51
|
Hall C, Camilli S, Dwaah H, Kornegay B, Lacy C, Hill MS, Hill AL. Freshwater sponge hosts and their green algae symbionts: a tractable model to understand intracellular symbiosis. PeerJ 2021; 9:e10654. [PMID: 33614268 PMCID: PMC7882143 DOI: 10.7717/peerj.10654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/05/2020] [Indexed: 12/15/2022] Open
Abstract
In many freshwater habitats, green algae form intracellular symbioses with a variety of heterotrophic host taxa including several species of freshwater sponge. These sponges perform important ecological roles in their habitats, and the poriferan:green algae partnerships offers unique opportunities to study the evolutionary origins and ecological persistence of endosymbioses. We examined the association between Ephydatia muelleri and its chlorophyte partner to identify features of host cellular and genetic responses to the presence of intracellular algal partners. Chlorella-like green algal symbionts were isolated from field-collected adult E. muelleri tissue harboring algae. The sponge-derived algae were successfully cultured and subsequently used to reinfect aposymbiotic E. muelleri tissue. We used confocal microscopy to follow the fate of the sponge-derived algae after inoculating algae-free E. muelleri grown from gemmules to show temporal patterns of symbiont location within host tissue. We also infected aposymbiotic E. muelleri with sponge-derived algae, and performed RNASeq to study differential expression patterns in the host relative to symbiotic states. We compare and contrast our findings with work in other systems (e.g., endosymbiotic Hydra) to explore possible conserved evolutionary pathways that may lead to stable mutualistic endosymbioses. Our work demonstrates that freshwater sponges offer many tractable qualities to study features of intracellular occupancy and thus meet criteria desired for a model system.
Collapse
Affiliation(s)
- Chelsea Hall
- Biology, University of Richmond, Richmond, VA, United States of America.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sara Camilli
- Biology, University of Richmond, Richmond, VA, United States of America.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States of America
| | - Henry Dwaah
- Biology, University of Richmond, Richmond, VA, United States of America
| | - Benjamin Kornegay
- Biology, University of Richmond, Richmond, VA, United States of America
| | - Christie Lacy
- Biology, University of Richmond, Richmond, VA, United States of America
| | - Malcolm S Hill
- Biology, University of Richmond, Richmond, VA, United States of America.,Biology, Bates College, Lewiston, ME, United States of America
| | - April L Hill
- Biology, University of Richmond, Richmond, VA, United States of America.,Biology, Bates College, Lewiston, ME, United States of America
| |
Collapse
|
52
|
Quigley KM, Alvarez Roa C, Beltran VH, Leggat B, Willis BL. Experimental evolution of the coral algal endosymbiont,
Cladocopium goreaui
: lessons learnt across a decade of stress experiments to enhance coral heat tolerance. Restor Ecol 2021. [DOI: 10.1111/rec.13342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Kate M. Quigley
- Australian Institute of Marine Science PMB3, Townsville Queensland Australia
| | - Carlos Alvarez Roa
- Australian Institute of Marine Science PMB3, Townsville Queensland Australia
| | - Victor H. Beltran
- Faculty of Natural Sciences Autonomous University of Carmen (UNACAR) Campeche Mexico
| | - Bill Leggat
- School of Environmental and Life Sciences The University of Newcastle Callaghan, New Castle Australia
| | - Bette L. Willis
- ARC Centre of Excellence for Coral Reef Studies, and College of Science and Engineering James Cook University Townsville Queensland Australia
| |
Collapse
|
53
|
Gilbert SF. Evolutionary developmental biology and sustainability: A biology of resilience. Evol Dev 2021; 23:273-291. [PMID: 33400344 DOI: 10.1111/ede.12366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022]
Abstract
Evolutionary developmental biology, and especially ecological developmental biology, is essential for discussions of sustainability and the responses to global climate change. First, this paper explores examples of animals that have successfully altered their development to accommodate human-made changes to their environments. We next document the ability of global warming to disrupt the development of those organisms with temperature-dependent sex-determination or with phenologies coordinating that organism's development with those of other species. The thermotolerance of Homo sapiens is also related to key developmental factors concerning brain development and maintenance, and the development of corals, the keystone organisms of tropical reefs, is discussed in relation to global warming as well as to other anthropogenic changes. While teratogenic and endocrine-disrupting compounds are not discussed in this essay, the ability of glyphosate herbicides to block insect development is highlighted. Last, the paper discusses the need to creatively integrate developmental biology with ecological, political, religious, and economic perspectives, as the flourishing of contemporary species may require altering the ways that Western science has considered the categories of nature, culture, and self.
Collapse
Affiliation(s)
- Scott F Gilbert
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, USA
| |
Collapse
|
54
|
Varasteh T, Hamerski L, Tschoeke D, Lima AS, Garcia G, Cosenza CAN, Thompson C, Thompson F. Conserved Pigment Profiles in Phylogenetically Diverse Symbiotic Bacteria Associated with the Corals Montastraea cavernosa and Mussismilia braziliensis. MICROBIAL ECOLOGY 2021; 81:267-277. [PMID: 32681284 DOI: 10.1007/s00248-020-01551-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Pigmented bacterial symbionts play major roles in the health of coral holobionts. However, there is scarce knowledge on the diversity of these microbes for several coral species. To gain further insights into holobiont health, pigmented bacterial isolates of Fabibacter pacificus (Bacteroidetes; n = 4), Paracoccus marcusii (Alphaproteobacteria; n = 1), and Pseudoalteromonas shioyasakiensis (Gammaproteobacteria; n = 1) were obtained from the corals Mussismilia braziliensis and Montastraea cavernosa in Abrolhos Bank, Brazil. Cultures of these bacterial symbionts produced strong antioxidant activity (catalase, peroxidase, and oxidase). To explore these bacterial isolates further, we identified their major pigments by HPLC and mass spectrometry. The six phylogenetically diverse symbionts had similar pigment patterns and produced myxol and keto-carotene. In addition, similar carotenoid gene clusters were confirmed in the whole genome sequences of these symbionts, which reinforce their antioxidant potential. This study highlights the possible roles of bacterial symbionts in Montastraea and Mussismilia holobionts.
Collapse
Affiliation(s)
- Tooba Varasteh
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-599, Brazil
| | - Lidilhone Hamerski
- Instituto de Pesquisas de Produtos Naturais, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Diogo Tschoeke
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-599, Brazil
| | - Arthur Silva Lima
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-599, Brazil
| | - Gizele Garcia
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-599, Brazil
- Departamento de Ensino de Graduação, Universidade Federal do Rio de Janeiro - Campus UFRJ - Macaé Professor Aloisio Teixeira, Macaé, Rio de Janeiro, RJ, 27930-480, Brazil
| | | | - Cristiane Thompson
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-599, Brazil
| | - Fabiano Thompson
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-599, Brazil.
- SAGE - COPPE, Centro de Gestão Tecnológica - CT2, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
55
|
Bailey GF, Coelho JC, Poole AZ. Differential expression of Exaiptasia pallida GIMAP genes upon induction of apoptosis and autophagy suggests a potential role in cnidarian symbiosis and disease. J Exp Biol 2020; 223:jeb229906. [PMID: 32978315 DOI: 10.1242/jeb.229906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/15/2020] [Indexed: 01/11/2023]
Abstract
Coral reefs, one of the world's most productive and diverse ecosystems, are currently threatened by a variety of stressors that result in increased prevalence of both bleaching and disease. Therefore, understanding the molecular mechanisms involved in these responses is critical to mitigate future damage to the reefs. One group of genes that is potentially involved in cnidarian immunity and symbiosis is GTPases of immunity associated proteins (GIMAP). In vertebrates, this family of proteins is involved in regulating the fate of developing lymphocytes and interacts with proteins involved in apoptosis and autophagy. As apoptosis, autophagy and immunity have previously been shown to be involved in cnidarian symbiosis and disease, the goal of this research was to determine the role of cnidarian GIMAPs in these processes using the anemone Exaiptasia pallida To do so, GIMAP genes were characterized in the E. pallida genome and changes in gene expression were measured using qPCR in response to chemical induction of apoptosis, autophagy and treatment with the immune stimulant lipopolysaccharide (LPS) in both aposymbiotic and symbiotic anemones. The results revealed four GIMAP-like genes in E. pallida, referred to as Ep_GIMAPs Induction of apoptosis and autophagy resulted in a general downregulation of Ep_GIMAPs, but no significant changes were observed in response to LPS treatment. This indicates that Ep_GIMAPs may be involved in the regulation of apoptosis and autophagy, and therefore could play a role in cnidarian-dinoflagellate symbiosis. Overall, these results increase our knowledge on the function of GIMAPs in a basal metazoan.
Collapse
Affiliation(s)
- Grace F Bailey
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry, GA 30161, USA
| | - Jenny C Coelho
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry, GA 30161, USA
| | - Angela Z Poole
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry, GA 30161, USA
| |
Collapse
|
56
|
In vivo assessment of mitochondrial respiratory alternative oxidase activity and cyclic electron flow around photosystem I on small coral fragments. Sci Rep 2020; 10:17514. [PMID: 33060749 PMCID: PMC7562913 DOI: 10.1038/s41598-020-74557-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
The mutualistic relationship existing between scleractinian corals and their photosynthetic endosymbionts involves a complex integration of the metabolic pathways within the holobiont. Respiration and photosynthesis are the most important of these processes and although they have been extensively studied, our understanding of their interactions and regulatory mechanisms is still limited. In this work we performed chlorophyll-a fluorescence, oxygen exchange and time-resolved absorption spectroscopy measurements on small and thin fragments (0.3 cm2) of the coral Stylophora pistillata. We showed that the capacity of mitochondrial alternative oxidase accounted for ca. 25% of total coral respiration, and that the high-light dependent oxygen uptake, commonly present in isolated Symbiodiniaceae, was negligible. The ratio between photosystem I (PSI) and photosystem II (PSII) active centers as well as their respective electron transport rates, indicated that PSI cyclic electron flow occurred in high light in S. pistillata and in some branching and lamellar coral species freshly collected in the field. Altogether, these results show the potential of applying advanced biophysical and spectroscopic methods on small coral fragments to understand the complex mechanisms of coral photosynthesis and respiration and their responses to environmental changes.
Collapse
|
57
|
Gene Expression and Photophysiological Changes in Pocillopora acuta Coral Holobiont Following Heat Stress and Recovery. Microorganisms 2020; 8:microorganisms8081227. [PMID: 32806647 PMCID: PMC7463449 DOI: 10.3390/microorganisms8081227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 12/25/2022] Open
Abstract
The ability of corals to withstand changes in their surroundings is a critical survival mechanism for coping with environmental stress. While many studies have examined responses of the coral holobiont to stressful conditions, its capacity to reverse responses and recover when the stressor is removed is not well-understood. In this study, we investigated among-colony responses of Pocillopora acuta from two sites with differing distance to the mainland (Kusu (closer to the mainland) and Raffles Lighthouse (further from the mainland)) to heat stress through differential expression analysis of target genes and quantification of photophysiological metrics. We then examined how these attributes were regulated after the stressor was removed to assess the recovery potential of P. acuta. The fragments that were subjected to heat stress (2 °C above ambient levels) generally exhibited significant reduction in their endosymbiont densities, but the extent of recovery following stress removal varied depending on natal site and colony. There were minimal changes in chl a concentration and maximum quantum yield (Fv/Fm, the proportion of variable fluorescence (Fv) to maximum fluorescence (Fm)) in heat-stressed corals, suggesting that the algal endosymbionts’ Photosystem II was not severely compromised. Significant changes in gene expression levels of selected genes of interest (GOI) were observed following heat exposure and stress removal among sites and colonies, including Actin, calcium/calmodulin-dependent protein kinase type IV (Camk4), kinesin-like protein (KIF9), and small heat shock protein 16.1 (Hsp16.1). The most responsive GOIs were Actin, a major component of the cytoskeleton, and the adaptive immune-related Camk4 which both showed significant reduction following heat exposure and subsequent upregulation during the recovery phase. Our findings clearly demonstrate specific responses of P. acuta in both photophysiological attributes and gene expression levels, suggesting differential capacity of P. acuta corals to tolerate heat stress depending on the colony, so that certain colonies may be more resilient than others.
