51
|
Jia W, Yuan J, Cheng B, Ling C. Targeting tumor-derived exosome-mediated premetastatic niche formation: The metastasis-preventive value of traditional Chinese medicine. Cancer Lett 2023:216261. [PMID: 37302563 DOI: 10.1016/j.canlet.2023.216261] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/13/2023]
Abstract
Tumor-derived exosome (TDE)-mediated premetastatic niche (PMN) formation is a potential mechanism underlying the organotropic metastasis of primary tumors. Traditional Chinese medicine (TCM) has shown considerable success in preventing and treating tumor metastasis. However, the underlying mechanisms remain elusive. In this review, we discussed PMN formation from the perspectives of TDE biogenesis, cargo sorting, and TDE recipient cell alterations, which are critical for metastatic outgrowth. We also reviewed the metastasis-preventive effects of TCM, which act by targeting the physicochemical materials and functional mediators of TDE biogenesis, regulating the cargo sorting machinery and secretory molecules in TDEs, and targeting the TDE-recipient cells involved in PMN formation.
Collapse
Affiliation(s)
- Wentao Jia
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, China.
| | - Jiaying Yuan
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, China.
| | - Changquan Ling
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, China.
| |
Collapse
|
52
|
Lasorsa F, Rutigliano M, Milella M, Ferro M, Pandolfo SD, Crocetto F, Tataru OS, Autorino R, Battaglia M, Ditonno P, Lucarelli G. Cellular and Molecular Players in the Tumor Microenvironment of Renal Cell Carcinoma. J Clin Med 2023; 12:3888. [PMID: 37373581 DOI: 10.3390/jcm12123888] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Globally, clear-cell renal cell carcinoma (ccRCC) represents the most prevalent type of kidney cancer. Surgery plays a key role in the treatment of this cancer, although one third of patients are diagnosed with metastatic ccRCC and about 25% of patients will develop a recurrence after nephrectomy with curative intent. Molecular-target-based agents, such as tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs), are recommended for advanced cancers. In addition to cancer cells, the tumor microenvironment (TME) includes non-malignant cell types embedded in an altered extracellular matrix (ECM). The evidence confirms that interactions among cancer cells and TME elements exist and are thought to play crucial roles in the development of cancer, making them promising therapeutic targets. In the TME, an unfavorable pH, waste product accumulation, and competition for nutrients between cancer and immune cells may be regarded as further possible mechanisms of immune escape. To enhance immunotherapies and reduce resistance, it is crucial first to understand how the immune cells work and interact with cancer and other cancer-associated cells in such a complex tumor microenvironment.
Collapse
Affiliation(s)
- Francesco Lasorsa
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Monica Rutigliano
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Martina Milella
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology, IRCCS, 71013 Milan, Italy
| | - Savio Domenico Pandolfo
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Felice Crocetto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Octavian Sabin Tataru
- Department of Simulation Applied in Medicine, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 540139 Târgu Mureș, Romania
| | - Riccardo Autorino
- Department of Urology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Michele Battaglia
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Pasquale Ditonno
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
53
|
Zhang Z, Yao Z, Zhang Z, Cui L, Zhang L, Qiu G, Song X, Song S. Local radiotherapy for murine breast cancer increases risk of metastasis by promoting the recruitment of M-MDSCs in lung. Cancer Cell Int 2023; 23:107. [PMID: 37268941 DOI: 10.1186/s12935-023-02934-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/30/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Radiotherapy is one of the effective methods for treatment of breast cancer; however, controversies still exist with respect to radiotherapy for patients with TNBC. Here, we intend to explore the mechanism by which local radiotherapy promotes the recruitment of M-MDSCs in the lung and increases the risk of lung metastasis in TNBC tumor-bearing mice. METHODS A single dose of 20 Gy X-ray was used to locally irradiate the primary tumor of 4T1 tumor-bearing mice. Tumor growth, the number of pulmonary metastatic nodules, and the frequency of MDSCs were monitored in the mice. Antibody microarray and ELISA methods were used to analyze the cytokines in exosomes released by irradiated (IR) or non-IR 4T1 cells. The effects of the exosomes on recruitment of MDSCs and colonization of 4T1 cells in the lung of normal BALB/c mice were observed with the methods of FCM and pathological section staining. T lymphocytes or 4T1 cells co-cultured with MDSCs were performed to demonstrate the inhibitory effect on T lymphocytes or accelerative migration effect on 4T1 cells. Finally, a series of in vitro experiments demonstrated how the exosomes promote the recruitment of M-MDSCs in lung of mice. RESULTS Even though radiotherapy reduced the burden of primary tumors and larger lung metastatic nodules (≥ 0.4 mm2), the number of smaller metastases (< 0.4 mm2) significantly increased. Consistently, radiotherapy markedly potentiated M-MDSCs and decreased PMN-MDSCs recruitment to lung of tumor-bearing mice. Moreover, the frequency of M-MDSCs of lung was positively correlated with the number of lung metastatic nodules. Further, M-MDSCs markedly inhibited T cell function, while there was no difference between M-MDSCs and PMN-MDSCs in promoting 4T1 cell migration. X-ray irradiation promoted the release of G-CSF, GM-CSF and CXCl1-rich exosomes, and facilitated the migration of M-MDSCs and PMN-MDSCs into the lung through CXCL1/CXCR2 signaling. While irradiated mouse lung extracts or ir/4T1-exo treated macrophage culture medium showed obvious selective chemotaxis to M-MDSCs. Mechanistically, ir/4T1-exo induce macrophage to produce GM-CSF, which further promoted CCL2 release in an autocrine manner to recruit M-MDSCs via CCL2/CCR2 axis. CONCLUSIONS Our work has identified an undesired effect of radiotherapy that may promote immunosuppressive premetastatic niches formation by recruiting M-MDSCs to lung. Further studies on radiotherapy combined CXCR2 or CCR2 signals inhibitors were necessary.
Collapse
Affiliation(s)
- Zhengzheng Zhang
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Hebei province Key Laboratory of Immunological mechanism and intervention of serious diseases, Hebei Medical University, Shijiazhuang, China
| | - Zhiyan Yao
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Hebei province Key Laboratory of Immunological mechanism and intervention of serious diseases, Hebei Medical University, Shijiazhuang, China
| | - Zimeng Zhang
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Hebei province Key Laboratory of Immunological mechanism and intervention of serious diseases, Hebei Medical University, Shijiazhuang, China
| | - Ling Cui
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Hebei province Key Laboratory of Immunological mechanism and intervention of serious diseases, Hebei Medical University, Shijiazhuang, China
| | - Ling Zhang
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Hebei province Key Laboratory of Immunological mechanism and intervention of serious diseases, Hebei Medical University, Shijiazhuang, China
| | - Gang Qiu
- Department of Oncology, Hebei People's Hospital, Shijiazhuang, China
| | - Xiaotian Song
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.
- Hebei province Key Laboratory of Immunological mechanism and intervention of serious diseases, Hebei Medical University, Shijiazhuang, China.
| | - Shuxia Song
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.
- Hebei province Key Laboratory of Immunological mechanism and intervention of serious diseases, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
54
|
Dong H, Li Q, Zhang Y, Ding M, Teng Z, Mou Y. Biomaterials Facilitating Dendritic Cell-Mediated Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301339. [PMID: 37088780 PMCID: PMC10288267 DOI: 10.1002/advs.202301339] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Dendritic cell (DC)-based cancer immunotherapy has exhibited remarkable clinical prospects because DCs play a central role in initiating and regulating adaptive immune responses. However, the application of traditional DC-mediated immunotherapy is limited due to insufficient antigen delivery, inadequate antigen presentation, and high levels of immunosuppression. To address these challenges, engineered biomaterials have been exploited to enhance DC-mediated immunotherapeutic effects. In this review, vital principal components that can enhance DC-mediated immunotherapeutic effects are first introduced. The parameters considered in the rational design of biomaterials, including targeting modifications, size, shape, surface, and mechanical properties, which can affect biomaterial optimization of DC functions, are further summarized. Moreover, recent applications of various engineered biomaterials in the field of DC-mediated immunotherapy are reviewed, including those serve as immune component delivery platforms, remodel the tumor microenvironment, and synergistically enhance the effects of other antitumor therapies. Overall, the present review comprehensively and systematically summarizes biomaterials related to the promotion of DC functions; and specifically focuses on the recent advances in biomaterial designs for DC activation to eradicate tumors. The challenges and opportunities of treatment strategies designed to amplify DCs via the application of biomaterials are discussed with the aim of inspiring the clinical translation of future DC-mediated cancer immunotherapies.
Collapse
Affiliation(s)
- Heng Dong
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Qiang Li
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Yu Zhang
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Meng Ding
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023P. R. China
| | - Yongbin Mou
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| |
Collapse
|
55
|
Zheng Y, Wang N, Wang S, Zhang J, Yang B, Wang Z. Chronic psychological stress promotes breast cancer pre-metastatic niche formation by mobilizing splenic MDSCs via TAM/CXCL1 signaling. J Exp Clin Cancer Res 2023; 42:129. [PMID: 37210553 DOI: 10.1186/s13046-023-02696-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/01/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Emerging studies have identified chronic psychological stress as an independent risk factor influencing breast cancer growth and metastasis. However, the effects of chronic psychological stress on pre-metastatic niche (PMN) formation and the underlying immunological mechanisms remain largely unknown. METHODS The effects and molecular mechanisms of chronic unpredictable mild stress (CUMS) on modulating tumor-associated macrophages (TAMs) and PMN formation were clarified by multiplex immunofluorescence technique, cytokine array, chromatin immunoprecipitation, the dual-luciferase reporter assay, and breast cancer xenografts. Transwell and CD8+ T cytotoxicity detection were used to analyze the mobilization and function of myeloid-derived suppressor cells (MDSCs). mCherry-labeled tracing strategy and bone marrow transplantation were applied to explore the crucial role of splenic CXCR2+/+ MDSCs facilitating PMN formation under CUMS. RESULTS CUMS significantly promoted breast cancer growth and metastasis, accompanied by TAMs accumulation in the microenvironment. CXCL1 was identified as a crucial chemokine in TAMs facilitating PMN formation in a glucocorticoid receptor (GR)-dependent manner. Interestingly, the spleen index was significantly reduced under CUMS, and splenic MDSCs were validated as a key factor mediating CXCL1-induced PMN formation. The molecular mechanism study revealed that TAM-derived CXCL1 enhanced the proliferation, migration, and anti-CD8+ T cell functions of MDSCs via CXCR2. Moreover, CXCR2 knockout and CXCR2-/-MDSCs transplantation significantly impaired CUMS-mediated MDSC elevation, PMN formation, and breast cancer metastasis. CONCLUSION Our findings shed new light on the association between chronic psychological stress and splenic MDSC mobilization, and suggest that stress-related glucocorticoid elevation can enhance TAM/CXCL1 signaling and subsequently recruit splenic MDSCs to promote PMN formation via CXCR2.
