Seattle, WA, United States,*Correspondence: Deborah Heydenburg Fuller,
| |
Collapse
|
76
|
Daei Sorkhabi A, Sarkesh A, Saeedi H, Marofi F, Ghaebi M, Silvestris N, Baradaran B, Brunetti O. The Basis and Advances in Clinical Application of Cytomegalovirus-Specific Cytotoxic T Cell Immunotherapy for Glioblastoma Multiforme. Front Oncol 2022; 12:818447. [PMID: 35515137 PMCID: PMC9062077 DOI: 10.3389/fonc.2022.818447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/24/2022] [Indexed: 01/28/2023] Open
Abstract
A high percentage of malignant gliomas are infected by human cytomegalovirus (HCMV), and the endogenous expression of HCMV genes and their products are found in these tumors. HCMV antigen expression and its implications in gliomagenesis have emerged as a promising target for adoptive cellular immunotherapy (ACT) strategies in glioblastoma multiforme (GB) patients. Since antigen-specific T cells in the tumor microenvironments lack efficient anti-tumor immune response due to the immunosuppressive nature of glioblastoma, CMV-specific ACT relies on in vitro expansion of CMV-specific CD8+ T cells employing immunodominant HCMV antigens. Given the fact that several hurdles remain to be conquered, recent clinical trials have outlined the feasibility of CMV-specific ACT prior to tumor recurrence with minimal adverse effects and a substantial improvement in median overall survival and progression-free survival. This review discusses the role of HCMV in gliomagenesis, disease prognosis, and recent breakthroughs in harnessing HCMV-induced immunogenicity in the GB tumor microenvironment to develop effective CMV-specific ACT.
Collapse
Affiliation(s)
- Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aila Sarkesh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Ghaebi
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Oronzo Brunetti
- Medical Oncology Unit-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| |
Collapse
|
77
|
Toumi R, Yuzefpolskiy Y, Vegaraju A, Xiao H, Smith KA, Sarkar S, Kalia V. Autocrine and paracrine IL-2 signals collaborate to regulate distinct phases of CD8 T cell memory. Cell Rep 2022; 39:110632. [PMID: 35417685 DOI: 10.1016/j.celrep.2022.110632] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/10/2021] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
Differential interleukin-2 (IL-2) signaling and production are associated with disparate effector and memory fates. Whether the IL-2 signals perceived by CD8 T cells come from autocrine or paracrine sources, the timing of IL-2 signaling and their differential impact on CD8 T cell responses remain unclear. Using distinct models of germline and conditional IL-2 ablation in post-thymic CD8 T cells, this study shows that paracrine IL-2 is sufficient to drive optimal primary expansion, effector and memory differentiation, and metabolic function. In contrast, autocrine IL-2 is uniquely required during primary expansion to program robust secondary expansion potential in memory-fated cells. This study further shows that IL-2 production by antigen-specific CD8 T cells is largely independent of CD4 licensing of dendritic cells (DCs) in inflammatory infections with robust DC activation. These findings bear implications for immunizations and adoptive T cell immunotherapies, where effector and memory functions may be commandeered through IL-2 programming.
Collapse
Affiliation(s)
- Ryma Toumi
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Yevgeniy Yuzefpolskiy
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; M3D Graduate Program, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Adithya Vegaraju
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Hanxi Xiao
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Kendall A Smith
- Division of Immunology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Surojit Sarkar
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; M3D Graduate Program, University of Washington School of Medicine, Seattle, WA 98195, USA; Division of Hematology and Oncology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA.
| | - Vandana Kalia
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; Division of Hematology and Oncology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
78
|
Laurén I, Havervall S, Ng H, Lord M, Pettke A, Greilert‐Norin N, Gabrielsson L, Chourlia A, Amoêdo‐Leite C, Josyula VS, Eltahir M, Kerzeli I, Falk AJ, Hober J, Christ W, Wiberg A, Hedhammar M, Tegel H, Burman J, Xu F, Pin E, Månberg A, Klingström J, Christoffersson G, Hober S, Nilsson P, Philipson M, Dönnes P, Lindsay R, Thålin C, Mangsbo S. Long-term SARS-CoV-2-specific and cross-reactive cellular immune responses correlate with humoral responses, disease severity, and symptomatology. Immun Inflamm Dis 2022; 10:e595. [PMID: 35349756 PMCID: PMC8962644 DOI: 10.1002/iid3.595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cellular immune memory responses post coronavirus disease 2019 (COVID-19) have been difficult to assess due to the risks of contaminating the immune response readout with memory responses stemming from previous exposure to endemic coronaviruses. The work herein presents a large-scale long-term follow-up study investigating the correlation between symptomology and cellular immune responses four to five months post seroconversion based on a unique severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific peptide pool that contains no overlapping peptides with endemic human coronaviruses. METHODS Peptide stimulated memory T cell responses were assessed with dual interferon-gamma (IFNγ) and interleukin (IL)-2 Fluorospot. Serological analyses were performed using a multiplex antigen bead array. RESULTS Our work demonstrates that long-term SARS-CoV-2-specific memory T cell responses feature dual IFNγ and IL-2 responses, whereas cross-reactive memory T cell responses primarily generate IFNγ in response to SARS-CoV-2 peptide stimulation. T cell responses correlated to long-term humoral immune responses. Disease severity as well as specific COVID-19 symptoms correlated with the magnitude of the SARS-CoV-2-specific memory T cell response four to five months post seroconversion. CONCLUSION Using a large cohort and a SARS-CoV-2-specific peptide pool we were able to substantiate that initial disease severity and symptoms correlate with the magnitude of the SARS-CoV-2-specific memory T cell responses.
