51
|
Suzuki T, Ikeda S, Kasai A, Taneda A, Fujibayashi M, Sugawara K, Okuta M, Maeda H, Sano T. RNAi-Mediated Down-Regulation of Dicer-Like 2 and 4 Changes the Response of 'Moneymaker' Tomato to Potato Spindle Tuber Viroid Infection from Tolerance to Lethal Systemic Necrosis, Accompanied by Up-Regulation of miR398, 398a-3p and Production of Excessive Amount of Reactive Oxygen Species. Viruses 2019; 11:v11040344. [PMID: 31013904 PMCID: PMC6521110 DOI: 10.3390/v11040344] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022] Open
Abstract
To examine the role of RNA silencing in plant defenses against viroids, a Dicer-like 2 and 4 (DCL2&4)–double knockdown transgenic tomato plant line, 72E, was created. The expression of endogenous SlDCL2s and SlDCL4 in line 72E decreased to about a half that of the empty cassette line, EC. When challenged with potato spindle tuber viroid (PSTVd), line 72E showed significantly higher levels of PSTVd accumulation early in the course of the infection and lethal systemic necrosis late in the infection. The size distribution of PSTVd-derived small RNAs was significantly different with the number of RNAs of 21 and 22 nucleotides (nt) in line 72E, at approximately 66.7% and 5% of those in line EC, respectively. Conversely, the numbers of 24 nt species increased by 1100%. Furthermore, expression of the stress-responsive microRNA species miR398 and miR398a-3p increased 770% and 868% in the PSTVd-infected line 72E compared with the PSTVd-infected EC. At the same time, the expression of cytosolic and chloroplast-localized Cu/Zn-superoxide dismutase 1 and 2 (SOD1 and SOD2) and the copper chaperon for SOD (CCS1) mRNAs, potential targets of miR398 or 398a-3p, decreased significantly in the PSTVd-infected line 72E leaves, showing necrosis. In concert with miR398 and 398a-3p, SODs control the detoxification of reactive oxygen species (ROS) generated in cells. Since high levels of ROS production were observed in PSTVd-infected line 72E plants, it is likely that the lack of full dicer-likes (DCL) activity in these plants made them unable to control excessive ROS production after PSTVd infection, as disruption in the ability of miR398 and miR398a-3p to regulate SODs resulted in the development of lethal systemic necrosis.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
- Union Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan.
| | - Sho Ikeda
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
| | - Atsushi Kasai
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
| | - Akito Taneda
- Graduate School of Science and Technology, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
| | - Misato Fujibayashi
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
| | - Kohei Sugawara
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
| | - Maki Okuta
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
| | - Teruo Sano
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
| |
Collapse
|
52
|
Prasad A, Sharma N, Muthamilarasan M, Rana S, Prasad M. Recent advances in small RNA mediated plant-virus interactions. Crit Rev Biotechnol 2019; 39:587-601. [PMID: 30947560 DOI: 10.1080/07388551.2019.1597830] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Small RNAs (sRNA) are reported to play pivotal roles in the epigenetic and post-transcriptional regulation of gene expression during growth, development, and stress response in plants. Recently, the involvement of two different classes of sRNAs namely, miRNAs (microRNAs), and siRNAs (small interfering RNAs) in biotic stress response has been underlined. Notably, during virus infection, these sRNAs deploy antiviral defense by regulating the gene expression of the modulators of host defense pathways. As a counter defense, viruses have evolved strategic pathways involving the production of suppressors that interfere with the host silencing machinery. This molecular arms race between the sophisticated gene regulatory mechanism of host plants fine-tuned by sRNAs and the defense response exhibited by the virus has gained much attention among the researchers. So far, several reports have been published showing the mechanistic insights on sRNA-regulated defense mechanism in response to virus infection in several crop plants. In this context, our review enumerates the molecular mechanisms underlying host immunity against viruses mediated by sRNAs, the counter defense strategies employed by viruses to surpass this immunogenic response and the advances made in our understanding of plant-virus interactions. Altogether, the report would be insightful for the researchers working to decode the sRNA-mediated defense response in crop plants challenged with virus infection.
Collapse
Affiliation(s)
- Ashish Prasad
- a National Institute of Plant Genome Research , New Delhi , India
| | - Namisha Sharma
- a National Institute of Plant Genome Research , New Delhi , India
| | - Mehanathan Muthamilarasan
- a National Institute of Plant Genome Research , New Delhi , India.,b ICAR-National Research Centre on Plant Biotechnology , New Delhi , India
| | - Sumi Rana
- a National Institute of Plant Genome Research , New Delhi , India.,b ICAR-National Research Centre on Plant Biotechnology , New Delhi , India
| | - Manoj Prasad
- a National Institute of Plant Genome Research , New Delhi , India
| |
Collapse
|
53
|
Dommes AB, Gross T, Herbert DB, Kivivirta KI, Becker A. Virus-induced gene silencing: empowering genetics in non-model organisms. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:757-770. [PMID: 30452695 DOI: 10.1093/jxb/ery411] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/08/2018] [Indexed: 05/19/2023]
Abstract
Virus-induced gene silencing (VIGS) is an RNA interference-based technology used to transiently knock down target gene expression by utilizing modified plant viral genomes. VIGS can be adapted to many angiosperm species that cover large phylogenetic distances, allowing the analysis of gene functions in species that are not amenable to stable genetic transformation. With a vast amount of sequence information already available and even more likely to become available in the future, VIGS provides a means to analyze the functions of candidate genes identified in large genomic or transcriptomic screens. Here, we provide a comprehensive overview of target species and VIGS vector systems, assess recent key publications in the field, and explain how plant viruses are modified to serve as VIGS vectors. As many reports on the VIGS technique are being published, we also propose minimal reporting guidelines for carrying out these experiments, with the aim of increasing comparability between experiments. Finally, we propose methods for the statistical evaluation of phenotypic results obtained with VIGS-treated plants, as analysis is challenging due to the predominantly transient nature of the silencing effect.