Collapse
Affiliation(s)
- Yifeng Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Neng Wang
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Shengqi Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Juping Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Bowen Yang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Zhiyu Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
56
|
Salemme V, Vedelago M, Sarcinella A, Moietta F, Piccolantonio A, Moiso E, Centonze G, Manco M, Guala A, Lamolinara A, Angelini C, Morellato A, Natalini D, Calogero R, Incarnato D, Oliviero S, Conti L, Iezzi M, Tosoni D, Bertalot G, Freddi S, Tucci FA, De Sanctis F, Frusteri C, Ugel S, Bronte V, Cavallo F, Provero P, Gai M, Taverna D, Turco E, Pece S, Defilippi P. p140Cap inhibits β-Catenin in the breast cancer stem cell compartment instructing a protective anti-tumor immune response. Nat Commun 2023; 14:2350. [PMID: 37169737 PMCID: PMC10175288 DOI: 10.1038/s41467-023-37824-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/03/2023] [Indexed: 05/13/2023] Open
Abstract
The p140Cap adaptor protein is a tumor suppressor in breast cancer associated with a favorable prognosis. Here we highlight a function of p140Cap in orchestrating local and systemic tumor-extrinsic events that eventually result in inhibition of the polymorphonuclear myeloid-derived suppressor cell function in creating an immunosuppressive tumor-promoting environment in the primary tumor, and premetastatic niches at distant sites. Integrative transcriptomic and preclinical studies unravel that p140Cap controls an epistatic axis where, through the upstream inhibition of β-Catenin, it restricts tumorigenicity and self-renewal of tumor-initiating cells limiting the release of the inflammatory cytokine G-CSF, required for polymorphonuclear myeloid-derived suppressor cells to exert their local and systemic tumor conducive function. Mechanistically, p140Cap inhibition of β-Catenin depends on its ability to localize in and stabilize the β-Catenin destruction complex, promoting enhanced β-Catenin inactivation. Clinical studies in women show that low p140Cap expression correlates with reduced presence of tumor-infiltrating lymphocytes and more aggressive tumor types in a large cohort of real-life female breast cancer patients, highlighting the potential of p140Cap as a biomarker for therapeutic intervention targeting the β-Catenin/ Tumor-initiating cells /G-CSF/ polymorphonuclear myeloid-derived suppressor cell axis to restore an efficient anti-tumor immune response.
Collapse
Affiliation(s)
- Vincenzo Salemme
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
- Molecular Biotechnology Center (MBC) "Guido Tarone", Via Nizza, 52, 10126, Turin, Italy
| | - Mauro Vedelago
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Alessandro Sarcinella
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Federico Moietta
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Alessio Piccolantonio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
- Molecular Biotechnology Center (MBC) "Guido Tarone", Via Nizza, 52, 10126, Turin, Italy
| | - Enrico Moiso
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Giorgia Centonze
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
- Molecular Biotechnology Center (MBC) "Guido Tarone", Via Nizza, 52, 10126, Turin, Italy
| | - Marta Manco
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Andrea Guala
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Alessia Lamolinara
- Immuno-Oncology Laboratory, Center for Advanced Studies and Technology (CAST), Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti-Pescara, Italy
| | - Costanza Angelini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Alessandro Morellato
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
- Molecular Biotechnology Center (MBC) "Guido Tarone", Via Nizza, 52, 10126, Turin, Italy
| | - Dora Natalini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Raffaele Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
- Molecular Biotechnology Center (MBC) "Guido Tarone", Via Nizza, 52, 10126, Turin, Italy
| | - Danny Incarnato
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
| | - Salvatore Oliviero
- Molecular Biotechnology Center (MBC) "Guido Tarone", Via Nizza, 52, 10126, Turin, Italy
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy and IIGM, Candiolo, Italy
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
- Molecular Biotechnology Center (MBC) "Guido Tarone", Via Nizza, 52, 10126, Turin, Italy
| | - Manuela Iezzi
- Immuno-Oncology Laboratory, Center for Advanced Studies and Technology (CAST), Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti-Pescara, Italy
| | - Daniela Tosoni
- European Institute of Oncology IRCCS, 20141, Milan, Italy
| | | | - Stefano Freddi
- European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Francesco A Tucci
- European Institute of Oncology IRCCS, 20141, Milan, Italy
- School of Pathology, University of Milan, Milan, Italy
| | - Francesco De Sanctis
- Immunology Section, Department of Medicine, University of Verona, 37134, Verona, Italy
| | - Cristina Frusteri
- Immunology Section, Department of Medicine, University of Verona, 37134, Verona, Italy
| | - Stefano Ugel
- Immunology Section, Department of Medicine, University of Verona, 37134, Verona, Italy
| | - Vincenzo Bronte
- Immunology Section, Department of Medicine, University of Verona, 37134, Verona, Italy
- Istituto Oncologico Veneto, IRCCS, 35128, Padova, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
- Molecular Biotechnology Center (MBC) "Guido Tarone", Via Nizza, 52, 10126, Turin, Italy
| | - Paolo Provero
- Neuroscience Department "Rita Levi Montalcini", University of Torino, Via Cherasco 15, 10126, Torino, Italy
| | - Marta Gai
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Daniela Taverna
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
- Molecular Biotechnology Center (MBC) "Guido Tarone", Via Nizza, 52, 10126, Turin, Italy
| | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Salvatore Pece
- European Institute of Oncology IRCCS, 20141, Milan, Italy.
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20142, Milano, Italy.
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy.
- Molecular Biotechnology Center (MBC) "Guido Tarone", Via Nizza, 52, 10126, Turin, Italy.
| |
Collapse
|
57
|
Huang R, Wang H, Hong J, Wang Z, Wu J, Huang O, He J, Chen W, Li Y, Chen X, Shen K. A senescence-associated signature refines the classification of different modification patterns and characterization of tumor immune microenvironment infiltration in triple-negative breast cancer. Front Pharmacol 2023; 14:1191910. [PMID: 37251343 PMCID: PMC10213971 DOI: 10.3389/fphar.2023.1191910] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Background: Recent studies have found that senescence-associated genes play a significant role in cancer biological processes. We aimed to analyze the characteristics and role of senescence-associated genes in triple-negative breast cancer (TNBC). Methods: We systematically screened senescence-associated secretory phenotype (SASP) genes based on the gene expression information in the TCGA database. According to the expression levels of senescence-associated genes, TNBC was classified into two subtypes, namely, TNBCSASP1 and TNBCSASP2, using an unsupervised cluster algorithm. We then performed gene expression, enrichment pathway, immune infiltration, mutational profile characterization, drug sensitivity and prognostic value analyses for the two subtypes. The reliability and prognostic predictive utility of this classification model were validated. The most prognostically relevant gene, FAM3B, was comprehensively identified and validated by tissue microarray in TNBC. Results: TNBC was classified into two senescence-associated subtypes, TNBCSASP1 and TNBCSASP2, based on the set of senescence-associated secretory phenotype genes, among which the TNBCSASP1 subtype had a poor prognosis. The TNBCSASP1 subtype was immunosuppressed, with suppressed immune-related signaling pathways and low immune cell infiltration. The effect of the mutation on the TP53 and TGF-β pathways could be related to the poor prognosis of the TNBCSASP1 subtype. Drug sensitivity analysis showed that AMG.706, CCT007093, and CHIR.99021 were potential targeted drugs for the TNBCSASP1 subtype. Finally, FAM3B was a key biomarker affecting the prognosis of patients with triple-negative breast cancer. Compared to normal breast tissue, the expression of FAM3B was reduced in triple-negative breast cancer. Survival analysis showed that overall survival was significantly shorter in triple-negative breast cancer patients with high FAM3B expression. Conclusion: A senescence-associated signature with different modification patterns has critical potential for providing a better understanding of TNBC biological processes, and FAM3B might serve as an applicable target for TNBC therapy.
Collapse
Affiliation(s)
| | | | | | - Zheng Wang
- *Correspondence: Zheng Wang, ; Xiaosong Chen, ; Kunwei Shen,
| | | | | | | | | | | | - Xiaosong Chen
- *Correspondence: Zheng Wang, ; Xiaosong Chen, ; Kunwei Shen,
| | - Kunwei Shen
- *Correspondence: Zheng Wang, ; Xiaosong Chen, ; Kunwei Shen,
| |
Collapse
|
58
|
Vasiyani H, Wadhwa B, Singh R. Regulation of cGAS-STING signalling in cancer: Approach for combination therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188896. [PMID: 37088059 DOI: 10.1016/j.bbcan.2023.188896] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Innate immunity plays an important role not only during infection but also homeostatic role during stress conditions. Activation of the immune system including innate immune response plays a critical role in the initiation and progression of tumorigenesis. The innate immune sensor recognizes pathogen-associated molecular patterns (PAMPs) and activates cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) (cGAS-STING) and induces type-1 immune response during viral and bacterial infection. cGAS-STING is regulated differently in conditions like cellular senescence and DNA damage in normal and tumor cells and is implicated in the progression of tumors from different origins. cGAS binds to cytoplasmic dsDNA and synthesize cyclic GMP-AMP (2'3'-cGAMP), which selectively activates STING and downstream IFN and NF-κB activation. We here reviewed the cGAS-STING signalling pathway and its cross-talk with other pathways to modulate tumorigenesis. Further, the review also focused on emerging studies that targeted the cGAS-STING pathway for developing targeted therapeutics and combinatorial regimens for cancer of different origins.
Collapse
Affiliation(s)
- Hitesh Vasiyani
- Department of Biochemistry, The M.S. University of Baroda, Vadodara 390002, Gujarat, India
| | - Bhumika Wadhwa
- Department of Biochemistry, The M.S. University of Baroda, Vadodara 390002, Gujarat, India
| | - Rajesh Singh
- Department of Biochemistry, The M.S. University of Baroda, Vadodara 390002, Gujarat, India.
| |
Collapse
|
59
|
Albarrán V, Villamayor ML, Pozas J, Chamorro J, Rosero DI, San Román M, Guerrero P, Pérez de Aguado P, Calvo JC, García de Quevedo C, González C, Vaz MÁ. Current Landscape of Immunotherapy for Advanced Sarcoma. Cancers (Basel) 2023; 15:2287. [PMID: 37190214 PMCID: PMC10136499 DOI: 10.3390/cancers15082287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
There is substantial heterogeneity between different subtypes of sarcoma regarding their biological behavior and microenvironment, which impacts their responsiveness to immunotherapy. Alveolar soft-part sarcoma, synovial sarcoma and undifferentiated pleomorphic sarcoma show higher immunogenicity and better responses to checkpoint inhibitors. Combination strategies adding immunotherapy to chemotherapy and/or tyrosine-kinase inhibitors globally seem superior to single-agent schemes. Therapeutic vaccines and different forms of adoptive cell therapy, mainly engineered TCRs, CAR-T cells and TIL therapy, are emerging as new forms of immunotherapy for advanced solid tumors. Tumor lymphocytic infiltration and other prognostic and predictive biomarkers are under research.
Collapse
Affiliation(s)
- Víctor Albarrán
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Gong Y, Bao L, Xu T, Yi X, Chen J, Wang S, Pan Z, Huang P, Ge M. The tumor ecosystem in head and neck squamous cell carcinoma and advances in ecotherapy. Mol Cancer 2023; 22:68. [PMID: 37024932 PMCID: PMC10077663 DOI: 10.1186/s12943-023-01769-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
The development of head and neck squamous cell carcinoma (HNSCC) is a multi-step process, and its survival depends on a complex tumor ecosystem, which not only promotes tumor growth but also helps to protect tumor cells from immune surveillance. With the advances of existing technologies and emerging models for ecosystem research, the evidence for cell-cell interplay is increasing. Herein, we discuss the recent advances in understanding the interaction between tumor cells, the major components of the HNSCC tumor ecosystem, and summarize the mechanisms of how biological and abiotic factors affect the tumor ecosystem. In addition, we review the emerging ecological treatment strategy for HNSCC based on existing studies.
Collapse
Affiliation(s)
- Yingying Gong
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Lisha Bao
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Tong Xu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xiaofen Yi
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jinming Chen
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Shanshan Wang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Zongfu Pan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China.
- Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, People's Republic of China.
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China.
- Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, People's Republic of China.
| | - Minghua Ge
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China.
- Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, People's Republic of China.
| |
Collapse
|
61
|
Bhardwaj V, Ansell SM. Modulation of T-cell function by myeloid-derived suppressor cells in hematological malignancies. Front Cell Dev Biol 2023; 11:1129343. [PMID: 37091970 PMCID: PMC10113446 DOI: 10.3389/fcell.2023.1129343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/15/2023] [Indexed: 04/08/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are pathologically activated neutrophils and monocytes that negatively regulate the immune response to cancer and chronic infections. Abnormal myelopoiesis and pathological activation of myeloid cells generate this heterogeneous population of myeloid-derived suppressor cells. They are characterized by their distinct transcription, phenotypic, biochemical, and functional features. In the tumor microenvironment (TME), myeloid-derived suppressor cells represent an important class of immunosuppressive cells that correlate with tumor burden, stage, and a poor prognosis. Myeloid-derived suppressor cells exert a strong immunosuppressive effect on T-cells (and a broad range of other immune cells), by blocking lymphocyte homing, increasing production of reactive oxygen and nitrogen species, promoting secretion of various cytokines, chemokines, and immune regulatory molecules, stimulation of other immunosuppressive cells, depletion of various metabolites, and upregulation of immune checkpoint molecules. Additionally, the heterogeneity of myeloid-derived suppressor cells in cancer makes their identification challenging. Overall, they serve as a major obstacle for many cancer immunotherapies and targeting them could be a favorable strategy to improve the effectiveness of immunotherapeutic interventions. However, in hematological malignancies, particularly B-cell malignancies, the clinical outcomes of targeting these myeloid-derived suppressor cells is a field that is still to be explored. This review summarizes the complex biology of myeloid-derived suppressor cells with an emphasis on the immunosuppressive pathways used by myeloid-derived suppressor cells to modulate T-cell function in hematological malignancies. In addition, we describe the challenges, therapeutic strategies, and clinical relevance of targeting myeloid-derived suppressor cells in these diseases.
Collapse
|
62
|
Yang B, Yin S, Zhou Z, Huang L, Xi M. Inflammation Control and Tumor Growth Inhibition of Ovarian Cancer by Targeting Adhesion Molecules of E-Selectin. Cancers (Basel) 2023; 15:cancers15072136. [PMID: 37046797 PMCID: PMC10093113 DOI: 10.3390/cancers15072136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023] Open
Abstract
Objective: The aim is to use E-selectin-binding peptide (ESBP) to actively recognize E-selectin, so allowing a drug delivery system to actively recognize the cells and inhibit the tumor growth of ovarian cancer by targeting adhesion molecules of E-selectin. An ovarian-cancer-directed drug delivery system was designed based on the high affinity of E-selectin-binding peptide (ESBP) to E-selectin. The effects and mechanisms of ESBP-bovine serum albumin (BSA) polymerized nanoparticles were investigated. Methods: BSA polymerized nanoparticles (BSANPs) and ESBP-BSANPs-paclitaxel (PTX) were prepared and their characteristics were measured. The in vitro targetability and cytotoxicity of ESBP-BSANPs-PTX were evaluated through in vitro drug uptake and MTT experiments. The mechanisms of ESBP-BSANPs-PTX were investigated via apoptosis, wound healing and immunohistochemistry assays. The in vivo targeting properties and drug effects were observed in a mouse tumor-bearing model. Results: In vitro experiments revealed an increase in the uptake of ESBP-BSANPs-FITC. The cytotoxicity of ESBP-BSANPs-PTX in A2780/CP70, HUVEC, RAW264.7 and ID8 cells was higher than that of PTX alone. ESBP-BSANPs-PTX increased cell apoptosis in a dose-dependent manner and exhibited a greater ability to inhibit cell migration than BSANPs-PTX. In vivo experiments demonstrated the targetability and good effects of ESBP-BSANPs. Conclusions: ESBP-BSANPs-PTX improve PTX targetability, provide tumor-specific and potent therapeutic activities, and show promise for the development of agents in preclinical epithelial ovarian cancer.
Collapse
Affiliation(s)
- Bowen Yang
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Shanmei Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zishuo Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Luyao Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Mingrong Xi
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| |
Collapse
|
63
|
Xu X, Wang Q, Qian X, Wu Y, Wang J, Li J, Li Y, Zhang Z. Spatial-Drug-Laden Protease-Activatable M1 Macrophage System Targets Lung Metastasis and Potentiates Antitumor Immunity. ACS NANO 2023; 17:5354-5372. [PMID: 36877635 DOI: 10.1021/acsnano.2c08834] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Lung metastasis is a critical cause of cancer mortality and its therapy is largely challenged by the limited drug delivery efficiency and robust immunosuppression in metastatic tumors. Herein, we designed a spatial-drug-laden M1 macrophage system with liposomal R848 inside and fibroblast activation protein protease (FAP)-sensitive phospholipid-DM4 conjugate on the membrane of M1 macrophage (RDM). RDM could preferentially accumulate at the metastatic lesions in lungs and responsively release the therapeutic agents as free drug molecules or drug-loaded nanovesicles. RDM treatment notably enhanced the infiltration of CD3+CD8+ T cells to lung metastasis and, respectively, caused an 8.54-, 12.87- and 2.85-fold improvement of the granzyme-B-, interferon-γ-, and Ki67-positive subtypes versus negative control. Moreover, RDM treatment produced a 90.99% inhibition of lung metastasis in 4T1 models and significant prolongation of survival in three murine lung metastatic models. Therefore, the drug-laden FAP-sensitive M1 macrophage system represents a feasible strategy to target lung metastasis and boost antitumor immunity for antimetastasis therapy.
Collapse
Affiliation(s)
- Xiaoxuan Xu
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Wang
- Department of Cardiothoracic Surgery, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 200125, China
| | - Xindi Qian
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Wu
- School of Pharmacy and Key Laboratory of Smart Drug Delivery (Ministry of Education), Fudan University, Shanghai 201203, China
| | - Jiaoying Wang
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jie Li
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yaping Li
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwen Zhang
- School of Pharmacy and Key Laboratory of Smart Drug Delivery (Ministry of Education), Fudan University, Shanghai 201203, China
| |
Collapse
|
64
|
Zhao B, Wu B, Feng N, Zhang X, Zhang X, Wei Y, Zhang W. Aging microenvironment and antitumor immunity for geriatric oncology: the landscape and future implications. J Hematol Oncol 2023; 16:28. [PMID: 36945046 PMCID: PMC10032017 DOI: 10.1186/s13045-023-01426-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
The tumor microenvironment (TME) has been extensively investigated; however, it is complex and remains unclear, especially in elderly patients. Senescence is a cellular response to a variety of stress signals, which is characterized by stable arrest of the cell cycle and major changes in cell morphology and physiology. To the best of our knowledge, senescence leads to consistent arrest of tumor cells and remodeling of the tumor-immune microenvironment (TIME) by activating a set of pleiotropic cytokines, chemokines, growth factors, and proteinases, which constitute the senescence-associated secretory phenotype (SASP). On the one hand, the SASP promotes antitumor immunity, which enhances treatment efficacy; on the other hand, the SASP increases immunosuppressive cell infiltration, including myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), M2 macrophages, and N2 neutrophils, contributing to TIME suppression. Therefore, a deeper understanding of the regulation of the SASP and components contributing to robust antitumor immunity in elderly individuals with different cancer types and the available therapies is necessary to control tumor cell senescence and provide greater clinical benefits to patients. In this review, we summarize the key biological functions mediated by cytokines and intercellular interactions and significant components of the TME landscape, which influence the immunotherapy response in geriatric oncology. Furthermore, we summarize recent advances in clinical practices targeting TME components and discuss potential senescent TME targets.
Collapse
Affiliation(s)
- Binghao Zhao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100032, China
| | - Bo Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Nan Feng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xiang Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xin Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiping Wei
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
| | - Wenxiong Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China.
| |
Collapse
|
65
|
Tomela K, Pietrzak B, Galus Ł, Mackiewicz J, Schmidt M, Mackiewicz AA, Kaczmarek M. Myeloid-Derived Suppressor Cells (MDSC) in Melanoma Patients Treated with Anti-PD-1 Immunotherapy. Cells 2023; 12:cells12050789. [PMID: 36899926 PMCID: PMC10000540 DOI: 10.3390/cells12050789] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/18/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are a subset of immature myeloid cells with suppressive activity well described in the context of cancer. They inhibit anti-tumour immunity, promote metastasis formation and can lead to immune therapy resistance. In a retrospective study, blood probes of 46 advanced melanoma patients were analysed before the first administration of anti-PD-1 immunotherapy and in the third month of treatment for MDSC, immature monocytic (ImMC), monocytic MDSC (MoMDSC) and granulocytic MDSC (GrMDSC) by multi-channel flow cytometry. Cell frequencies were correlated with response to immunotherapy, progression-free survival (PFS) and lactate dehydrogenase (LDH) serum level. Responders to anti-PD-1 therapy had higher MoMDSC levels (4.1 ± 1.2%) compared to non-responders (3.0 ± 1.2%) (p = 0.0333) before the first administration of anti-PD-1. No significant changes in MDSCs frequencies were observed in the groups of patients before and in the third month of therapy. The cut-off values of MDSCs, MoMDSCs, GrMDSCs and ImMCs for favourable 2- and 3-year PFS were established. Elevated LDH level is a negative prognostic factor of response to the treatment and is related to an elevated ratio of GrMDSCs and ImMCs level compared to patients' LDH level below the cut-off. Our data may provide a new perspective for more careful consideration of MDSCs, and specially MoMDSCs, as a tool for monitoring the immune status of melanoma patients. Changes in MDSC levels may have a potential prognostic value, however a correlation with other parameters must be established.
Collapse
Affiliation(s)
- Katarzyna Tomela
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
- Correspondence:
| | - Bernadeta Pietrzak
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, 60-627 Poznan, Poland
| | - Łukasz Galus
- Department of Medical and Experimental Oncology, Institute of Oncology, University of Medical Sciences, 60-355 Poznan, Poland
| | - Jacek Mackiewicz
- Department of Medical and Experimental Oncology, Institute of Oncology, University of Medical Sciences, 60-355 Poznan, Poland
| | - Marcin Schmidt
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, 60-627 Poznan, Poland
| | - Andrzej Adam Mackiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
66
|
Wang J, Zhu N, Su X, Gao Y, Yang R. Gut-Microbiota-Derived Metabolites Maintain Gut and Systemic Immune Homeostasis. Cells 2023; 12:cells12050793. [PMID: 36899929 PMCID: PMC10000530 DOI: 10.3390/cells12050793] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The gut microbiota, including bacteria, archaea, fungi, viruses and phages, inhabits the gastrointestinal tract. This commensal microbiota can contribute to the regulation of host immune response and homeostasis. Alterations of the gut microbiota have been found in many immune-related diseases. The metabolites generated by specific microorganisms in the gut microbiota, such as short-chain fatty acids (SCFAs), tryptophan (Trp) and bile acid (BA) metabolites, not only affect genetic and epigenetic regulation but also impact metabolism in the immune cells, including immunosuppressive and inflammatory cells. The immunosuppressive cells (such as tolerogenic macrophages (tMacs), tolerogenic dendritic cells (tDCs), myeloid-derived suppressive cells (MDSCs), regulatory T cells (Tregs), regulatory B cells (Breg) and innate lymphocytes (ILCs)) and inflammatory cells (such as inflammatory Macs (iMacs), DCs, CD4 T helper (Th)1, CD4Th2, Th17, natural killer (NK) T cells, NK cells and neutrophils) can express different receptors for SCFAs, Trp and BA metabolites from different microorganisms. Activation of these receptors not only promotes the differentiation and function of immunosuppressive cells but also inhibits inflammatory cells, causing the reprogramming of the local and systemic immune system to maintain the homeostasis of the individuals. We here will summarize the recent advances in understanding the metabolism of SCFAs, Trp and BA in the gut microbiota and the effects of SCFAs, Trp and BA metabolites on gut and systemic immune homeostasis, especially on the differentiation and functions of the immune cells.
