51
|
Song L, Feng D, Tan J, Zhang H. Novel ferroptosis-related gene signature as a potential prognostic tool for gastric cancer. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221122705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objectives Gastric cancer (GC) is a major global health concern and is difficult to diagnose in the early stage. Ferroptosis is an iron-dependent, novel form of non-apoptotic cell death. In recent years, inducing the upregulation of ferroptosis-related genes has become a promising therapeutic alternative for cancers, especially those resistant to traditional treatments. However, the relationship between ferroptosis-related genes and GC remains to be further elucidated. Methods In the present study, mRNA expression profiles and corresponding clinical data of patients with GC were retrieved from The Cancer Genome Atlas and used as test data. A multigene signature was constructed using the least absolute shrinkage and selection operator Cox regression model. Data of patients with GC from ‘GSE84426’ in the Gene Expression Omnibus database were used as Training data for validation. Results More than half ferroptosis-related genes were differentially expressed in GC tissues and adjacent normal tissue samples (58.43%) in the test data. Univariate Cox regression analysis showed that 16 differentially expressed genes were related to the prognosis of GC (all p < 0.05). Expression profiles of the 16 DGEs were analysed using LASSO Cox regression, and a prognostic model was established by selecting the 10 best genes for λ. These 10 genes were used to construct a 10-gene signature and stratify patients into two risk groups. Based on the median risk score in the test data, patients with GC were divided into high- and low-risk groups ( p < 0.001). Risk score was an independent predictor for overall survival in multivariate Cox regression analyses ( p < 0.001 and <0.01 in the test and training data, respectively; hazard ratio >1). Receiver operating characteristic curve analysis confirmed the predictive capacity of the 10-gene signature. Functional analysis revealed that tumour-infiltrating lymphocytes, antigen-presenting cell co-stimulation, and cytokine-cytokine receptors were enriched; however, the immune status differed between the two risk groups. Conclusion The novel ferroptosis-related gene signature can be used for GC prognosis. In addition, ferroptosis may provide a novel alternative for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Ling Song
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dou Feng
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiajie Tan
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hong Zhang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
52
|
Schreiter T, Gieseler RK, Vílchez-Vargas R, Jauregui R, Sowa JP, Klein-Scory S, Broering R, Croner RS, Treckmann JW, Link A, Canbay A. Transcriptome-Wide Analysis of Human Liver Reveals Age-Related Differences in the Expression of Select Functional Gene Clusters and Evidence for a PPP1R10-Governed 'Aging Cascade'. Pharmaceutics 2021; 13:pharmaceutics13122009. [PMID: 34959291 PMCID: PMC8709089 DOI: 10.3390/pharmaceutics13122009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 12/27/2022] Open
Abstract
A transcriptome-wide analysis of human liver for demonstrating differences between young and old humans has not yet been performed. However, identifying major age-related alterations in hepatic gene expression may pinpoint ontogenetic shifts with important hepatic and systemic consequences, provide novel pharmacogenetic information, offer clues to efficiently counteract symptoms of old age, and improve the overarching understanding of individual decline. Next-generation sequencing (NGS) data analyzed by the Mann-Whitney nonparametric test and Ensemble Feature Selection (EFS) bioinformatics identified 44 transcripts among 60,617 total and 19,986 protein-encoding transcripts that significantly (p = 0.0003 to 0.0464) and strikingly (EFS score > 0.3:16 transcripts; EFS score > 0.2:28 transcripts) differ between young and old livers. Most of these age-related transcripts were assigned to the categories 'regulome', 'inflammaging', 'regeneration', and 'pharmacogenes'. NGS results were confirmed by quantitative real-time polymerase chain reaction. Our results have important implications for the areas of ontogeny/aging and the age-dependent increase in major liver diseases. Finally, we present a broadly substantiated and testable hypothesis on a genetically governed 'aging cascade', wherein PPP1R10 acts as a putative ontogenetic master regulator, prominently flanked by IGFALS and DUSP1. This transcriptome-wide analysis of human liver offers potential clues towards developing safer and improved therapeutic interventions against major liver diseases and increased insights into key mechanisms underlying aging.
Collapse
Affiliation(s)
- Thomas Schreiter
- Department of Medicine, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, 44892 Bochum, Germany; (T.S.); (R.K.G.); (J.-P.S.); (S.K.-S.)
- Laboratory of Immunology & Molecular Biology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, 44892 Bochum, Germany
| | - Robert K. Gieseler
- Department of Medicine, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, 44892 Bochum, Germany; (T.S.); (R.K.G.); (J.-P.S.); (S.K.-S.)
- Laboratory of Immunology & Molecular Biology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, 44892 Bochum, Germany
| | - Ramiro Vílchez-Vargas
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (R.V.-V.); (A.L.)
| | - Ruy Jauregui
- Data Science Grasslands, Grasslands Research Centre, AgResearch, Palmerston North 4410, New Zealand;
| | - Jan-Peter Sowa
- Department of Medicine, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, 44892 Bochum, Germany; (T.S.); (R.K.G.); (J.-P.S.); (S.K.-S.)
- Laboratory of Immunology & Molecular Biology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, 44892 Bochum, Germany
| | - Susanne Klein-Scory
- Department of Medicine, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, 44892 Bochum, Germany; (T.S.); (R.K.G.); (J.-P.S.); (S.K.-S.)
- Laboratory of Immunology & Molecular Biology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, 44892 Bochum, Germany
| | - Ruth Broering
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Roland S. Croner
- Department of General, Visceral, Vascular and Transplantation Surgery, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany;
| | - Jürgen W. Treckmann
- Department of General, Visceral and Transplantation Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Alexander Link
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (R.V.-V.); (A.L.)
| | - Ali Canbay
- Department of Medicine, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, 44892 Bochum, Germany; (T.S.); (R.K.G.); (J.-P.S.); (S.K.-S.)
- Section of Hepatology and Gastroenterology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, 44892 Bochum, Germany
- Correspondence: ; Tel.: +49-234-299-3401
| |
Collapse
|
53
|
Reichardt SD, Amouret A, Muzzi C, Vettorazzi S, Tuckermann JP, Lühder F, Reichardt HM. The Role of Glucocorticoids in Inflammatory Diseases. Cells 2021; 10:cells10112921. [PMID: 34831143 PMCID: PMC8616489 DOI: 10.3390/cells10112921] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
For more than 70 years, glucocorticoids (GCs) have been a powerful and affordable treatment option for inflammatory diseases. However, their benefits do not come without a cost, since GCs also cause side effects. Therefore, strong efforts are being made to improve their therapeutic index. In this review, we illustrate the mechanisms and target cells of GCs in the pathogenesis and treatment of some of the most frequent inflammatory disorders affecting the central nervous system, the gastrointestinal tract, the lung, and the joints, as well as graft-versus-host disease, which often develops after hematopoietic stem cell transplantation. In addition, an overview is provided of novel approaches aimed at improving GC therapy based on chemical modifications or GC delivery using nanoformulations. GCs remain a topic of highly active scientific research despite being one of the oldest class of drugs in medical use.