Collapse
Affiliation(s)
- Anna B Dommes
- Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring, Gießen, Germany
| | - Thomas Gross
- Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring, Gießen, Germany
| | - Denise B Herbert
- Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring, Gießen, Germany
| | - Kimmo I Kivivirta
- Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring, Gießen, Germany
| | - Annette Becker
- Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring, Gießen, Germany
| |
Collapse
|
54
|
Panzade G, Gangwar I, Awasthi S, Sharma N, Shankar R. Plant Regulomics Portal (PRP): a comprehensive integrated regulatory information and analysis portal for plant genomes. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2019; 2019:5650983. [PMID: 31796964 PMCID: PMC6891001 DOI: 10.1093/database/baz130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022]
Abstract
Gene regulation is a highly complex and networked phenomenon where multiple tiers of control determine the cell state in a spatio-temporal manner. Among these, the transcription factors, DNA and histone modifications, and post-transcriptional control by small RNAs like miRNAs serve as major regulators. An understanding of the integrative and spatio-temporal impact of these regulatory factors can provide better insights into the state of a ‘cell system’. Yet, there are limited resources available to this effect. Therefore, we hereby report an integrative information portal (Plant Regulomics Portal; PRP) for plants for the first time. The portal has been developed by integrating a huge amount of curated data from published sources, RNA-, methylome- and sRNA/miRNA sequencing, histone modifications and repeats, gene ontology, digital gene expression and characterized pathways. The key features of the portal include a regulatory search engine for fetching numerous analytical outputs and tracks of the abovementioned regulators and also a genome browser for integrated visualization of the search results. It also has numerous analytical features for analyses of transcription factors (TFs) and sRNA/miRNA, spot-specific methylation, gene expression and interactions and details of pathways for any given genomic element. It can also provide information on potential RdDM regulation, while facilitating enrichment analysis, generation of visually rich plots and downloading of data in a selective manner. Visualization of intricate biological networks is an important feature which utilizes the Neo4j Graph database making analysis of relationships and long-range system viewing possible. Till date, PRP hosts 571-GB processed data for four plant species namely Arabidopsis thaliana, Oryza sativa subsp. japonica, Zea mays and Glycine max. Database URL: https://scbb.ihbt.res.in/PRP
Collapse
Affiliation(s)
- Ganesh Panzade
- Studio of Computational Biology & Bioinformatics, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Kangra, Himachal Pradesh 176061, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India.,Division of Biology, Kansas State University, Zinovyeva Lab, 28 Ackert Hall, Manhattan, KS, USA, 66506
| | - Indu Gangwar
- Studio of Computational Biology & Bioinformatics, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Kangra, Himachal Pradesh 176061, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Supriya Awasthi
- Studio of Computational Biology & Bioinformatics, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Kangra, Himachal Pradesh 176061, India
| | - Nitesh Sharma
- Studio of Computational Biology & Bioinformatics, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Kangra, Himachal Pradesh 176061, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Ravi Shankar
- Studio of Computational Biology & Bioinformatics, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Kangra, Himachal Pradesh 176061, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
55
|
Arif M, Islam SU, Adnan M, Anwar M, Ali H, Wu Z. Recent progress on gene silencing/suppression by virus-derived small interfering RNAs in rice viruses especially Rice grassy stunt virus. Microb Pathog 2018; 125:210-218. [DOI: 10.1016/j.micpath.2018.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/08/2018] [Accepted: 09/11/2018] [Indexed: 12/16/2022]
|
56
|
Xia Z, Zhao Z, Jiao Z, Xu T, Wu Y, Zhou T, Fan Z. Virus-Derived Small Interfering RNAs Affect the Accumulations of Viral and Host Transcripts in Maize. Viruses 2018; 10:v10120664. [PMID: 30477197 PMCID: PMC6315483 DOI: 10.3390/v10120664] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/18/2022] Open
Abstract
RNA silencing is a conserved surveillance mechanism against invading viruses in plants, which involves the production of virus-derived small interfering RNAs (vsiRNAs) that play essential roles in the silencing of viral RNAs and/or specific host transcripts. However, how vsiRNAs function to target viral and/or host transcripts is poorly studied, especially in maize (Zea mays L.). In this study, a degradome library constructed from Sugarcane mosaic virus (SCMV)-inoculated maize plants was analyzed to identify the cleavage sites in viral and host transcripts mainly produced by vsiRNAs. The results showed that 42 maize transcripts were possibly cleaved by vsiRNAs, among which several were involved in chloroplast functions and in biotic and abiotic stresses. In addition, more than 3000 cleavage sites possibly produced by vsiRNAs were identified in positive-strand RNAs of SCMV, while there were only four cleavage sites in the negative-strand RNAs. To determine the roles of vsiRNAs in targeting viral RNAs, six vsiRNAs were expressed in maize protoplast based on artificial microRNAs (amiRNAs), of which four could efficiently inhibit the accumulations of SCMV RNAs. These results provide new insights into the genetic manipulation of maize with resistance against virus infection by using amiRNA as a more predictable and useful approach.
Collapse
Affiliation(s)
- Zihao Xia
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| | - Zhenxing Zhao
- State Key Laboratory of Agro-Biotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China.
| | - Zhiyuan Jiao
- State Key Laboratory of Agro-Biotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China.
| | - Tengzhi Xu
- State Key Laboratory of Agro-Biotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China.