Collapse
Affiliation(s)
- Juanjuan Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Ningning Zhu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Xiaomin Su
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yunhuan Gao
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Correspondence:
| |
Collapse
|
67
|
Zhu L, Yu X, Cao T, Deng H, Tang X, Lin Q, Zhou Q. Immune cell membrane-based biomimetic nanomedicine for treating cancer metastasis. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
|
68
|
Wang Y, Guo H, He F. Circadian disruption: from mouse models to molecular mechanisms and cancer therapeutic targets. Cancer Metastasis Rev 2023; 42:297-322. [PMID: 36513953 DOI: 10.1007/s10555-022-10072-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022]
Abstract
The circadian clock is a timekeeping system for numerous biological rhythms that contribute to the regulation of numerous homeostatic processes in humans. Disruption of circadian rhythms influences physiology and behavior and is associated with adverse health outcomes, especially cancer. However, the underlying molecular mechanisms of circadian disruption-associated cancer initiation and development remain unclear. It is essential to construct good circadian disruption models to uncover and validate the detailed molecular clock framework of circadian disruption in cancer development and progression. Mouse models are the most widely used in circadian studies due to their relatively small size, fast reproduction cycle, easy genome manipulation, and economic practicality. Here, we reviewed the current mouse models of circadian disruption, including suprachiasmatic nuclei destruction, genetic engineering, light disruption, sleep deprivation, and other lifestyle factors in our understanding of the crosstalk between circadian rhythms and oncogenic signaling, as well as the molecular mechanisms of circadian disruption that promotes cancer growth. We focused on the discoveries made with the nocturnal mouse, diurnal human being, and cell culture and provided several circadian rhythm-based cancer therapeutic strategies.
Collapse
Affiliation(s)
- Yu Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haidong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Feng He
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
69
|
Gu J, Chu X, Huo Y, Liu C, Chen Q, Hu S, Pei Y, Ding P, Pang S, Wang M. Gastric cancer-derived exosomes facilitate pulmonary metastasis by activating ERK-mediated immunosuppressive macrophage polarization. J Cell Biochem 2023; 124:557-572. [PMID: 36842167 DOI: 10.1002/jcb.30390] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/27/2023]
Abstract
Gastric cancer (GC) with pulmonary metastasis is one of the deadliest diseases in the world; however, the underlying pathological mechanisms and potential therapeutic targets remain to be elucidated. As exosomes play indispensable roles in the formation of premetastatic niches (PMN) and cancer metastasis. Therefore, investigating the underlying mechanisms of exosome-mediated pulmonary metastasis of GC may shed new light on identifying novel therapeutic targets for GC treatment. GC-derived exosomes were isolated from the conditioned medium of mouse forestomach carcinoma (MFC) cell line. The effects of MFC-derived exosomes on pulmonary macrophage polarization were analyzed by reverse- transcription polymerase chain reaction and flow cytometry. Expression of PD-L1 and other proteins was evaluated by Western blot. Exosomal microRNAs (miRNAs) were analyzed by microarray. GC-derived exosomes (GC-exo) accumulated in high numbers in the lungs and were ingested by macrophages. The extracellular-signal-regulated kinase (ERK) signaling pathway was activated by GC-exo, inducing macrophage immunosuppressive-phenotype differentiation and increased PD-L1 expression. miRNA-sequencing identified 130 enriched miRNAs in GC-exo. Among the enriched miRNAs, miR-92a-3p plays a major role in activating ERK signaling via inhibition of PTEN expression. In addition, inhibiting ERK signaling with PD98059 significantly reduced the expression of PD-L1 in macrophages and, therefore, reversed the immunosuppressive PMN and inhibited the colonization of GC cells in the lungs. This study identified a novel mechanism of GC-exo mediated PD-L1 expression in lung macrophages that facilitates lung PMN formation and GC pulmonary metastasis, which also provided a potential therapeutic target for GC with pulmonary metastasis treatment.
Collapse
Affiliation(s)
- Juan Gu
- Huanghe Science and Technology University, Zheng Zhou, Henan, China
| | - Xu Chu
- The First Affiliated Hospital of Henan University of Science and Technology, Luo Yang, China
| | - Yujia Huo
- Huanghe Science and Technology University, Zheng Zhou, Henan, China
| | - Chaoyi Liu
- Huanghe Science and Technology University, Zheng Zhou, Henan, China
| | - Qingge Chen
- Huanghe Science and Technology University, Zheng Zhou, Henan, China
| | - Shengnan Hu
- Huanghe Science and Technology University, Zheng Zhou, Henan, China
| | - Yanyan Pei
- Huanghe Science and Technology University, Zheng Zhou, Henan, China
| | - Pu Ding
- Huanghe Science and Technology University, Zheng Zhou, Henan, China
| | - Sen Pang
- Huanghe Science and Technology University, Zheng Zhou, Henan, China
| | - Ming Wang
- Huanghe Science and Technology University, Zheng Zhou, Henan, China
| |
Collapse
|
70
|
Li X, Wang Z, Jiao C, Zhang Y, Xia N, Yu W, Chen X, Wikana LP, Liu Y, Sun L, Chen M, Xiao Y, Shi Y, Han S, Pu L. Hepatocyte SGK1 activated by hepatic ischemia-reperfusion promotes the recurrence of liver metastasis via IL-6/STAT3. J Transl Med 2023; 21:121. [PMID: 36788538 PMCID: PMC9926712 DOI: 10.1186/s12967-023-03977-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Liver metastasis is the leading cause of death in patients with colorectal cancer (CRC). Surgical resection of the liver metastases increases the incidence of long-term survival in patients with colorectal liver metastasis (CRLM). However, many patients experience CRLM recurrence after the initial liver resection. As an unavoidable pathophysiological process in liver surgery, liver ischemia-reperfusion (IR) injury increases the risk of tumor recurrence and metastasis. METHODS Colorectal liver metastasis (CRLM) mouse models and mouse liver partial warm ischemia models were constructed. The levels of lipid peroxidation were detected in cells or tissues. Western Blot, qPCR, elisa, immunofluorescence, immunohistochemistry, scanning electron microscope, flow cytometry analysis were conducted to evaluate the changes of multiple signaling pathways during CRLM recurrence under liver ischemia-reperfusion (IR) background, including SGK1/IL-6/STAT3, neutrophil extracellular traps (NETs) formation, polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC) infiltration. RESULTS Hepatocyte serum/glucocorticoid regulated kinase 1 (SGK1) was activated in response to hepatic ischemia-reperfusion injury to pass hepatocyte STAT3 phosphorylation and serum amyloid A (SAA) hyperactivation signals in CRLM-IR mice, such regulation is dependent on SGK-activated IL-6 autocrine. Administration of the SGK1 inhibitor GSK-650394 further reduced ERK-related neutrophil extracellular traps (NETs) formation and polymorphonucler myeloid-derived suppressor cells (PMN-MDSC) infiltration compared with targeting hepatocyte SGK1 alone, thereby alleviating CRLM in the context of IR. CONCLUSIONS Our study demonstrates that hepatocyte and immune cell SGK1 synergistically promote postoperative CRLM recurrence in response to hepatic IR stress, and identifies SGK1 as a translational target that may improve postoperative CRLM recurrence.
Collapse
Affiliation(s)
- Xiangdong Li
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Ziyi Wang
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Chenyu Jiao
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Yu Zhang
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Nan Xia
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Wenjie Yu
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Xuejiao Chen
- grid.89957.3a0000 0000 9255 8984Department of General Surgery, Affiliated Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, China
| | - Likalamu Pascalia Wikana
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Yue Liu
- grid.89957.3a0000 0000 9255 8984Department of General Surgery, Affiliated Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, China
| | - Linfeng Sun
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Minhao Chen
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Yuhao Xiao
- grid.412676.00000 0004 1799 0784Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China ,grid.477246.40000 0004 1803 0558Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Yuhua Shi
- Department of General Surgery, Affiliated Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, China.
| | - Sheng Han
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China. .,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China. .,NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China.
| | - Liyong Pu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China. .,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China. .,NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China.
| |
Collapse
|
71
|
Sellner F, Thalhammer S, Klimpfinger M. Isolated Pancreatic Metastases of Renal Cell Carcinoma-Clinical Particularities and Seed and Soil Hypothesis. Cancers (Basel) 2023; 15:339. [PMID: 36672289 PMCID: PMC9857376 DOI: 10.3390/cancers15020339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
A meta-analysis of 1470 isolated pancreatic metastases of renal cell carcinoma revealed, that, in addition to the unusual exclusive occurrence of pancreatic metastases and the favourable treatment results, the isPMRCC is characterised by further peculiarities of the clinical course: The lack of prognostic significance of volume and growth rate dependent risk factors and the independence of treatment results from standard or local resections. As an explanation for all these peculiarities, according to today's knowledge, a strong acting seed and soil mechanism can serve, which allows embolized tumour cells to grow to metastases only in the pancreas, and prevents them definitively or for years in all other organs. The good prognosis affects not only isolated PM, but also multi-organ metastases of the RCC, in which the additional occurrence of PM is also associated with a better prognosis. Genetic studies revealed specific changes in cases of PM of RCC: Lack of loss of 9p21.3 and 14q31.2, which are otherwise specific gene mutations at the onset of generalization, a low weight genome instability index, i.e., high genetic stability, and a low rate of PAB1 and a high rate of BPRM1 alterations, which signal a more favourable course. The cause of pancreatic organotropism in isPMRCC is still unclear, so only those factors that have been identified as promoting organotropism in other, more frequent tumour entities can be presented: Formation of the pre-metastatic niche, chemokine receptor-ligand mechanism, ability to metabolic adaptation, and immune surveillance.
Collapse
Affiliation(s)
- Franz Sellner
- Department of General, Visceral and Vascular Surgery, Clinic Favoriten, Kaiser Franz Josef Hospital, 1100 Vienna, Austria
| | - Sabine Thalhammer
- Department of General, Visceral and Vascular Surgery, Clinic Favoriten, Kaiser Franz Josef Hospital, 1100 Vienna, Austria
| | - Martin Klimpfinger
- Clinical Institute of Pathology, Medical University, 1090 Vienna, Austria
| |
Collapse
|
72
|
Wang GC, Zhou M, Zhang Y, Cai HM, Chiang ST, Chen Q, Han TZ, Li RX. Screening and identifying a novel M-MDSCs-related gene signature for predicting prognostic risk and immunotherapeutic responses in patients with lung adenocarcinoma. Front Genet 2023; 13:989141. [PMID: 36699465 PMCID: PMC9869425 DOI: 10.3389/fgene.2022.989141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/30/2022] [Indexed: 01/05/2023] Open
Abstract
Background: Lung adenocarcinoma (LUAD) shows intratumoral heterogeneity, a highly complex phenomenon that known to be a challenge during cancer therapy. Considering the key role of monocytic myeloid-derived suppressor cells (M-MDSCs) in the tumor microenvironment (TME), we aimed to build a prognostic risk model using M-MDSCs-related genes. Methods: M-MDSCs-related genes were extracted from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Utilized univariate survival analysis and random forest algorithm to screen candidate genes. A least absolute shrinkage and selection operator (LASSO) Cox regression analysis was selected to build the risk model. Patients were scored and classified into high- and low-risk groups based on the median risk scores. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis along with R packages "estimate" and "ssGSEA" were performed to reveal the mechanism of risk difference. Prognostic biomarkers and tumor mutation burden (TMB) were combined to predict the prognosis. Nomogram was carried out to predict the survival probability of patients in 1, 3, and 5 years. Results: 8 genes (VPREB3, TPBG, LRFN4, CD83, GIMAP6, PRMT8, WASF1, and F12) were identified as prognostic biomarkers. The GEO validation dataset demonstrated the risk model had good generalization effect. Significantly enrichment level of cell cycle-related pathway and lower content of CD8+ T cells infiltration in the high-risk group when compared to low-risk group. Morever, the patients were from the intersection of high-TMB and low-risk groups showed the best prognosis. The nomogram demonstrated good consistency with practical outcomes in predicting the survival rate over 1, 3, and 5 years. Conclusion: The risk model demonstrate good prognostic predictive ability. The patients from the intersection of low-risk and high-TMB groups are not only more sensitive response to but also more likely to benefit from immune-checkpoint-inhibitors (ICIs) treatment.