Collapse
Affiliation(s)
- Sybille D. Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
| | - Agathe Amouret
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
| | - Chiara Muzzi
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology, Ulm University, 89081 Ulm, Germany; (S.V.); (J.P.T.)
| | - Jan P. Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, 89081 Ulm, Germany; (S.V.); (J.P.T.)
| | - Fred Lühder
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Holger M. Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
- Correspondence: ; Tel.: +49-551-3963365
| |
Collapse
|
54
|
Comparative Transcriptome Analysis in Monocyte-Derived Macrophages of Asymptomatic GBA Mutation Carriers and Patients with GBA-Associated Parkinson's Disease. Genes (Basel) 2021; 12:genes12101545. [PMID: 34680941 PMCID: PMC8535749 DOI: 10.3390/genes12101545] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/31/2022] Open
Abstract
Mutations of the GBA gene, encoding for lysosomal enzyme glucocerebrosidase (GCase), are the greatest genetic risk factor for Parkinson’s disease (PD) with frequency between 5% and 20% across the world. N370S and L444P are the two most common mutations in the GBA gene. PD carriers of severe mutation L444P in the GBA gene is characterized by the earlier age at onset compared to N370S. Not every carrier of GBA mutations develop PD during one’s lifetime. In the current study we aimed to find common gene expression signatures in PD associated with mutation in the GBA gene (GBA-PD) using RNA-seq. We compared transcriptome of monocyte-derived macrophages of 5 patients with GBA-PD (4 L444P/N, 1 N370S/N) and 4 asymptomatic GBA mutation carriers (GBA-carriers) (3 L444P/N, 1 N370S/N) and 4 controls. We also conducted comparative transcriptome analysis for L444P/N only GBA-PD patients and GBA-carriers. Revealed deregulated genes in GBA-PD independently of GBA mutations (L444P or N370S) were involved in immune response, neuronal function. We found upregulated pathway associated with zinc metabolism in L444P/N GBA-PD patients. The potential important role of DUSP1 in the pathogenesis of GBA-PD was suggested.
Collapse
|
55
|
Sevilla LM, Jiménez-Panizo A, Alegre-Martí A, Estébanez-Perpiñá E, Caelles C, Pérez P. Glucocorticoid Resistance: Interference between the Glucocorticoid Receptor and the MAPK Signalling Pathways. Int J Mol Sci 2021; 22:10049. [PMID: 34576214 PMCID: PMC8465023 DOI: 10.3390/ijms221810049] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022] Open
Abstract
Endogenous glucocorticoids (GCs) are steroid hormones that signal in virtually all cell types to modulate tissue homeostasis throughout life. Also, synthetic GC derivatives (pharmacological GCs) constitute the first-line treatment in many chronic inflammatory conditions with unquestionable therapeutic benefits despite the associated adverse effects. GC actions are principally mediated through the GC receptor (GR), a ligand-dependent transcription factor. Despite the ubiquitous expression of GR, imbalances in GC signalling affect tissues differently, and with variable degrees of severity through mechanisms that are not completely deciphered. Congenital or acquired GC hypersensitivity or resistance syndromes can impact responsiveness to endogenous or pharmacological GCs, causing disease or inadequate therapeutic outcomes, respectively. Acquired GC resistance is defined as loss of efficacy or desensitization over time, and arises as a consequence of chronic inflammation, affecting around 30% of GC-treated patients. It represents an important limitation in the management of chronic inflammatory diseases and cancer, and can be due to impairment of multiple mechanisms along the GC signalling pathway. Among them, activation of the mitogen-activated protein kinases (MAPKs) and/or alterations in expression of their regulators, the dual-specific phosphatases (DUSPs), have been identified as common mechanisms of GC resistance. While many of the anti-inflammatory actions of GCs rely on GR-mediated inhibition of MAPKs and/or induction of DUSPs, the GC anti-inflammatory capacity is decreased or lost in conditions of excessive MAPK activation, contributing to disease susceptibility in tissue- and disease- specific manners. Here, we discuss potential strategies to modulate GC responsiveness, with the dual goal of overcoming GC resistance and minimizing the onset and severity of unwanted adverse effects while maintaining therapeutic potential.
Collapse
Affiliation(s)
- Lisa M. Sevilla
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010 Valencia, Spain;
| | - Alba Jiménez-Panizo
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain; (A.J.-P.); (A.A.-M.); (E.E.-P.)
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain;
| | - Andrea Alegre-Martí
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain; (A.J.-P.); (A.A.-M.); (E.E.-P.)
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain;
| | - Eva Estébanez-Perpiñá
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain; (A.J.-P.); (A.A.-M.); (E.E.-P.)
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain;
| | - Carme Caelles
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain;
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona (UB), 08028 Barcelona, Spain
| | - Paloma Pérez
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010 Valencia, Spain;
| |
Collapse
|
56
|
Bermúdez-Muñoz JM, Celaya AM, García-Mato Á, Muñoz-Espín D, Rodríguez-de la Rosa L, Serrano M, Varela-Nieto I. Dual-Specificity Phosphatase 1 (DUSP1) Has a Central Role in Redox Homeostasis and Inflammation in the Mouse Cochlea. Antioxidants (Basel) 2021; 10:1351. [PMID: 34572983 PMCID: PMC8467085 DOI: 10.3390/antiox10091351] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Stress-activated protein kinases (SAPK) are associated with sensorineural hearing loss (SNHL) of multiple etiologies. Their activity is tightly regulated by dual-specificity phosphatase 1 (DUSP1), whose loss of function leads to sustained SAPK activation. Dusp1 gene knockout in mice accelerates SNHL progression and triggers inflammation, redox imbalance and hair cell (HC) death. To better understand the link between inflammation and redox imbalance, we analyzed the cochlear transcriptome in Dusp1-/- mice. RNA sequencing analysis (GSE176114) indicated that Dusp1-/- cochleae can be defined by a distinct profile of key cellular expression programs, including genes of the inflammatory response and glutathione (GSH) metabolism. To dissociate the two components, we treated Dusp1-/- mice with N-acetylcysteine, and hearing was followed-up longitudinally by auditory brainstem response recordings. A combination of immunofluorescence, Western blotting, enzymatic activity, GSH levels measurements and RT-qPCR techniques were used. N-acetylcysteine treatment delayed the onset of SNHL and mitigated cochlear damage, with fewer TUNEL+ HC and lower numbers of spiral ganglion neurons with p-H2AX foci. N-acetylcysteine not only improved the redox balance in Dusp1-/- mice but also inhibited cytokine production and reduced macrophage recruitment. Our data point to a critical role for DUSP1 in controlling the cross-talk between oxidative stress and inflammation.
Collapse
Affiliation(s)
- Jose M. Bermúdez-Muñoz
- Institute for Biomedical Research “Alberto Sols”, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.M.C.); (Á.G.-M.); (L.R.-d.l.R.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Adelaida M. Celaya
- Institute for Biomedical Research “Alberto Sols”, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.M.C.); (Á.G.-M.); (L.R.-d.l.R.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Ángela García-Mato
- Institute for Biomedical Research “Alberto Sols”, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.M.C.); (Á.G.-M.); (L.R.-d.l.R.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Daniel Muñoz-Espín
- CRUK Cambridge Centre Early Detection Programme, Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge CB2 0XZ, UK;
| | - Lourdes Rodríguez-de la Rosa
- Institute for Biomedical Research “Alberto Sols”, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.M.C.); (Á.G.-M.); (L.R.-d.l.R.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), 28029 Madrid, Spain
| | - Manuel Serrano
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain;
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Isabel Varela-Nieto
- Institute for Biomedical Research “Alberto Sols”, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.M.C.); (Á.G.-M.); (L.R.-d.l.R.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), 28029 Madrid, Spain
| |
Collapse
|
57
|
SARS-CoV-2 attenuates corticosteroid sensitivity by suppressing DUSP1 expression and activating p38 MAPK pathway. Eur J Pharmacol 2021; 908:174374. [PMID: 34303662 PMCID: PMC8295491 DOI: 10.1016/j.ejphar.2021.174374] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023]
Abstract
The efficacy of corticosteroids and its use for the treatment of SARS-CoV-2 infections is controversial. In this study, using data sets of SARS-CoV-2 infected lung tissues and nasopharyngeal swabs, as well as in vitro experiments, we show that SARS-CoV-2 infection significantly downregulates DUSP1 expression. This downregulation of DUSP1 could be the mechanism regulating the enhanced activation of MAPK pathway as well as the reported steroid resistance in SARS-CoV-2 infection. Moreover, chloroquine, an off labeled COVID-19 drug is able to induce DUSP1 and attenuate MAPK pathway; and is expected to improve sensitivity to steroid treatment. However, further mechanistic studies are required to confirm this effect.