Collapse
Affiliation(s)
- Ida Laurén
- Department of Pharmacy, Science for Life LaboratoryUppsala UniversityUppsalaSweden
| | - Sebastian Havervall
- Department of Clinical SciencesKarolinska Institute, Danderyd HospitalStockholmSweden
| | - Henry Ng
- Department of Medical Cell Biology, Science for Life LaboratoryUppsala UniversityUppsalaSweden
| | - Martin Lord
- Department of Pharmacy, Science for Life LaboratoryUppsala UniversityUppsalaSweden
| | | | - Nina Greilert‐Norin
- Department of Clinical SciencesKarolinska Institute, Danderyd HospitalStockholmSweden
| | - Lena Gabrielsson
- Department of Clinical SciencesKarolinska Institute, Danderyd HospitalStockholmSweden
| | - Aikaterini Chourlia
- Department of Pharmacy, Science for Life LaboratoryUppsala UniversityUppsalaSweden
| | - Catarina Amoêdo‐Leite
- Department of Medical Cell Biology, Science for Life LaboratoryUppsala UniversityUppsalaSweden
| | - Vijay S. Josyula
- Department of Medical Cell Biology, Science for Life LaboratoryUppsala UniversityUppsalaSweden
| | - Mohamed Eltahir
- Department of Pharmacy, Science for Life LaboratoryUppsala UniversityUppsalaSweden
- Department of Immunology, Genetics, and PathologyUppsala UniversityUppsalaSweden
| | - Iliana Kerzeli
- Department of Pharmacy, Science for Life LaboratoryUppsala UniversityUppsalaSweden
| | - August J. Falk
- Division of Affinity Proteomics, Department of Protein ScienceKTH Royal Institute of Technology, Science for Life LaboratoryStockholmSweden
| | - Jonathan Hober
- Department of Clinical SciencesKarolinska Institute, Danderyd HospitalStockholmSweden
| | - Wanda Christ
- Department of Medicine HuddingeKarolinska Institute, Centre for Infectious MedicineStockholmSweden
| | - Anna Wiberg
- Department of Immunology, Genetics, and PathologyUppsala UniversityUppsalaSweden
| | - My Hedhammar
- Division of Protein Technology, Department of Protein ScienceKTH Royal Institute of TechnologyStockholmSweden
| | - Hanna Tegel
- Division of Protein Technology, Department of Protein ScienceKTH Royal Institute of TechnologyStockholmSweden
| | - Joachim Burman
- Department of NeuroscienceUppsala UniversityUppsalaSweden
| | - Feifei Xu
- Department of Medical Cell Biology, Science for Life LaboratoryUppsala UniversityUppsalaSweden
| | - Elisa Pin
- Division of Affinity Proteomics, Department of Protein ScienceKTH Royal Institute of Technology, Science for Life LaboratoryStockholmSweden
| | - Anna Månberg
- Division of Affinity Proteomics, Department of Protein ScienceKTH Royal Institute of Technology, Science for Life LaboratoryStockholmSweden
| | - Jonas Klingström
- Department of Medicine HuddingeKarolinska Institute, Centre for Infectious MedicineStockholmSweden
| | - Gustaf Christoffersson
- Department of Medical Cell Biology, Science for Life LaboratoryUppsala UniversityUppsalaSweden
| | - Sophia Hober
- Division of Protein Technology, Department of Protein ScienceKTH Royal Institute of TechnologyStockholmSweden
| | - Peter Nilsson
- Division of Affinity Proteomics, Department of Protein ScienceKTH Royal Institute of Technology, Science for Life LaboratoryStockholmSweden
| | - Mia Philipson
- Department of Medical Cell Biology, Science for Life LaboratoryUppsala UniversityUppsalaSweden
| | | | - Robin Lindsay
- Department of Medical Cell Biology, Science for Life LaboratoryUppsala UniversityUppsalaSweden
| | - Charlotte Thålin
- Department of Clinical SciencesKarolinska Institute, Danderyd HospitalStockholmSweden
| | - Sara Mangsbo
- Department of Pharmacy, Science for Life LaboratoryUppsala UniversityUppsalaSweden
| |
Collapse
|
79
|
Huang Y, Si X, Shao M, Teng X, Xiao G, Huang H. Rewiring mitochondrial metabolism to counteract exhaustion of CAR-T cells. J Hematol Oncol 2022; 15:38. [PMID: 35346311 PMCID: PMC8960222 DOI: 10.1186/s13045-022-01255-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/11/2022] [Indexed: 12/16/2022] Open
Abstract
Short persistence and early exhaustion of T cells are major limits to the efficacy and broad application of immunotherapy. Exhausted T and chimeric antigen receptor (CAR)-T cells upregulate expression of genes associated with terminated T cell differentiation, aerobic glycolysis and apoptosis. Among cell exhaustion characteristics, impaired mitochondrial function and dynamics are considered hallmarks. Here, we review the mitochondrial characteristics of exhausted T cells and particularly discuss different aspects of mitochondrial metabolism and plasticity. Furthermore, we propose a novel strategy of rewiring mitochondrial metabolism to emancipate T cells from exhaustion and of targeting mitochondrial plasticity to boost CAR-T cell therapy efficacy.
Collapse
Affiliation(s)
- Yue Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Xiaohui Si
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Mi Shao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Xinyi Teng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Gang Xiao
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China. .,Institute of Hematology, Zhejiang University, Hangzhou, China. .,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China. .,Institute of Immunology, Zhejiang University, Hangzhou, China.
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, China. .,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China. .,Institute of Hematology, Zhejiang University, Hangzhou, China. .,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
| |
Collapse
|
80
|
Han Lew M, Nor Norazmi M, Nordin F, Jun Tye G. A novel peptide vaccination augments cytotoxic CD8+ T-cell responses against Mycobacterium tuberculosis HspX antigen. Immunobiology 2022; 227:152201. [DOI: 10.1016/j.imbio.2022.152201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/14/2022] [Accepted: 03/03/2022] [Indexed: 11/05/2022]
|
81
|
Pourmaleki M, Jones CJ, Ariyan CE, Zeng Z, Pirun M, Navarrete DA, Li Y, Zhang M, Nandakumar S, Campos C, Nadeem S, Klimstra DS, Temple-Oberle CF, Brenn T, Lipson EJ, Schenk KM, Stein JE, Taube JM, White MG, Traweek R, Wargo JA, Kirkwood JM, Gasmi B, Goff SL, Corwin AD, McDonough E, Ginty F, Callahan MK, Schietinger A, Socci ND, Mellinghoff IK, Hollmann TJ. Tumor MHC Class I Expression Associates with Intralesional IL2 Response in Melanoma. Cancer Immunol Res 2022; 10:303-313. [PMID: 35013003 PMCID: PMC8898286 DOI: 10.1158/2326-6066.cir-21-1083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 11/16/2022]
Abstract
Cancer immunotherapy can result in lasting tumor regression, but predictive biomarkers of treatment response remain ill-defined. Here, we performed single-cell proteomics, transcriptomics, and genomics on matched untreated and IL2 injected metastases from patients with melanoma. Lesions that completely regressed following intralesional IL2 harbored increased fractions and densities of nonproliferating CD8+ T cells lacking expression of PD-1, LAG-3, and TIM-3 (PD-1-LAG-3-TIM-3-). Untreated lesions from patients who subsequently responded with complete eradication of all tumor cells in all injected lesions (individuals referred to herein as "extreme responders") were characterized by proliferating CD8+ T cells with an exhausted phenotype (PD-1+LAG-3+TIM-3+), stromal B-cell aggregates, and expression of IFNγ and IL2 response genes. Loss of membranous MHC class I expression in tumor cells of untreated lesions was associated with resistance to IL2 therapy. We validated this finding in an independent cohort of metastatic melanoma patients treated with intralesional or systemic IL2. Our study suggests that intact tumor-cell antigen presentation is required for melanoma response to IL2 and describes a multidimensional and spatial approach to develop immuno-oncology biomarker hypotheses using routinely collected clinical biospecimens.