Collapse
Affiliation(s)
- Geng-Chong Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mi Zhou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China,Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hua-Man Cai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Seok-Theng Chiang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tian-Zhen Han
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | |
Collapse
|
73
|
Li Y, Li M, Su K, Zong S, Zhang H, Xiong L. Pre-metastatic niche: from revealing the molecular and cellular mechanisms to the clinical applications in breast cancer metastasis. Theranostics 2023; 13:2301-2318. [PMID: 37153744 PMCID: PMC10157731 DOI: 10.7150/thno.82700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/08/2023] [Indexed: 05/10/2023] Open
Abstract
Breast cancer (BC) is one of the most commonly diagnosed cancers and the leading cause of cancer-related deaths in women worldwide. Metastasis is a major contributor to high cancer mortality and is usually the endpoint of a series of sequential and dynamic events. One of the critical events is forming a pre-metastatic niche (PMN) that occurs before macroscopic tumor cell invasion and provides a suitable environment for tumor cells to colonize and progress into metastases. Due to the unique characteristics of PMN in cancer metastasis, developing therapies to target PMN may bring new advantages in preventing cancer metastasis at an early stage. Various biological molecules, cells, and signaling pathways are altered in BC, regulating the functions of distinctive immune cells and stromal remodeling, inducing angiogenesis, and effect metabolic reprogramming and organotropism to promote PMN formation. In this review, we elucidate the multifaceted mechanisms contributing to the development of PMN in BC, discuss the characteristics of PMN, and highlight the significance of PMN in providing potential diagnostic and therapeutic strategies for BC metastasis, which may bring promising insights and foundations for future studies.
Collapse
Affiliation(s)
- Yuqiu Li
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
- Queen Mary College of Nanchang University, Nanchang 330006, China
| | - Miao Li
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Kangtai Su
- First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Siwen Zong
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Hongyan Zhang
- Department of Burn, The First Affiliated Hospital, Nanchang University, 17 Yongwaizheng Road, Nanschang 330066, China
- ✉ Corresponding authors: Hongyan Zhang and Lixia Xiong; and
| | - Lixia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
- ✉ Corresponding authors: Hongyan Zhang and Lixia Xiong; and
| |
Collapse
|
74
|
Tong Y, Lu G, Wang Z, Hao S, Zhang G, Sun H. Tubeimuside I improves the efficacy of a therapeutic Fusobacterium nucleatum dendritic cell-based vaccine against colorectal cancer. Front Immunol 2023; 14:1154818. [PMID: 37207216 PMCID: PMC10189021 DOI: 10.3389/fimmu.2023.1154818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction Fusobacterium nucleatum (F. nucleatum) infection has been confirmed to be associated with the development, chemoresistance, and immune evasion of colorectal cancer (CRC). The complex relationship between the microorganism, host cells, and the immune system throughout all stages of CRC progression, which makes the development of new therapeutic methods difficult. Methods We developed a new dendritic cell (DC) vaccine to investigate the antitumor efficacy of CRC immunotherapy strategies. By mediating a specific mode of interaction between the bacteria, tumor, and host, we found a new plant-derived adjuvant, tubeimuside I (TBI), which simultaneously improved the DC vaccine efficacy and inhibited the F. nucleatum infection. Encapsulating TBI in a nanoemulsion greatly improved the drug efficacy and reduced the drug dosage and administration times. Results The nanoemulsion encapsulated TBI DC vaccine exhibited an excellent antibacterial and antitumor effect and improved the survival rate of CRC mice by inhibiting tumor development and progression. Discussion In this study, we provide a effective strategy for developing a DC-based vaccine against CRC and underlies the importance of further understanding the mechanism of CRC processes caused by F. nucleatum.
Collapse
Affiliation(s)
- Yanan Tong
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Guoxiu Lu
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, China
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, China
| | - Zhiguo Wang
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Shanhu Hao
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Guoxu Zhang
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, China
- *Correspondence: Guoxu Zhang, ; Hongwu Sun,
| | - Hongwu Sun
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
- *Correspondence: Guoxu Zhang, ; Hongwu Sun,
| |
Collapse
|
75
|
Myeloid-derived suppressor cells in head and neck squamous cell carcinoma. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 375:33-92. [PMID: 36967154 DOI: 10.1016/bs.ircmb.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs), which originated from hematopoietic stem cells, are heterogeneous population of cells that have different differentiation patterns and widely presented in tumor microenvironment. For tumor research, myeloid suppressor cells have received extensive attention since their discovery due to their specific immunosuppressive properties, and the mechanisms of immunosuppression and therapeutic approaches for MDSCs have been investigated in a variety of different types of malignancies. To improve the efficacy of treatment for head and neck squamous cell carcinoma (HNSCC), a disease with a high occurrence, immunotherapy has gradually emerged in after traditional surgery and subsequent radiotherapy and chemotherapy, and has made some progress. In this review, we introduced the mechanisms on the development, differentiation, and elimination of MDSCs and provided a detailed overview of the mechanisms behind the immunosuppressive properties of MDSCs. We summarized the recent researches on MDSCs in HNSCC, especially for targeting-MDSCs therapy and combination with other types of therapy such as immune checkpoint blockade (ICB). Furthermore, we looked at drug delivery patterns and collected the current diverse drug delivery systems for the improvement that contributed to therapy against MDSCs in HNSCC. Most importantly, we made possible outlooks for the future research priorities, which provide a basis for further study on the clinical significance and therapeutic value of MDSCs in HNSCC.
Collapse
|
76
|
Li HX, Wang SQ, Lian ZX, Deng SL, Yu K. Relationship between Tumor Infiltrating Immune Cells and Tumor Metastasis and Its Prognostic Value in Cancer. Cells 2022; 12:cells12010064. [PMID: 36611857 PMCID: PMC9818185 DOI: 10.3390/cells12010064] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Tumor metastasis is an important reason for the difficulty of tumor treatment. Besides the tumor cells themselves, the tumor microenvironment plays an important role in the process of tumor metastasis. Tumor infiltrating immune cells (TIICs) are one of the main components of TME and plays an important role in every link of tumor metastasis. This article mainly reviews the role of tumor-infiltrating immune cells in epithelial mesenchymal transformation, extracellular matrix remodeling, tumor angiogenesis and formation of pre-metastatic niche. The value of TIICs in the prognosis of cervical cancer, lung cancer and breast cancer was also discussed. We believe that accurate prognosis of cancer treatment outcomes is conducive to further improving treatment regimens, determining personalized treatment strategies, and ultimately achieving successful cancer treatment. This paper elucidates the relationship between tumor and TIICs in order to explore the function of immune cells in different diseases and provide new ideas for the treatment of cancer.
Collapse
Affiliation(s)
- Huan-Xiang Li
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shu-Qi Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zheng-Xing Lian
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shou-Long Deng
- National Health Commission (NHC) of China Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
- Correspondence: (S.-L.D.); (K.Y.)
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: (S.-L.D.); (K.Y.)
| |
Collapse
|
77
|
Abstract
Despite advancement in therapeutic options, Non-Small Cell lung cancer (NSCLC) remains a lethal disease mostly due to late diagnosis at metastatic phase and drug resistance. Bone is one of the more frequent sites for NSCLC metastatization. A defined subset of cancer stem cells (CSCs) that possess motile properties, mesenchymal features and tumor initiation potential are defined as metastasis initiating cells (MICs). A better understanding of the mechanisms supporting MIC dissemination and interaction with bone microenvironment is fundamental to design novel rational therapeutic option for long lasting efficient treatment of NSCLC. In this review we will summarize findings about bone metastatic process initiated by NSCLC MICs. We will review how MICs can reach bone and interact with its microenvironment that supports their extravasation, seeding, dormancy/proliferation. The role of different cell types inside the bone metastatic niche, such as endothelial cells, bone cells, hematopoietic stem cells and immune cells will be discussed in regards of their impact in dictating the success of metastasis establishment by MICs. Finally, novel therapeutic options to target NSCLC MIC-induced bone metastases, increasing the survival of patients, will be presented.
Collapse
|
78
|
Lu Z, Liu H, Ma L, Ren K, He Z, Li M, He Q. Micellar nanoparticles inhibit breast cancer and pulmonary metastasis by modulating the recruitment and depletion of myeloid-derived suppressor cells. NANOSCALE 2022; 14:17315-17330. [PMID: 36374496 DOI: 10.1039/d2nr03880c] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are notorious for their pathological characteristics of immunosuppression and their promoting effect on cancers. They can induce the formation of pre-metastatic niche (PMN) characterized by inflammation, immunosuppression and vascular leakage, and promote pulmonary metastasis of breast cancer. Herein, a tumor targeting c(RGDfk) peptide modified low molecular-weight-heparin-all-trans-retinoic-acid (LMWH-ATRA) micellar nanoparticle loaded with chemotherapeutic drug doxorubicin (DOX) and immune adjuvant α-galactosylceramide (αGC) (RLA/DOX/αGC NP) was developed. The hydrophilic segment LMWH inhibited the recruitment of MDSCs by competitively binding with P-selectin on the surface of vascular endothelial cells (VECs), while the hydrophobic segment ATRA promoted the depletion of MDSCs by inducing their differentiation. Through the modulation of MDSCs, micelles can significantly improve the inflammatory and immunosuppressive microenvironment of the lung and tumor sites, and inhibit the formation of PMN. Not only this, the micelles also produced a synergistic effect with αGC, which effectively improved the anti-tumor immunity of tumor bearing mice and provided a promising therapeutic strategy for breast cancer and pulmonary metastasis.
Collapse
Affiliation(s)
- Zhengze Lu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, People's Republic of China.
| | - Houqin Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, People's Republic of China.
| | - Ling Ma
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, People's Republic of China.
| | - Kebai Ren
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, People's Republic of China.
| | - Zhidi He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, People's Republic of China.
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, People's Republic of China.
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, People's Republic of China.
| |
Collapse
|
79
|
Cheuk YC, Niu X, Mao Y, Li J, Wang J, Xu S, Luo Y, Wang W, Wang X, Zhang Y, Rong R. Integration of transcriptomics and metabolomics reveals pathways involved in MDSC supernatant attenuation of TGF-β1-induced myofibroblastic differentiation of mesenchymal stem cells. Cell Tissue Res 2022; 390:465-489. [PMID: 36098854 DOI: 10.1007/s00441-022-03681-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/23/2022] [Indexed: 12/13/2022]
Abstract
Overexposure to transforming growth factor b1 (TGF-β1) induces myofibroblastic differentiation of mesenchymal stem cells (MSCs), which could be attenuated by myeloid-derived suppressor cell (MDSC) supernatant. However, the promyofibroblastic effects of TGF-β1 and the antimyofibroblastic effects of MDSC supernatant in MSCs have not been fully elucidated. To further clarify the latent mechanism and identify underlying therapeutic targets, we used an integrative strategy combining transcriptomics and metabolomics. Bone marrow MSCs were collected 24 h following TGF-β1 and MDSC supernatant treatment for RNA sequencing and untargeted metabolomic analysis. The integrated data were then analyzed to identify significant gene-metabolite correlations. Differentially expressed genes (DEGs) and differentially expressed metabolites (DEMs) were assessed by Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses for exploring the mechanisms of myofibroblastic differentiation of MSCs. The integration of transcriptomic and metabolomic data highlighted significantly coordinated changes in glycolysis/gluconeogenesis and purine metabolism following TGF-β1 and MDSC supernatant treatment. By combining transcriptomic and metabolomic analyses, this study showed that glycolysis/gluconeogenesis and purine metabolism were essential for the myofibroblastic differentiation of MSCs and may serve as promising targets for mechanistic research and clinical practice in the treatment of fibrosis by MDSC supernatant.