Collapse
|
58
|
Ding YH, Miao RX, Zhang Q. Hypaphorine exerts anti-inflammatory effects in sepsis induced acute lung injury via modulating DUSP1/p38/JNK pathway. Kaohsiung J Med Sci 2021; 37:883-893. [PMID: 34250720 DOI: 10.1002/kjm2.12418] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 01/02/2023] Open
Abstract
Sepsis is a systemic inflammatory response syndrome attributed to infection, while sepsis-induced acute lung injury (ALI) has high morbidity and mortality. Here, we aimed to explore the specific mechanism of hypaphorine's anti-inflammatory effects in ALI. Lipopolysaccharide (LPS) was adopted to construct ALI model both in vivo and in vitro. BEAS-2B cell viability and apoptosis was testified by the MTT assay and flow cytometry. Reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) were performed to examine the expression of proinflammatory cytokines (IL-1β, IL-6, TNF-α, and IL-18), and Western blot was adopted to examine the expression of the apoptosis-related proteins (Bax, Bcl2, and Caspase3) and the DUSP1/p38/JNK signaling pathway. At the same time, lung injury score, lactate dehydrogenase (LDH) and myeloperoxidase (MPO) activity were monitored. The dry/wet weight method was used to examine lung edema, and the total protein content in BALF was determined to test pulmonary vascular permeability. As the data suggested, hypaphorine inhibited the LPS-mediated apoptosis of alveolar epithelial cells. What is more, hypaphorine attenuated the expression of inflammatory factors (IL-1β, IL-6, TNF-α, and IL-18) and inactivated the p38/JNK signaling pathway through upregulating DUSP1 in a dose-dependent manner. Meanwhile, DUSP1 knockdown weakened the anti-inflammatory effect of hypaphorine on LPS-mediated lung injury. Furthermore, hypaphorine also relieved LPS induced ALI in rats with anti-inflammatory effects. Taken together, hypaphorine prevented LPS-mediated ALI and proinflammatory response via inactivating the p38/JNK signaling pathway by upregulating DUSP1.
Collapse
Affiliation(s)
- Yu-Hua Ding
- Department of Pharmacy, Zaozhuang Hospital of Traditional Chinese Medicine, Zaozhuang, Shandong, China
| | - Run-Xin Miao
- Department of Emergency, Zaozhuang Hospital of Traditional Chinese Medicine, Zaozhuang, Shandong, China
| | - Qiang Zhang
- Department of Pharmacy, Zaozhuang Hospital of Traditional Chinese Medicine, Zaozhuang, Shandong, China
| |
Collapse
|
59
|
Shirif AZ, Kovačević S, Brkljačić J, Teofilović A, Elaković I, Djordjevic A, Matić G. Decreased Glucocorticoid Signaling Potentiates Lipid-Induced Inflammation and Contributes to Insulin Resistance in the Skeletal Muscle of Fructose-Fed Male Rats Exposed to Stress. Int J Mol Sci 2021; 22:ijms22137206. [PMID: 34281257 PMCID: PMC8269441 DOI: 10.3390/ijms22137206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 01/03/2023] Open
Abstract
The modern lifestyle brings both excessive fructose consumption and daily exposure to stress which could lead to metabolic disturbances and type 2 diabetes. Muscles are important points of glucose and lipid metabolism, with a crucial role in the maintenance of systemic energy homeostasis. We investigated whether 9-week fructose-enriched diet, with and without exposure to 4-week unpredictable stress, disturbs insulin signaling in the skeletal muscle of male rats and evaluated potential contributory roles of muscle lipid metabolism, glucocorticoid signaling and inflammation. The combination of fructose-enriched diet and stress increased peroxisome proliferator-activated receptors-α and -δ and stimulated lipid uptake, lipolysis and β-oxidation in the muscle of fructose-fed stressed rats. Combination of treatment also decreased systemic insulin sensitivity judged by lower R-QUICKI, and lowered muscle protein content and stimulatory phosphorylations of insulin receptor supstrate-1 and Akt, as well as the level of 11β-hydroxysteroid dehydrogenase type 1 and glucocorticoid receptor. At the same time, increased levels of protein tyrosine phosphatase-1B, nuclear factor-κB, tumor necrosis factor-α, were observed in the muscle of fructose-fed stressed rats. Based on these results, we propose that decreased glucocorticoid signaling in the skeletal muscle can make a setting for lipid-induced inflammation and the development of insulin resistance in fructose-fed stressed rats.
Collapse
|
60
|
Tomita T, Kato M, Mishima T, Matsunaga Y, Sanjo H, Ito KI, Minagawa K, Matsui T, Oikawa H, Takahashi S, Takao T, Iwai N, Mino T, Takeuchi O, Maru Y, Hiratsuka S. Extracellular mRNA transported to the nucleus exerts translation-independent function. Nat Commun 2021; 12:3655. [PMID: 34135341 PMCID: PMC8208975 DOI: 10.1038/s41467-021-23969-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
RNA in extracellular vesicles (EVs) are uptaken by cells, where they regulate fundamental cellular functions. EV-derived mRNA in recipient cells can be translated. However, it is still elusive whether “naked nonvesicular extracellular mRNA” (nex-mRNA) that are not packed in EVs can be uptaken by cells and, if so, whether they have any functions in recipient cells. Here, we show the entrance of nex-mRNA in the nucleus, where they exert a translation-independent function. Human nex-interleukin-1β (IL1β)-mRNA outside cells proved to be captured by RNA-binding zinc finger CCCH domain containing protein 12D (ZC3H12D)-expressing human natural killer (NK) cells. ZC3H12D recruited to the cell membrane binds to the 3′-untranslated region of nex-IL1β-mRNA and transports it to the nucleus. The nex-IL1β-mRNA in the NK cell nucleus upregulates antiapoptotic gene expression, migration activity, and interferon-γ production, leading to the killing of cancer cells and antimetastasis in mice. These results implicate the diverse actions of mRNA. Nonvesicular extracellular RNA (nex-RNA) that are not packed in extracellular vesicles is detected outside the cell, but it is poorly understood. Here the authors report that nex-RNA is captured by a zinc finger protein and transported to the nucleus to enhance antimetastatic characters of the cell.