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| | - Tao Zhou
- State Key Laboratory of Agro-Biotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China.
| | - Zaifeng Fan
- State Key Laboratory of Agro-Biotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
57
|
Paudel DB, Sanfaçon H. Exploring the Diversity of Mechanisms Associated With Plant Tolerance to Virus Infection. FRONTIERS IN PLANT SCIENCE 2018; 9:1575. [PMID: 30450108 PMCID: PMC6224807 DOI: 10.3389/fpls.2018.01575] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/09/2018] [Indexed: 05/17/2023]
Abstract
Tolerance is defined as an interaction in which viruses accumulate to some degree without causing significant loss of vigor or fitness to their hosts. Tolerance can be described as a stable equilibrium between the virus and its host, an interaction in which each partner not only accommodate trade-offs for survival but also receive some benefits (e.g., protection of the plant against super-infection by virulent viruses; virus invasion of meristem tissues allowing vertical transmission). This equilibrium, which would be associated with little selective pressure for the emergence of severe viral strains, is common in wild ecosystems and has important implications for the management of viral diseases in the field. Plant viruses are obligatory intracellular parasites that divert the host cellular machinery to complete their infection cycle. Highjacking/modification of plant factors can affect plant vigor and fitness. In addition, the toxic effects of viral proteins and the deployment of plant defense responses contribute to the induction of symptoms ranging in severity from tissue discoloration to malformation or tissue necrosis. The impact of viral infection is also influenced by the virulence of the specific virus strain (or strains for mixed infections), the host genotype and environmental conditions. Although plant resistance mechanisms that restrict virus accumulation or movement have received much attention, molecular mechanisms associated with tolerance are less well-understood. We review the experimental evidence that supports the concept that tolerance can be achieved by reaching the proper balance between plant defense responses and virus counter-defenses. We also discuss plant translation repression mechanisms, plant protein degradation or modification pathways and viral self-attenuation strategies that regulate the accumulation or activity of viral proteins to mitigate their impact on the host. Finally, we discuss current progress and future opportunities toward the application of various tolerance mechanisms in the field.
Collapse
Affiliation(s)
- Dinesh Babu Paudel
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada
| |
Collapse
|
58
|
Yang Z, Li Y. Dissection of RNAi-based antiviral immunity in plants. Curr Opin Virol 2018; 32:88-99. [PMID: 30388659 DOI: 10.1016/j.coviro.2018.08.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 10/28/2022]
Abstract
RNA interference (RNAi)-based antiviral defense is a small RNA-dependent repression mechanism of plants to against viruses. Although the core components of antiviral RNAi are well known, it is unclear whether additional factors exist that regulate RNAi. Recently, a forward genetic screen identified two novel components of antiviral RNAi, providing important insights into the antiviral RNAi mechanism. Meanwhile, it was discovered that microRNAs make important contributions to host antiviral RNAi. On the other hand, to counteract host antiviral RNAi, most viruses encode viral suppressors of RNA silencing (VSRs). Recent studies have revealed the multiple functions of VSRs and the intricate interactions between plant hosts and viruses. These findings add to our knowledge of the sophisticated host antiviral defense mechanism in plants. Ongoing molecular functional studies will improve our understanding of the co-evolutionary arms race between viruses and plants, and thereby provide key information for the development of plant antiviral strategies.
Collapse
Affiliation(s)
- Zhirui Yang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yi Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
59
|
Profile of siRNAs derived from green fluorescent protein (GFP)-tagged Papaya leaf distortion mosaic virus in infected papaya plants. Virus Genes 2018; 54:833-839. [PMID: 30218292 DOI: 10.1007/s11262-018-1601-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022]
Abstract
We used green fluorescent protein (GFP)-tagged Papaya leaf distortion mosaic virus (PLDMV-GFP) to track PLDMV infection by fluorescence. The virus-derived small interfering RNAs (vsiRNAs) of PLDMV-GFP were characterized from papaya plants by next-generation sequencing. The foreign GFP gene inserted into the PLDMV genome was also processed as a viral gene into siRNAs by components involved in RNA silencing. The siRNAs derived from PLDMV-GFP accumulated preferentially as 21- and 22-nucleotide (nt) lengths, and most of the 5'-terminal ends were biased towards uridine (U) and adenosine (A). The single-nucleotide resolution map revealed that vsiRNAs were heterogeneously distributed throughout the PLDMV-GFP genome, and vsiRNAs derived from the sense strand were more abundant than those from the antisense strand. The hotspots were mainly distributed in the P1 and GFP coding region of the antisense strand. In addition, 979 papaya genes targeted by the most abundant 1000 PLDMV-GFP vsiRNAs were predicted and annotated using GO and KEGG classification. Results suggest that vsiRNAs play key roles in PLDMV-papaya interactions. These data on the characterization of PLDMV-GFP vsiRNAs will help to provide insight into the function of vsiRNAs and their host target regulation patterns.