Collapse
|
58
|
Loussert-Fonta C, Toullec G, Paraecattil AA, Jeangros Q, Krueger T, Escrig S, Meibom A. Correlation of fluorescence microscopy, electron microscopy, and NanoSIMS stable isotope imaging on a single tissue section. Commun Biol 2020; 3:362. [PMID: 32647198 PMCID: PMC7347930 DOI: 10.1038/s42003-020-1095-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/19/2020] [Indexed: 12/28/2022] Open
Abstract
Correlative light and electron microscopy allows localization of specific molecules at the ultrastructural level in biological tissue but does not provide information about metabolic turnover or the distribution of labile molecules, such as micronutrients. We present a method to directly correlate (immuno)fluorescent microscopy, (immuno)TEM imaging and NanoSIMS isotopic mapping of the same tissue section, with nanometer-scale spatial precision. The process involves chemical fixation of the tissue, cryo sectioning, thawing, and air-drying under a thin film of polyvinyl alcohol. It permits to effectively retain labile compounds and strongly increases NanoSIMS sensitivity for 13C-enrichment. The method is illustrated here with correlated distribution maps of a carbonic anhydrase enzyme isotype, β-tubulin proteins, and 13C- and 15N-labeled labile micronutrients (and their anabolic derivates) within the tissue of a reef-building symbiotic coral. This broadly applicable workflow expands the wealth of information that can be obtained from multi-modal, sub-cellular observation of biological tissue.
Collapse
Affiliation(s)
- Céline Loussert-Fonta
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| | - Gaëlle Toullec
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | | | - Quentin Jeangros
- Photovoltaics and Thin-Film Electronics Laboratory, Institute of Microengineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-2002, Neuchâtel, Switzerland
| | - Thomas Krueger
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Stephane Escrig
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
59
|
Wangpraseurt D, You S, Azam F, Jacucci G, Gaidarenko O, Hildebrand M, Kühl M, Smith AG, Davey MP, Smith A, Deheyn DD, Chen S, Vignolini S. Bionic 3D printed corals. Nat Commun 2020; 11:1748. [PMID: 32273516 PMCID: PMC7145811 DOI: 10.1038/s41467-020-15486-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/10/2020] [Indexed: 01/03/2023] Open
Abstract
Corals have evolved as optimized photon augmentation systems, leading to space-efficient microalgal growth and outstanding photosynthetic quantum efficiencies. Light attenuation due to algal self-shading is a key limiting factor for the upscaling of microalgal cultivation. Coral-inspired light management systems could overcome this limitation and facilitate scalable bioenergy and bioproduct generation. Here, we develop 3D printed bionic corals capable of growing microalgae with high spatial cell densities of up to 109 cells mL−1. The hybrid photosynthetic biomaterials are produced with a 3D bioprinting platform which mimics morphological features of living coral tissue and the underlying skeleton with micron resolution, including their optical and mechanical properties. The programmable synthetic microenvironment thus allows for replicating both structural and functional traits of the coral-algal symbiosis. Our work defines a class of bionic materials that is capable of interacting with living organisms and can be exploited for applied coral reef research and photobioreactor design. Corals have evolved as finely tuned light collectors. Here, the authors report on the 3D printing of coral-inspired biomaterials, that mimic the coral-algal symbiosis; these bionic corals lead to dense microalgal growth and can find applications in algal biotechnology and applied coral science.
Collapse
Affiliation(s)
- Daniel Wangpraseurt
- Bioinspired Photonics Group, Department of Chemistry, University of Cambridge, Cambridge, UK. .,Scripps Institution of Oceanography, University of California San Diego, San Diego, USA. .,Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Shangting You
- Department of Nanoengineering, University of California San Diego, San Diego, CA, USA
| | - Farooq Azam
- Scripps Institution of Oceanography, University of California San Diego, San Diego, USA
| | - Gianni Jacucci
- Bioinspired Photonics Group, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Olga Gaidarenko
- Scripps Institution of Oceanography, University of California San Diego, San Diego, USA
| | - Mark Hildebrand
- Scripps Institution of Oceanography, University of California San Diego, San Diego, USA
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Climate Change Cluster, University of Technology Sydney, Ultimo, Australia
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Matthew P Davey
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Alyssa Smith
- Bioinspired Photonics Group, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Dimitri D Deheyn
- Scripps Institution of Oceanography, University of California San Diego, San Diego, USA
| | - Shaochen Chen
- Department of Nanoengineering, University of California San Diego, San Diego, CA, USA.
| | - Silvia Vignolini
- Bioinspired Photonics Group, Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
60
|
Huffmyer AS, Matsuda SB, Eggers AR, Lemus JD, Gates RD. Evaluation of laser scanning confocal microscopy as a method for characterizing reef-building coral tissue thickness and Symbiodiniaceae fluorescence. J Exp Biol 2020; 223:jeb220335. [PMID: 32098888 DOI: 10.1242/jeb.220335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/13/2020] [Indexed: 08/26/2023]
Abstract
Predicting the sensitivity of reef-building corals to disturbance, including bleaching, requires an understanding of physiological responses to stressors, which may be limited by destructive sampling and the capacity of common methodologies to characterize early life history stages. We developed a new methodology using laser scanning confocal microscopy (LSCM) to measure and track the physiological condition of corals. In a thermal stress experiment, we used LSCM to track coral condition during bleaching in adults and juveniles of two species, Montipora capitata and Pocillopora acuta Depth of fluorescence in coral tissues provides a proxy measure of tissue thickness, whereas Symbiodiniaceae population fluorescence relates to both population density and chlorophyll a content. In response to thermal stress, there were significant shifts in tissue thickness and Symbiodiniaceae fluorescence with differences between life stages. This method is particularly well suited for detecting shifts in physiological condition of living corals in laboratory studies, especially in small juvenile colonies.
Collapse
Affiliation(s)
- A S Huffmyer
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, 46-007 Lilipuna Road, Kāne'ohe, HI 96744, USA
| | - S B Matsuda
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, 46-007 Lilipuna Road, Kāne'ohe, HI 96744, USA
| | - A R Eggers
- Department of Molecular and Cell Biology, University of California, Berkeley, 142 LSA #3200 Berkeley, CA 94720, USA
| | - J D Lemus
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, 46-007 Lilipuna Road, Kāne'ohe, HI 96744, USA
| | - R D Gates
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, 46-007 Lilipuna Road, Kāne'ohe, HI 96744, USA
| |
Collapse
|
61
|
Jones R, Giofre N, Luter HM, Neoh TL, Fisher R, Duckworth A. Responses of corals to chronic turbidity. Sci Rep 2020; 10:4762. [PMID: 32179846 PMCID: PMC7075922 DOI: 10.1038/s41598-020-61712-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/02/2020] [Indexed: 11/24/2022] Open
Abstract
Dredging increases suspended sediment concentrations (SSCs), causing elevated water turbidity (cloudiness) and light attenuation. Close to dredging, low light periods can extend over many days, affecting phototrophic epibenthic organisms like corals. To improve the ability to predict and manage dredging impacts, we tested the response of corals to an extended period of elevated turbidity using an automated sediment dosing system that precisely controlled SSCs and adjusted light availability accordingly. Replicates of four common species of corals encompassing different morphologies were exposed to turbidity treatments of 0-100 mg L-1 SSC, corresponding to daily light integrals of 12.6 to 0 mol quanta m-2 d-1, over a period of ∼7 weeks. Symbiotic dinoflagellate density and algal pigment concentration, photosynthetic yields, lipid concentrations and ratios and growth varied among the turbidity treatments, with corals exhibiting photoacclimation within low turbidity treatments. A range of physiological responses were observed within the high turbidity treatments (low light), including bleaching and changes in lipid levels and ratios. Most corals, except P. damicornis, were capable of adjusting to a turbidity treatment involving a mean light level of 2.3 mol photons m-2 d-1 in conjunction with a SSC of 10 mg L-1 over the 7 week period.
Collapse
Affiliation(s)
- Ross Jones
- Australian Institute of Marine Science (AIMS), Townsville, QLD and Perth, WA, Australia.
- Western Australian Marine Science Institution, 35 Stirling Highway, Crawley, WA, 6009, Australia.
| | - Natalie Giofre
- Australian Institute of Marine Science (AIMS), Townsville, QLD and Perth, WA, Australia
- Western Australian Marine Science Institution, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Heidi M Luter
- Australian Institute of Marine Science (AIMS), Townsville, QLD and Perth, WA, Australia
| | - Tze Loon Neoh
- Australian Institute of Marine Science (AIMS), Townsville, QLD and Perth, WA, Australia
| | - Rebecca Fisher
- Australian Institute of Marine Science (AIMS), Townsville, QLD and Perth, WA, Australia
- Western Australian Marine Science Institution, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Alan Duckworth
- Australian Institute of Marine Science (AIMS), Townsville, QLD and Perth, WA, Australia
- Western Australian Marine Science Institution, 35 Stirling Highway, Crawley, WA, 6009, Australia
| |
Collapse
|
62
|
Wangpraseurt D, Jacques S, Lyndby N, Holm JB, Pages CF, Kühl M. Microscale light management and inherent optical properties of intact corals studied with optical coherence tomography. J R Soc Interface 2020; 16:20180567. [PMID: 30958182 DOI: 10.1098/rsif.2018.0567] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Coral reefs are highly productive photosynthetic systems and coral optics studies suggest that such high efficiency is due to optimized light scattering by coral tissue and skeleton. Here, we characterize the inherent optical properties, i.e. the scattering coefficient, μs, and the anisotropy of scattering, g, of eight intact coral species using optical coherence tomography (OCT). Specifically, we describe light scattering by coral skeletons, coenoarc tissues, polyp tentacles and areas covered by fluorescent pigments (FP). Our results reveal that light scattering between coral species ranges from μs = 3 mm-1 ( Stylophora pistillata) to μs = 25 mm-1 ( Echinopora lamelosa) . For Platygyra pini, μs was 10-fold higher for tissue versus skeleton, while in other corals (e.g. Hydnophora pilosa) no difference was found between tissue and skeletal scattering. Tissue scattering was threefold enhanced in coenosarc tissues ( μs = 24.6 mm-1) versus polyp tentacles ( μs = 8.3 mm-1) in Turbinaria reniformis. FP scattering was almost isotropic when FP were organized in granule chromatophores ( g = 0.34) but was forward directed when FP were distributed diffusely in the tissue ( g = 0.96). Our study provides detailed measurements of coral scattering and establishes a rapid approach for characterizing optical properties of photosynthetic soft tissues via OCT in vivo.