Collapse
Affiliation(s)
- Takeshi Tomita
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, School of Medicine, Matsumoto, Nagano, Japan.,Department of Biochemistry and Molecular Biology, Shinshu University, School of Medicine, Matsumoto, Nagano, Japan
| | - Masayoshi Kato
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, School of Medicine, Matsumoto, Nagano, Japan.,Department of Biochemistry and Molecular Biology, Shinshu University, School of Medicine, Matsumoto, Nagano, Japan
| | - Taishi Mishima
- Department of Pharmacology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Yuta Matsunaga
- Department of Pharmacology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Hideki Sanjo
- Department of Molecular and Cellular Immunology, Shinshu University, School of Medicine, Matsumoto, Nagano, Japan
| | - Ken-Ichi Ito
- Division of Breast, Endocrine and Respiratory Surgery, Department of Surgery, Shinshu University, School of Medicine, Matsumoto, Nagano, Japan
| | - Kentaro Minagawa
- Department of Hematology/Oncology, Penn State College of Medicine, Hershey, PA, USA
| | - Toshimitsu Matsui
- Department of Hematology, Nishiwaki Municipal Hospital, Nishiwaki, Hyogo, Japan
| | - Hiroyuki Oikawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Satoshi Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Toshifumi Takao
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Noriki Iwai
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Mino
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshiro Maru
- Department of Pharmacology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan.
| | - Sachie Hiratsuka
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, School of Medicine, Matsumoto, Nagano, Japan. .,Department of Biochemistry and Molecular Biology, Shinshu University, School of Medicine, Matsumoto, Nagano, Japan.
| |
Collapse
|
61
|
Dumas A, Knaus UG. Raising the 'Good' Oxidants for Immune Protection. Front Immunol 2021; 12:698042. [PMID: 34149739 PMCID: PMC8213335 DOI: 10.3389/fimmu.2021.698042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Redox medicine is a new therapeutic concept targeting reactive oxygen species (ROS) and secondary reaction products for health benefit. The concomitant function of ROS as intracellular second messengers and extracellular mediators governing physiological redox signaling, and as damaging radicals instigating or perpetuating various pathophysiological conditions will require selective strategies for therapeutic intervention. In addition, the reactivity and quantity of the oxidant species generated, its source and cellular location in a defined disease context need to be considered to achieve the desired outcome. In inflammatory diseases associated with oxidative damage and tissue injury, ROS source specific inhibitors may provide more benefit than generalized removal of ROS. Contemporary approaches in immunity will also include the preservation or even elevation of certain oxygen metabolites to restore or improve ROS driven physiological functions including more effective redox signaling and cell-microenvironment communication, and to induce mucosal barrier integrity, eubiosis and repair processes. Increasing oxidants by host-directed immunomodulation or by exogenous supplementation seems especially promising for improving host defense. Here, we summarize examples of beneficial ROS in immune homeostasis, infection, and acute inflammatory disease, and address emerging therapeutic strategies for ROS augmentation to induce and strengthen protective host immunity.
Collapse
Affiliation(s)
- Alexia Dumas
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
62
|
Botwright NA, Mohamed AR, Slinger J, Lima PC, Wynne JW. Host-Parasite Interaction of Atlantic salmon ( Salmo salar) and the Ectoparasite Neoparamoeba perurans in Amoebic Gill Disease. Front Immunol 2021; 12:672700. [PMID: 34135900 PMCID: PMC8202022 DOI: 10.3389/fimmu.2021.672700] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
Marine farmed Atlantic salmon (Salmo salar) are susceptible to recurrent amoebic gill disease (AGD) caused by the ectoparasite Neoparamoeba perurans over the growout production cycle. The parasite elicits a highly localized response within the gill epithelium resulting in multifocal mucoid patches at the site of parasite attachment. This host-parasite response drives a complex immune reaction, which remains poorly understood. To generate a model for host-parasite interaction during pathogenesis of AGD in Atlantic salmon the local (gill) and systemic transcriptomic response in the host, and the parasite during AGD pathogenesis was explored. A dual RNA-seq approach together with differential gene expression and system-wide statistical analyses of gene and transcription factor networks was employed. A multi-tissue transcriptomic data set was generated from the gill (including both lesioned and non-lesioned tissue), head kidney and spleen tissues naïve and AGD-affected Atlantic salmon sourced from an in vivo AGD challenge trial. Differential gene expression of the salmon host indicates local and systemic upregulation of defense and immune responses. Two transcription factors, znfOZF-like and znf70-like, and their associated gene networks significantly altered with disease state. The majority of genes in these networks are candidates for mediators of the immune response, cellular proliferation and invasion. These include Aurora kinase B-like, rho guanine nucleotide exchange factor 25-like and protein NDNF-like inhibited. Analysis of the N. perurans transcriptome during AGD pathology compared to in vitro cultured N. perurans trophozoites, as a proxy for wild type trophozoites, identified multiple gene candidates for virulence and indicates a potential master regulatory gene system analogous to the two-component PhoP/Q system. Candidate genes identified are associated with invasion of host tissue, evasion of host defense mechanisms and formation of the mucoid lesion. We generated a novel model for host-parasite interaction during AGD pathogenesis through integration of host and parasite functional profiles. Collectively, this dual transcriptomic study provides novel molecular insights into the pathology of AGD and provides alternative theories for future research in a step towards improved management of AGD.
Collapse
Affiliation(s)
- Natasha A Botwright
- Livestock and Aquaculture, CSIRO Agriculture and Food, St Lucia, QLD, Australia
| | - Amin R Mohamed
- Livestock and Aquaculture, CSIRO Agriculture and Food, St Lucia, QLD, Australia
| | - Joel Slinger
- Livestock and Aquaculture, CSIRO Agriculture and Food, Woorim, QLD, Australia
| | - Paula C Lima
- Livestock and Aquaculture, CSIRO Agriculture and Food, St Lucia, QLD, Australia
| | - James W Wynne
- Livestock and Aquaculture, CSIRO Agriculture and Food, Hobart, TAS, Australia
| |
Collapse
|
63
|
Kim K, Lee EY. Excessively Enlarged Mitochondria in the Kidneys of Diabetic Nephropathy. Antioxidants (Basel) 2021; 10:antiox10050741. [PMID: 34067150 PMCID: PMC8151708 DOI: 10.3390/antiox10050741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetic nephropathy (DN) is the most serious complication of diabetes and a leading cause of kidney failure and mortality in patients with diabetes. However, the exact pathogenic mechanisms involved are poorly understood. Impaired mitochondrial function and accumulation of damaged mitochondria due to increased imbalance in mitochondrial dynamics are known to be involved in the development and progression of DN. Accumulating evidence suggests that aberrant mitochondrial fission is involved in the progression of DN. Conversely, studies linking excessively enlarged mitochondria to DN pathogenesis are emerging. In this review, we summarize the current concepts of imbalanced mitochondrial dynamics and their molecular aspects in various experimental models of DN. We discuss the recent evidence of enlarged mitochondria in the kidneys of DN and examine the possibility of a therapeutic application targeting mitochondrial dynamics in DN.