Collapse
Affiliation(s)
- Yin Celeste Cheuk
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China.,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xinhao Niu
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China.,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yongxin Mao
- Department of Urology, Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Jiawei Li
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China.,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiyan Wang
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China.,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shihao Xu
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China.,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yongsheng Luo
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China.,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Weixi Wang
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xuanchuan Wang
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China. .,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yi Zhang
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China. .,Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Ruiming Rong
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China. .,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
80
|
Apfelbaum AA, Wrenn ED, Lawlor ER. The importance of fusion protein activity in Ewing sarcoma and the cell intrinsic and extrinsic factors that regulate it: A review. Front Oncol 2022; 12:1044707. [PMID: 36505823 PMCID: PMC9727305 DOI: 10.3389/fonc.2022.1044707] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
Accumulating evidence shows that despite clonal origins tumors eventually become complex communities comprised of phenotypically distinct cell subpopulations. This heterogeneity arises from both tumor cell intrinsic programs and signals from spatially and temporally dynamic microenvironments. While pediatric cancers usually lack the mutational burden of adult cancers, they still exhibit high levels of cellular heterogeneity that are largely mediated by epigenetic mechanisms. Ewing sarcomas are aggressive bone and soft tissue malignancies with peak incidence in adolescence and the prognosis for patients with relapsed and metastatic disease is dismal. Ewing sarcomas are driven by a single pathognomonic fusion between a FET protein and an ETS family transcription factor, the most common of which is EWS::FLI1. Despite sharing a single driver mutation, Ewing sarcoma cells demonstrate a high degree of transcriptional heterogeneity both between and within tumors. Recent studies have identified differential fusion protein activity as a key source of this heterogeneity which leads to profoundly different cellular phenotypes. Paradoxically, increased invasive and metastatic potential is associated with lower EWS::FLI1 activity. Here, we review what is currently understood about EWS::FLI1 activity, the cell autonomous and tumor microenvironmental factors that regulate it, and the downstream consequences of these activity states on tumor progression. We specifically highlight how transcription factor regulation, signaling pathway modulation, and the extracellular matrix intersect to create a complex network of tumor cell phenotypes. We propose that elucidation of the mechanisms by which these essential elements interact will enable the development of novel therapeutic approaches that are designed to target this complexity and ultimately improve patient outcomes.
Collapse
Affiliation(s)
| | | | - Elizabeth R. Lawlor
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute and Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
81
|
Theivanthiran B, Yarla N, Haykal T, Nguyen YV, Cao L, Ferreira M, Holtzhausen A, Al-Rohil R, Salama AKS, Beasley GM, Plebanek MP, DeVito NC, Hanks BA. Tumor-intrinsic NLRP3-HSP70-TLR4 axis drives premetastatic niche development and hyperprogression during anti-PD-1 immunotherapy. Sci Transl Med 2022; 14:eabq7019. [PMID: 36417489 DOI: 10.1126/scitranslmed.abq7019] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The tumor-intrinsic NOD-, LRR- and pyrin domain-containing protein-3 (NLRP3) inflammasome-heat shock protein 70 (HSP70) signaling axis is triggered by CD8+ T cell cytotoxicity and contributes to the development of adaptive resistance to anti-programmed cell death protein 1 (PD-1) immunotherapy by recruiting granulocytic polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) into the tumor microenvironment. Here, we demonstrate that the tumor NLRP3-HSP70 axis also drives the accumulation of PMN-MDSCs into distant lung tissues in a manner that depends on lung epithelial cell Toll-like receptor 4 (TLR4) signaling, establishing a premetastatic niche that supports disease hyperprogression in response to anti-PD-1 immunotherapy. Lung epithelial HSP70-TLR4 signaling induces the downstream Wnt5a-dependent release of granulocyte colony-stimulating factor (G-CSF) and C-X-C motif chemokine ligand 5 (CXCL5), thus promoting myeloid granulopoiesis and recruitment of PMN-MDSCs into pulmonary tissues. Treatment with anti-PD-1 immunotherapy enhanced the activation of this pathway through immunologic pressure and drove disease progression in the setting of Nlrp3 amplification. Genetic and pharmacologic inhibition of NLRP3 and HSP70 blocked PMN-MDSC accumulation in the lung in response to anti-PD-1 therapy and suppressed metastatic progression in preclinical models of melanoma and breast cancer. Elevated baseline concentrations of plasma HSP70 and evidence of NLRP3 signaling activity in tumor tissue specimens correlated with the development of disease hyperprogression and inferior survival in patients with stage IV melanoma undergoing anti-PD-1 immunotherapy. Together, this work describes a pathogenic mechanism underlying the phenomenon of disease hyperprogression in melanoma and offers candidate targets and markers capable of improving the management of patients with melanoma.
Collapse
Affiliation(s)
- Balamayooran Theivanthiran
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Nagendra Yarla
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Tarek Haykal
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Y-Van Nguyen
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Linda Cao
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Michelle Ferreira
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Alisha Holtzhausen
- Lineberger Comprehensive Cancer Center, University of North Caroline at Chapel Hill, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rami Al-Rohil
- Department of Pathology, Duke Cancer Institute, Duke University Durham, Durham, NC 27710, USA
| | - April K S Salama
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Georgia M Beasley
- Department of Surgery, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Michael P Plebanek
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Nicholas C DeVito
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Brent A Hanks
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA.,Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
82
|
Rašková M, Lacina L, Kejík Z, Venhauerová A, Skaličková M, Kolář M, Jakubek M, Rosel D, Smetana K, Brábek J. The Role of IL-6 in Cancer Cell Invasiveness and Metastasis-Overview and Therapeutic Opportunities. Cells 2022; 11:3698. [PMID: 36429126 PMCID: PMC9688109 DOI: 10.3390/cells11223698] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Interleukin 6 (IL-6) belongs to a broad class of cytokines involved in the regulation of various homeostatic and pathological processes. These activities range from regulating embryonic development, wound healing and ageing, inflammation, and immunity, including COVID-19. In this review, we summarise the role of IL-6 signalling pathways in cancer biology, with particular emphasis on cancer cell invasiveness and metastasis formation. Targeting principal components of IL-6 signalling (e.g., IL-6Rs, gp130, STAT3, NF-κB) is an intensively studied approach in preclinical cancer research. It is of significant translational potential; numerous studies strongly imply the remarkable potential of IL-6 signalling inhibitors, especially in metastasis suppression.
Collapse
Affiliation(s)
- Magdalena Rašková
- Department of Cell Biology, Faculty of Science, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Lukáš Lacina
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Zdeněk Kejík
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Anna Venhauerová
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Markéta Skaličková
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Michal Kolář
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics, Czech Academy of Sciences, 140 00 Prague, Czech Republic
| | - Milan Jakubek
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Daniel Rosel
- Department of Cell Biology, Faculty of Science, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Karel Smetana
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Faculty of Science, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| |
Collapse
|
83
|
Lu Z, Ma L, Mei L, Ren K, Li M, Zhang L, Liu X, He Q. Micellar nanoparticles inhibit the postoperative inflammation, recurrence and pulmonary metastasis of 4T1 breast cancer by blocking NF-κB pathway and promoting MDSCs depletion. Int J Pharm 2022; 628:122303. [DOI: 10.1016/j.ijpharm.2022.122303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2022]
|
84
|
Wang M, Qin Z, Wan J, Yan Y, Duan X, Yao X, Jiang Z, Li W, Qin Z. Tumor-derived exosomes drive pre-metastatic niche formation in lung via modulating CCL1+ fibroblast and CCR8+ Treg cell interactions. Cancer Immunol Immunother 2022; 71:2717-2730. [DOI: 10.1007/s00262-022-03196-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
|
85
|
Chen G, Li X, Ji C, Liu P, Zhou L, Xu D, Wang D, Li J, Yu J. Early myeloid-derived suppressor cells accelerate epithelial-mesenchymal transition by downregulating ARID1A in luminal A breast cancer. Front Bioeng Biotechnol 2022; 10:973731. [PMID: 36329699 PMCID: PMC9623091 DOI: 10.3389/fbioe.2022.973731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022] Open
Abstract
Early myeloid-derived suppressor cells (eMDSCs) are a newly characterized subclass of MDSCs, which exhibit more potent immunosuppressive capacity than classical MDSCs. Previously, we found high eMDSCs infiltration was correlated with poor prognosis of breast cancer, though the regulatory mechanisms have not been fully understood. Here, we constructed a 21-gene signature to evaluate the status of eMDSCs infiltration within breast cancer tissues and found that highly infiltrated eMDSCs affected the prognosis of breast cancer patients, especially in luminal A subtype. We also found that eMDSCs promoted epithelial-mesenchymal transition (EMT) and accelerated cell migration and invasion in vitro. Meanwhile, eMDSCs significantly downregulated ARID1A expression in luminal A breast cancer, which was closely associated with EMT and was an important prognostic factor in breast cancer patients. Moreover, significant changes of EMT-related genes were detected in luminal A breast cancer cells after co-cultured with eMDSCs or ARID1A knock-down and overexpression of ARID1A significantly reversed this procedure. These results implied that eMDSCs might suppress the ARID1A expression to promote EMT in luminal A breast cancer cells, which might provide a new light on developing novel treatment regimens for relapsed luminal A breast cancer after conventional therapies.
Collapse
Affiliation(s)
- Guidong Chen
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xingchen Li
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Chenyan Ji
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Pengpeng Liu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Li Zhou
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Dechen Xu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Dong Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jie Li
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
- *Correspondence: Jinpu Yu, ; Jie Li,
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- *Correspondence: Jinpu Yu, ; Jie Li,
| |
Collapse
|
86
|
Ya G, Ren W, Qin R, He J, Zhao S. Role of myeloid-derived suppressor cells in the formation of pre-metastatic niche. Front Oncol 2022; 12:975261. [PMID: 36237333 PMCID: PMC9552826 DOI: 10.3389/fonc.2022.975261] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Metastasis is a complex process, which depends on the interaction between tumor cells and host organs. Driven by the primary tumor, the host organ will establish an environment suitable for the growth of tumor cells before their arrival, which is called the pre-metastasis niche. The formation of pre-metastasis niche requires the participation of a variety of cells, in which myeloid-derived suppressor cells play a very important role. They reach the host organ before the tumor cells, and promote the establishment of the pre-metastasis niche by influencing immunosuppression, vascular leakage, extracellular matrix remodeling, angiogenesis and so on. In this article, we introduced the formation of the pre-metastasis niche and discussed the important role of myeloid-derived suppressor cells. In addition, this paper also emphasized the targeting of myeloid-derived suppressor cells as a therapeutic strategy to inhibit the formation of pre-metastasis niche, which provided a research idea for curbing tumor metastasis.