Collapse
Affiliation(s)
- Daniel Wangpraseurt
- 1 Marine Biological Section, Department of Biology, University of Copenhagen , Strandpromenaden 5, 3000 Helsingør , Denmark.,2 Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge , UK.,3 Scripps Institution of Oceanography, University of California , San Diego, CA , USA
| | - Steven Jacques
- 4 Department of Biomedical Engineering, Tufts University , Medford, MA , USA
| | - Niclas Lyndby
- 1 Marine Biological Section, Department of Biology, University of Copenhagen , Strandpromenaden 5, 3000 Helsingør , Denmark
| | - Jacob Boiesen Holm
- 1 Marine Biological Section, Department of Biology, University of Copenhagen , Strandpromenaden 5, 3000 Helsingør , Denmark
| | | | - Michael Kühl
- 1 Marine Biological Section, Department of Biology, University of Copenhagen , Strandpromenaden 5, 3000 Helsingør , Denmark.,6 Climate Change Cluster, University of Technology Sydney , Ultimo, New South Wales 2007 , Australia
| |
Collapse
|
63
|
Lima LFO, Weissman M, Reed M, Papudeshi B, Alker AT, Morris MM, Edwards RA, de Putron SJ, Vaidya NK, Dinsdale EA. Modeling of the Coral Microbiome: the Influence of Temperature and Microbial Network. mBio 2020; 11:e02691-19. [PMID: 32127450 PMCID: PMC7064765 DOI: 10.1128/mbio.02691-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
Host-associated microbial communities are shaped by extrinsic and intrinsic factors to the holobiont organism. Environmental factors and microbe-microbe interactions act simultaneously on the microbial community structure, making the microbiome dynamics challenging to predict. The coral microbiome is essential to the health of coral reefs and sensitive to environmental changes. Here, we develop a dynamic model to determine the microbial community structure associated with the surface mucus layer (SML) of corals using temperature as an extrinsic factor and microbial network as an intrinsic factor. The model was validated by comparing the predicted relative abundances of microbial taxa to the relative abundances of microbial taxa from the sample data. The SML microbiome from Pseudodiploria strigosa was collected across reef zones in Bermuda, where inner and outer reefs are exposed to distinct thermal profiles. A shotgun metagenomics approach was used to describe the taxonomic composition and the microbial network of the coral SML microbiome. By simulating the annual temperature fluctuations at each reef zone, the model output is statistically identical to the observed data. The model was further applied to six scenarios that combined different profiles of temperature and microbial network to investigate the influence of each of these two factors on the model accuracy. The SML microbiome was best predicted by model scenarios with the temperature profile that was closest to the local thermal environment, regardless of the microbial network profile. Our model shows that the SML microbiome of P. strigosa in Bermuda is primarily structured by seasonal fluctuations in temperature at a reef scale, while the microbial network is a secondary driver.IMPORTANCE Coral microbiome dysbiosis (i.e., shifts in the microbial community structure or complete loss of microbial symbionts) caused by environmental changes is a key player in the decline of coral health worldwide. Multiple factors in the water column and the surrounding biological community influence the dynamics of the coral microbiome. However, by including only temperature as an external factor, our model proved to be successful in describing the microbial community associated with the surface mucus layer (SML) of the coral P. strigosa The dynamic model developed and validated in this study is a potential tool to predict the coral microbiome under different temperature conditions.
Collapse
Affiliation(s)
- Laís F O Lima
- Department of Biology, San Diego State University, San Diego, California, USA
- College of Biological Sciences, University of California Davis, Davis, California, USA
| | - Maya Weissman
- Department of Mathematics and Statistics, San Diego State University, San Diego, California, USA
| | - Micheal Reed
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Bhavya Papudeshi
- National Center for Genome Analysis Support, Pervasive Institute of Technology, Indiana University, Bloomington, Indiana, USA
| | - Amanda T Alker
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Megan M Morris
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Robert A Edwards
- Department of Biology, San Diego State University, San Diego, California, USA
- Viral Information Institute, San Diego State University, San Diego, California, USA
| | | | - Naveen K Vaidya
- Department of Mathematics and Statistics, San Diego State University, San Diego, California, USA
- Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Elizabeth A Dinsdale
- Department of Biology, San Diego State University, San Diego, California, USA
- Viral Information Institute, San Diego State University, San Diego, California, USA
| |
Collapse
|
64
|
Osman EO, Suggett DJ, Voolstra CR, Pettay DT, Clark DR, Pogoreutz C, Sampayo EM, Warner ME, Smith DJ. Coral microbiome composition along the northern Red Sea suggests high plasticity of bacterial and specificity of endosymbiotic dinoflagellate communities. MICROBIOME 2020; 8:8. [PMID: 32008576 PMCID: PMC6996193 DOI: 10.1186/s40168-019-0776-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 12/12/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND The capacity of reef-building corals to tolerate (or adapt to) heat stress is a key factor determining their resilience to future climate change. Changes in coral microbiome composition (particularly for microalgal endosymbionts and bacteria) is a potential mechanism that may assist corals to thrive in warm waters. The northern Red Sea experiences extreme temperatures anomalies, yet corals in this area rarely bleach suggesting possible refugia to climate change. However, the coral microbiome composition, and how it relates to the capacity to thrive in warm waters in this region, is entirely unknown. RESULTS We investigated microbiomes for six coral species (Porites nodifera, Favia favus, Pocillopora damicornis, Seriatopora hystrix, Xenia umbellata, and Sarcophyton trocheliophorum) from five sites in the northern Red Sea spanning 4° of latitude and summer mean temperature ranges from 26.6 °C to 29.3 °C. A total of 19 distinct dinoflagellate endosymbionts were identified as belonging to three genera in the family Symbiodiniaceae (Symbiodinium, Cladocopium, and Durusdinium). Of these, 86% belonged to the genus Cladocopium, with notably five novel types (19%). The endosymbiont community showed a high degree of host-specificity despite the latitudinal gradient. In contrast, the diversity and composition of bacterial communities of the surface mucus layer (SML)-a compartment particularly sensitive to environmental change-varied significantly between sites, however for any given coral was species-specific. CONCLUSION The conserved endosymbiotic community suggests high physiological plasticity to support holobiont productivity across the different latitudinal regimes. Further, the presence of five novel algal endosymbionts suggests selection of certain genotypes (or genetic adaptation) within the semi-isolated Red Sea. In contrast, the dynamic composition of bacteria associated with the SML across sites may contribute to holobiont function and broaden the ecological niche. In doing so, SML bacterial communities may aid holobiont local acclimatization (or adaptation) by readily responding to changes in the host environment. Our study provides novel insight about the selective and endemic nature of coral microbiomes along the northern Red Sea refugia.
Collapse
Affiliation(s)
- Eslam O Osman
- Coral Reef Research Unit, School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK.
- Marine Biology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11448, Egypt.
| | - David J Suggett
- Coral Reef Research Unit, School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
- Climate Change Cluster, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - D Tye Pettay
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Lewes, DE, 19958, USA
| | - Dave R Clark
- Coral Reef Research Unit, School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Claudia Pogoreutz
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Eugenia M Sampayo
- ARC Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, St. Lucia, 4072, QLD, Australia
| | - Mark E Warner
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Lewes, DE, 19958, USA
| | - David J Smith
- Coral Reef Research Unit, School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
| |
Collapse
|
65
|
Drake JL, Mass T, Stolarski J, Von Euw S, van de Schootbrugge B, Falkowski PG. How corals made rocks through the ages. GLOBAL CHANGE BIOLOGY 2020; 26:31-53. [PMID: 31696576 PMCID: PMC6942544 DOI: 10.1111/gcb.14912] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 05/03/2023]
Abstract
Hard, or stony, corals make rocks that can, on geological time scales, lead to the formation of massive reefs in shallow tropical and subtropical seas. In both historical and contemporary oceans, reef-building corals retain information about the marine environment in their skeletons, which is an organic-inorganic composite material. The elemental and isotopic composition of their skeletons is frequently used to reconstruct the environmental history of Earth's oceans over time, including temperature, pH, and salinity. Interpretation of this information requires knowledge of how the organisms formed their skeletons. The basic mechanism of formation of calcium carbonate skeleton in stony corals has been studied for decades. While some researchers consider coral skeletons as mainly passive recorders of ocean conditions, it has become increasingly clear that biological processes play key roles in the biomineralization mechanism. Understanding the role of the animal in living stony coral biomineralization and how it evolved has profound implications for interpreting environmental signatures in fossil corals to understand past ocean conditions. Here we review historical hypotheses and discuss the present understanding of how corals evolved and how their skeletons changed over geological time. We specifically explain how biological processes, particularly those occurring at the subcellular level, critically control the formation of calcium carbonate structures. We examine the different models that address the current debate including the tissue-skeleton interface, skeletal organic matrix, and biomineralization pathways. Finally, we consider how understanding the biological control of coral biomineralization is critical to informing future models of coral vulnerability to inevitable global change, particularly increasing ocean acidification.
Collapse
Affiliation(s)
- Jeana L Drake
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Tali Mass
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | | | - Stanislas Von Euw
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Paul G Falkowski
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
- Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
66
|
Measuring light scattering and absorption in corals with Inverse Spectroscopic Optical Coherence Tomography (ISOCT): a new tool for non-invasive monitoring. Sci Rep 2019; 9:14148. [PMID: 31578438 PMCID: PMC6775107 DOI: 10.1038/s41598-019-50658-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
The success of reef-building corals for >200 million years has been dependent on the mutualistic interaction between the coral host and its photosynthetic endosymbiont dinoflagellates (family Symbiodiniaceae) that supply the coral host with nutrients and energy for growth and calcification. While multiple light scattering in coral tissue and skeleton significantly enhance the light microenvironment for Symbiodiniaceae, the mechanisms of light propagation in tissue and skeleton remain largely unknown due to a lack of technologies to measure the intrinsic optical properties of both compartments in live corals. Here we introduce ISOCT (inverse spectroscopic optical coherence tomography), a non-invasive approach to measure optical properties and three-dimensional morphology of living corals at micron- and nano-length scales, respectively, which are involved in the control of light propagation. ISOCT enables measurements of optical properties in the visible range and thus allows for characterization of the density of light harvesting pigments in coral. We used ISOCT to characterize the optical scattering coefficient (μs) of the coral skeleton and chlorophyll a concentration of live coral tissue. ISOCT further characterized the overall micro- and nano-morphology of live tissue by measuring differences in the sub-micron spatial mass density distribution (D) that vary throughout the tissue and skeleton and give rise to light scattering, and this enabled estimates of the spatial directionality of light scattering, i.e., the anisotropy coefficient, g. Thus, ISOCT enables imaging of coral nanoscale structures and allows for quantifying light scattering and pigment absorption in live corals. ISOCT could thus be developed into an important tool for rapid, non-invasive monitoring of coral health, growth and photophysiology with unprecedented spatial resolution.
Collapse
|
67
|
Dias M, Ferreira A, Gouveia R, Madeira C, Jogee N, Cabral H, Diniz M, Vinagre C. Long-term exposure to increasing temperatures on scleractinian coral fragments reveals oxidative stress. MARINE ENVIRONMENTAL RESEARCH 2019; 150:104758. [PMID: 31301459 DOI: 10.1016/j.marenvres.2019.104758] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/16/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
Global warming is leading to increases in tropical storms' frequency and intensity, allowing fragmentation of reef-forming coral species, but also to coral bleaching and mortality. The first level of organism's response to an environmental perturbation occurs at the cellular level. This study investigated the long-term oxidative stress on fragments of nine Indo-Pacific reef-forming coral species exposed for 60 days to increasing temperatures (30 °C and 32 °C) and compared results with control temperature (26 °C). Coral overall condition (appearance), lipid peroxidation (LPO), catalase activity (CAT), and glutathione S-transferase (GST) were assessed. The species Turbinaria reniformis, Galaxea fascicularis, and Psammocora contigua were the most resistant to heat stress, presenting no oxidative damage at 30 °C. Unlike G. fasciularis, both T. reniformis and P. contigua showed no evidence of oxidative damage at 32 °C. All remaining species' fragments died at 32 °C. Stylophora pistillata and Pocillopora damicornis were the most susceptible species to heat stress, not resisting at 30 °C.