Collapse
Affiliation(s)
- Kiyoung Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan 31538, Korea
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
- Correspondence: (K.K.); (E.-Y.L.); Tel.: +82-41-413-5024 (K.K.); +82-41-570-3684 (E.-Y.L.); Fax: +82-41-413-5006 (K.K. & E.-Y.L.)
| | - Eun-Young Lee
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Korea
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
- BK21 FOUR Project, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
- Correspondence: (K.K.); (E.-Y.L.); Tel.: +82-41-413-5024 (K.K.); +82-41-570-3684 (E.-Y.L.); Fax: +82-41-413-5006 (K.K. & E.-Y.L.)
| |
Collapse
|
64
|
Lu C, Wu B, Liao Z, Xue M, Zou Z, Feng J, Sheng J. DUSP1 overexpression attenuates renal tubular mitochondrial dysfunction by restoring Parkin-mediated mitophagy in diabetic nephropathy. Biochem Biophys Res Commun 2021; 559:141-147. [PMID: 33940385 DOI: 10.1016/j.bbrc.2021.04.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/08/2021] [Indexed: 11/17/2022]
Abstract
Diabetic nephropathy (DN) is the primary cause of end-stage renal disease, and renal tubular cell dysfunction contributes to the pathogenesis of many kidney diseases. Our previous study demonstrated that dual-specificity protein phosphatase 1 (DUSP1) reduced hyperglycemia-mediated mitochondrial damage; however, its role in hyperglycemia-driven dysfunction of tubular cells is still not fully understood. In this study, we found that DUSP1 is reduced in human proximal tubular epithelial (HK-2) cells under high-glucose conditions. DUSP1 overexpression in HK-2 cells partially restored autophagic flux, improved mitochondrial function, and reduced reactive oxygen species generation and cell apoptosis under high-glucose conditions. Surprisingly, overexpressing DUSP1 abolished the decrease in mitochondrial parkin expression caused by high-glucose stimulation. In addition, knockdown of parkin in HK-2 cells reversed the effects of DUSP1 overexpression on mitophagy and apoptosis under high-glucose conditions. Overall, these data indicate that DUSP1 plays a defensive role in the pathogenesis of DN by restoring parkin-mediated mitophagy, suggesting that it may be considered a prospective therapeutic strategy for the amelioration of DN.
Collapse
Affiliation(s)
- Chang Lu
- Department of Nephrology, Xuhui District Central Hospital of Shanghai, Shanghai, 200003, China
| | - Bo Wu
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhuojun Liao
- Department of Nephrology, Xuhui District Central Hospital of Shanghai, Shanghai, 200003, China
| | - Ming Xue
- Department of Nephrology, Xuhui District Central Hospital of Shanghai, Shanghai, 200003, China
| | - Zhouping Zou
- Department of Nephrology, Xuhui District Central Hospital of Shanghai, Shanghai, 200003, China
| | - Jianxun Feng
- Department of Nephrology, Xuhui District Central Hospital of Shanghai, Shanghai, 200003, China.
| | - Junqin Sheng
- Department of Nephrology, Xuhui District Central Hospital of Shanghai, Shanghai, 200003, China.
| |
Collapse
|
65
|
Goel S, Saheb Sharif-Askari F, Saheb Sharif Askari N, Madkhana B, Alwaa AM, Mahboub B, Zakeri AM, Ratemi E, Hamoudi R, Hamid Q, Halwani R. SARS-CoV-2 Switches 'on' MAPK and NFκB Signaling via the Reduction of Nuclear DUSP1 and DUSP5 Expression. Front Pharmacol 2021; 12:631879. [PMID: 33995033 PMCID: PMC8114414 DOI: 10.3389/fphar.2021.631879] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/15/2021] [Indexed: 12/14/2022] Open
Abstract
Mitogen-activated protein kinases (MAPK) and NF-kappaB (NF-κB) pathway regulate many cellular processes and are essential for immune cells function. Their activity is controlled by dual-specificity phosphatases (DUSPs). A comprehensive analysis of publicly available gene expression data sets of human airway epithelial cells (AECs) infected with SARS-CoV-2 identified DUSP1 and DUSP5 among the lowest induced transcripts within these pathways. These proteins are known to downregulate MAPK and NF-κB pathways; and their lower expression was associated with increased activity of MAPK and NF-κB signaling and enhanced expression of proinflammatory cytokines such as TNF-α. Infection with other coronaviruses did not have a similar effect on these genes. Interestingly, treatment with chloroquine and/or non-steroidal anti-inflammatory drugs counteracted the SARS-CoV-2 induced reduction of DUSP1 and DUSP5 genes expression. Therapeutically, impeding this evasion mechanism of SARS-CoV-2 may help control the exaggerated activation of these immune regulatory pathways during a COVID-19 infection.
Collapse
Affiliation(s)
- Swati Goel
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | | | | | - Bushra Madkhana
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmad Munzer Alwaa
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Bassam Mahboub
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,Rashid Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| | - Adel M Zakeri
- Department of Plant Production, Faculty of Agriculture and Food Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Elaref Ratemi
- Jubail- Industrial College, Department of Chemical and Process Engineering Technology, Jubail- Industrial City, Al Jubail, Saudi Arabia
| | - Rifat Hamoudi
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Rabih Halwani
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Prince Abdullah Ben Khaled Celiac Disease Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
66
|
Corticosteroid-binding-globulin (CBG)-deficient mice show high pY216-GSK3β and phosphorylated-Tau levels in the hippocampus. PLoS One 2021; 16:e0246930. [PMID: 33592009 PMCID: PMC7886218 DOI: 10.1371/journal.pone.0246930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
Corticosteroid-binding globulin (CBG) is the specific carrier of circulating glucocorticoids, but evidence suggests that it also plays an active role in modulating tissue glucocorticoid activity. CBG polymorphisms affecting its expression or affinity for glucocorticoids are associated with chronic pain, chronic fatigue, headaches, depression, hypotension, and obesity with an altered hypothalamic pituitary adrenal axis. CBG has been localized in hippocampus of humans and rodents, a brain area where glucocorticoids have an important regulatory role. However, the specific CBG function in the hippocampus is yet to be established. The aim of this study was to investigate the effect of the absence of CBG on hippocampal glucocorticoid levels and determine whether pathways regulated by glucocorticoids would be altered. We used cbg-/- mice, which display low total-corticosterone and high free-corticosterone blood levels at the nadir of corticosterone secretion (morning) and at rest to evaluate the hippocampus for total- and free-corticosterone levels; 11β-hydroxysteroid dehydrogenase expression and activity; the expression of key proteins involved in glucocorticoid activity and insulin signaling; microtubule-associated protein tau phosphorylation, and neuronal and synaptic function markers. Our results revealed that at the nadir of corticosterone secretion in the resting state the cbg-/- mouse hippocampus exhibited slightly elevated levels of free-corticosterone, diminished FK506 binding protein 5 expression, increased corticosterone downstream effectors and altered MAPK and PI3K pathway with increased pY216-GSK3β and phosphorylated tau. Taken together, these results indicate that CBG deficiency triggers metabolic imbalance which could lead to damage and long-term neurological pathologies.
Collapse
|
67
|
van der Ploeg EK, Golebski K, van Nimwegen M, Fergusson JR, Heesters BA, Martinez-Gonzalez I, Kradolfer CMA, van Tol S, Scicluna BP, de Bruijn MJW, de Boer GM, Tramper-Stranders GA, Braunstahl GJ, van IJcken WFJ, Nagtegaal AP, van Drunen CM, Fokkens WJ, Huylebroeck D, Spits H, Hendriks RW, Stadhouders R, Bal SM. Steroid-resistant human inflammatory ILC2s are marked by CD45RO and elevated in type 2 respiratory diseases. Sci Immunol 2021; 6:6/55/eabd3489. [PMID: 33514640 DOI: 10.1126/sciimmunol.abd3489] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022]
Abstract
Group 2 innate lymphoid cells (ILC2s) orchestrate protective type 2 immunity and have been implicated in various immune disorders. In the mouse, circulatory inflammatory ILC2s (iILC2s) were identified as a major source of type 2 cytokines. The human equivalent of the iILC2 subset remains unknown. Here, we identify a human inflammatory ILC2 population that resides in inflamed mucosal tissue and is specifically marked by surface CD45RO expression. CD45RO+ ILC2s are derived from resting CD45RA+ ILC2s upon activation by epithelial alarmins such as IL-33 and TSLP, which is tightly linked to STAT5 activation and up-regulation of the IRF4/BATF transcription factors. Transcriptome analysis reveals marked similarities between human CD45RO+ ILC2s and mouse iILC2s. Frequencies of CD45RO+ inflammatory ILC2 are increased in inflamed mucosal tissue and in the circulation of patients with chronic rhinosinusitis or asthma, correlating with disease severity and resistance to corticosteroid therapy. CD45RA-to-CD45RO ILC2 conversion is suppressed by corticosteroids via induction of differentiation toward an immunomodulatory ILC2 phenotype characterized by low type 2 cytokine and high amphiregulin expression. Once converted, however, CD45RO+ ILC2s are resistant to corticosteroids, which is associated with metabolic reprogramming resulting in the activation of detoxification pathways. Our combined data identify CD45RO+ inflammatory ILC2s as a human analog of mouse iILC2s linked to severe type 2 inflammatory disease and therapy resistance.