Collapse
|
60
|
Yu J, Lee KM, Cho WK, Park JY, Kim KH. Differential Contribution of RNA Interference Components in Response to Distinct Fusarium graminearum Virus Infections. J Virol 2018; 92:e01756-17. [PMID: 29437977 PMCID: PMC5899199 DOI: 10.1128/jvi.01756-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/02/2018] [Indexed: 01/14/2023] Open
Abstract
The mechanisms of RNA interference (RNAi) as a defense response against viruses remain unclear in many plant-pathogenic fungi. In this study, we used reverse genetics and virus-derived small RNA profiling to investigate the contributions of RNAi components to the antiviral response against Fusarium graminearum viruses 1 to 3 (FgV1, -2, and -3). Real-time reverse transcription-quantitative PCR (qRT-PCR) indicated that infection of Fusarium graminearum by FgV1, -2, or -3 differentially induces the gene expression of RNAi components in F. graminearum Transcripts of the DICER-2 and AGO-1 genes of F. graminearum (FgDICER-2 and FgAGO-1) accumulated at lower levels following FgV1 infection than following FgV2 or FgV3 infection. We constructed gene disruption and overexpression mutants for each of the Argonaute and dicer genes and for two RNA-dependent RNA polymerase (RdRP) genes and generated virus-infected strains of each mutant. Interestingly, mycelial growth was significantly faster for the FgV1-infected FgAGO-1 overexpression mutant than for the FgV1-infected wild type, while neither FgV2 nor FgV3 infection altered the colony morphology of the gene deletion and overexpression mutants. FgV1 RNA accumulation was significantly decreased in the FgAGO-1 overexpression mutant. Furthermore, the levels of induction of FgAGO-1, FgDICER-2, and some of the FgRdRP genes caused by FgV2 and FgV3 infection were similar to those caused by hairpin RNA-induced gene silencing. Using small RNA sequencing analysis, we documented different patterns of virus-derived small interfering RNA (vsiRNA) production in strains infected with FgV1, -2, and -3. Our results suggest that the Argonaute protein encoded by FgAGO-1 is required for RNAi in F. graminearum, that FgAGO-1 induction differs in response to FgV1, -2, and -3, and that FgAGO-1 might contribute to the accumulation of vsiRNAs in FgV1-infected F. graminearumIMPORTANCE To increase our understanding of how RNAi components in Fusarium graminearum react to mycovirus infections, we characterized the role(s) of RNAi components involved in the antiviral defense response against Fusarium graminearum viruses (FgVs). We observed differences in the levels of induction of RNA silencing-related genes, including FgDICER-2 and FgAGO-1, in response to infection by three different FgVs. FgAGO-1 can efficiently induce a robust RNAi response against FgV1 infection, but FgDICER genes might be relatively redundant to FgAGO-1 with respect to antiviral defense. However, the contribution of this gene in the response to the other FgV infections might be small. Compared to previous studies of Cryphonectria parasitica, which showed dicer-like protein 2 and Argonaute-like protein 2 to be important in antiviral RNA silencing, our results showed that F. graminearum developed a more complex and robust RNA silencing system against mycoviruses and that FgDICER-1 and FgDICER-2 and FgAGO-1 and FgAGO-2 had redundant roles in antiviral RNA silencing.
Collapse
Affiliation(s)
- Jisuk Yu
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Mi Lee
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
| | - Won Kyong Cho
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Ju Yeon Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
61
|
Mochama P, Jadhav P, Neupane A, Lee Marzano SY. Mycoviruses as Triggers and Targets of RNA Silencing in White Mold Fungus Sclerotinia sclerotiorum. Viruses 2018; 10:v10040214. [PMID: 29690568 PMCID: PMC5923508 DOI: 10.3390/v10040214] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 02/05/2023] Open
Abstract
This study aimed to demonstrate the existence of antiviral RNA silencing mechanisms in Sclerotinia sclerotiorum by infecting wild-type and RNA-silencing-deficient strains of the fungus with an RNA virus and a DNA virus. Key silencing-related genes were disrupted to dissect the RNA silencing pathway. Specifically, dicer genes (dcl-1, dcl-2, and both dcl-1/dcl-2) were displaced by selective marker(s). Disruption mutants were then compared for changes in phenotype, virulence, and susceptibility to virus infections. Wild-type and mutant strains were transfected with a single-stranded RNA virus, SsHV2-L, and copies of a single-stranded DNA mycovirus, SsHADV-1, as a synthetic virus constructed in this study. Disruption of dcl-1 or dcl-2 resulted in no changes in phenotype compared to wild-type S. sclerotiorum; however, the double dicer mutant strain exhibited significantly slower growth. Furthermore, the Δdcl-1/dcl-2 double mutant, which was slow growing without virus infection, exhibited much more severe debilitation following virus infections including phenotypic changes such as slower growth, reduced pigmentation, and delayed sclerotial formation. These phenotypic changes were absent in the single mutants, Δdcl-1 and Δdcl-2. Complementation of a single dicer in the double disruption mutant reversed viral susceptibility to the wild-type state. Virus-derived small RNAs were accumulated from virus-infected wild-type strains with strand bias towards the negative sense. The findings of these studies indicate that S. sclerotiorum has robust RNA silencing mechanisms that process both DNA and RNA mycoviruses and that, when both dicers are silenced, invasive nucleic acids can greatly debilitate the virulence of this fungus.
Collapse
Affiliation(s)
- Pauline Mochama
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Prajakta Jadhav
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Achal Neupane
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Shin-Yi Lee Marzano
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
- Department of Horticulture, Agronomy, and Plant Sciences, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
62
|
Nuskern L, Ježić M, Liber Z, Mlinarec J, Ćurković-Perica M. Cryphonectria hypovirus 1-Induced Epigenetic Changes in Infected Phytopathogenic Fungus Cryphonectria parasitica. MICROBIAL ECOLOGY 2018; 75:790-798. [PMID: 28865007 DOI: 10.1007/s00248-017-1064-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/24/2017] [Indexed: 06/07/2023]
Abstract
Biotic stress caused by virus infections induces epigenetic changes in infected plants and animals, but this is the first report on methylation pattern changes in a fungus after mycovirus infection. As a model pathosystem for mycovirus-host interactions, we used Cryphonectria hypovirus 1 (CHV1) and its host fungus Cryphonectria parasitica, in which deregulation of methylation cycle enzymes upon virus infection was observed previously. Six CHV1 strains of different subtypes were transferred into three different C. parasitica isolates in order to assess the effect of different CHV1 strains and/or subtypes on global cytosine methylation level in infected fungus, using methylation-sensitive amplification polymorphism (MSAP). Infection with CHV1 affected the methylation pattern of the C. parasitica genome; it increased the number and diversity of methylated, hemi-methylated, and total MSAP markers found in infected fungal isolates compared to virus-free controls. The increase in methylation levels correlated well with the CHV1-induced reduction of fungal growth in vitro, indicating that C. parasitica genome methylation upon CHV1 infection, rather than being the defensive mechanism of the fungus, is more likely to be the virulence determinant of the virus. Furthermore, the severity of CHV1 effect on methylation levels of infected C. parasitica isolates depended mostly on individual CHV1 strains and on the combination of host and virus genomes, rather than on the virus subtype. These novel findings broaden our knowledge about CHV1 strains which could potentially be used in human-aided biocontrol of chestnut blight, a disease caused by C. parasitica in chestnut forest ecosystems and orchards.