Collapse
Affiliation(s)
- Marta Dias
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| | - Ana Ferreira
- Oceanário de Lisboa, Esplanada D. Carlos I, 1990-005, Lisboa, Portugal
| | - Raúl Gouveia
- Oceanário de Lisboa, Esplanada D. Carlos I, 1990-005, Lisboa, Portugal
| | - Carolina Madeira
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Nadia Jogee
- The School of Geosciences, The University of Edinburgh, The Grant Institute, James Hutton Road, King's Buildings, Edinburgh, EH9 3FE, UK
| | - Henrique Cabral
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Irstea, UR EABX, 50, Avenue de Verdun, 33612, Cestas, France
| | - Mário Diniz
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Catarina Vinagre
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
68
|
Jiang J, Lu Y. Metabolite profiling of Breviolum minutum in response to acidification. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105215. [PMID: 31200330 DOI: 10.1016/j.aquatox.2019.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
Coral reefs are in significant decline globally due to climate change and environmental pollution. The ocean is becoming more acidic due to rising atmospheric pCO2, and ocean acidification is considered a major threat to coral reefs. However, little is known about the exact mechanism by which acidification impacts coral symbiosis. As an important component of the symbiotic association, to explore the responses of symbionts could greatly enhance our understanding of this issue. The present work aimed to identify metabolomic changes of Breviolum minutum in acidification (low pH) condition, and investigate the underlying mechanisms responsible. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was applied to determine metabolite profiles after exposure to ambient and acidic conditions. We analysed the resulting metabolite data, and acidification appeared to have little effect on photosynthetic parameters, but it inhibited growth. Marked alterations in metabolite pools were observed in response to acidification that may be important in acclimation to climate change. Acidification may affect the biosynthesis of amino acids and proteins, and thereby inhibit the growth of B. minutum. Metabolites identified using this approach provide targets for future analyses aimed at understanding the responses of Symbiodiniaceae to environmental disturbance.
Collapse
Affiliation(s)
- Jiaoyun Jiang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou 570228, Hainan, China; College of Life Sciences, Guangxi Normal University, Guilin 541004, Guangxi, China.
| | - Yandu Lu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou 570228, Hainan, China.
| |
Collapse
|
69
|
Gilbert SF. Developmental symbiosis facilitates the multiple origins of herbivory. Evol Dev 2019; 22:154-164. [PMID: 31332951 DOI: 10.1111/ede.12291] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/22/2019] [Accepted: 02/28/2019] [Indexed: 01/05/2023]
Abstract
Developmental bias toward particular evolutionary trajectories can be facilitated through symbiosis. Organisms are holobionts, consisting of zygote-derived cells and a consortia of microbes, and the development, physiology, and immunity of animals are properties of complex interactions between the zygote-derived cells and microbial symbionts. Such symbionts can be agents of developmental plasticity, allowing an organism to develop in particular directions. This plasticity can lead to genetic assimilation either through the incorporation of microbial genes into host genomes or through the direct maternal transmission of the microbes. Such plasticity can lead to niche construction, enabling the microbes to remodel host anatomy and/or physiology. In this article, I will focus on the ability of symbionts to bias development toward the evolution of herbivory. I will posit that the behavioral and morphological manifestations of herbivorous phenotypes must be preceded by the successful establishment of a community of symbiotic microbes that can digest cell walls and detoxify plant poisons. The ability of holobionts to digest plant materials can range from being a plastic trait, dependent on the transient incorporation of environmental microbes, to becoming a heritable trait of the holobiont organism, transmitted through the maternal propagation of symbionts or their genes.
Collapse
Affiliation(s)
- Scott F Gilbert
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania
| |
Collapse
|
70
|
Host-dependent nitrogen recycling as a mechanism of symbiont control in Aiptasia. PLoS Genet 2019; 15:e1008189. [PMID: 31233506 PMCID: PMC6611638 DOI: 10.1371/journal.pgen.1008189] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 07/05/2019] [Accepted: 05/10/2019] [Indexed: 01/05/2023] Open
Abstract
The metabolic symbiosis with photosynthetic algae allows corals to thrive in the oligotrophic environments of tropical seas. Different aspects of this relationship have been investigated using the emerging model organism Aiptasia. However, many fundamental questions, such as the nature of the symbiotic relationship and the interactions of nutrients between the partners remain highly debated. Using a meta-analysis approach, we identified a core set of 731 high-confidence symbiosis-associated genes that revealed host-dependent recycling of waste ammonium and amino acid synthesis as central processes in this relationship. Subsequent validation via metabolomic analyses confirmed that symbiont-derived carbon enables host recycling of ammonium into nonessential amino acids. We propose that this provides a regulatory mechanism to control symbiont growth through a carbon-dependent negative feedback of nitrogen availability to the symbiont. The dependence of this mechanism on symbiont-derived carbon highlights the susceptibility of this symbiosis to changes in carbon translocation, as imposed by environmental stress. The symbiotic relationship with photosynthetic algae is key to the success of reef building corals in the nutrient poor environment of tropical waters. Extensive insight has been obtained from both physiological and “omics” level studies, yet, there are still gaps in our knowledge with respect to the metabolic interactions in this symbiotic relationship. In particular, the role of the host in nitrogen utilization and its potential link to symbiont population control still remains unclear. Using a meta-analysis approach on publicly available RNA-seq data and isotope-labeled metabolomics, we demonstrate the presence of a negative-feedback cycle in which the host uses symbiont-derived organic carbon to assimilate its own waste ammonium. This host-driven nitrogen recycling process might serve as a molecular mechanism to control symbiont densities in hospite. The dependence of this regulatory mechanism on organic carbon provided by the symbionts explains the sensitivity of this symbiotic relationship to environmental stress.
Collapse
|
71
|
Gabay Y, Parkinson JE, Wilkinson SP, Weis VM, Davy SK. Inter-partner specificity limits the acquisition of thermotolerant symbionts in a model cnidarian-dinoflagellate symbiosis. ISME JOURNAL 2019; 13:2489-2499. [PMID: 31186513 DOI: 10.1038/s41396-019-0429-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/07/2019] [Accepted: 04/10/2019] [Indexed: 01/19/2023]
Abstract
The ability of corals and other cnidarians to survive climate change depends partly on the composition of their endosymbiont communities. The dinoflagellate family Symbiodiniaceae is genetically and physiologically diverse, and one proposed mechanism for cnidarians to acclimate to rising temperatures is to acquire more thermally tolerant symbionts. However, cnidarian-dinoflagellate associations vary in their degree of specificity, which may limit their capacity to alter symbiont communities. Here, we inoculated symbiont-free polyps of the sea anemone Exaiptasia pallida (commonly referred to as 'Aiptasia'), a model system for the cnidarian-dinoflagellate symbiosis, with simultaneous or sequential mixtures of thermally tolerant and thermally sensitive species of Symbiodiniaceae. We then monitored symbiont success (relative proportional abundance) at normal and elevated temperatures across two to four weeks. All anemones showed signs of bleaching at high temperature. During simultaneous inoculations, the native, thermally sensitive Breviolum minutum colonized polyps most successfully regardless of temperature when paired against the non-native but more thermally tolerant Symbiodinium microadriaticum or Durusdinium trenchii. Furthermore, anemones initially colonized with B. minutum and subsequently exposed to S. microadriaticum failed to acquire the new symbiont. These results highlight how partner specificity may place strong limitations on the ability of certain cnidarians to acquire more thermally tolerant symbionts, and hence their adaptive potential under climate change.
Collapse
Affiliation(s)
- Yasmin Gabay
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington, 6140, New Zealand
| | - John Everett Parkinson
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA.,Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Shaun P Wilkinson
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington, 6140, New Zealand
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington, 6140, New Zealand.
| |
Collapse
|
72
|
Cziesielski MJ, Liew YJ, Cui G, Schmidt-Roach S, Campana S, Marondedze C, Aranda M. Multi-omics analysis of thermal stress response in a zooxanthellate cnidarian reveals the importance of associating with thermotolerant symbionts. Proc Biol Sci 2019; 285:rspb.2017.2654. [PMID: 29669898 PMCID: PMC5936724 DOI: 10.1098/rspb.2017.2654] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/22/2018] [Indexed: 01/07/2023] Open
Abstract
Corals and their endosymbiotic dinoflagellates of the genus Symbiodinium have a fragile relationship that breaks down under heat stress, an event known as bleaching. However, many coral species have adapted to high temperature environments such as the Red Sea (RS). To investigate mechanisms underlying temperature adaptation in zooxanthellate cnidarians we compared transcriptome- and proteome-wide heat stress response (24 h at 32°C) of three strains of the model organism Aiptasia pallida from regions with differing temperature profiles; North Carolina (CC7), Hawaii (H2) and the RS. Correlations between transcript and protein levels were generally low but inter-strain comparisons highlighted a common core cnidarian response to heat stress, including protein folding and oxidative stress pathways. RS anemones showed the strongest increase in antioxidant gene expression and exhibited significantly lower reactive oxygen species (ROS) levels in hospite. However, comparisons of antioxidant gene and protein expression between strains did not show strong differences, indicating similar antioxidant capacity across the strains. Subsequent analysis of ROS production in isolated symbionts confirmed that the observed differences of ROS levels in hospite were symbiont-driven. Our findings indicate that RS anemones do not show increased antioxidant capacity but may have adapted to higher temperatures through association with more thermally tolerant symbionts.
Collapse
Affiliation(s)
- Maha J Cziesielski
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE), Thuwal, Saudi Arabia
| | - Yi Jin Liew
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE), Thuwal, Saudi Arabia
| | - Guoxin Cui
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE), Thuwal, Saudi Arabia
| | - Sebastian Schmidt-Roach
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE), Thuwal, Saudi Arabia
| | - Sara Campana
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE), Thuwal, Saudi Arabia
| | - Claudius Marondedze
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE), Thuwal, Saudi Arabia
| | - Manuel Aranda
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE), Thuwal, Saudi Arabia
| |
Collapse
|
73
|
Rodríguez L, García JJ, Carreño F, Martínez B. Integration of physiological knowledge into hybrid species distribution modelling to improve forecast of distributional shifts of tropical corals. DIVERS DISTRIB 2019. [DOI: 10.1111/ddi.12883] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Laura Rodríguez
- Biodiversity & Conservation Unit Rey Juan Carlos University Mostoles Spain
| | - Juan José García
- Biodiversity & Conservation Unit Rey Juan Carlos University Mostoles Spain
| | - Francisco Carreño
- Biodiversity & Conservation Unit Rey Juan Carlos University Mostoles Spain
| | - Brezo Martínez
- Biodiversity & Conservation Unit Rey Juan Carlos University Mostoles Spain
| |
Collapse
|
74
|
Lohr KE, Camp EF, Kuzhiumparambil U, Lutz A, Leggat W, Patterson JT, Suggett DJ. Resolving coral photoacclimation dynamics through coupled photophysiological and metabolomic profiling. J Exp Biol 2019; 222:jeb.195982. [DOI: 10.1242/jeb.195982] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/11/2019] [Indexed: 11/20/2022]
Abstract
Corals continuously adjust to short term variation in light availability on shallow reefs. Long-term light alterations can also occur due to natural and anthropogenic stressors, as well as management interventions such as coral transplantation. Although short term photophysiological responses are relatively well-understood in corals, little information is available regarding photoacclimation dynamics over weeks of altered light availability. We coupled photophysiology and metabolomic profiling to explore changes that accompany longer-term photoacclimation in a key Great Barrier Reef coral species (Acropora muricata). High (HL) and low light (LL) acclimated corals were collected from the reef and reciprocally exposed to high and low light ex situ. Rapid light curves using Pulse Amplitude Modulation (PAM) fluorometry revealed photophysiological acclimation of LL to HL and HL to LL shifted corals within 21 days. A subset of colonies sampled at 7 and 21 days for untargeted LC-MS and GC-MS metabolomic profiling revealed metabolic reorganization before acclimation was detected using PAM fluorometry. Metabolomic shifts were more pronounced for LL to HL treated corals than their HL to LL counterparts. Compounds driving metabolomic separation between HL-exposed and LL control colonies included amino acids, organic acids, fatty acids and sterols. Reduced glycerol and campesterol suggest decreased translocation of photosynthetic products from symbiont to host in LL to HL shifted corals, with concurrent increases in fatty acid abundance indicating reliance on stored lipids for energy. We discuss how these data provide novel insight into environmental regulation of metabolism and implications for management strategies that drive rapid changes in light availability.