Collapse
Affiliation(s)
- Esmee K van der Ploeg
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
| | - Korneliusz Golebski
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | | | - Joannah R Fergusson
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Balthasar A Heesters
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Itziar Martinez-Gonzalez
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Chantal M A Kradolfer
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Sophie van Tol
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Brendon P Scicluna
- Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Epidemiology and Biostatistics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | | | - Geertje M de Boer
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Department of Respiratory Medicine, Franciscus Gasthuis and Vlietland, Rotterdam, Netherlands
| | - Gerdien A Tramper-Stranders
- Department of Pediatric Medicine, Franciscus Gasthuis and Vlietland, Rotterdam, Netherlands.,Department of Neonatology, Sophia Children's Hospital, Erasmus MC, Rotterdam, Netherlands
| | - Gert-Jan Braunstahl
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Department of Respiratory Medicine, Franciscus Gasthuis and Vlietland, Rotterdam, Netherlands
| | - Wilfred F J van IJcken
- Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands.,Center for Biomics, Erasmus MC, Rotterdam, Netherlands
| | - A Paul Nagtegaal
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC, Rotterdam, Netherlands
| | - Cornelis M van Drunen
- Department of Otorhinolaryngology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Wytske J Fokkens
- Department of Otorhinolaryngology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | | | - Hergen Spits
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands. .,Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
| | - Suzanne M Bal
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
68
|
Serum microRNAs as Tool to Predict Early Response to Benralizumab in Severe Eosinophilic Asthma. J Pers Med 2021; 11:jpm11020076. [PMID: 33525548 PMCID: PMC7912443 DOI: 10.3390/jpm11020076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
Severe eosinophilic asthma poses a serious health and economic problem, so new therapy approaches have been developed to control it, including biological drugs such as benralizumab, which is a monoclonal antibody that binds to IL-5 receptor alpha subunit and depletes peripheral blood eosinophils rapidly. Biomarkers that predict the response to this drug are needed so that microRNAs (miRNAs) can be useful tools. This study was performed with fifteen severe eosinophilic asthmatic patients treated with benralizumab, and serum miRNAs were evaluated before and after treatment by semi-quantitative PCR (qPCR). Patients showed a clinical improvement after benralizumab administration. Additionally, deregulation of miR-1246, miR-5100 and miR-338-3p was observed in severe asthmatic patients after eight weeks of therapy, and a correlation was found between miR-1246 and eosinophil counts, including a number of exacerbations per year in these severe asthmatics. In silico pathway analysis revealed that these three miRNAs are regulators of the MAPK signaling pathway, regulating target genes implicated in asthma such as NFKB2, NFATC3, DUSP1, DUSP2, DUSP5 and DUSP16. In this study, we observed an altered expression of miR-1246, miR-5100 and miR-338-3p after eight weeks of benralizumab administration, which could be used as early response markers.
Collapse
|
69
|
Xin Y, Tang L, Chen J, Chen D, Wen W, Han F. Inhibition of miR‑101‑3p protects against sepsis‑induced myocardial injury by inhibiting MAPK and NF‑κB pathway activation via the upregulation of DUSP1. Int J Mol Med 2021; 47:20. [PMID: 33448324 PMCID: PMC7849984 DOI: 10.3892/ijmm.2021.4853] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023] Open
Abstract
Numerous studies have found that microRNAs (miRNAs or miRs) are aberrantly expressed when sepsis occurs. The present study aimed to investigate the role of miR-101-3p in sepsis-induced myocardial injury and to elucidate the underlying mechanisms. Models of myocardial injury were established both in vivo and in vitro. The results revealed that miR-101-3p was upregulated in the serum of patients with sepsis-induced cardiomyopathy (SIC) and positively correlated with the levels of pro-inflammatory cytokines (including IL-1β, IL-6 and TNF-α). Subsequently, rats were treated with miR-101-3p inhibitor to suppress miR-101-3p and were then exposed to lipopolysaccharide (LPS). The results revealed that LPS induced marked cardiac dysfunction, apoptosis and inflammation. The inhibition of miR-101-3p markedly attenuated sepsis-induced myocardial injury by attenuating apoptosis and the expression of pro-inflammatory cytokines. Mechanistically, dual specificity phosphatase-1 (DUSP1) was found to be a functional target of miR-101-3p. The downregulation of miR-101-3p led to the overexpression of DUSP1, and the inactivation of the MAPK p38 and NF-κB pathways. Moreover, blocking DUSP1 by short hairpin RNA against DUSP1 (sh-DUSP1) significantly reduced the myocardial protective effects mediated by the inhibition of miR-101-3p. Collectively, the findings of the present study demonstrate that the inhibition of miR-101-3p exerts cardioprotective effects by suppressing MAPK p38 and NF-κB pathway activation, and thus attenuating inflammation and apoptosis dependently by enhancing DUSP1 expression.
Collapse
Affiliation(s)
- Ye Xin
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Li Tang
- Department of Gastroenterology, Xinqiao Hospital of Army Medical University, Chongqing 400037, P.R. China
| | - Jing Chen
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Dong Chen
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wen Wen
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Fugang Han
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
70
|
Gamaev L, Mizrahi L, Friehmann T, Rosenberg N, Pappo O, Olam D, Zeira E, Bahar Halpern K, Caruso S, Zucman-Rossi J, Axelrod JH, Galun E, Goldenberg DS. The pro-oncogenic effect of the lncRNA H19 in the development of chronic inflammation-mediated hepatocellular carcinoma. Oncogene 2021; 40:127-139. [PMID: 33093654 DOI: 10.1038/s41388-020-01513-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 01/09/2023]
Abstract
The oncofetal long noncoding RNA (lncRNA) H19 is postnatally repressed in most tissues, and re-expressed in many cancers, including hepatocellular carcinoma (HCC). The role of H19 in carcinogenesis is a subject of controversy. We aimed to examine the role of H19 in chronic inflammation-mediated hepatocarcinogenesis using the Mdr2/Abcb4 knockout (Mdr2-KO) mouse, a well-established HCC model. For this goal, we have generated Mdr2-KO/H19-KO double knockout (dKO) mice and followed spontaneous tumor development in the dKO and control Mdr2-KO mice. Cellular localization of H19 and effects of H19 loss in the liver were determined in young and old Mdr2-KO mice. Tumor incidence and tumor load were both significantly decreased in the liver of dKO versus Mdr2-KO females. The expression levels of H19 and Igf2 were variable in nontumor liver tissues of Mdr2-KO females and were significantly downregulated in most matched tumors. In nontumor liver tissue of aged Mdr2-KO females, H19 was expressed mainly in hepatocytes, and hepatocyte proliferation was increased compared to dKO females. At an early age, dKO females displayed lower levels of liver injury and B-cell infiltration, with higher percentage of binuclear hepatocytes. In human samples, H19 expression was higher in females, positively correlated with cirrhosis (in nontumor liver samples) and negatively correlated with CTNNB1 (beta-catenin) mutations and patients' survival (in tumors). Our data demonstrate that the lncRNA H19 is pro-oncogenic during the development of chronic inflammation-mediated HCC in the Mdr2-KO mouse model, mainly by increasing liver injury and decreasing hepatocyte polyploidy in young mice.