Collapse
Affiliation(s)
- Maryam Pourmaleki
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Tri-Institutional Program in Computational Biology and Medicine, Weill Cornell School of Medicine, New York, New York
| | - Caitlin J Jones
- Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charlotte E Ariyan
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zheng Zeng
- Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mono Pirun
- Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniel A Navarrete
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yanyun Li
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mianlei Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Subhiksha Nandakumar
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Carl Campos
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Saad Nadeem
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David S Klimstra
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Claire F Temple-Oberle
- Department of Surgery, University of Calgary, Calgary, Alberta, Canada
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Thomas Brenn
- Department of Pathology, University of Calgary, Calgary, Alberta, Canada
| | - Evan J Lipson
- Department of Oncology, The Johns Hopkins University School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, and The Johns Hopkins Bloomberg-Kimmel Institute for Cancer Immunotherapy, Baltimore, Maryland
| | - Kara M Schenk
- Department of Oncology, The Johns Hopkins University School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, and The Johns Hopkins Bloomberg-Kimmel Institute for Cancer Immunotherapy, Baltimore, Maryland
| | - Julie E Stein
- Department of Pathology, The Johns Hopkins University School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, and The Johns Hopkins Bloomberg-Kimmel Institute for Cancer Immunotherapy, Baltimore, Maryland
| | - Janis M Taube
- Department of Oncology, The Johns Hopkins University School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, and The Johns Hopkins Bloomberg-Kimmel Institute for Cancer Immunotherapy, Baltimore, Maryland
- Department of Pathology, The Johns Hopkins University School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, and The Johns Hopkins Bloomberg-Kimmel Institute for Cancer Immunotherapy, Baltimore, Maryland
- Department of Dermatology, The Johns Hopkins University School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, and The Johns Hopkins Bloomberg-Kimmel Institute for Cancer Immunotherapy, Baltimore, Maryland
| | - Michael G White
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Raymond Traweek
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John M Kirkwood
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Billel Gasmi
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephanie L Goff
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Alex D Corwin
- Biology and Applied Physics, GE Global Research Center, Niskayuna, New York
| | | | - Fiona Ginty
- Biology and Applied Physics, GE Global Research Center, Niskayuna, New York
| | - Margaret K Callahan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
- Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Andrea Schietinger
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
- Immunology and Microbial Pathogenesis Program, Weill Cornell School of Medicine, New York, New York
| | - Nicholas D Socci
- Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ingo K Mellinghoff
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pharmacology, Weill Cornell School of Medicine, New York, New York
| | - Travis J Hollmann
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
- Parker Institute for Cancer Immunotherapy, San Francisco, California
| |
Collapse
|
82
|
Sin JH, Kashyap S, Acenas D, Cortez JT, Lee J, Marson A, Matloubian M, Waterfield MR. ATF7ip Targets Transposable Elements for H3K9me3 Deposition to Modify CD8 + T Cell Effector and Memory Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1155-1169. [PMID: 35110421 PMCID: PMC8881383 DOI: 10.4049/jimmunol.2100996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/18/2021] [Indexed: 11/19/2022]
Abstract
CD8+ T cells are critical for the immune response to pathogens and tumors, and CD8+ T cell memory protects against repeat infections. In this study, we identify the activating transcription factor 7 interacting protein (ATF7ip) as a critical regulator of CD8+ T cell immune responses. Mice with a T cell-specific deletion of ATF7ip have a CD8+ T cell-intrinsic enhancement of Il7r expression and Il2 expression leading to enhanced effector and memory responses. Chromatin immunoprecipitation sequencing studies identified ATF7ip as a repressor of Il7r and Il2 gene expression through the deposition of the repressive histone mark H3K9me3 at the Il7r gene and Il2-Il21 intergenic region. Interestingly, ATF7ip targeted transposable elements for H3K9me3 deposition at both the IL7r locus and the Il2-Il21 intergenic region, indicating that ATF7ip silencing of transposable elements is important for regulating CD8+ T cell function. These results demonstrate a new epigenetic pathway by which IL-7R and IL-2 production are constrained in CD8+ T cells, and this may open up new avenues for modulating their production.
Collapse
Affiliation(s)
- Jun Hyung Sin
- Division of Pediatric Rheumatology, University of California San Francisco, San Francisco, CA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA
| | - Sujit Kashyap
- Division of Pediatric Rheumatology, University of California San Francisco, San Francisco, CA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA
| | - Dante Acenas
- Diabetes Center, University of California, San Francisco, San Francisco, CA
| | - Jessica T Cortez
- Diabetes Center, University of California, San Francisco, San Francisco, CA
| | - James Lee
- Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Alexander Marson
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA
- Diabetes Center, University of California, San Francisco, San Francisco, CA
- J. David Gladstone Institutes, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA; and
| | - Mehrdad Matloubian
- Department of Medicine, University of California San Francisco, San Francisco, CA
- Division of Rheumatology, University of California San Francisco, San Francisco, CA
| | - Michael R Waterfield
- Division of Pediatric Rheumatology, University of California San Francisco, San Francisco, CA;
- Department of Pediatrics, University of California San Francisco, San Francisco, CA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA
| |
Collapse
|
83
|
Atitey K, Anchang B. Mathematical Modeling of Proliferative Immune Response Initiated by Interactions Between Classical Antigen-Presenting Cells Under Joint Antagonistic IL-2 and IL-4 Signaling. Front Mol Biosci 2022; 9:777390. [PMID: 35155574 PMCID: PMC8831889 DOI: 10.3389/fmolb.2022.777390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
During an adaptive immune response from pathogen invasion, multiple cytokines are produced by various immune cells interacting jointly at the cellular level to mediate several processes. For example, studies have shown that regulation of interleukin-4 (IL-4) correlates with interleukin-2 (IL-2) induced lymphocyte proliferation. This motivates the need to better understand and model the mechanisms driving the dynamic interplay of proliferation of lymphocytes with the complex interaction effects of cytokines during an immune response. To address this challenge, we adopt a hybrid computational approach comprising of continuous, discrete and stochastic non-linear model formulations to predict a system-level immune response as a function of multiple dependent signals and interacting agents including cytokines and targeted immune cells. We propose a hybrid ordinary differential equation-based (ODE) multicellular model system with a stochastic component of antigen microscopic states denoted as Multiscale Multicellular Quantitative Evaluator (MMQE) implemented using MATLAB. MMQE combines well-defined immune response network-based rules and ODE models to capture the complex dynamic interactions between the proliferation levels of different types of communicating lymphocyte agents mediated by joint regulation of IL-2 and IL-4 to predict the emergent global behavior of the system during an immune response. We model the activation of the immune system in terms of different activation protocols of helper T cells by the interplay of independent biological agents of classic antigen-presenting cells (APCs) and their joint activation which is confounded by the exposure time to external pathogens. MMQE quantifies the dynamics of lymphocyte proliferation during pathogen invasion as bivariate distributions of IL-2 and IL-4 concentration levels. Specifically, by varying activation agents such as dendritic cells (DC), B cells and their joint mechanism of activation, we quantify how lymphocyte activation and differentiation protocols boost the immune response against pathogen invasion mediated by a joint downregulation of IL-4 and upregulation of IL-2. We further compare our in-silico results to in-vivo and in-vitro experimental studies for validation. In general, MMQE combines intracellular and extracellular effects from multiple interacting systems into simpler dynamic behaviors for better interpretability. It can be used to aid engineering of anti-infection drugs or optimizing drug combination therapies against several diseases.
Collapse
|
84
|
Ye Y, Zhang Y, Yang N, Gao Q, Ding X, Kuang X, Bao R, Zhang Z, Sun C, Zhou B, Wang L, Hu Q, Lin C, Gao J, Lou Y, Lin SH, Diao L, Liu H, Chen X, Mills GB, Han L. Profiling of immune features to predict immunotherapy efficacy. Innovation (N Y) 2022; 3:100194. [PMID: 34977836 PMCID: PMC8688727 DOI: 10.1016/j.xinn.2021.100194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoint blockade (ICB) therapies exhibit substantial clinical benefit in different cancers, but relatively low response rates in the majority of patients highlight the need to understand mutual relationships among immune features. Here, we reveal overall positive correlations among immune checkpoints and immune cell populations. Clinically, patients benefiting from ICB exhibited increases for both immune stimulatory and inhibitory features after initiation of therapy, suggesting that the activation of the immune microenvironment might serve as the biomarker to predict immune response. As proof-of-concept, we demonstrated that the immune activation score (IS Δ) based on dynamic alteration of interleukins in patient plasma as early as two cycles (4-6 weeks) after starting immunotherapy can accurately predict immunotherapy efficacy. Our results reveal a systematic landscape of associations among immune features and provide a noninvasive, cost-effective, and time-efficient approach based on dynamic profiling of pre- and on-treatment plasma to predict immunotherapy efficacy.