Collapse
Affiliation(s)
- Kathryn E. Lohr
- Program in Fisheries and Aquatic Sciences, School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA
| | - Emma F. Camp
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | | | - Adrian Lutz
- Metabolomics Australia, University of Melbourne, Parkville, VIC, Australia
| | - William Leggat
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW, Australia
| | - Joshua T. Patterson
- Program in Fisheries and Aquatic Sciences, School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA
- Center for Conservation, The Florida Aquarium, Apollo Beach, FL, USA
| | - David J. Suggett
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
75
|
Kenkel CD, Bay LK. Exploring mechanisms that affect coral cooperation: symbiont transmission mode, cell density and community composition. PeerJ 2018; 6:e6047. [PMID: 30533318 PMCID: PMC6282938 DOI: 10.7717/peerj.6047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 10/31/2018] [Indexed: 01/22/2023] Open
Abstract
The coral symbiosis is the linchpin of the reef ecosystem, yet the mechanisms that promote and maintain cooperation between hosts and symbionts have not been fully resolved. We used a phylogenetically controlled design to investigate the role of vertical symbiont transmission, an evolutionary mechanism in which symbionts are inherited directly from parents, predicted to enhance cooperation and holobiont fitness. Six species of coral, three vertical transmitters and their closest horizontally transmitting relatives, which exhibit environmental acquisition of symbionts, were fragmented and subjected to a 2-week thermal stress experiment. Symbiont cell density, photosynthetic function and translocation of photosynthetically fixed carbon between symbionts and hosts were quantified to assess changes in physiological performance and cooperation. All species exhibited similar decreases in symbiont cell density and net photosynthesis in response to elevated temperature, consistent with the onset of bleaching. Yet baseline cooperation, or translocation of photosynthate, in ambient conditions and the reduction in cooperation in response to elevated temperature differed among species. Although Porites lobata and Galaxea acrhelia did exhibit the highest levels of baseline cooperation, we did not observe universally higher levels of cooperation in vertically transmitting species. Post hoc sequencing of the Symbiodinium ITS-2 locus was used to investigate the potential role of differences in symbiont community composition. Interestingly, reductions in cooperation at the onset of bleaching tended to be associated with increased symbiont community diversity among coral species. The theoretical benefits of evolving vertical transmission are based on the underlying assumption that the host-symbiont relationship becomes genetically uniform, thereby reducing competition among symbionts. Taken together, our results suggest that it may not be vertical transmission per se that influences host-symbiont cooperation, but genetic uniformity of the symbiont community, although additional work is needed to test this hypothesis.
Collapse
Affiliation(s)
- Carly D. Kenkel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Line K. Bay
- Australian Institute of Marine Science, Townsville, QLD, Australia
| |
Collapse
|
76
|
Rodriguez‐Casariego JA, Ladd MC, Shantz AA, Lopes C, Cheema MS, Kim B, Roberts SB, Fourqurean JW, Ausio J, Burkepile DE, Eirin‐Lopez JM. Coral epigenetic responses to nutrient stress: Histone H2A.X phosphorylation dynamics and DNA methylation in the staghorn coral Acropora cervicornis. Ecol Evol 2018; 8:12193-12207. [PMID: 30598811 PMCID: PMC6303763 DOI: 10.1002/ece3.4678] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/28/2018] [Accepted: 10/05/2018] [Indexed: 12/19/2022] Open
Abstract
Nutrient pollution and thermal stress constitute two of the main drivers of global change in the coastal oceans. While different studies have addressed the physiological effects and ecological consequences of these stressors in corals, the role of acquired modifications in the coral epigenome during acclimatory and adaptive responses remains unknown. The present work aims to address that gap by monitoring two types of epigenetic mechanisms, namely histone modifications and DNA methylation, during a 7-week-long experiment in which staghorn coral fragments (Acropora cervicornis) were exposed to nutrient stress (nitrogen, nitrogen + phosphorus) in the presence of thermal stress. The major conclusion of this experiment can be summarized by two main results: First, coral holobiont responses to the combined effects of nutrient enrichment and thermal stress involve the post-translational phosphorylation of the histone variant H2A.X (involved in responses to DNA damage), as well as nonsignificant modifications in DNA methylation trends. Second, the reduction in H2A.X phosphorylation (and the subsequent potential impairment of DNA repair mechanisms) observed after prolonged coral exposure to nitrogen enrichment and thermal stress is consistent with the symbiont-driven phosphorus limitation previously observed in corals subject to nitrogen enrichment. The alteration of this epigenetic mechanism could help to explain the synergistic effects of nutrient imbalance and thermal stress on coral fitness (i.e., increased bleaching and mortality) while supporting the positive effect of phosphorus addition to improving coral resilience to thermal stress. Overall, this work provides new insights into the role of epigenetic mechanisms during coral responses to global change, discussing future research directions and the potential benefits for improving restoration, management and conservation of coral reef ecosystems worldwide.
Collapse
Affiliation(s)
- Javier A. Rodriguez‐Casariego
- Environmental Epigenetics Laboratory, Institute of Water and Environment, Department of Biological SciencesFlorida International UniversityMiamiFlorida
| | - Mark C. Ladd
- Department of Ecology, Evolution and Marine BiologyUniversity of CaliforniaSanta BarbaraCalifornia
| | - Andrew A. Shantz
- Department of Ecology, Evolution and Marine BiologyUniversity of CaliforniaSanta BarbaraCalifornia
| | - Christian Lopes
- Seagrass Laboratory, Institute of Water and Environment, Department of Biological SciencesFlorida International UniversityMiamiFlorida
| | - Manjinder S. Cheema
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Bohyun Kim
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Steven B. Roberts
- School of Aquatic and Fishery ScienceUniversity of WashingtonSeattleWashington
| | - James W. Fourqurean
- Seagrass Laboratory, Institute of Water and Environment, Department of Biological SciencesFlorida International UniversityMiamiFlorida
| | - Juan Ausio
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Deron E. Burkepile
- Department of Ecology, Evolution and Marine BiologyUniversity of CaliforniaSanta BarbaraCalifornia
| | - Jose M. Eirin‐Lopez
- Environmental Epigenetics Laboratory, Institute of Water and Environment, Department of Biological SciencesFlorida International UniversityMiamiFlorida
| |
Collapse
|
77
|
Armstrong EJ, Roa JN, Stillman JH, Tresguerres M. Symbiont photosynthesis in giant clams is promoted by V-type H +-ATPase from host cells. ACTA ACUST UNITED AC 2018; 221:jeb.177220. [PMID: 30065035 DOI: 10.1242/jeb.177220] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022]
Abstract
Giant clams (genus Tridacna) are the largest living bivalves and, like reef-building corals, host symbiotic dinoflagellate algae (Symbiodinium) that significantly contribute to their energy budget. In turn, Symbiodinium rely on the host to supply inorganic carbon (Ci) for photosynthesis. In corals, host 'proton pump' vacuolar-type H+-ATPase (VHA) is part of a carbon-concentrating mechanism (CCM) that promotes Symbiodinium photosynthesis. Here, we report that VHA in the small giant clam (Tridacna maxima) similarly promotes Symbiodinium photosynthesis. VHA was abundantly expressed in the apical membrane of epithelial cells of T. maxima's siphonal mantle tubule system, which harbors Symbiodinium Furthermore, application of the highly specific pharmacological VHA inhibitors bafilomycin A1 and concanamycin A significantly reduced photosynthetic O2 production by ∼40%. Together with our observation that exposure to light increased holobiont aerobic metabolism ∼5-fold, and earlier estimates that translocated fixed carbon exceeds metabolic demand, we conclude that VHA activity in the siphonal mantle confers strong energetic benefits to the host clam through increased supply of Ci to algal symbionts and subsequent photosynthetic activity. The convergent role of VHA in promoting Symbiodinium photosynthesis in the giant clam siphonal mantle tubule system and coral symbiosome suggests that VHA-driven CCM is a common exaptation in marine photosymbioses that deserves further investigation in other taxa.
Collapse
Affiliation(s)
- Eric J Armstrong
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA .,Estuary & Ocean Science Center and Department of Biology, San Francisco State University, Tiburon, CA 94920, USA
| | - Jinae N Roa
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jonathon H Stillman
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA.,Estuary & Ocean Science Center and Department of Biology, San Francisco State University, Tiburon, CA 94920, USA
| | - Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
78
|
DiPerna S, Hoogenboom M, Noonan S, Fabricius K. Effects of variability in daily light integrals on the photophysiology of the corals Pachyseris speciosa and Acropora millepora. PLoS One 2018; 13:e0203882. [PMID: 30240397 PMCID: PMC6150484 DOI: 10.1371/journal.pone.0203882] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/29/2018] [Indexed: 11/21/2022] Open
Abstract
Phototrophic sessile organisms, such as reef corals, adjust their photosynthetic apparatus to optimize the balance of light capture versus protection in response to variable light availability (photoacclimation). In shallow marine environments, daily light integrals (DLI) can vary several-fold in response to water clarity and clouds. This laboratory study investigated the responses of two coral species to fluctuations in DLI. Corals were exposed to four contrasting DLI treatments: 'high-light' (potentially photoinhibiting conditions, 32 mol photons m-2 d-1), 'low-light' (potentially light-limiting conditions, 6 mol photons m-2 d-1), and two 'variable light' treatments that alternated between high and low conditions every 5 days. In the variable treatments, the shade-tolerant coral Pachyseris speciosa displayed cycles of rapid declines in maximum quantum yield during high-light and subsequent recoveries during low-light, showing photoacclimation at a time scale of 3-5 days. In contrast, the shallow-water coral Acropora millepora showed slow (>20 days) photoacclimation, and minimal changes in photosynthetic yields despite contrasting light exposure. However, growth (change in buoyant weight) in A. millepora was significantly slower under variable light, and even more so under low-light conditions, compared with high-light conditions. The responses of yields in P. speciosa match their preference for low-light environments, but suggest a vulnerability to even short periods of high-light exposure. In contrast, A. millepora had better tolerance of high-light conditions, however its slow photoacclimatory responses limit its growth under low and variable conditions. The study shows contrasting photoacclimatory responses in variable light environments, which is important to identify and understand as many coastal and midshelf reefs are becoming increasingly more turbid, and may experience higher variability in light availability.