Collapse
Affiliation(s)
- Lika Gamaev
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Lina Mizrahi
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Tomer Friehmann
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Nofar Rosenberg
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Orit Pappo
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Devorah Olam
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Evelyne Zeira
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Keren Bahar Halpern
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors Laboratory, F-75006, Paris, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors Laboratory, F-75006, Paris, France
- Hôpital Européen Georges Pompidou, AP-HP, F-75015, Paris, France
| | - Jonathan H Axelrod
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Eithan Galun
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Daniel S Goldenberg
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
71
|
Suzuki S, Okada M, Sanomachi T, Togashi K, Seino S, Sato A, Yamamoto M, Kitanaka C. Therapeutic targeting of pancreatic cancer stem cells by dexamethasone modulation of the MKP-1-JNK axis. J Biol Chem 2020; 295:18328-18342. [PMID: 33115754 PMCID: PMC7939393 DOI: 10.1074/jbc.ra120.015223] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/16/2020] [Indexed: 12/24/2022] Open
Abstract
Postoperative recurrence from microscopic residual disease must be prevented to cure intractable cancers, including pancreatic cancer. Key to this goal is the elimination of cancer stem cells (CSCs) endowed with tumor-initiating capacity and drug resistance. However, current therapeutic strategies capable of accomplishing this are insufficient. Using in vitro models of CSCs and in vivo models of tumor initiation in which CSCs give rise to xenograft tumors, we show that dexamethasone induces expression of MKP-1, a MAPK phosphatase, via glucocorticoid receptor activation, thereby inactivating JNK, which is required for self-renewal and tumor initiation by pancreatic CSCs as well as for their expression of survivin, an anti-apoptotic protein implicated in multidrug resistance. We also demonstrate that systemic administration of clinically relevant doses of dexamethasone together with gemcitabine prevents tumor formation by CSCs in a pancreatic cancer xenograft model. Our study thus provides preclinical evidence for the efficacy of dexamethasone as an adjuvant therapy to prevent postoperative recurrence in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Shuhei Suzuki
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, Japan; Department of Clinical Oncology, Yamagata University School of Medicine, Yamagata, Japan
| | - Masashi Okada
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, Japan.
| | - Tomomi Sanomachi
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, Japan; Department of Clinical Oncology, Yamagata University School of Medicine, Yamagata, Japan
| | - Keita Togashi
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, Japan; Department of Ophthalmology and Visual Sciences, Yamagata University School of Medicine, Yamagata, Japan
| | - Shizuka Seino
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, Japan
| | - Atsushi Sato
- Department of Neurosurgery, Yamagata University School of Medicine, Yamagata, Japan
| | - Masahiro Yamamoto
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, Japan
| | - Chifumi Kitanaka
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, Japan; Research Institute for Promotion of Medical Sciences, Faculty of Medicine, Yamagata University, Yamagata, Japan.
| |
Collapse
|
72
|
Hammoudeh SM, Venkatachalam T, Ansari AW, Bendardaf R, Hamid Q, Rahmani M, Hamoudi R. Systems Immunology Analysis Reveals an Immunomodulatory Effect of Snail-p53 Binding on Neutrophil- and T Cell-Mediated Immunity in KRAS Mutant Non-Small Cell Lung Cancer. Front Immunol 2020; 11:569671. [PMID: 33381110 PMCID: PMC7768232 DOI: 10.3389/fimmu.2020.569671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/11/2020] [Indexed: 11/13/2022] Open
Abstract
Immunomodulation and chronic inflammation are important mechanisms utilized by cancer cells to evade the immune defense and promote tumor progression. Therefore, various efforts were focused on the development of approaches to reprogram the immune response to increase the immune detection of cancer cells and enhance patient response to various types of therapy. A number of regulatory proteins were investigated and proposed as potential targets for immunomodulatory therapeutic approaches including p53 and Snail. In this study, we investigated the immunomodulatory effect of disrupting Snail-p53 binding induced by the oncogenic KRAS to suppress p53 signaling. We analyzed the transcriptomic profile mediated by Snail-p53 binding inhibitor GN25 in non-small cell lung cancer cells (A549) using Next generation whole RNA-sequencing. Notably, we observed a significant enrichment in transcripts involved in immune response pathways especially those contributing to neutrophil (IL8) and T-cell mediated immunity (BCL6, and CD81). Moreover, transcripts associated with NF-κB signaling were also enriched which may play an important role in the immunomodulatory effect of Snail-p53 binding. Further analysis revealed that the immune expression signature of GN25 overlaps with the signature of other therapeutic compounds known to exhibit immunomodulatory effects validating the immunomodulatory potential of targeting Snail-p53 binding. The effects of GN25 on the immune response pathways suggest that targeting Snail-p53 binding might be a potentially effective therapeutic strategy.
Collapse
Affiliation(s)
- Sarah Musa Hammoudeh
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Thenmozhi Venkatachalam
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdul Wahid Ansari
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Riyad Bendardaf
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Oncology Unit, University Hospital Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | - Mohamed Rahmani
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Rifat Hamoudi
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,Division of Surgery and Interventional Science, University College London, London, United Kingdom
| |
Collapse
|
73
|
Activation of c-Jun N-Terminal Kinase, a Potential Therapeutic Target in Autoimmune Arthritis. Cells 2020; 9:cells9112466. [PMID: 33198301 PMCID: PMC7696795 DOI: 10.3390/cells9112466] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
The c-Jun-N-terminal kinase (JNK) is a critical mediator involved in various physiological processes, such as immune responses, and the pathogenesis of various diseases, including autoimmune disorders. JNK is one of the crucial downstream signaling molecules of various immune triggers, mainly proinflammatory cytokines, in autoimmune arthritic conditions, mainly including rheumatoid arthritis, ankylosing spondylitis, and psoriatic arthritis. The activation of JNK is regulated in a complex manner by upstream kinases and phosphatases. Noticeably, different subtypes of JNKs behave differentially in immune responses. Furthermore, aside from biologics targeting proinflammatory cytokines, small-molecule inhibitors targeting signaling molecules such as Janus kinases can act as very powerful therapeutics in autoimmune arthritis patients unresponsiveness to conventional synthetic antirheumatic drugs. Nevertheless, despite these encouraging therapies, a population of patients with an inadequate therapeutic response to all currently available medications still remains. These findings identify the critical signaling molecule JNK as an attractive target for investigation of the immunopathogenesis of autoimmune disorders and for consideration as a potential therapeutic target for patients with autoimmune arthritis to achieve better disease control. This review provides a useful overview of the roles of JNK, how JNK is regulated in immunopathogenic responses, and the potential of therapeutically targeting JNK in patients with autoimmune arthritis.