Collapse
Affiliation(s)
- Lucija Nuskern
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10 000, Zagreb, Croatia
| | - Marin Ježić
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10 000, Zagreb, Croatia
| | - Zlatko Liber
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10 000, Zagreb, Croatia
| | - Jelena Mlinarec
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10 000, Zagreb, Croatia
| | - Mirna Ćurković-Perica
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10 000, Zagreb, Croatia.
| |
Collapse
|
63
|
Valli AA, Gallo A, Rodamilans B, López‐Moya JJ, García JA. The HCPro from the Potyviridae family: an enviable multitasking Helper Component that every virus would like to have. MOLECULAR PLANT PATHOLOGY 2018; 19:744-763. [PMID: 28371183 PMCID: PMC6638112 DOI: 10.1111/mpp.12553] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 05/18/2023]
Abstract
RNA viruses have very compact genomes and so provide a unique opportunity to study how evolution works to optimize the use of very limited genomic information. A widespread viral strategy to solve this issue concerning the coding space relies on the expression of proteins with multiple functions. Members of the family Potyviridae, the most abundant group of RNA viruses in plants, offer several attractive examples of viral factors which play roles in diverse infection-related pathways. The Helper Component Proteinase (HCPro) is an essential and well-characterized multitasking protein for which at least three independent functions have been described: (i) viral plant-to-plant transmission; (ii) polyprotein maturation; and (iii) RNA silencing suppression. Moreover, multitudes of host factors have been found to interact with HCPro. Intriguingly, most of these partners have not been ascribed to any of the HCPro roles during the infectious cycle, supporting the idea that this protein might play even more roles than those already established. In this comprehensive review, we attempt to summarize our current knowledge about HCPro and its already attributed and putative novel roles, and to discuss the similarities and differences regarding this factor in members of this important viral family.
Collapse
Affiliation(s)
| | - Araiz Gallo
- Centro Nacional de Biotecnología (CNB‐CSIC)Madrid28049Spain
| | | | - Juan José López‐Moya
- Center for Research in Agricultural Genomics (CRAG‐CSIC‐IRTA‐UAB‐UB), Campus UABBellaterraBarcelona08193Spain
| | | |
Collapse
|
64
|
Islam W, Noman A, Qasim M, Wang L. Plant Responses to Pathogen Attack: Small RNAs in Focus. Int J Mol Sci 2018; 19:E515. [PMID: 29419801 PMCID: PMC5855737 DOI: 10.3390/ijms19020515] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 12/25/2022] Open
Abstract
Small RNAs (sRNA) are a significant group of gene expression regulators for multiple biological processes in eukaryotes. In plants, many sRNA silencing pathways produce extensive array of sRNAs with specialized roles. The evidence on record advocates for the functions of sRNAs during plant microbe interactions. Host sRNAs are reckoned as mandatory elements of plant defense. sRNAs involved in plant defense processes via different pathways include both short interfering RNA (siRNA) and microRNA (miRNA) that actively regulate immunity in response to pathogenic attack via tackling pathogen-associated molecular patterns (PAMPs) and other effectors. In response to pathogen attack, plants protect themselves with the help of sRNA-dependent immune systems. That sRNA-mediated plant defense responses play a role during infections is an established fact. However, the regulations of several sRNAs still need extensive research. In this review, we discussed the topical advancements and findings relevant to pathogen attack and plant defense mediated by sRNAs. We attempted to point out diverse sRNAs as key defenders in plant systems. It is hoped that sRNAs would be exploited as a mainstream player to achieve food security by tackling different plant diseases.
Collapse
Affiliation(s)
- Waqar Islam
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38040, Pakistan.
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Muhammad Qasim
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Liande Wang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
65
|
Li M, Zhang J, Feng M, Wang X, Luo C, Wang Q, Cheng Y. Characterization of silencing suppressor p24 of Grapevine leafroll-associated virus 2. MOLECULAR PLANT PATHOLOGY 2018; 19:355-368. [PMID: 27997767 PMCID: PMC6638178 DOI: 10.1111/mpp.12525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/24/2016] [Accepted: 11/29/2016] [Indexed: 05/04/2023]
Abstract
Grapevine leafroll-associated virus 2 (GLRaV-2) p24 has been reported to be an RNA silencing suppressor (RSS). However, the mechanisms underlying p24's suppression of RNA silencing are unknown. Using Agrobacterium infiltration-mediated RNA silencing assays, we showed that GLRaV-2 p24 is a strong RSS triggered by positive-sense green fluorescent protein (GFP) RNA, and that silencing suppression by p24 effectively blocks the accumulation of small interfering RNAs. Deletion analyses showed that the region of amino acids 1-188, which contains all predicted α-helices and β-strands, is required for the RSS activity of p24. Hydrophobic residues I35/F38/V85/V89/W149 and V162/L169/L170, previously shown to be critical for p24 self-interaction, are also crucial for silencing suppression, and western blotting results suggested that a lack of self-interaction ability results in decreased p24 accumulation in plants. The mutants showed greatly weakened or a lack of RSS activity. Substitution with two basic residues at positions 2 or 86, putatively involved in RNA binding, totally abolished the RSS activity of p24, suggesting that p24 uses an RNA-binding strategy to suppress RNA silencing. Our results also showed that W54 in the WG/GW-like motif (W54/G55) is crucial for the RSS activity of p24, whereas p24 does not physically interact with AGO1 of Nicotiana benthamiana. Furthermore, p24 did not promote AGO1 degradation, but significantly up-regulated AGO1 mRNA expression, and this effect was correlated with the RSS activity of p24, indicating that p24 may interfere with microRNA-directed processes. The presented results contribute to our understanding of viral suppression of RNA silencing and the molecular mechanisms underlying GLRaV-2 infection.