Collapse
Affiliation(s)
- Stephanie DiPerna
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Mia Hoogenboom
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Sam Noonan
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | | |
Collapse
|
79
|
Melo Clavijo J, Donath A, Serôdio J, Christa G. Polymorphic adaptations in metazoans to establish and maintain photosymbioses. Biol Rev Camb Philos Soc 2018; 93:2006-2020. [PMID: 29808579 DOI: 10.1111/brv.12430] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022]
Abstract
Mutualistic symbioses are common throughout the animal kingdom. Rather unusual is a form of symbiosis, photosymbiosis, where animals are symbiotic with photoautotrophic organisms. Photosymbiosis is found among sponges, cnidarians, flatworms, molluscs, ascidians and even some amphibians. Generally the animal host harbours a phototrophic partner, usually a cyanobacteria or a unicellular alga. An exception to this rule is found in some sea slugs, which only retain the chloroplasts of the algal food source and maintain them photosynthetically active in their own cytosol - a phenomenon called 'functional kleptoplasty'. Research has focused largely on the biodiversity of photosymbiotic species across a range of taxa. However, many questions with regard to the evolution of the ability to establish and maintain a photosymbiosis are still unanswered. To date, attempts to understand genome adaptations which could potentially lead to the evolution of photosymbioses have only been performed in cnidarians. This knowledge gap for other systems is mainly due to a lack of genetic information, both for non-symbiotic and symbiotic species. Considering non-photosymbiotic species is, however, important to understand the factors that make symbiotic species so unique. Herein we provide an overview of the diversity of photosymbioses across the animal kingdom and discuss potential scenarios for the evolution of this association in different lineages. We stress that the evolution of photosymbiosis is probably based on genome adaptations, which (i) lead to recognition of the symbiont to establish the symbiosis, and (ii) are needed to maintain the symbiosis. We hope to stimulate research involving sequencing the genomes of various key taxa to increase the genomic resources needed to understand the most fundamental question: how have animals evolved the ability to establish and maintain a photosymbiosis?
Collapse
Affiliation(s)
- Jenny Melo Clavijo
- Center for Molecular Biodiversity Research (zmb), Zoological Research Museum Alexander Koenig, Adenauerallee 160, Bonn, 53113, Germany
| | - Alexander Donath
- Center for Molecular Biodiversity Research (zmb), Zoological Research Museum Alexander Koenig, Adenauerallee 160, Bonn, 53113, Germany
| | - João Serôdio
- Department of Biology and Center for Environmental and Marine Studies, University of Aveiro, Campus Santiago, Aveiro, 3810-192, Portugal
| | - Gregor Christa
- Center for Molecular Biodiversity Research (zmb), Zoological Research Museum Alexander Koenig, Adenauerallee 160, Bonn, 53113, Germany.,Department of Biology and Center for Environmental and Marine Studies, University of Aveiro, Campus Santiago, Aveiro, 3810-192, Portugal
| |
Collapse
|
80
|
How does an animal behave like a plant? Physiological and molecular adaptations of zooxanthellae and their hosts to symbiosis. C R Biol 2018; 341:276-280. [DOI: 10.1016/j.crvi.2018.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 03/13/2018] [Indexed: 12/26/2022]
|
81
|
Guzman C, Han X, Shoguchi E, Chormaic SN. Fluorescence from a single Symbiodinium cell. Methods Appl Fluoresc 2018; 6:035003. [DOI: 10.1088/2050-6120/aaba89] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
82
|
Kayal E, Bentlage B, Sabrina Pankey M, Ohdera AH, Medina M, Plachetzki DC, Collins AG, Ryan JF. Phylogenomics provides a robust topology of the major cnidarian lineages and insights on the origins of key organismal traits. BMC Evol Biol 2018. [PMCID: PMC5932825 DOI: 10.1186/s12862-018-1142-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background The phylogeny of Cnidaria has been a source of debate for decades, during which nearly all-possible relationships among the major lineages have been proposed. The ecological success of Cnidaria is predicated on several fascinating organismal innovations including stinging cells, symbiosis, colonial body plans and elaborate life histories. However, understanding the origins and subsequent diversification of these traits remains difficult due to persistent uncertainty surrounding the evolutionary relationships within Cnidaria. While recent phylogenomic studies have advanced our knowledge of the cnidarian tree of life, no analysis to date has included genome-scale data for each major cnidarian lineage. Results Here we describe a well-supported hypothesis for cnidarian phylogeny based on phylogenomic analyses of new and existing genome-scale data that includes representatives of all cnidarian classes. Our results are robust to alternative modes of phylogenetic estimation and phylogenomic dataset construction. We show that two popular phylogenomic matrix construction pipelines yield profoundly different datasets, both in the identities and in the functional classes of the loci they include, but resolve the same topology. We then leverage our phylogenetic resolution of Cnidaria to understand the character histories of several critical organismal traits. Ancestral state reconstruction analyses based on our phylogeny establish several notable organismal transitions in the evolutionary history of Cnidaria and depict the ancestral cnidarian as a solitary, non-symbiotic polyp that lacked a medusa stage. In addition, Bayes factor tests strongly suggest that symbiosis has evolved multiple times independently across the cnidarian radiation. Conclusions Cnidaria have experienced more than 600 million years of independent evolution and in the process generated an array of organismal innovations. Our results add significant clarification on the cnidarian tree of life and the histories of some of these innovations. Further, we confirm the existence of Acraspeda (staurozoans plus scyphozoans and cubozoans), thus reviving an evolutionary hypothesis put forward more than a century ago. Electronic supplementary material The online version of this article (10.1186/s12862-018-1142-0) contains supplementary material, which is available to authorized users.
Collapse
|
83
|
Fujise L, Nitschke MR, Frommlet JC, Serôdio J, Woodcock S, Ralph PJ, Suggett DJ. Cell Cycle Dynamics of Cultured Coral Endosymbiotic Microalgae (
Symbiodinium
) Across Different Types (Species) Under Alternate Light and Temperature Conditions. J Eukaryot Microbiol 2018; 65:505-517. [DOI: 10.1111/jeu.12497] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/17/2017] [Accepted: 12/19/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Lisa Fujise
- Climate Change Cluster University of Technology Sydney Broadway New South Wales 2007 Australia
| | - Matthew R. Nitschke
- Climate Change Cluster University of Technology Sydney Broadway New South Wales 2007 Australia
- Department of Biology and Center for Environmental and Marine Studies University of Aveiro Aveiro 3810‐193 Portugal
| | - Jörg C. Frommlet
- Department of Biology and Center for Environmental and Marine Studies University of Aveiro Aveiro 3810‐193 Portugal
| | - João Serôdio
- Department of Biology and Center for Environmental and Marine Studies University of Aveiro Aveiro 3810‐193 Portugal
| | - Stephen Woodcock
- Climate Change Cluster University of Technology Sydney Broadway New South Wales 2007 Australia
| | - Peter J. Ralph
- Climate Change Cluster University of Technology Sydney Broadway New South Wales 2007 Australia
| | - David J. Suggett
- Climate Change Cluster University of Technology Sydney Broadway New South Wales 2007 Australia
| |
Collapse
|
84
|
Takagi H, Kimoto K, Fujiki T, Moriya K. Effect of nutritional condition on photosymbiotic consortium of cultured Globigerinoides sacculifer (Rhizaria, Foraminifera). Symbiosis 2017; 76:25-39. [PMID: 30147222 PMCID: PMC6096716 DOI: 10.1007/s13199-017-0530-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/27/2017] [Indexed: 11/07/2022]
Abstract
Several foraminifers found in warm and low-nutrient ocean surface water have photosynthetic algae as endosymbionts (photosymbiosis). To understand the trophic interactions, we studied Globigerinoides sacculifer, a spinose planktic foraminifer that has a dinoflagellate endosymbiont. We controlled two nutritional factors, feeding and inorganic nutrients in the seawater. The growth of the host and the symbionts and the photophysiological parameters were monitored under four experimental conditions. The results demonstrated that the holobionts primarily relied on phagotrophy for growth. The foraminifers grew considerably, and the chlorophyll a content per foraminifer, which is an indicator of the symbiont population, increased in the fed groups, but not in the unfed groups. The nutrient-rich seawater used for some of the cultures made no difference in either the growth or photophysiology of the holobionts. These observations indicated that the symbionts mainly utilized metabolites from the hosts for photosynthesis rather than inorganic nutrients in the seawater. Additionally, we observed that the symbionts in the starved hosts maintained their photosynthetic capability for at least 12 days, and that the hosts maintained at least some symbionts until gametogenesis was achieved. This suggests that the hosts have to retain the symbionts as an energy source for reproduction. The symbionts may also play an indispensable role in the metabolic activities of the hosts including waste transport or essential compound synthesis. Overall, our results revealed a novel mode of photosymbiosis in planktic foraminifers which contrasts with that found in benthic photosymbiotic foraminifers and corals.
Collapse
Affiliation(s)
- Haruka Takagi
- Graduate School of Creative Science and Engineering, Waseda University, 1-6-1 Nishiwaseda, Shinjuku, Tokyo, 169-8050 Japan
- Present Address: Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564 Japan
| | - Katsunori Kimoto
- Research and Development Center for Global Change, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061 Japan
| | - Tetsuichi Fujiki
- Research and Development Center for Global Change, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061 Japan
| | - Kazuyoshi Moriya
- Department of Earth Sciences, Faculty of Education and Integrated Arts and Sciences, Waseda University, 1-6-1 Nishiwaseda, Shinjuku, Tokyo, 169-8050 Japan
| |
Collapse
|
85
|
Rodriguez IB, Ho TY. Interactive effects of spectral quality and trace metal availability on the growth of Trichodesmium and Symbiodinium. PLoS One 2017; 12:e0188777. [PMID: 29190820 PMCID: PMC5708828 DOI: 10.1371/journal.pone.0188777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 11/13/2017] [Indexed: 01/01/2023] Open
Abstract
Light and trace metals are critical growth factors for algae but how the interdependence of light quality and metal availability affects algal growth remains largely unknown. Our previous studies have demonstrated the importance of Ni and Fe on the growth of Trichodesmium and Symbiodinium, respectively, two important marine primary producers inhabiting environments with high light intensities. Here, we investigated the effects of light quality and intensity with availability of either Ni or Fe on their growth. For Trichodesmium, we found that specific growth rates for high Ni treatments were all significantly higher than in corresponding low Ni treatments with varying light quality and intensity. The inhibitory effect of low intensity red light was also countered by sufficient Ni supply. For Symbiodinium, we found that growth rates and biomass were reduced by 75% under low intensity red light and the stress can only be partially relieved by sufficient Fe supply. The results show that trace metal availability plays an important role in relieving the stress induced by low red light condition for both Trichodesmium and Symbiodinium although the cyanobacterium performs better in this growth condition. The difference may be attributed to the presence of phycocyanin, a unique pigment attuned to absorption of red light, in Trichodesmium. Our study shows that the concerted effects of light intensity and quality compounded with trace metal availability may influence the growth of photosynthetic organisms in the ocean.