Collapse
|
74
|
Mechanisms Underlying the Regulation of Mitochondrial Respiratory Chain Complexes by Nuclear Steroid Receptors. Int J Mol Sci 2020; 21:ijms21186683. [PMID: 32932692 PMCID: PMC7555717 DOI: 10.3390/ijms21186683] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial respiratory chain complexes play important roles in energy production via oxidative phosphorylation (OXPHOS) to drive various biochemical processes in eukaryotic cells. These processes require coordination with other cell organelles, especially the nucleus. Factors encoded by both nuclear and mitochondrial DNA are involved in the formation of active respiratory chain complexes and 'supercomplexes', the higher-order structures comprising several respiratory chain complexes. Various nuclear hormone receptors are involved in the regulation of OXPHOS-related genes. In this article, we review the roles of nuclear steroid receptors (NR3 class nuclear receptors), including estrogen receptors (ERs), estrogen-related receptors (ERRs), glucocorticoid receptors (GRs), mineralocorticoid receptors (MRs), progesterone receptors (PRs), and androgen receptors (ARs), in the regulatory mechanisms of mitochondrial respiratory chain complex and supercomplex formation.
Collapse
|
75
|
Walugembe M, Amuzu-Aweh EN, Botchway PK, Naazie A, Aning G, Wang Y, Saelao P, Kelly T, Gallardo RA, Zhou H, Lamont SJ, Kayang BB, Dekkers JCM. Genetic Basis of Response of Ghanaian Local Chickens to Infection With a Lentogenic Newcastle Disease Virus. Front Genet 2020; 11:739. [PMID: 32849779 PMCID: PMC7402339 DOI: 10.3389/fgene.2020.00739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 06/19/2020] [Indexed: 11/13/2022] Open
Abstract
Newcastle disease (ND) is a global threat to domestic poultry, especially in rural areas of Africa and Asia, where the loss of entire backyard local chicken flocks often threatens household food security and income. To investigate the genetics of Ghanaian local chicken ecotypes to Newcastle disease virus (NDV), in this study, three popular Ghanaian chicken ecotypes (regional populations) were challenged with a lentogenic NDV strain at 28 days of age. This study was conducted in parallel with a similar study that used three popular Tanzanian local chicken ecotypes and after two companion studies in the United States, using Hy-line Brown commercial laying birds. In addition to growth rate, NDV response traits were measured following infection, including anti-NDV antibody levels [pre-infection and 10 days post-infection (dpi)], and viral load (2 and 6 dpi). Genetic parameters were estimated, and two genome-wide association study analysis methods were used on data from 1,440 Ghanaian chickens that were genotyped on a chicken 600K Single Nucleotide Polymorphism (SNP) chip. Both Ghana and Tanzania NDV challenge studies revealed moderate to high (0.18 – 0.55) estimates of heritability for all traits, except viral clearance where the heritability estimate was not different from zero for the Tanzanian ecotypes. For the Ghana study, 12 quantitative trait loci (QTL) for growth and/or response to NDV from single-SNP analyses and 20 genomic regions that explained more than 1% of genetic variance using the Bayes B method were identified. Seven of these windows were also identified as having at least one significant SNP in the single SNP analyses for growth rate, anti-NDV antibody levels, and viral load at 2 and 6 dpi. An important gene for growth during stress, CHORDC1 associated with post-infection growth rate was identified as a positional candidate gene, as well as other immune related genes, including VAV2, IL12B, DUSP1, and IL17B. The QTL identified in the Ghana study did not overlap with those identified in the Tanzania study. However, both studies revealed QTL with genes vital for growth and immune response during NDV challenge. The Tanzania parallel study revealed an overlapping QTL on chromosome 24 for viral load at 6 dpi with the US NDV study in which birds were challenged with NDV under heat stress. This QTL region includes genes related to immune response, including TIRAP, ETS1, and KIRREL3. The moderate to high estimates of heritability and the identified QTL suggest that host response to NDV of local African chicken ecotypes can be improved through selective breeding to enhance increased NDV resistance and vaccine efficacy.
Collapse
Affiliation(s)
- Muhammed Walugembe
- Department of Animal Science, Iowa State University, Ames, IA, United States.,Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Esinam N Amuzu-Aweh
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of Ghana, Accra, Ghana
| | - Princess K Botchway
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of Ghana, Accra, Ghana
| | - Augustine Naazie
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of Ghana, Accra, Ghana
| | - George Aning
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of Ghana, Accra, Ghana
| | - Ying Wang
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Perot Saelao
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Terra Kelly
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of California, Davis, Davis, CA, United States.,School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Rodrigo A Gallardo
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Huaijun Zhou
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, United States.,Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Boniface B Kayang
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of Ghana, Accra, Ghana
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, United States.,Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States
| |
Collapse
|
76
|
Valbuena Perez JV, Linnenberger R, Dembek A, Bruscoli S, Riccardi C, Schulz MH, Meyer MR, Kiemer AK, Hoppstädter J. Altered glucocorticoid metabolism represents a feature of macroph-aging. Aging Cell 2020; 19:e13156. [PMID: 32463582 PMCID: PMC7294787 DOI: 10.1111/acel.13156] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/20/2020] [Accepted: 04/05/2020] [Indexed: 12/23/2022] Open
Abstract
The aging process is characterized by a chronic, low‐grade inflammatory state, termed “inflammaging.” It has been suggested that macrophage activation plays a key role in the induction and maintenance of this state. In the present study, we aimed to elucidate the mechanisms responsible for aging‐associated changes in the myeloid compartment of mice. The aging phenotype, characterized by elevated cytokine production, was associated with a dysfunction of the hypothalamic–pituitary–adrenal (HPA) axis and diminished serum corticosteroid levels. In particular, the concentration of corticosterone, the major active glucocorticoid in rodents, was decreased. This could be explained by an impaired expression and activity of 11β‐hydroxysteroid dehydrogenase type 1 (11β‐HSD1), an enzyme that determines the extent of cellular glucocorticoid responses by reducing the corticosteroids cortisone/11‐dehydrocorticosterone to their active forms cortisol/corticosterone, in aged macrophages and peripheral leukocytes. These changes were accompanied by a downregulation of the glucocorticoid receptor target gene glucocorticoid‐induced leucine zipper (GILZ) in vitro and in vivo. Since GILZ plays a central role in macrophage activation, we hypothesized that the loss of GILZ contributed to the process of macroph‐aging. The phenotype of macrophages from aged mice was indeed mimicked in young GILZ knockout mice. In summary, the current study provides insight into the role of glucocorticoid metabolism and GILZ regulation during aging.
Collapse
Affiliation(s)
| | - Rebecca Linnenberger
- Pharmaceutical Biology Department of Pharmacy Saarland University Saarbrücken Germany
| | - Anna Dembek
- Pharmaceutical Biology Department of Pharmacy Saarland University Saarbrücken Germany
| | - Stefano Bruscoli
- Pharmacology Department of Medicine Perugia University Perugia Italy
| | - Carlo Riccardi
- Pharmacology Department of Medicine Perugia University Perugia Italy
| | - Marcel H. Schulz
- Institute for Cardiovascular Regeneration Goethe University Frankfurt am Main Germany
- German Center for Cardiovascular Research (DZHK) Partner Site RheinMain Frankfurt am Main Germany
| | - Markus R. Meyer
- Department of Experimental and Clinical Toxicology Institute of Experimental and Clinical Pharmacology and Toxicology Center for Molecular Signaling (PZMS) Saarland University Homburg Germany
| | - Alexandra K. Kiemer
- Pharmaceutical Biology Department of Pharmacy Saarland University Saarbrücken Germany
| | - Jessica Hoppstädter
- Pharmaceutical Biology Department of Pharmacy Saarland University Saarbrücken Germany
| |
Collapse
|