Collapse
Affiliation(s)
- Youqiong Ye
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China
| | - Qian Gao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xinyu Ding
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinwei Kuang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Rujuan Bao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Chaoyang Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bingying Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Qingsong Hu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yanyan Lou
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Steven H. Lin
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Gordon B. Mills
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030 USA
| |
Collapse
|
85
|
Teissier T, Boulanger E, Cox LS. Interconnections between Inflammageing and Immunosenescence during Ageing. Cells 2022; 11:359. [PMID: 35159168 PMCID: PMC8834134 DOI: 10.3390/cells11030359] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 02/04/2023] Open
Abstract
Acute inflammation is a physiological response to injury or infection, with a cascade of steps that ultimately lead to the recruitment of immune cells to clear invading pathogens and heal wounds. However, chronic inflammation arising from the continued presence of the initial trigger, or the dysfunction of signalling and/or effector pathways, is harmful to health. While successful ageing in older adults, including centenarians, is associated with low levels of inflammation, elevated inflammation increases the risk of poor health and death. Hence inflammation has been described as one of seven pillars of ageing. Age-associated sterile, chronic, and low-grade inflammation is commonly termed inflammageing-it is not simply a consequence of increasing chronological age, but is also a marker of biological ageing, multimorbidity, and mortality risk. While inflammageing was initially thought to be caused by "continuous antigenic load and stress", reports from the last two decades describe a much more complex phenomenon also involving cellular senescence and the ageing of the immune system. In this review, we explore some of the main sources and consequences of inflammageing in the context of immunosenescence and highlight potential interventions. In particular, we assess the contribution of cellular senescence to age-associated inflammation, identify patterns of pro- and anti-inflammatory markers characteristic of inflammageing, describe alterations in the ageing immune system that lead to elevated inflammation, and finally assess the ways that diet, exercise, and pharmacological interventions can reduce inflammageing and thus, improve later life health.
Collapse
Affiliation(s)
- Thibault Teissier
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| | - Eric Boulanger
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167—RID-AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France;
| | - Lynne S. Cox
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| |
Collapse
|
86
|
Han C, Wang Y, Liu R, Ran B, Li W. Structural characterization and protective effect of Lonicerae flos polysaccharide on cyclophosphamide-induced immunosuppression in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113174. [PMID: 34999342 DOI: 10.1016/j.ecoenv.2022.113174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
This study aimed to investigate the structure characteristics Lonicera flos polysaccharides (LP) and the protective effects of LP on cyclophosphamide-induced immunosuppression in mice. The results showed the yield and purity of LP was 1.41% and 94.15%, the molecular weight was 53 kDa, and composed of arabinose, rhamnose, ribose, xylose, mannose, fructose, galactose and glucose; and LP had typical polysaccharide structural characteristics via ultraviolet and Fourier transform infrared (FTIR) spectroscopy, 1H NMR and 13C NMR spectra, and scanning electron microscopy (SEM) analyses. Furthermore, LP obviously alleviated the injury of spleen and thymus; significantly promoted Interleukin-2 (IL-2), IL-6, tumor necrosis factor α (TNF-α), immunoglobulin (IgA, IgG and IgM) secretion; and improved the richness of gut microbiota and the contents of short-chain fatty acids (SCFAs) in immunosuppressive mice. Taken together, these results suggested that LP possessed strong protective effect on cyclophosphamide-induced immunosuppression in mice via modulating gut microbiota.
Collapse
Affiliation(s)
- Chao Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ying Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ruiying Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Beibei Ran
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Weidong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
87
|
Wang X, Urak R, Walter M, Guan M, Han T, Vyas V, Chien SH, Gittins B, Clark MC, Mokhtari S, Cardoso A, Diamond DJ, Zaia J, Forman SJ, Nakamura R. Large-scale manufacturing and characterization of CMV-CD19CAR T cells. J Immunother Cancer 2022; 10:jitc-2021-003461. [PMID: 35027426 PMCID: PMC8762141 DOI: 10.1136/jitc-2021-003461] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2021] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Adoptive transfer of CD19-specific chimeric antigen receptor (CD19CAR) T cells can induce dramatic disease regression in patients with B cell malignancies. CD19CAR T cell therapy may be limited by insufficient engraftment and persistence, resulting in tumor relapse. We previously demonstrated a proof of principle that cytomegalovirus (CMV)-specific T cells can be isolated and enriched prior to CD19CAR transduction to produce CMV-CD19CAR T cells, and that these CMV-CD19CAR T cells can be expanded in vivo through CMV vaccination, resulting in better tumor control in a murine model. Here we developed a clinical platform for generating CMV-CD19CAR T cells. METHODS Peripheral blood mononuclear cells (PBMCs) collected from CMV-seropositive healthy donors were stimulated with a good manufacturing practices-grade PepTivator overlapping CMVpp65 peptide pool and enriched for CMV-responsive interferon γ (IFNγ)+T cells using IFNγ Catchmatrix, within the CliniMACS Prodigy Cytokine Capture System (Miltenyi Biotec). Resulting CMV-specific T cells were transduced with a lentiviral vector encoding a second generation CD19R:CD28:ζ/EGFRt CAR and expanded with interleukin 2 (IL-2) and IL-15 for 15 days before characterization. RESULTS CMV-specific T cells were enriched from 0.8%±0.5 of input PBMC to 76.3%±11.6 in nine full-scale qualification runs (absolute yield of 4.2±3.3×106 IFNγ+T cells from an input of 1×109 PBMCs). Average CD19CAR transduction efficiency of CMV-specific T cells was 27.0%±14.2 in the final products, which underwent rapid expansion, resulting in a total cell dose of 6.2±0.9 × 106 CD19CAR-tranduced T cells with CMV specificity (ie, functionally bispecific). CMV-CD19CAR T cells were polyclonal, expressed memory markers but had low expression of exhaustion markers, responded to both CD19 and CMVpp65 stimulation with rapid proliferation and exhibited antigen-specific effector functions against both CD19-expressing tumors and CMVpp65 antigen. The final products passed release criteria for clinical use. CONCLUSIONS We demonstrated the feasibility of our large-scale platform for generating CMV-CD19CAR T cells for clinical application. We plan to initiate a clinical trial at City of Hope using CMV-CD19CAR T cells for patients with intermediate/high-grade B cell non-Hodgkin's lymphoma immediately after autologous hematopoietic cell transplantation followed by vaccination with a novel CMV vaccine based on Modified Vaccinia Ankara (Triplex) 28 days and 56 days post-T cell infusion.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Ryan Urak
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Miriam Walter
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Min Guan
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Tianxu Han
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Vibhuti Vyas
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Sheng-Hsuan Chien
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Brenna Gittins
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Mary C Clark
- Department of Clinical Translational Project Development, City of Hope, Duarte, California, USA
| | - Sally Mokhtari
- Department of Clinical Translational Project Development, City of Hope, Duarte, California, USA
| | - Angelo Cardoso
- Center for Gene Therapy, Hematological Malignancy and Stem Cell Transplantation Institute, City of Hope, Duarte, California, USA
| | - Don J Diamond
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - John Zaia
- Center for Gene Therapy, Hematological Malignancy and Stem Cell Transplantation Institute, City of Hope, Duarte, California, USA
| | - Stephen J Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Ryotaro Nakamura
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| |
Collapse
|
88
|
Peerlings D, Mimpen M, Damoiseaux J. The IL-2 - IL-2 receptor pathway: Key to understanding multiple sclerosis. J Transl Autoimmun 2022; 4:100123. [PMID: 35005590 PMCID: PMC8716671 DOI: 10.1016/j.jtauto.2021.100123] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022] Open
Abstract
The development, progression, diagnosis and treatment of autoimmune diseases, such as multiple sclerosis (MS), are convoluted processes which remain incompletely understood. Multiple studies demonstrated that the interleukin (IL)-2 – IL-2 receptor (IL-2R) pathway plays a pivotal role within these processes. The most striking functions of the IL-2 – IL-2R pathway are the differential induction of autoimmune responses and tolerance. This paradoxical function of the IL-2 – IL-2R pathway may be an attractive therapeutic target for autoimmune diseases such as MS. However, the exact mechanisms that lead to autoimmunity or tolerance remain to be elucidated. Furthermore, another factor of this pathway, the soluble form of the IL-2R (sIL-2R), further complicates understanding the role of the IL-2 – IL-2R pathway in MS. The challenge is to unravel these mechanisms to prevent, diagnose and recover MS. In this review, first, the current knowledge of MS and the IL-2 – IL-2R pathway are summarized. Second, the key findings of the relation between the IL-2 – IL-2R pathway and MS have been highlighted. Eventually, this review may launch broad interest in the IL-2 – IL-2R pathway propelling further research in autoimmune diseases, including MS. The IL-2 – IL-2R pathway determines the balance between immunity and tolerance. The IL-2 – IL-2R pathway is involved in the pathogenesis of multiple sclerosis. The role of soluble IL-2R is controversial and requires further investigation.