Collapse
Affiliation(s)
- Irene B. Rodriguez
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Tung-Yuan Ho
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
86
|
Roughgarden J, Gilbert SF, Rosenberg E, Zilber-Rosenberg I, Lloyd EA. Holobionts as Units of Selection and a Model of Their Population Dynamics and Evolution. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s13752-017-0287-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
87
|
Weynberg KD, Laffy PW, Wood-Charlson EM, Turaev D, Rattei T, Webster NS, van Oppen MJH. Coral-associated viral communities show high levels of diversity and host auxiliary functions. PeerJ 2017; 5:e4054. [PMID: 29158985 PMCID: PMC5695250 DOI: 10.7717/peerj.4054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/27/2017] [Indexed: 12/19/2022] Open
Abstract
Stony corals (Scleractinia) are marine invertebrates that form the foundation and framework upon which tropical reefs are built. The coral animal associates with a diverse microbiome comprised of dinoflagellate algae and other protists, bacteria, archaea, fungi and viruses. Using a metagenomics approach, we analysed the DNA and RNA viral assemblages of seven coral species from the central Great Barrier Reef (GBR), demonstrating that tailed bacteriophages of the Caudovirales dominate across all species examined, and ssDNA viruses, notably the Microviridae, are also prevalent. Most sequences with matches to eukaryotic viruses were assigned to six viral families, including four Nucleocytoplasmic Large DNA Viruses (NCLDVs) families: Iridoviridae, Phycodnaviridae, Mimiviridae, and Poxviridae, as well as Retroviridae and Polydnaviridae. Contrary to previous findings, Herpesvirales were rare in these GBR corals. Sequences of a ssRNA virus with similarities to the dinornavirus, Heterocapsa circularisquama ssRNA virus of the Alvernaviridae that infects free-living dinoflagellates, were observed in three coral species. We also detected viruses previously undescribed from the coral holobiont, including a virus that targets fungi associated with the coral species Acropora tenuis. Functional analysis of the assembled contigs indicated a high prevalence of latency-associated genes in the coral-associated viral assemblages, several host-derived auxiliary metabolic genes (AMGs) for photosynthesis (psbA, psbD genes encoding the photosystem II D1 and D2 proteins respectively), as well as potential nematocyst toxins and antioxidants (genes encoding green fluorescent-like chromoprotein). This study expands the currently limited knowledge on coral-associated viruses by characterising viral composition and function across seven GBR coral species.
Collapse
Affiliation(s)
- Karen D Weynberg
- Australian Institute of Marine Science, Townsville, Queensland, Australia.,School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Patrick W Laffy
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | | | - Dmitrij Turaev
- Department of Microbiology and Ecosystem Science, Division of Computational Systems Biology, University of Vienna, Vienna, Austria
| | - Thomas Rattei
- Department of Microbiology and Ecosystem Science, Division of Computational Systems Biology, University of Vienna, Vienna, Austria
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, Queensland, Australia.,Australian Centre for Ecogenomics, University of Queensland, Brisbane, Queensland, Australia
| | - Madeleine J H van Oppen
- Australian Institute of Marine Science, Townsville, Queensland, Australia.,School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
88
|
Intra-colony disease progression induces fragmentation of coral fluorescent pigments. Sci Rep 2017; 7:14596. [PMID: 29097717 PMCID: PMC5668308 DOI: 10.1038/s41598-017-15084-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/20/2017] [Indexed: 01/11/2023] Open
Abstract
As disease spreads through living coral, it can induce changes in the distribution of coral's naturally fluorescent pigments, making fluorescence a potentially powerful non-invasive intrinsic marker of coral disease. Here, we show the usefulness of live-imaging laser scanning confocal microscopy to investigate coral health state. We demonstrate that the Hawaiian coral Montipora capitata consistently emits cyan and red fluorescence across a depth gradient in reef habitats, but the micro-scale spatial distribution of those pigments differ between healthy coral and coral affected by a tissue loss disease. Naturally diseased and laboratory infected coral systematically exhibited fragmented fluorescent pigments adjacent to the disease front as indicated by several measures of landscape structure (e.g., number of patches) relative to healthy coral. Histology results supported these findings. Pigment fragmentation indicates a disruption in coral tissue that likely impedes translocation of energy within a colony. The area of fragmented fluorescent pigments in diseased coral extended 3.03 mm ± 1.80 mm adjacent to the disease front, indicating pathogenesis was highly localized rather than systemic. Our study demonstrates that coral fluorescence can be used as a proxy for coral health state, and, such patterns may help refine hypotheses about modes of pathogenesis.
Collapse
|
89
|
Modelling for management: Coral photo-physiology and growth potential under varying turbidity regimes. Ecol Modell 2017. [DOI: 10.1016/j.ecolmodel.2017.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
90
|
Cunning R, Muller EB, Gates RD, Nisbet RM. A dynamic bioenergetic model for coral- Symbiodinium symbioses and coral bleaching as an alternate stable state. J Theor Biol 2017; 431:49-62. [DOI: 10.1016/j.jtbi.2017.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/14/2017] [Accepted: 08/02/2017] [Indexed: 11/26/2022]
|
91
|
Chamberland VF, Latijnhouwers KRW, Huisman J, Hartmann AC, Vermeij MJA. Costs and benefits of maternally inherited algal symbionts in coral larvae. Proc Biol Sci 2017; 284:20170852. [PMID: 28659451 PMCID: PMC5489732 DOI: 10.1098/rspb.2017.0852] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/26/2017] [Indexed: 12/21/2022] Open
Abstract
Many marine invertebrates provide their offspring with symbionts. Yet the consequences of maternally inherited symbionts on larval fitness remain largely unexplored. In the stony coral Favia fragum (Esper 1797), mothers produce larvae with highly variable amounts of endosymbiotic algae, and we examined the implications of this variation in symbiont density on the performance of F. fragum larvae under different environmental scenarios. High symbiont densities prolonged the period that larvae actively swam and searched for suitable settlement habitats. Thermal stress reduced survival and settlement success in F. fragum larvae, whereby larvae with high symbiont densities suffered more from non-lethal stress and were five times more likely to die compared with larvae with low symbiont densities. These results show that maternally inherited algal symbionts can be either beneficial or harmful to coral larvae depending on the environmental conditions at hand, and suggest that F. fragum mothers use a bet-hedging strategy to minimize risks associated with spatio-temporal variability in their offspring's environment.
Collapse
Affiliation(s)
- Valérie F Chamberland
- Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 700, 1098 XH Amsterdam, The Netherlands
- SECORE International, 4673 Northwest Parkway, Hilliard, OH 43026, USA
- CARMABI Foundation, PO Box 2090, Piscaderabaai z/n, Willemstad, Curaçao
| | - Kelly R W Latijnhouwers
- Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 700, 1098 XH Amsterdam, The Netherlands
| | - Jef Huisman
- Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 700, 1098 XH Amsterdam, The Netherlands
| | - Aaron C Hartmann
- Smithsonian Institution, National Museum of Natural History, 10th Street and Constitution Avenue NW, Washington, DC 20560, USA
- San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Mark J A Vermeij
- Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 700, 1098 XH Amsterdam, The Netherlands
- CARMABI Foundation, PO Box 2090, Piscaderabaai z/n, Willemstad, Curaçao
| |
Collapse
|
92
|
Mies M, Voolstra CR, Castro CB, Pires DO, Calderon EN, Sumida PYG. Expression of a symbiosis-specific gene in Symbiodinium type A1 associated with coral, nudibranch and giant clam larvae. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170253. [PMID: 28573035 PMCID: PMC5451836 DOI: 10.1098/rsos.170253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
Symbiodinium are responsible for the majority of primary production in coral reefs and found in a mutualistic symbiosis with multiple animal phyla. However, little is known about the molecular signals involved in the establishment of this symbiosis and whether it initiates during host larval development. To address this question, we monitored the expression of a putative symbiosis-specific gene (H+-ATPase) in Symbiodinium A1 ex hospite and in association with larvae of a scleractinian coral (Mussismilia hispida), a nudibranch (Berghia stephanieae) and a giant clam (Tridacna crocea). We acquired broodstock for each host, induced spawning and cultured the larvae. Symbiodinium cells were offered and larval samples taken for each host during the first 72 h after symbiont addition. In addition, control samples including free-living Symbiodinium and broodstock tissue containing symbionts for each host were collected. RNA extraction and RT-PCR were performed and amplified products cloned and sequenced. Our results show that H+-ATPase was expressed in Symbiodinium associated with coral and giant clam larvae, but not with nudibranch larvae, which digested the symbionts. Broodstock tissue for coral and giant clam also expressed H+-ATPase, but not the nudibranch tissue sample. Our results of the expression of H+-ATPase as a marker gene suggest that symbiosis between Symbiodinium and M. hispida and T. crocea is established during host larval development. Conversely, in the case of B. stephanieae larvae, evidence does not support a mutualistic relationship. Our study supports the utilization of H+-ATPase expression as a marker for assessing Symbiodinium-invertebrate relationships with applications for the differentiation of symbiotic and non-symbiotic associations. At the same time, insights from a single marker gene approach are limited and future studies should direct the identification of additional symbiosis-specific genes, ideally from both symbiont and host.
Collapse
Affiliation(s)
- M. Mies
- Oceanographic Institute, University of São Paulo, Praça do Oceanográfico 191, 05508-120 São Paulo, SP, Brazil
| | - C. R. Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, 23955-6900 Thuwal, Saudi Arabia
| | - C. B. Castro
- Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, s/n, 20940-040 Rio de Janeiro, RJ, Brazil
- Instituto Coral Vivo, Rua dos Coqueiros, 87-45807-000 Santa Cruz Cabrália, BA, Brazil
| | - D. O. Pires
- Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, s/n, 20940-040 Rio de Janeiro, RJ, Brazil
- Instituto Coral Vivo, Rua dos Coqueiros, 87-45807-000 Santa Cruz Cabrália, BA, Brazil
| | - E. N. Calderon
- Instituto Coral Vivo, Rua dos Coqueiros, 87-45807-000 Santa Cruz Cabrália, BA, Brazil
- Núcleo em Ecologia e Desenvolvimento Socioambiental de Macaé, Universidade Federal do Rio de Janeiro, Av São José do Barreto, 764-27965-045 Macaé, RJ, Brazil
| | - P. Y. G. Sumida
- Oceanographic Institute, University of São Paulo, Praça do Oceanográfico 191, 05508-120 São Paulo, SP, Brazil
| |
Collapse
|
93
|
Prazeres M, Roberts TE, Pandolfi JM. Variation in sensitivity of large benthic Foraminifera to the combined effects of ocean warming and local impacts. Sci Rep 2017; 7:45227. [PMID: 28332634 PMCID: PMC5362903 DOI: 10.1038/srep45227] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/20/2017] [Indexed: 01/17/2023] Open
Abstract
Large benthic foraminifera (LBF) are crucial marine calcifiers in coral reefs, and sensitive to environmental changes. Yet, many species successfully colonise a wide range of habitats including highly fluctuating environments. We tested the combined effects of ocean warming, local impacts and different light levels on populations of the common LBF Amphistegina lobifera collected along a cross-shelf gradient of temperature and nutrients fluctuations. We analysed survivorship, bleaching frequency, chlorophyll a content and fecundity. Elevated temperature and nitrate significantly reduced survivorship and fecundity of A. lobifera across populations studied. This pattern was exacerbated when combined with below optimum light levels. Inshore populations showed a consistent resistance to increased temperature and nitrate levels, but all populations studied were significantly affected by light reduction. These findings demonstrated the capacity of some populations of LBF to acclimate to local conditions; nonetheless improvements in local water quality can ultimately ameliorate effects of climate change in local LBF populations.