Collapse
Affiliation(s)
- Guoqi Ya
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, China
| | - Weihong Ren
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- *Correspondence: Weihong Ren,
| | - Rui Qin
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiao He
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shuo Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
87
|
Zhao Y, Bai Y, Shen M, Li Y. Therapeutic strategies for gastric cancer targeting immune cells: Future directions. Front Immunol 2022; 13:992762. [PMID: 36225938 PMCID: PMC9549957 DOI: 10.3389/fimmu.2022.992762] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Gastric cancer (GC) is a malignancy with a high incidence and mortality, and the emergence of immunotherapy has brought survival benefits to GC patients. Compared with traditional therapy, immunotherapy has the advantages of durable response, long-term survival benefits, and lower toxicity. Therefore, targeted immune cells are the most promising therapeutic strategy in the field of oncology. In this review, we introduce the role and significance of each immune cell in the tumor microenvironment of GC and summarize the current landscape of immunotherapy in GC, which includes immune checkpoint inhibitors, adoptive cell therapy (ACT), dendritic cell (DC) vaccines, reduction of M2 tumor-associated macrophages (M2 TAMs), N2 tumor-associated neutrophils (N2 TANs), myeloid-derived suppressor cells (MDSCs), effector regulatory T cells (eTregs), and regulatory B cells (Bregs) in the tumor microenvironment and reprogram TAMs and TANs into tumor killer cells. The most widely used immunotherapy strategies are the immune checkpoint inhibitor programmed cell death 1/programmed death-ligand 1 (PD-1/PD-L1) antibody, cytotoxic T lymphocyte–associated protein 4 (CTLA-4) antibody, and chimeric antigen receptor T (CAR-T) in ACT, and these therapeutic strategies have significant anti-tumor efficacy in solid tumors and hematological tumors. Targeting other immune cells provides a new direction for the immunotherapy of GC despite the relatively weak clinical data, which have been confirmed to restore or enhance anti-tumor immune function in preclinical studies and some treatment strategies have entered the clinical trial stage, and it is expected that more and more effective immune cell–based therapeutic methods will be developed and applied.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuansong Bai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meili Shen
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yapeng Li, ; Meili Shen,
| | - Yapeng Li
- The National and Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun, China
- *Correspondence: Yapeng Li, ; Meili Shen,
| |
Collapse
|
88
|
Zhu H, Tang K, Chen G, Liu Z. Biomarkers in oral immunotherapy. J Zhejiang Univ Sci B 2022; 23:705-731. [PMID: 36111569 PMCID: PMC9483607 DOI: 10.1631/jzus.b2200047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Food allergy (FA) is a global health problem that affects a large population, and thus effective treatment is highly desirable. Oral immunotherapy (OIT) has been showing reasonable efficacy and favorable safety in most FA subjects. Dependable biomarkers are needed for treatment assessment and outcome prediction during OIT. Several immunological indicators have been used as biomarkers in OIT, such as skin prick tests, basophil and mast cell reactivity, T cell and B cell responses, allergen-specific antibody levels, and cytokines. Other novel indicators also could be potential biomarkers. In this review, we discuss and assess the application of various immunological indicators as biomarkers for OIT.
Collapse
Affiliation(s)
- Haitao Zhu
- Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital, Xi'an 710061, China
| | - Kaifa Tang
- Department of Urology, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Guoqiang Chen
- Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital, Xi'an 710061, China
| | - Zhongwei Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an 710068, China.
| |
Collapse
|
89
|
Chen X, Feng J, Chen W, Shao S, Chen L, Wan H. Small extracellular vesicles: from promoting pre-metastatic niche formation to therapeutic strategies in breast cancer. Cell Commun Signal 2022; 20:141. [PMID: 36096820 PMCID: PMC9465880 DOI: 10.1186/s12964-022-00945-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/23/2022] [Indexed: 12/04/2022] Open
Abstract
Breast cancer is the most common cancer in females, and to date, the mortality rate of breast cancer metastasis cannot be ignored. The metastasis of breast cancer is a complex, staged process, and the pattern of metastatic spread is not random. The pre-metastatic niche, as an organ-specific home for metastasis, is a favourable environment for tumour cell colonization. As detection techniques improve, the role of the pre-metastatic niche in breast cancer metastasis is being uncovered. sEVs (small extracellular vesicles) can deliver cargo, which is vital for the formation of pre-metastatic niches. sEVs participate in multiple aspects of creating a distant microenvironment to promote tumour invasion, including the secretion of inflammatory molecules, immunosuppression, angiogenesis and enhancement of vascular permeability, as well as regulation of the stromal environment. Here, we discuss the multifaceted mechanisms through which breast cancer-derived sEVs contribute to pre-metastatic niches. In addition, sEVs as biomarkers and antimetastatic therapies are also discussed, particularly their use in transporting exosomal microRNAs. The study of sEVs may provide insight into immunotherapy and targeted therapies for breast cancer, and we also provide an overview of their potential role in antitumour metastasis. Video Abstract
Collapse
Affiliation(s)
- Xiaoxiao Chen
- Department of Breast, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200001, China
| | - Jiamei Feng
- Department of Breast, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200001, China
| | - Weili Chen
- Department of Breast, Yueyang Hospital Integated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200080, China
| | - Shijun Shao
- Department of Breast, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200001, China
| | - Li Chen
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua Wan
- Department of Breast, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200001, China.
| |
Collapse
|
90
|
Bizymi N, Matthaiou AM, Matheakakis A, Voulgari I, Aresti N, Zavitsanou K, Karasachinidis A, Mavroudi I, Pontikoglou C, Papadaki HA. New Perspectives on Myeloid-Derived Suppressor Cells and Their Emerging Role in Haematology. J Clin Med 2022; 11:jcm11185326. [PMID: 36142973 PMCID: PMC9504532 DOI: 10.3390/jcm11185326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 12/03/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature cells of myeloid origin that have gained researchers’ attention, as they constitute promising biomarkers and targets for novel therapeutic strategies (i.e., blockage of development, differentiation, depletion, and deactivation) in several conditions, including neoplastic, autoimmune, infective, and inflammatory diseases, as well as pregnancy, obesity, and graft rejection. They are characterised in humans by the typical immunophenotype of CD11b+CD33+HLA-DR–/low and immune-modulating properties leading to decreased T-cell proliferation, induction of T-regulatory cells (T-regs), hindering of natural killer (NK) cell functionality, and macrophage M2-polarisation. The research in the field is challenging, as there are still difficulties in defining cell-surface markers and gating strategies that uniquely identify the different populations of MDSCs, and the currently available functional assays are highly demanding. There is evidence that MDSCs display altered frequency and/or functionality and could be targeted in immune-mediated and malignant haematologic diseases, although there is a large variability of techniques and results between different laboratories. This review presents the current literature concerning MDSCs in a clinical point of view in an attempt to trigger future investigation by serving as a guide to the clinical haematologist in order to apply them in the context of precision medicine as well as the researcher in the field of experimental haematology.
Collapse
Affiliation(s)
- Nikoleta Bizymi
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
- Laboratory of Molecular and Cellular Pneumonology, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Andreas M. Matthaiou
- Laboratory of Molecular and Cellular Pneumonology, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, 2029 Nicosia, Cyprus
| | - Angelos Matheakakis
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Ioanna Voulgari
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Nikoletta Aresti
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Konstantina Zavitsanou
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Anastasios Karasachinidis
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Irene Mavroudi
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Charalampos Pontikoglou
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Helen A. Papadaki
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
- Correspondence: ; Tel.: +30-2810394637
| |
Collapse
|
91
|
Zhuo S, Yang L, Chen S, Tang C, Li W, Gao Z, Feng J, Yang K. Ferroptosis: A potential opportunity for intervention of pre-metastatic niche. Front Oncol 2022; 12:980620. [PMID: 36158661 PMCID: PMC9500500 DOI: 10.3389/fonc.2022.980620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
It is widely thought that the tumor microenvironment (TME) provides the "soil" for malignant tumors to survive. Prior to metastasis, the interaction at the host site between factors secreted by primary tumors, bone-marrow-derived cells, with stromal components initiates and establishes a pre-metastatic niche (PMN) characterized by immunosuppression, inflammation, angiogenesis and vascular permeability, as well as lymphangiogenesis, reprogramming and organotropism. Ferroptosis is a non-apoptotic cell death characterized by iron-dependent lipid peroxidation and metabolic constraints. Ferroptotic cancer cells release various signal molecules into the TME to either suppress or promote tumor progression. This review highlights the important role played by ferroptosis in PMN, focusing on the relationship between ferroptosis and PMN characteristics, and discusses future research directions.
Collapse
Affiliation(s)
- Shenghua Zhuo
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Liangwang Yang
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Shenbo Chen
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Caiying Tang
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Weicheng Li
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhenzhong Gao
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jigao Feng
- Department of Neurosurgery, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Kun Yang
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
92
|
Senent Y, Tavira B, Pio R, Ajona D. The complement system as a regulator of tumor-promoting activities mediated by myeloid-derived suppressor cells. Cancer Lett 2022; 549:215900. [PMID: 36087681 DOI: 10.1016/j.canlet.2022.215900] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
Tumor progression relies on the interaction between tumor cells and their surrounding tumor microenvironment (TME), which also influences therapeutic responses. The complement system, an essential part of innate immunity, has been traditionally considered an effector arm against tumors. However, established tumors co-opt complement-mediated immune responses in the TME to support chronic inflammation, activate cancer-related signaling pathways and hamper antitumor immune responses. In this context, myeloid-derived suppressor cells (MDSCs), a heterogeneous population of myeloid progenitors with immunosuppressive functions, are recognized as major mediators of tumor-associated complement activities. This review focuses on the impact of complement activation within the TME, with a special emphasis on MDSC functions and the involvement of the C5a/C5aR1 axis. We also discuss the translation of these findings into therapeutic advances based on complement inhibition.
Collapse
Affiliation(s)
- Yaiza Senent
- Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain; Cancer Center University of Navarra (CCUN), Pamplona, Spain; University of Navarra, School of Sciences, Department of Biochemistry and Genetics, Pamplona, Spain
| | - Beatriz Tavira
- Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain; Cancer Center University of Navarra (CCUN), Pamplona, Spain; University of Navarra, School of Medicine, Department of Pathology, Anatomy and Physiology, Pamplona, Spain
| | - Ruben Pio
- Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain; Cancer Center University of Navarra (CCUN), Pamplona, Spain; University of Navarra, School of Sciences, Department of Biochemistry and Genetics, Pamplona, Spain; Navarra Institute for Health Research (IdISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Daniel Ajona
- Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain; Cancer Center University of Navarra (CCUN), Pamplona, Spain; University of Navarra, School of Sciences, Department of Biochemistry and Genetics, Pamplona, Spain; Navarra Institute for Health Research (IdISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
93
|
van Geffen C, Heiss C, Deißler A, Kolahian S. Pharmacological modulation of myeloid-derived suppressor cells to dampen inflammation. Front Immunol 2022; 13:933847. [PMID: 36110844 PMCID: PMC9468781 DOI: 10.3389/fimmu.2022.933847] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population with potent suppressive and regulative properties. MDSCs’ strong immunosuppressive potential creates new possibilities to treat chronic inflammation and autoimmune diseases or induce tolerance towards transplantation. Here, we summarize and critically discuss different pharmacological approaches which modulate the generation, activation, and recruitment of MDSCs in vitro and in vivo, and their potential role in future immunosuppressive therapy.
Collapse
|
94
|
Chen C, Huang R, Zhou J, Guo L, Xiang S. Formation of pre-metastatic bone niche in prostate cancer and regulation of traditional chinese medicine. Front Pharmacol 2022; 13:897942. [PMID: 36059977 PMCID: PMC9428453 DOI: 10.3389/fphar.2022.897942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022] Open
Abstract
Prostate cancer with bone metastasis has a high cancer-specific mortality. Thus, it is essential to delineate the mechanism of bone metastasis. Pre-metastatic niche (PMN) is a concept in tumor metastasis, which is characterized by tumor-secreted factors, reprogramming of stromal cells, and immunosuppression by myeloid-derived suppressor cells (MDSC), which is induced by bone marrow-derived cells (BMDC) in the target organ. However, PMN does not explain the predilection of prostate cancer towards bone metastasis. In this review, we discuss the initiation of bone metastasis of prostate cancer from the perspective of PMN and tumor microenvironment in a step-wise manner. Furthermore, we present a new concept called pre-metastatic bone niche, featuring inherent BMDC, to interpret bone metastasis. Moreover, we illustrate the regulation of traditional Chinese medicine on PMN.