Collapse
Affiliation(s)
- Daphne Peerlings
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Max Mimpen
- School for Mental Health and Neuroscience, University of Maastricht, Maastricht, the Netherlands
| | - Jan Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
89
|
Hoshino Y, Noto D, Sano S, Tomizawa Y, Yokoyama K, Hattori N, Miyake S. Dysregulated B cell differentiation towards antibody-secreting cells in neuromyelitis optica spectrum disorder. J Neuroinflammation 2022; 19:6. [PMID: 34991631 PMCID: PMC8740356 DOI: 10.1186/s12974-021-02375-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/28/2021] [Indexed: 11/24/2022] Open
Abstract
Background Anti-aquaporin 4 (AQP4) antibody (AQP4-Ab) is involved in the pathogenesis of neuromyelitis optica spectrum disorder (NMOSD). However, the mechanism involved in AQP4-Ab production remains unclear. Methods We analyzed the immunophenotypes of patients with NMOSD and other neuroinflammatory diseases as well as healthy controls (HC) using flow cytometry. Transcriptome analysis of B cell subsets obtained from NMOSD patients and HCs was performed. The differentiation capacity of B cell subsets into antibody-secreting cells was analyzed. Results The frequencies of switched memory B (SMB) cells and plasmablasts were increased and that of naïve B cells was decreased in NMOSD patients compared with relapsing–remitting multiple sclerosis patients and HC. SMB cells from NMOSD patients had an enhanced potential to differentiate into antibody-secreting cells when cocultured with T peripheral helper cells. Transcriptome analysis revealed that the profiles of B cell lineage transcription factors in NMOSD were skewed towards antibody-secreting cells and that IL-2 signaling was upregulated, particularly in naïve B cells. Naïve B cells expressing CD25, a receptor of IL-2, were increased in NMOSD patients and had a higher potential to differentiate into antibody-secreting cells, suggesting CD25+ naïve B cells are committed to differentiate into antibody-secreting cells. Conclusions To the best of our knowledge, this is the first study to demonstrate that B cells in NMOSD patients are abnormally skewed towards antibody-secreting cells at the transcriptome level during the early differentiation phase, and that IL-2 might participate in this pathogenic process. Our study indicates that CD25+ naïve B cells are a novel candidate precursor of antibody-secreting cells in autoimmune diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02375-w.
Collapse
Affiliation(s)
- Yasunobu Hoshino
- Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Daisuke Noto
- Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shuhei Sano
- Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yuji Tomizawa
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazumasa Yokoyama
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Sachiko Miyake
- Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
90
|
Xu A, Leary SC, Islam MF, Wu Z, Bhanumathy KK, Ara A, Chibbar R, Fleywald A, Ahmed KA, Xiang J. Prosurvival IL-7-Stimulated Weak Strength of mTORC1-S6K Controls T Cell Memory via Transcriptional FOXO1-TCF1-Id3 and Metabolic AMPKα1-ULK1-ATG7 Pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:155-168. [PMID: 34872976 DOI: 10.4049/jimmunol.2100452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022]
Abstract
CD8+ memory T (TM) cells play a critical role in immune defense against infection. Two common γ-chain family cytokines, IL-2 and IL-7, although triggering the same mTORC1-S6K pathway, distinctly induce effector T (TE) cells and TM cells, respectively, but the underlying mechanism(s) remains elusive. In this study, we generated IL-7R-/and AMPKα1-knockout (KO)/OTI mice. By using genetic and pharmaceutical tools, we demonstrate that IL-7 deficiency represses expression of FOXO1, TCF1, p-AMPKα1 (T172), and p-ULK1 (S555) and abolishes T cell memory differentiation in IL-7R KO T cells after Listeria monocytogenesis rLmOVA infection. IL-2- and IL-7-stimulated strong and weak S6K (IL-2/S6Kstrong and IL-7/S6Kweak) signals control short-lived IL-7R-CD62L-KLRG1+ TE and long-term IL-7R+CD62L+KLRG1- TM cell formations, respectively. To assess underlying molecular pathway(s), we performed flow cytometry, Western blotting, confocal microscopy, and Seahorse assay analyses by using the IL-7/S6Kweak-stimulated TM (IL-7/TM) and the control IL-2/S6Kstrong-stimulated TE (IL-2/TE) cells. We determine that the IL-7/S6Kweak signal activates transcriptional FOXO1, TCF1, and Id3 and metabolic p-AMPKα1, p-ULK1, and ATG7 molecules in IL-7/TM cells. IL-7/TM cells upregulate IL-7R and CD62L, promote mitochondria biogenesis and fatty acid oxidation metabolism, and show long-term cell survival and functional recall responses. Interestingly, AMPKα1 deficiency abolishes the AMPKα1 but maintains the FOXO1 pathway and induces a metabolic switch from fatty acid oxidation to glycolysis in AMPKα1 KO IL-7/TM cells, leading to loss of cell survival and recall responses. Taken together, our data demonstrate that IL-7-stimulated weak strength of mTORC1-S6K signaling controls T cell memory via activation of transcriptional FOXO1-TCF1-Id3 and metabolic AMPKα1-ULK1-ATG7 pathways. This (to our knowledge) novel finding provides a new mechanism for a distinct IL-2/IL-7 stimulation model in T cell memory and greatly impacts vaccine development.