Collapse
Affiliation(s)
- Martina Prazeres
- ARC Centre of Excellent for Coral Reef Studies and School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - T Edward Roberts
- ARC Centre of Excellent for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - John M Pandolfi
- ARC Centre of Excellent for Coral Reef Studies and School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
94
|
López-García P, Eme L, Moreira D. Symbiosis in eukaryotic evolution. J Theor Biol 2017; 434:20-33. [PMID: 28254477 DOI: 10.1016/j.jtbi.2017.02.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/19/2017] [Accepted: 02/25/2017] [Indexed: 01/27/2023]
Abstract
Fifty years ago, Lynn Margulis, inspiring in early twentieth-century ideas that put forward a symbiotic origin for some eukaryotic organelles, proposed a unified theory for the origin of the eukaryotic cell based on symbiosis as evolutionary mechanism. Margulis was profoundly aware of the importance of symbiosis in the natural microbial world and anticipated the evolutionary significance that integrated cooperative interactions might have as mechanism to increase cellular complexity. Today, we have started fully appreciating the vast extent of microbial diversity and the importance of syntrophic metabolic cooperation in natural ecosystems, especially in sediments and microbial mats. Also, not only the symbiogenetic origin of mitochondria and chloroplasts has been clearly demonstrated, but improvement in phylogenomic methods combined with recent discoveries of archaeal lineages more closely related to eukaryotes further support the symbiogenetic origin of the eukaryotic cell. Margulis left us in legacy the idea of 'eukaryogenesis by symbiogenesis'. Although this has been largely verified, when, where, and specifically how eukaryotic cells evolved are yet unclear. Here, we shortly review current knowledge about symbiotic interactions in the microbial world and their evolutionary impact, the status of eukaryogenetic models and the current challenges and perspectives ahead to reconstruct the evolutionary path to eukaryotes.
Collapse
Affiliation(s)
- Purificación López-García
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France.
| | - Laura Eme
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada NS B3H 4R2
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
| |
Collapse
|
95
|
The effects of elevated seawater temperatures on Caribbean gorgonian corals and their algal symbionts, Symbiodinium spp. PLoS One 2017; 12:e0171032. [PMID: 28152002 PMCID: PMC5289496 DOI: 10.1371/journal.pone.0171032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/14/2017] [Indexed: 11/19/2022] Open
Abstract
Global climate change not only leads to elevated seawater temperatures but also to episodic anomalously high or low temperatures lasting for several hours to days. Scleractinian corals are detrimentally affected by thermal fluctuations, which often lead to an uncoupling of their mutualism with Symbiodinium spp. (coral bleaching) and potentially coral death. Consequently, on many Caribbean reefs scleractinian coral cover has plummeted. Conversely, gorgonian corals persist, with their abundance even increasing. How gorgonians react to thermal anomalies has been investigated utilizing limited parameters of either the gorgonian, Symbiodinium or the combined symbiosis (holobiont). We employed a holistic approach to examine the effect of an experimental five-day elevated temperature episode on parameters of the host, symbiont, and the holobiont in Eunicea tourneforti, E. flexuosa and Pseudoplexaura porosa. These gorgonian corals reacted and coped with 32°C seawater temperatures. Neither Symbiodinium genotypes nor densities differed between the ambient 29.5°C and 32°C. Chlorophyll a and c2 per Symbiodinium cell, however, were lower at 32°C leading to a reduction in chlorophyll content in the branches and an associated reduction in estimated absorbance and increase in the chlorophyll a specific absorption coefficient. The adjustments in the photochemical parameters led to changes in photochemical efficiencies, although these too showed that the gorgonians were coping. For example, the maximum excitation pressure, Qm, was significantly lower at 32°C than at 29.5°C. In addition, although per dry weight the amount of protein and lipids were lower at 32°C, the overall energy content in the tissues did not differ between the temperatures. Antioxidant activity either remained the same or increased following exposure to 32°C further reiterating a response that dealt with the stressor. Taken together, the capability of Caribbean gorgonian corals to modify symbiont, host and consequently holobiont parameters may partially explain their persistence on reefs faced with climate change.
Collapse
|
96
|
3D chemoecology and chemotaxonomy of corals using fatty acid biomarkers: Latitude, longitude and depth. BIOCHEM SYST ECOL 2017. [DOI: 10.1016/j.bse.2016.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
97
|
Wangpraseurt D, Holm JB, Larkum AWD, Pernice M, Ralph PJ, Suggett DJ, Kühl M. In vivo Microscale Measurements of Light and Photosynthesis during Coral Bleaching: Evidence for the Optical Feedback Loop? Front Microbiol 2017; 8:59. [PMID: 28174567 PMCID: PMC5258690 DOI: 10.3389/fmicb.2017.00059] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/09/2017] [Indexed: 12/21/2022] Open
Abstract
Climate change-related coral bleaching, i.e., the visible loss of zooxanthellae from the coral host, is increasing in frequency and extent and presents a major threat to coral reefs globally. Coral bleaching has been proposed to involve accelerating light stress of their microalgal endosymbionts via a positive feedback loop of photodamage, symbiont expulsion and excess in vivo light exposure. To test this hypothesis, we used light and O2 microsensors to characterize in vivo light exposure and photosynthesis of Symbiodinium during a thermal stress experiment. We created tissue areas with different densities of Symbiodinium cells in order to understand the optical properties and light microenvironment of corals during bleaching. Our results showed that in bleached Pocillopora damicornis corals, Symbiodinium light exposure was up to fivefold enhanced relative to healthy corals, and the relationship between symbiont loss and light enhancement was well-described by a power-law function. Cell-specific rates of Symbiodinium gross photosynthesis and light respiration were enhanced in bleached P. damicornis compared to healthy corals, while areal rates of net photosynthesis decreased. Symbiodinium light exposure in Favites sp. revealed the presence of low light microniches in bleached coral tissues, suggesting that light scattering in thick coral tissues can enable photoprotection of cryptic symbionts. Our study provides evidence for the acceleration of in vivo light exposure during coral bleaching but this optical feedback mechanism differs between coral hosts. Enhanced photosynthesis in relation to accelerating light exposure shows that coral microscale optics exerts a key role on coral photophysiology and the subsequent degree of radiative stress during coral bleaching.
Collapse
Affiliation(s)
- Daniel Wangpraseurt
- Marine Biological Section, Department of Biology, University of CopenhagenHelsingør, Denmark; Climate Change Cluster, Department of Environmental Sciences, University of Sydney, SydneyNSW, Australia
| | - Jacob B Holm
- Marine Biological Section, Department of Biology, University of Copenhagen Helsingør, Denmark
| | - Anthony W D Larkum
- Climate Change Cluster, Department of Environmental Sciences, University of Sydney, Sydney NSW, Australia
| | - Mathieu Pernice
- Climate Change Cluster, Department of Environmental Sciences, University of Sydney, Sydney NSW, Australia
| | - Peter J Ralph
- Climate Change Cluster, Department of Environmental Sciences, University of Sydney, Sydney NSW, Australia
| | - David J Suggett
- Climate Change Cluster, Department of Environmental Sciences, University of Sydney, Sydney NSW, Australia
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of CopenhagenHelsingør, Denmark; Climate Change Cluster, Department of Environmental Sciences, University of Sydney, SydneyNSW, Australia
| |
Collapse
|
98
|
Tong H, Cai L, Zhou G, Yuan T, Zhang W, Tian R, Huang H, Qian PY. Temperature shapes coral-algal symbiosis in the South China Sea. Sci Rep 2017; 7:40118. [PMID: 28084322 PMCID: PMC5234030 DOI: 10.1038/srep40118] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/02/2016] [Indexed: 12/31/2022] Open
Abstract
With the increase in sea surface temperature (SST), scleractinian corals are exposed to bleaching threats but may possess certain flexibilities in terms of their associations with symbiotic algae. Previous studies have shown a close symbiosis between coral the and Symbiodinium; however, the spatial variation of the symbiosis and the attribution underlying are not well understood. In the present study, we examined coral-algal symbiosis in Galaxea fascicularis and Montipora spp. from three biogeographic regions across ~10° of latitude in the South China Sea. Analysis of similarities (ANOSIM) indicated a highly flexible coral-algal symbiosis in both G. fascicularis and Montipora spp. and canonical correspondence analysis (CCA) showed that temperature explained 83.2% and 60.1% of the explanatory subclade variations in G. fascicularis and Montipora spp., respectively, which suggested that temperature was the main environmental factor contributing to the diversity of Symbiodinium across the three regions. The geographic specificity of the Symbiodinium phylogeny was identified, revealing possible environmental selection across the three regions. These results suggest that scleractinian corals may have the ability to regulate Symbiodinium community structures under different temperatures and thus be able to adapt to gradual climate change.
Collapse
Affiliation(s)
- Haoya Tong
- HKUST Shenzhen Research Institute and Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Lin Cai
- HKUST Shenzhen Research Institute and Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Guowei Zhou
- HKUST Shenzhen Research Institute and Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China.,Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, China.,Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, China
| | - Tao Yuan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, China
| | - Weipeng Zhang
- HKUST Shenzhen Research Institute and Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Renmao Tian
- HKUST Shenzhen Research Institute and Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Hui Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, China.,Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, China
| | - Pei-Yuan Qian
- HKUST Shenzhen Research Institute and Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| |
Collapse
|
99
|
Silverstein RN, Cunning R, Baker AC. Tenacious D: Symbiodinium in clade D remain in reef corals at both high and low temperature extremes despite impairment. J Exp Biol 2017; 220:1192-1196. [DOI: 10.1242/jeb.148239] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/18/2017] [Indexed: 11/20/2022]
Abstract
Reef corals are sensitive to thermal stress, which induces coral bleaching (the loss of algal symbionts), often leading to coral mortality. However, corals hosting certain symbionts (notably Symbiodinium in clade D) resist bleaching when exposed to high temperatures. To determine if these symbionts are also cold tolerant, we exposed corals hosting either Symbiodinium C3 or D1a to incremental warming (+1°C week−1 to 35°C) and cooling (−1°C week−1 to 15°C), and measured photodamage and symbiont loss. During warming to 33°C, C3-corals were photodamaged and lost >99% of symbionts, while D1a-corals experienced photodamage but did not bleach. During cooling, D1a-corals suffered more photodamage than C3-corals but still did not bleach, while C3-corals lost 94% of symbionts. These results indicate that photodamage does not always lead to bleaching, suggesting alternate mechanisms exist by which symbionts resist bleaching, and helping explain the persistence of D1a symbionts on recently-bleached reefs, with implications for the future of these ecosystems.
Collapse
Affiliation(s)
- Rachel N. Silverstein
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL 33149, USA
- Miami Waterkeeper, 12568 N. Kendall Dr., Miami, FL 33185, USA
| | - Ross Cunning
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL 33149, USA
- Hawaii Institute of Marine Biology, University of Hawaii, P.O. Box 1346, Kaneohe, HI 96744, USA
| | - Andrew C. Baker
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL 33149, USA
| |
Collapse
|
100
|
Hernández-Zulueta J, Araya R, Vargas-Ponce O, Díaz-Pérez L, Rodríguez-Troncoso AP, Ceh J, Ríos-Jara E, Rodríguez-Zaragoza FA. First deep screening of bacterial assemblages associated with corals of the Tropical Eastern Pacific. FEMS Microbiol Ecol 2016; 92:fiw196. [DOI: 10.1093/femsec/fiw196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2016] [Indexed: 11/12/2022] Open
|