Collapse
Affiliation(s)
- Mingjun Li
- Department of Pomology/Laboratory of Stress Physiology and Molecular Biology for Tree Fruits, a Key Laboratory of Beijing MunicipalityChina Agricultural UniversityBeijing100193China
| | - Jiao Zhang
- Department of Pomology/Laboratory of Stress Physiology and Molecular Biology for Tree Fruits, a Key Laboratory of Beijing MunicipalityChina Agricultural UniversityBeijing100193China
| | - Ming Feng
- Department of Pomology/Laboratory of Stress Physiology and Molecular Biology for Tree Fruits, a Key Laboratory of Beijing MunicipalityChina Agricultural UniversityBeijing100193China
| | - Xianyou Wang
- Department of Pomology/Laboratory of Stress Physiology and Molecular Biology for Tree Fruits, a Key Laboratory of Beijing MunicipalityChina Agricultural UniversityBeijing100193China
| | - Chen Luo
- Department of Pomology/Laboratory of Stress Physiology and Molecular Biology for Tree Fruits, a Key Laboratory of Beijing MunicipalityChina Agricultural UniversityBeijing100193China
| | - Qi Wang
- Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Yuqin Cheng
- Department of Pomology/Laboratory of Stress Physiology and Molecular Biology for Tree Fruits, a Key Laboratory of Beijing MunicipalityChina Agricultural UniversityBeijing100193China
| |
Collapse
|
66
|
Guo Z, Wang XB, Wang Y, Li WX, Gal-On A, Ding SW. Identification of a New Host Factor Required for Antiviral RNAi and Amplification of Viral siRNAs. PLANT PHYSIOLOGY 2018; 176:1587-1597. [PMID: 29184028 PMCID: PMC5813567 DOI: 10.1104/pp.17.01370] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/22/2017] [Indexed: 05/22/2023]
Abstract
Small interfering RNAs (siRNAs) are processed from virus-specific dsRNA to direct antiviral RNA interference (RNAi) in diverse eukaryotic hosts. We have recently performed a sensitized genetic screen in Arabidopsis (Arabidopsis thaliana) and identified two related phospholipid flippases required for antiviral RNAi and the amplification of virus-derived siRNAs by plant RNA-dependent RNA polymerase1 (RDR1) and RDR6. Here we report the identification and cloning of ANTIVIRAL RNAI-DEFECTIVE2 (AVI2) from the same genetic screen. AVI2 encodes a multispan transmembrane protein broadly conserved in plants and animals with two homologous human proteins known as magnesium transporters. We show that avi2 mutant plants display no developmental defects and develop severe disease symptoms after infection with a mutant Cucumber mosaic virus (CMV) defective in RNAi suppression. AVI2 is induced by CMV infection, particularly in veins, and is required for antiviral RNAi and RDR6-dependent biogenesis of viral siRNAs. AVI2 is also necessary for Dicer-like2-mediated amplification of 22-nucleotide viral siRNAs induced in dcl4 mutant plants by infection, but dispensable for RDR6-dependent biogenesis of endogenous transacting siRNAs. Further genetic studies illustrate that AVI2 plays a partially redundant role with AVI2H, the most closely related member in the AVI2 gene family, in RDR1-dependent biogenesis of viral siRNAs and the endogenous virus-activated siRNAs (vasi-RNAs). Interestingly, we discovered a specific genetic interaction of AVI2 with AVI1 flippase that is critical for plant development. We propose that AVI1 and AVI2 participate in the virus-induced formation of the RDR1/RDR6-specific, membrane-bound RNA synthesis compartment, essential for the biogenesis of highly abundant viral siRNAs and vasi-RNAs.
Collapse
Affiliation(s)
- Zhongxin Guo
- Department of Plant Pathology and Microbiology and Center for Plant Cell Biology, University of California, Riverside CA 92721
- Vector-borne Virus Research Center, Haixia Institute of Science and Technology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xian-Bing Wang
- Department of Plant Pathology and Microbiology and Center for Plant Cell Biology, University of California, Riverside CA 92721
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Ying Wang
- Department of Plant Pathology and Microbiology and Center for Plant Cell Biology, University of California, Riverside CA 92721
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Wan-Xiang Li
- Department of Plant Pathology and Microbiology and Center for Plant Cell Biology, University of California, Riverside CA 92721
| | - Amit Gal-On
- Department of Plant Pathology and Weed Science, Volcani Center, Bet Dagan 50250, Israel
| | - Shou-Wei Ding
- Department of Plant Pathology and Microbiology and Center for Plant Cell Biology, University of California, Riverside CA 92721
| |
Collapse
|
67
|
Gupta N, Zahra S, Singh A, Kumar S. PVsiRNAdb: a database for plant exclusive virus-derived small interfering RNAs. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:5126495. [PMID: 30307523 PMCID: PMC6181178 DOI: 10.1093/database/bay105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/14/2018] [Indexed: 11/13/2022]
Abstract
Ribonucleic acids (RNA) interference mechanism has been proved to be an important regulator of both transcriptional and post-transcription controls of gene expression during biotic and abiotic stresses in plants. Virus-derived small interfering RNAs (vsiRNAs) are established components of the RNA silencing mechanism for incurring anti-viral resistance in plants. Some databases like siRNAdb, HIVsirDB and VIRsiRNAdb are available online pertaining to siRNAs as well as vsiRNAs generated during viral infection in humans; however, currently there is a lack of repository for plant exclusive vsiRNAs. We have developed `PVsiRNAdb (http://www.nipgr.res.in/PVsiRNAdb)', a manually curated plant-exclusive database harboring information related to vsiRNAs found in different virus-infected plants collected by exhaustive data mining of published literature so far. This database contains a total of 322 214 entries and 282 549 unique sequences of vsiRNAs. In PVsiRNAdb, detailed and comprehensive information is available for each vsiRNA sequence. Apart from the core information consisting of plant, tissue, virus name and vsiRNA sequence, additional information of each vsiRNAs (map position, length, coordinates, strand information and predicted structure) may be of high utility to the user. Different types of search and browse modules with three different tools namely BLAST, Smith-Waterman Align and Mapping are provided at PVsiRNAdb. Thus, this database being one of its kind will surely be of much use to molecular biologists for exploring the complex viral genetics and genomics, viral-host interactions and beneficial to the scientific community and can prove to be very advantageous in the field of agriculture for producing viral resistance transgenic crops.