Collapse
Affiliation(s)
- Aizhang Xu
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada.,Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Scot C Leary
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Md Fahmid Islam
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada.,Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Zhaojia Wu
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada.,Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kalpana Kalyanasundaram Bhanumathy
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada.,Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Anjuman Ara
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada.,Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Rajni Chibbar
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; and
| | - Andrew Fleywald
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; and
| | - Khawaja Ashfaque Ahmed
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jim Xiang
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada; .,Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
91
|
Aspuria PJ, Vivona S, Bauer M, Semana M, Ratti N, McCauley S, Riener R, de Waal Malefyt R, Rokkam D, Emmerich J, Kastelein RA, Lupardus PJ, Oft M. An orthogonal IL-2 and IL-2Rβ system drives persistence and activation of CAR T cells and clearance of bulky lymphoma. Sci Transl Med 2021; 13:eabg7565. [PMID: 34936383 DOI: 10.1126/scitranslmed.abg7565] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
|
92
|
Dual Targeting of Cancer Cells and MMPs with Self-Assembly Hybrid Nanoparticles for Combination Therapy in Combating Cancer. Pharmaceutics 2021; 13:pharmaceutics13121990. [PMID: 34959271 PMCID: PMC8707712 DOI: 10.3390/pharmaceutics13121990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/19/2021] [Indexed: 01/21/2023] Open
Abstract
The co-delivery of chemotherapeutic agents and immune modulators to their targets remains to be a great challenge for nanocarriers. Here, we developed a hybrid thermosensitive nanoparticle (TMNP) which could co-deliver paclitaxel-loaded transferrin (PTX@TF) and marimastat-loaded thermosensitive liposomes (MMST/LTSLs) for the dual targeting of cancer cells and the microenvironment. TMNPs could rapidly release the two payloads triggered by the hyperthermia treatment at the site of tumor. The released PTX@TF entered cancer cells via transferrin-receptor-mediated endocytosis and inhibited the survival of tumor cells. MMST was intelligently employed as an immunomodulator to improve immunotherapy by inhibiting matrix metalloproteinases to reduce chemokine degradation and recruit T cells. The TMNPs promoted the tumor infiltration of CD3+ T cells by 2-fold, including memory/effector CD8+ T cells (4.2-fold) and CD4+ (1.7-fold), but not regulatory T cells. Our in vivo anti-tumor experiment suggested that TMNPs possessed the highest tumor growth inhibitory rate (80.86%) compared with the control group. We demonstrated that the nanoplatform could effectively inhibit the growth of tumors and enhance T cell recruitment through the co-delivery of paclitaxel and marimastat, which could be a promising strategy for the combination of chemotherapy and immunotherapy for cancer treatment.
Collapse
|
93
|
Kalia V, Yuzefpolskiy Y, Vegaraju A, Xiao H, Baumann F, Jatav S, Church C, Prlic M, Jha A, Nghiem P, Riddell S, Sarkar S. Metabolic regulation by PD-1 signaling promotes long-lived quiescent CD8 T cell memory in mice. Sci Transl Med 2021; 13:eaba6006. [PMID: 34644150 DOI: 10.1126/scitranslmed.aba6006] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Vandana Kalia
- Division of Hematology and Oncology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA.,Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Yevgeniy Yuzefpolskiy
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Adithya Vegaraju
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Hanxi Xiao
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Florian Baumann
- QIAGEN Sciences LLC, 19300 Germantown Rd, Germantown, MD 20874, USA
| | | | - Candice Church
- Dermatology Division, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA.,Department of Global Health, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | - Paul Nghiem
- Dermatology Division, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Stanley Riddell
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Surojit Sarkar
- Division of Hematology and Oncology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA.,Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.,Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
94
|
Cannons JL, Villarino AV, Kapnick SM, Preite S, Shih HY, Gomez-Rodriguez J, Kaul Z, Shibata H, Reilley JM, Huang B, Handon R, McBain IT, Gossa S, Wu T, Su HC, McGavern DB, O'Shea JJ, McGuire PJ, Uzel G, Schwartzberg PL. PI3Kδ coordinates transcriptional, chromatin, and metabolic changes to promote effector CD8 + T cells at the expense of central memory. Cell Rep 2021; 37:109804. [PMID: 34644563 PMCID: PMC8582080 DOI: 10.1016/j.celrep.2021.109804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 07/15/2021] [Accepted: 09/16/2021] [Indexed: 01/05/2023] Open
Abstract
Patients with activated phosphatidylinositol 3-kinase delta (PI3Kδ) syndrome (APDS) present with sinopulmonary infections, lymphadenopathy, and cytomegalvirus (CMV) and/or Epstein-Barr virus (EBV) viremia, yet why patients fail to clear certain chronic viral infections remains incompletely understood. Using patient samples and a mouse model (Pik3cdE1020K/+ mice), we demonstrate that, upon activation, Pik3cdE1020K/+ CD8+ T cells exhibit exaggerated features of effector populations both in vitro and after viral infection that are associated with increased Fas-mediated apoptosis due to sustained FoxO1 phosphorylation and Fasl derepression, enhanced mTORC1 and c-Myc signatures, metabolic perturbations, and an altered chromatin landscape. Conversely, Pik3cdE1020K/+ CD8+ cells fail to sustain expression of proteins critical for central memory, including TCF1. Strikingly, activated Pik3cdE1020K/+ CD8+ cells exhibit altered transcriptional and epigenetic circuits characterized by pronounced interleukin-2 (IL-2)/STAT5 signatures and heightened IL-2 responses that prevent differentiation to memory-like cells in IL-15. Our data position PI3Kδ as integrating multiple signaling nodes that promote CD8+ T cell effector differentiation, providing insight into phenotypes of patients with APDS.
Collapse
Affiliation(s)
- Jennifer L Cannons
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA.
| | - Alejandro V Villarino
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA; Department of Microbiology & Immunology and Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Senta M Kapnick
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Silvia Preite
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Han-Yu Shih
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA; National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Julio Gomez-Rodriguez
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA; TCR2 Therapeutics, Cambridge, MA 02142, USA
| | - Zenia Kaul
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Hirofumi Shibata
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Julie M Reilley
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Bonnie Huang
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Robin Handon
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Ian T McBain
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Selamawit Gossa
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Tuoqi Wu
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA; University of Colorado, Department of Immunology, Denver, CO 80204, USA; Department of Immunology and Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390
| | - Helen C Su
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Dorian B McGavern
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - John J O'Shea
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Peter J McGuire
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Gulbu Uzel
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Pamela L Schwartzberg
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
95
|
Krejcik J, Barnkob MB, Nyvold CG, Larsen TS, Barington T, Abildgaard N. Harnessing the Immune System to Fight Multiple Myeloma. Cancers (Basel) 2021; 13:4546. [PMID: 34572773 PMCID: PMC8467095 DOI: 10.3390/cancers13184546] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) is a heterogeneous plasma cell malignancy differing substantially in clinical behavior, prognosis, and response to treatment. With the advent of novel therapies, many patients achieve long-lasting remissions, but some experience aggressive and treatment refractory relapses. So far, MM is considered incurable. Myeloma pathogenesis can broadly be explained by two interacting mechanisms, intraclonal evolution of cancer cells and development of an immunosuppressive tumor microenvironment. Failures in isotype class switching and somatic hypermutations result in the neoplastic transformation typical of MM and other B cell malignancies. Interestingly, although genetic alterations occur and evolve over time, they are also present in premalignant stages, which never progress to MM, suggesting that genetic mutations are necessary but not sufficient for myeloma transformation. Changes in composition and function of the immune cells are associated with loss of effective immune surveillance, which might represent another mechanism driving malignant transformation. During the last decade, the traditional view on myeloma treatment has changed dramatically. It is increasingly evident that treatment strategies solely based on targeting intrinsic properties of myeloma cells are insufficient. Lately, approaches that redirect the cells of the otherwise suppressed immune system to take control over myeloma have emerged. Evidence of utility of this principle was initially established by the observation of the graft-versus-myeloma effect in allogeneic stem cell-transplanted patients. A variety of new strategies to harness both innate and antigen-specific immunity against MM have recently been developed and intensively tested in clinical trials. This review aims to give readers a basic understanding of how the immune system can be engaged to treat MM, to summarize the main immunotherapeutic modalities, their current role in clinical care, and future prospects.