Collapse
|
95
|
Abstract
Organ-specific metastasis to secondary organs is dependent on the formation of a supportive pre-metastatic niche. This tissue-specific microenvironmental response is thought to be mediated by mutational and epigenetic changes to primary tumour cells resulting in altered cross-talk between cell types. This response is augmented through the release of tumour and stromal signalling mediators including cytokines, chemokines, exosomes and growth factors. Although researchers have elucidated some of the cancer-promoting features that are bespoke to organotropic metastasis to the lungs, it remains unclear if these are organ-specific or generic between organs. Understanding the mechanisms that mediate the metastasis-promoting synergy between the host microenvironment, immunity, and pulmonary structures may elucidate predictive, prognostic and therapeutic markers that could be targeted to reduce the metastatic burden of disease. Herein, we give an updated summary of the known cellular and molecular mechanisms that contribute to the formation of the lung pre-metastatic niche and tissue-specific metastasis.
Collapse
Affiliation(s)
- Oliver Cucanic
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Rae H Farnsworth
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Steven A Stacker
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| |
Collapse
|
96
|
Bhat AA, Nisar S, Singh M, Ashraf B, Masoodi T, Prasad CP, Sharma A, Maacha S, Karedath T, Hashem S, Yasin SB, Bagga P, Reddy R, Frennaux MP, Uddin S, Dhawan P, Haris M, Macha MA. Cytokine- and chemokine-induced inflammatory colorectal tumor microenvironment: Emerging avenue for targeted therapy. Cancer Commun (Lond) 2022; 42:689-715. [PMID: 35791509 PMCID: PMC9395317 DOI: 10.1002/cac2.12295] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/28/2022] [Accepted: 04/24/2022] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is a predominant life-threatening cancer, with liver and peritoneal metastases as the primary causes of death. Intestinal inflammation, a known CRC risk factor, nurtures a local inflammatory environment enriched with tumor cells, endothelial cells, immune cells, cancer-associated fibroblasts, immunosuppressive cells, and secretory growth factors. The complex interactions of aberrantly expressed cytokines, chemokines, growth factors, and matrix-remodeling enzymes promote CRC pathogenesis and evoke systemic responses that affect disease outcomes. Mounting evidence suggests that these cytokines and chemokines play a role in the progression of CRC through immunosuppression and modulation of the tumor microenvironment, which is partly achieved by the recruitment of immunosuppressive cells. These cells impart features such as cancer stem cell-like properties, drug resistance, invasion, and formation of the premetastatic niche in distant organs, promoting metastasis and aggressive CRC growth. A deeper understanding of the cytokine- and chemokine-mediated signaling networks that link tumor progression and metastasis will provide insights into the mechanistic details of disease aggressiveness and facilitate the development of novel therapeutics for CRC. Here, we summarized the current knowledge of cytokine- and chemokine-mediated crosstalk in the inflammatory tumor microenvironment, which drives immunosuppression, resistance to therapeutics, and metastasis during CRC progression. We also outlined the potential of this crosstalk as a novel therapeutic target for CRC. The major cytokine/chemokine pathways involved in cancer immunotherapy are also discussed in this review.
Collapse
Affiliation(s)
- Ajaz A. Bhat
- Laboratory of Molecular and Metabolic ImagingCancer Research DepartmentSidra MedicineDoha26999Qatar
| | - Sabah Nisar
- Laboratory of Molecular and Metabolic ImagingCancer Research DepartmentSidra MedicineDoha26999Qatar
| | - Mayank Singh
- Department of Medical OncologyDr. B. R. Ambedkar Institute Rotary Cancer HospitalAll India Institute of Medical Sciences (AIIMS)New Delhi110029India
| | - Bazella Ashraf
- Department of BiotechnologySchool of Life SciencesCentral University of KashmirGanderbalJammu & Kashmir191201India
| | - Tariq Masoodi
- Laboratory of Molecular and Metabolic ImagingCancer Research DepartmentSidra MedicineDoha26999Qatar
| | - Chandra P. Prasad
- Department of Medical OncologyDr. B. R. Ambedkar Institute Rotary Cancer HospitalAll India Institute of Medical Sciences (AIIMS)New Delhi110029India
| | - Atul Sharma
- Department of Medical OncologyDr. B. R. Ambedkar Institute Rotary Cancer HospitalAll India Institute of Medical Sciences (AIIMS)New Delhi110029India
| | - Selma Maacha
- Division of Translational MedicineResearch BranchSidra MedicineDoha26999Qatar
| | | | - Sheema Hashem
- Laboratory of Molecular and Metabolic ImagingCancer Research DepartmentSidra MedicineDoha26999Qatar
| | - Syed Besina Yasin
- Department of PathologySher‐I‐Kashmir Institute of Medical SciencesSrinagarJammu & Kashmir190011India
| | - Puneet Bagga
- Department of Diagnostic ImagingSt. Jude Children's Research HospitalMemphisTN38105USA
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision MedicineDepartment of RadiologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPA19104USA
| | | | - Shahab Uddin
- Translational Research InstituteHamad Medical CorporationDoha3050Qatar
| | - Punita Dhawan
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic ImagingCancer Research DepartmentSidra MedicineDoha26999Qatar
- Laboratory Animal Research CenterQatar UniversityDoha2713Qatar
| | - Muzafar A. Macha
- Watson‐Crick Centre for Molecular MedicineIslamic University of Science and TechnologyAwantiporaJammu & Kashmir192122India
| |
Collapse
|
97
|
The Hepatic Pre-Metastatic Niche. Cancers (Basel) 2022; 14:cancers14153731. [PMID: 35954395 PMCID: PMC9367402 DOI: 10.3390/cancers14153731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary The pre-metastatic niche is a recently established concept that could lead to targeted therapies that prevent metastasis before ever occurring. Considering that 90% of cancer mortality results from metastasis, the PMN is thus a salient opportunity for intervention. The purpose of the current review is to cover what is known specifically about the hepatic pre-metastatic niche, a topic that has garnered increasing research focus within the last decade. We discuss the methods of communication between primary tumors and the liver, the involved cell populations, the key changes within liver tissue, and perspectives on the future of the field. Abstract Primary tumors can communicate with the liver to establish a microenvironment that favors metastatic colonization prior to dissemination, forming what is termed the “pre-metastatic niche” (PMN). Through diverse signaling mechanisms, distant malignancies can both influence hepatic cells directly as well as recruit immune cells into the PMN. The result is a set of changes within the hepatic tissue that increase susceptibility of tumor cell invasion and outgrowth upon dissemination. Thus, the PMN offers a novel step in the traditional metastatic cascade that could offer opportunities for clinical intervention. The involved signaling molecules also offer promise as biomarkers. Ultimately, while the existence of the hepatic PMN is well-established, continued research effort and use of innovative models are required to reach a functional knowledge of PMN mechanisms that can be further targeted.
Collapse
|
98
|
Barnett JD, Jin J, Penet MF, Kobayashi H, Bhujwalla ZM. Phototheranostics of Splenic Myeloid-Derived Suppressor Cells and Its Impact on Spleen Metabolism in Tumor-Bearing Mice. Cancers (Basel) 2022; 14:cancers14153578. [PMID: 35892836 PMCID: PMC9332589 DOI: 10.3390/cancers14153578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: MDSCs play an active role in the immune surveillance escape of cancer cells. Because MDSCs in mice are CD11b+Gr1+, near-infrared photoimmunotherapy (NIR-PIT) using the NIR dye IR700 conjugated to an MDSC-binding antibody provides an opportunity for targeted elimination of MDSCs. (2) Methods: The efficacy of Gr1-IR700-mediated NIR-PIT was evaluated in vitro using magnetically separated CD11b+Gr1+ MDSCs from spleens of 4T1-luc tumor-bearing (TB) mice. For in vivo evaluation, spleens of Gr1-IR700-injected 4T1-luc TB mice were irradiated with NIR light, and splenocyte viability was determined using CCK-8 assays. Metabolic profiling of NIR-PIT-irradiated spleens was performed using 1H MRS. (3) Results: Flow cytometric analysis confirmed a ten-fold increase in splenic MDSCs in 4T1-luc TB mice. Gr1-IR700-mediated NIR-PIT eliminated tumor-induced splenic MDSCs in culture. Ex vivo fluorescence imaging revealed an 8- and 9-fold increase in mean fluorescence intensity (MFI) in the spleen and lungs of Gr1-IR700-injected compared to IgG-IR700-injected TB mice. Splenocytes from Gr1-IR700-injected TB mice exposed in vivo to NIR-PIT demonstrated significantly lower viability compared to no light exposure or untreated control groups. Significant metabolic changes were observed in spleens following NIR-PIT. (4) Conclusions: Our data confirm the ability of NIR-PIT to eliminate splenic MDSCs, identifying its potential to eliminate MDSCs in tumors to reduce immune suppression. The metabolic changes observed may identify potential biomarkers of splenic MDSC depletion as well as potential metabolic targets of MDSCs.
Collapse
Affiliation(s)
- James D. Barnett
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (J.D.B.); (J.J.); (M.-F.P.)
| | - Jiefu Jin
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (J.D.B.); (J.J.); (M.-F.P.)
| | - Marie-France Penet
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (J.D.B.); (J.J.); (M.-F.P.)
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, US National Institutes of Health, Bethesda, MD 20814, USA;
| | - Zaver M. Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (J.D.B.); (J.J.); (M.-F.P.)
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Correspondence:
| |
Collapse
|
99
|
Joshi S, Sharabi A. Targeting myeloid-derived suppressor cells to enhance natural killer cell-based immunotherapy. Pharmacol Ther 2022; 235:108114. [DOI: 10.1016/j.pharmthera.2022.108114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/09/2022]
|
100
|
Huang Y, Kanada M, Ye J, Deng Y, He Q, Lei Z, Chen Y, Li Y, Qin P, Zhang J, Wei J. Exosome-mediated remodeling of the tumor microenvironment: From local to distant intercellular communication. Cancer Lett 2022; 543:215796. [PMID: 35728740 DOI: 10.1016/j.canlet.2022.215796] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
Abstract
Extracellular vesicles (EVs) are membrane-enveloped nanoscale particles that carry various bioactive signaling molecules secreted by cells. Their biological roles depend on the original cell type from which they are derived and their inclusions. Exosomes, a class of EVs, are released by almost all eukaryotic cell types, including tumor cells. Tumor cell-derived exosomes mediate signal transduction between tumor cells and surrounding non-tumor cells. This intercellular communication actively contributes to the remodeling of the tumor microenvironment (TME) to enable tumor growth, invasion, and metastasis. This review summarizes the latest progress in the exploration of exosome-mediated cell-cell communication implicated in TME remodeling and underlying mechanisms. We focus on the role of cell-cell interactions mediated by tumor cell-derived exosomes in promoting invasion and metastasis, and their potential as a therapeutic intervention target against distant metastasis. We also discuss the clinical translational significance of tumor-derived exosomes for early diagnosis, efficacy and progression evaluations.
Collapse
Affiliation(s)
- Yujuan Huang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Masamitsu Kanada
- Department of Pharmacology & Toxicology, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, 48824, USA
| | - Jiaxiang Ye
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Yayan Deng
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Qian He
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Zhengyang Lei
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Yong Chen
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Yongqiang Li
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Jinyan Zhang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China.
| | - Jiazhang Wei
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, China.
| |
Collapse
|