Collapse
Affiliation(s)
- Nikita Gupta
- Bioinformatics Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Shafaque Zahra
- Bioinformatics Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Ajeet Singh
- Bioinformatics Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Shailesh Kumar
- Bioinformatics Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
68
|
Zheng L, Zhang C, Shi C, Yang Z, Wang Y, Zhou T, Sun F, Wang H, Zhao S, Qin Q, Qiao R, Ding Z, Wei C, Xie L, Wu J, Li Y. Rice stripe virus NS3 protein regulates primary miRNA processing through association with the miRNA biogenesis factor OsDRB1 and facilitates virus infection in rice. PLoS Pathog 2017; 13:e1006662. [PMID: 28977024 PMCID: PMC5658190 DOI: 10.1371/journal.ppat.1006662] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 10/26/2017] [Accepted: 09/22/2017] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are small regulatory RNAs processed from primary miRNA transcripts, and plant miRNAs play important roles in plant growth, development, and response to infection by microbes. Microbial infections broadly alter miRNA biogenesis, but the underlying mechanisms remain poorly understood. In this study, we report that the Rice stripe virus (RSV)-encoded nonstructural protein 3 (NS3) interacts with OsDRB1, an indispensable component of the rice (Oryza sativa) miRNA-processing complex. Moreover, the NS3-OsDRB1 interaction occurs at the sites required for OsDRB1 self-interaction, which is essential for miRNA biogenesis. Further analysis revealed that NS3 acts as a scaffold between OsDRB1 and pri-miRNAs to regulate their association and aids in vivo processing of pri-miRNAs. Genetic evidence in Arabidopsis showed that NS3 can partially substitute for the function of double-stranded RNA binding domain (dsRBD) of AtDRB1/AtHYL1 during miRNA biogenesis. As a result, NS3 induces the accumulation of several miRNAs, most of which target pivotal genes associated with development or pathogen resistance. In contrast, a mutant version of NS3 (mNS3), which still associated with OsDRB1 but has defects in pri-miRNA binding, reduces accumulation of these miRNAs. Transgenic rice lines expressing NS3 exhibited significantly higher susceptibility to RSV infection compared with non-transgenic wild-type plants, whereas the transgenic lines expressing mNS3 showed a less-sensitive response. Our findings revealed a previously unknown mechanism in which a viral protein hijacks OsDRB1, a key component of the processing complex, for miRNA biogenesis and enhances viral infection and pathogenesis in rice. MicroRNAs (miRNAs) regulate gene expression at the transcriptional or post-transcriptional level and have emerged as key players in regulating plant growth, development and response to biotic and abiotic stresses. Accumulating evidences suggest that miRNAs are pivotal modulators of host–virus interactions, but how virus regulates miRNA accumulation remains poorly understood. Here, we report that NS3 protein encoded by Rice stripe virus (RSV) regulates the processing of several primary miRNA transcripts (pri-miRNAs) by acting as an intermediary to modulate the association of pri-miRNAs and OsDRB1, a key factor of the pri-miRNA processing complex. NS3 increases recruitment of pri-miRNA to the processing complex by its association with OsDRB1 at the sites required for OsDRB1 dimer formation and induces several miRNAs accumulations as well as target genes repression, promoting the sensitivity of rice to RSV infection. Together these findings reveal a novel mechanism by which RSV regulates pri-miRNA processing, leading to enhanced viral infection.
Collapse
Affiliation(s)
- Lijia Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Chao Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chaonan Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhirui Yang
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Yu Wang
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Tong Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Feng Sun
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hong Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shanshan Zhao
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Qingqing Qin
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Rui Qiao
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Zuomei Ding
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chunhong Wei
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Lianhui Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail: (YL); (JW); (LX)
| | - Jianguo Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail: (YL); (JW); (LX)
| | - Yi Li
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
- * E-mail: (YL); (JW); (LX)
| |
Collapse
|
69
|
Collum TD, Culver JN. Tobacco mosaic virus infection disproportionately impacts phloem associated translatomes in Arabidopsis thaliana and Nicotiana benthamiana. Virology 2017; 510:76-89. [PMID: 28710959 DOI: 10.1016/j.virol.2017.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/27/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023]
Abstract
In this study we use vascular specific promoters and a translating ribosome affinity purification strategy to identify phloem associated translatome responses to infection by tobacco mosaic virus (TMV) in systemic hosts Arabidopsis thaliana ecotype Shahdara and Nicotiana benthamiana. Results demonstrate that in both hosts the number of translatome gene alterations that occurred in response to infection is at least four fold higher in phloem specific translatomes than in non-phloem translatomes. This finding indicates that phloem functions as a key responsive tissue to TMV infection. In addition, host comparisons of translatome alterations reveal both similarities and differences in phloem responses to infection, representing both conserved virus induced phloem alterations involved in promoting infection and virus spread as well as host specific alterations that reflect differences in symptom responses. Combined these results suggest phloem tissues play a disproportion role in the mediation and control of host responses to virus infection.