Collapse
Affiliation(s)
- Jakub Krejcik
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
- Haematology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Mike Bogetofte Barnkob
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark
| | - Charlotte Guldborg Nyvold
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Haematology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, 5000 Odense, Denmark
| | - Thomas Stauffer Larsen
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
- Haematology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Torben Barington
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark
| | - Niels Abildgaard
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
- Haematology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| |
Collapse
|
96
|
Son YM, Sun J. Co-Ordination of Mucosal B Cell and CD8 T Cell Memory by Tissue-Resident CD4 Helper T Cells. Cells 2021; 10:cells10092355. [PMID: 34572004 PMCID: PMC8471972 DOI: 10.3390/cells10092355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/25/2022] Open
Abstract
Adaptive cellular immunity plays a major role in clearing microbial invasion of mucosal tissues in mammals. Following the clearance of primary pathogens, memory lymphocytes are established both systemically and locally at pathogen entry sites. Recently, resident memory CD8 T and B cells (TRM and BRM respectively), which are parked mainly in non-lymphoid mucosal tissues, were characterized and demonstrated to be essential for protection against secondary microbial invasion. Here we reviewed the current understanding of the cellular and molecular cues regulating CD8 TRM and BRM development, maintenance and function. We focused particularly on elucidating the role of a novel tissue-resident helper T (TRH) cell population in assisting TRM and BRM responses in the respiratory mucosa following viral infection. Finally, we argue that the promotion of TRH responses by future mucosal vaccines would be key to the development of successful universal influenza or coronavirus vaccines, providing long-lasting immunity against a broad spectrum of viral strains.
Collapse
Affiliation(s)
- Young Min Son
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jie Sun
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Correspondence: or
| |
Collapse
|
97
|
Beckmann ND, Comella PH, Cheng E, Lepow L, Beckmann AG, Tyler SR, Mouskas K, Simons NW, Hoffman GE, Francoeur NJ, Del Valle DM, Kang G, Do A, Moya E, Wilkins L, Le Berichel J, Chang C, Marvin R, Calorossi S, Lansky A, Walker L, Yi N, Yu A, Chung J, Hartnett M, Eaton M, Hatem S, Jamal H, Akyatan A, Tabachnikova A, Liharska LE, Cotter L, Fennessy B, Vaid A, Barturen G, Shah H, Wang YC, Sridhar SH, Soto J, Bose S, Madrid K, Ellis E, Merzier E, Vlachos K, Fishman N, Tin M, Smith M, Xie H, Patel M, Nie K, Argueta K, Harris J, Karekar N, Batchelor C, Lacunza J, Yishak M, Tuballes K, Scott I, Kumar A, Jaladanki S, Agashe C, Thompson R, Clark E, Losic B, Peters L, Roussos P, Zhu J, Wang W, Kasarskis A, Glicksberg BS, Nadkarni G, Bogunovic D, Elaiho C, Gangadharan S, Ofori-Amanfo G, Alesso-Carra K, Onel K, Wilson KM, Argmann C, Bunyavanich S, Alarcón-Riquelme ME, Marron TU, Rahman A, Kim-Schulze S, Gnjatic S, Gelb BD, Merad M, Sebra R, Schadt EE, Charney AW. Downregulation of exhausted cytotoxic T cells in gene expression networks of multisystem inflammatory syndrome in children. Nat Commun 2021; 12:4854. [PMID: 34381049 PMCID: PMC8357784 DOI: 10.1038/s41467-021-24981-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) presents with fever, inflammation and pathology of multiple organs in individuals under 21 years of age in the weeks following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Although an autoimmune pathogenesis has been proposed, the genes, pathways and cell types causal to this new disease remain unknown. Here we perform RNA sequencing of blood from patients with MIS-C and controls to find disease-associated genes clustered in a co-expression module annotated to CD56dimCD57+ natural killer (NK) cells and exhausted CD8+ T cells. A similar transcriptome signature is replicated in an independent cohort of Kawasaki disease (KD), the related condition after which MIS-C was initially named. Probing a probabilistic causal network previously constructed from over 1,000 blood transcriptomes both validates the structure of this module and reveals nine key regulators, including TBX21, a central coordinator of exhausted CD8+ T cell differentiation. Together, this unbiased, transcriptome-wide survey implicates downregulation of NK cells and cytotoxic T cell exhaustion in the pathogenesis of MIS-C.
Collapse
Affiliation(s)
- Noam D Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA.
| | - Phillip H Comella
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Esther Cheng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lauren Lepow
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aviva G Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott R Tyler
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Konstantinos Mouskas
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicole W Simons
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gabriel E Hoffman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nancy J Francoeur
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
| | | | - Gurpawan Kang
- Department of Medicine, Division of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anh Do
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
| | - Emily Moya
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lillian Wilkins
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica Le Berichel
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christie Chang
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Marvin
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sharlene Calorossi
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alona Lansky
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura Walker
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nancy Yi
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alex Yu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan Chung
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Melody Eaton
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sandra Hatem
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hajra Jamal
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alara Akyatan
- Department of of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra Tabachnikova
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lora E Liharska
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Liam Cotter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian Fennessy
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Akhil Vaid
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Guillermo Barturen
- Department of Medical Genomics, Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government (GENYO), Granada, Spain
| | - Hardik Shah
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ying-Chih Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shwetha Hara Sridhar
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juan Soto
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
| | - Swaroop Bose
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
| | - Kent Madrid
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
| | - Ethan Ellis
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
| | - Elyze Merzier
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
| | - Konstantinos Vlachos
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
| | - Nataly Fishman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
| | - Manying Tin
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
| | - Melissa Smith
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
| | - Hui Xie
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manishkumar Patel
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kai Nie
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kimberly Argueta
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jocelyn Harris
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Neha Karekar
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Craig Batchelor
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jose Lacunza
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mahlet Yishak
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kevin Tuballes
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ieisha Scott
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arvind Kumar
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Suraj Jaladanki
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charuta Agashe
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ryan Thompson
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
| | - Evan Clark
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bojan Losic
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lauren Peters
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panagiotis Roussos
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jun Zhu
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wenhui Wang
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Benjamin S Glicksberg
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Girish Nadkarni
- Mount Sinai COVID Informatics Center, New York, NY, USA
- Department of Medicine, Mount Sinai, New York, NY, USA
- Hasso Plattner Institute for Digital Health at Mount Sinai, New York, NY, USA
- Charles Bronfman Institute for Personalized Medicine, New York, NY, USA
| | - Dusan Bogunovic
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cordelia Elaiho
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sandeep Gangadharan
- Departments of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - George Ofori-Amanfo
- Departments of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kasey Alesso-Carra
- Departments of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kenan Onel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departments of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Karen M Wilson
- Departments of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Supinda Bunyavanich
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
- Departments of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marta E Alarcón-Riquelme
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas U Marron
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adeeb Rahman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sacha Gnjatic
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bruce D Gelb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departments of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
- Black Family Stem Cell Institute, New York, NY, USA
- Sema4, a Mount Sinai Venture, Stamford, CT, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA.
- Sema4, a Mount Sinai Venture, Stamford, CT, USA.
| | - Alexander W Charney
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mount Sinai COVID Informatics Center, New York, NY, USA.
| |
Collapse
|
98
|
Ng MG, Ng KY, Koh RY, Chye SM. Potential role of melatonin in prevention and treatment of leukaemia. Horm Mol Biol Clin Investig 2021; 42:445-461. [PMID: 34355548 DOI: 10.1515/hmbci-2021-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/06/2021] [Indexed: 11/15/2022]
Abstract
Leukaemia is a haematological malignancy originated from the bone marrow. Studies have shown that shift work could disrupt the melatonin secretion and eventually increase leukaemia incidence risk. Melatonin, a pineal hormone, has shown promising oncostatic properties on a wide range of cancers, including leukaemia. We first reviewed the relationship between shift work and the incidence rate of leukaemia and then discussed the role of melatonin receptors (MT1 and MT2) and their functions in leukaemia. Moreover, the connection between inflammation and leukaemia, and melatonin-induced anti-leukaemia mechanisms including anti-proliferation, apoptosis induction and immunomodulation are comprehensively discussed. Apart from that, the synergistic effects of melatonin with other anticancer compounds are also included. In short, this review article has compiled the evidence of anti-leukaemia properties displayed by melatonin and discuss its potential to act as adjunct for anti-leukaemia treatment. This review may serve as a reference for future studies or experimental research to explore the possibility of melatonin serving as a novel therapeutic agent for leukaemia.
Collapse
Affiliation(s)
- Ming Guan Ng
- School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| | - Rhun Yian Koh
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
99
|
Battram AM, Bachiller M, Lopez V, Fernández de Larrea C, Urbano-Ispizua A, Martín-Antonio B. IL-15 Enhances the Persistence and Function of BCMA-Targeting CAR-T Cells Compared to IL-2 or IL-15/IL-7 by Limiting CAR-T Cell Dysfunction and Differentiation. Cancers (Basel) 2021; 13:cancers13143534. [PMID: 34298748 PMCID: PMC8304527 DOI: 10.3390/cancers13143534] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary T cells modified with a chimeric antigen receptor (CAR) that targets BCMA, a protein expressed on malignant plasma cells, represent a novel treatment option for multiple myeloma. Despite initially eliminating the disease, the function of BCMA-directed CAR-T cells diminishes within a year of administration, leading to disease relapse. The aim of this research was to alter the cytokines used in the ex vivo expansion of anti-BCMA CAR-T cells, to avoid the development of an unfavorable phenotype that would impair in vivo function. We discovered that CAR-T cells expanded with IL-15 had reduced dysfunction and enhanced persistence compared to those grown with IL-2 or a combination of IL-15 and IL-7, which resulted in longer and improved anti-tumor responses in a mouse model. Therefore, the use of IL-15 alone in place of IL-2 or IL-15/IL-7 should be considered when designing CAR-T cell production protocols, to improve the duration of patient responses. Abstract Chimeric antigen receptor (CAR)-T cell immunotherapy has revolutionized the treatment of B-lymphoid malignancies. For multiple myeloma (MM), B-cell maturation antigen (BCMA)-targeted CAR-T cells have achieved outstanding complete response rates, but unfortunately, patients often relapse within a year of receiving the therapy. Increased persistence and reduced dysfunction are crucial features that enhance the durability of CAR-T cell responses. One of the factors that influence CAR-T cell in vivo longevity and loss of function, but which has not yet been extensively studied for BCMA-directed CAR-T cells, are the cytokines used during their production. We here compared the impact of IL-2, IL-15 and a combination of IL-15/IL-7 on the phenotype and function of ARI2h, an academic BCMA-directed CAR-T cell that is currently being administered to MM patients. For this study, flow cytometry, in vitro cytotoxicity assays and analysis of cytokine release were performed. In addition, ARI2h cells expanded with IL-2, IL-15, or IL-15/IL-7 were injected into MM tumor-bearing mice to assess their in vivo efficacy. We demonstrated that each of the cytokine conditions was suitable for the expansion of ARI2h cells, with clear in vitro activity. Strikingly, however, IL-15-produced ARI2h cells had improved in vivo efficacy and persistence. When explored further, it was found that IL-15 drove a less-differentiated ARI2h phenotype, ameliorated parameters related to CAR-T cell dysfunction, and lowered the release of cytokines potentially involved in cytokine release syndrome and MM progression. Moreover, we observed that IL-15 was less potent in inducing T cell senescence and DNA damage accumulation, both of which may contribute to an unfavorable CAR-T cell phenotype. These findings show the superiority of IL-15 to IL-2 and IL-15/IL-7 in the quality of anti-BCMA CAR-T cells, particularly their efficacy and persistence, and as such, could improve the duration of responses if applied to the clinical production of CAR-T cells for patients.
Collapse
Affiliation(s)
- Anthony M. Battram
- Department of Hematology, Hospital Clinic, IDIBAPS, 08036 Barcelona, Spain; (M.B.); (V.L.); (C.F.d.L.); (A.U.-I.)
- Correspondence: ; Tel.: +34-932275400
| | - Mireia Bachiller
- Department of Hematology, Hospital Clinic, IDIBAPS, 08036 Barcelona, Spain; (M.B.); (V.L.); (C.F.d.L.); (A.U.-I.)
| | - Victor Lopez
- Department of Hematology, Hospital Clinic, IDIBAPS, 08036 Barcelona, Spain; (M.B.); (V.L.); (C.F.d.L.); (A.U.-I.)
| | - Carlos Fernández de Larrea
- Department of Hematology, Hospital Clinic, IDIBAPS, 08036 Barcelona, Spain; (M.B.); (V.L.); (C.F.d.L.); (A.U.-I.)
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Alvaro Urbano-Ispizua
- Department of Hematology, Hospital Clinic, IDIBAPS, 08036 Barcelona, Spain; (M.B.); (V.L.); (C.F.d.L.); (A.U.-I.)
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, 08036 Barcelona, Spain
| | - Beatriz Martín-Antonio
- Department of Experimental Hematology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, 28040 Madrid, Spain;
| |
Collapse
|
100
|
Zhao C, Zhang Y, Zheng H. The Effects of Interferons on Allogeneic T Cell Response in GVHD: The Multifaced Biology and Epigenetic Regulations. Front Immunol 2021; 12:717540. [PMID: 34305954 PMCID: PMC8297501 DOI: 10.3389/fimmu.2021.717540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative therapy for hematological malignancies. This beneficial effect is derived mainly from graft-versus-leukemia (GVL) effects mediated by alloreactive T cells. However, these alloreactive T cells can also induce graft-versus-host disease (GVHD), a life-threatening complication after allo-HSCT. Significant progress has been made in the dissociation of GVL effects from GVHD by modulating alloreactive T cell immunity. However, many factors may influence alloreactive T cell responses in the host undergoing allo-HSCT, including the interaction of alloreactive T cells with both donor and recipient hematopoietic cells and host non-hematopoietic tissues, cytokines, chemokines and inflammatory mediators. Interferons (IFNs), including type I IFNs and IFN-γ, primarily produced by monocytes, dendritic cells and T cells, play essential roles in regulating alloreactive T cell differentiation and function. Many studies have shown pleiotropic effects of IFNs on allogeneic T cell responses during GVH reaction. Epigenetic mechanisms, such as DNA methylation and histone modifications, are important to regulate IFNs’ production and function during GVHD. In this review, we discuss recent findings from preclinical models and clinical studies that characterize T cell responses regulated by IFNs and epigenetic mechanisms, and further discuss pharmacological approaches that modulate epigenetic effects in the setting of allo-HSCT.
Collapse
Affiliation(s)
- Chenchen Zhao
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, United States
| | - Yi Zhang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, United States
| | - Hong Zheng
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, United States
| |
Collapse
|