Collapse
Affiliation(s)
- Tamara D Collum
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - James N Culver
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
70
|
Li L, Andika IB, Xu Y, Zhang Y, Xin X, Hu L, Sun Z, Hong G, Chen Y, Yan F, Yang J, Li J, Chen J. Differential Characteristics of Viral siRNAs between Leaves and Roots of Wheat Plants Naturally Infected with Wheat Yellow Mosaic Virus, a Soil-Borne Virus. Front Microbiol 2017; 8:1802. [PMID: 28979249 PMCID: PMC5611437 DOI: 10.3389/fmicb.2017.01802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/05/2017] [Indexed: 01/09/2023] Open
Abstract
RNA silencing is an important innate antiviral defense in plants. Soil-borne plant viruses naturally infect roots via soil-inhabiting vectors, but it is unclear how antiviral RNA silencing responds to virus infection in this particular tissue. In this study, viral small interfering RNA (siRNA) profiles from leaves and roots of wheat plants naturally infected with a soil-borne virus, wheat yellow mosaic virus (WYMV, genus Bymovirus), were analyzed by deep sequencing. WYMV siRNAs were much more abundant in roots than leaves, which was positively correlated with the accumulation of viral RNA. WYMV siRNAs in leaves and roots were predominantly 21- and 22-nt long and equally derived from the positive- and negative-strands of the viral genome. WYMV siRNAs from leaves and roots differed in distribution pattern along the viral genome. Interestingly, compared to siRNAs from leaves (and most other reports), those from roots obviously had a lower A/U bias at the 5'-terminal nucleotide. Moreover, the expression of Dicer-like genes upon WYMV infection were differently regulated between leaves and roots. Our data suggest that RNA silencing in roots may operate differently than in leaves against soil-borne virus invasion.
Collapse
Affiliation(s)
- Linying Li
- College of Plant Protection, Nanjing Agricultural UniversityNanjing, China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Ida Bagus Andika
- Group of Plant-Microbe Interactions, Institute of Plant Science and Resources, Okayama UniversityKurashiki, Japan
| | - Yu Xu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Yan Zhang
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Xiangqi Xin
- Institute of Plant Protection, Shandong Academy of Agricultural SciencesJinan, China
| | - Lifeng Hu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Zongtao Sun
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Gaojie Hong
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Yang Chen
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Fei Yan
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Jian Yang
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Junmin Li
- College of Plant Protection, Nanjing Agricultural UniversityNanjing, China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Jianping Chen
- College of Plant Protection, Nanjing Agricultural UniversityNanjing, China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| |
Collapse
|
71
|
Pokorn T, Radišek S, Javornik B, Štajner N, Jakše J. Development of hop transcriptome to support research into host-viroid interactions. PLoS One 2017; 12:e0184528. [PMID: 28886174 PMCID: PMC5590963 DOI: 10.1371/journal.pone.0184528] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 08/25/2017] [Indexed: 01/08/2023] Open
Abstract
Viroids, the smallest known pathogens, unable to encode any proteins, can cause severe diseases in their host plants. One of the proposed mechanisms of their pathogenicity includes silencing the host's genes via viroid-derived small RNAs, which are products of the host's immune response to the viroid's double stranded RNA. Humulus lupulus (hop) plants are hosts to several viroids; two of them, HLVd and CBCVd, are interesting models for studying host-viroid interactions, due to the symptomless infection of the former and severe stunting disease caused by the latter. To study these interactions, we constructed a deep hop NGS transcriptome based on 35 Gb paired-end sequencing data assembled into over 74 Mb of contigs. These transcripts were used for in-silico prediction of target transcripts of vd-sRNA of the two aforementioned viroids, using two different software tools. Prediction models revealed that 1062 and 1387 hop transcripts share nucleotide similarities with HLVd- and CBCVd-derived small RNAs, respectively, so they could be silenced in an RNA interference process. Furthermore, we selected 17 transcripts from 4 groups of targets involved in the metabolism of plant hormones, small RNA biogenesis, transcripts with high complementarity with viroid-derived small RNAs and transcripts targeted by CBCVd-derived small RNAs with high cellular concentrations. Their expression was monitored by reverse transcription quantitative PCR performed using leaf, flower and cone samples. Additionally, the expression of 5 pathogenesis related genes was monitored. Expression analysis confirmed high expression levels of four pathogenesis related genes in leaves of HLVd and CBCVd infected hop plants. Expression fluctuations were observed for the majority of targets, with possible evidence of downregulation of GATA transcription factor by CBCVd- and of linoleate 13S-lipoxygenase by HLVd-derived small RNAs. These results provide a deep transcriptome of hop and the first insights into complex viroid-hop plant interactions.
Collapse
Affiliation(s)
- Tine Pokorn
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Sebastjan Radišek
- Department of Plant Protection, Slovenian Institute of Hop Research and Brewing, Žalec, Slovenia
| | - Branka Javornik
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Štajner
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Jakše
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
72
|
Zheng Y, Ding B, Fei Z, Wang Y. Comprehensive transcriptome analyses reveal tomato plant responses to tobacco rattle virus-based gene silencing vectors. Sci Rep 2017; 7:9771. [PMID: 28852064 PMCID: PMC5575331 DOI: 10.1038/s41598-017-10143-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/20/2017] [Indexed: 11/09/2022] Open
Abstract
In plants, virus-induced gene silencing (VIGS) is a popular tool for functional genomic studies or rapidly assessing individual gene functions. However, molecular details regarding plant responses to viral vectors remain elusive, which may complicate experimental designs and data interpretation. To this end, we documented whole transcriptome changes of tomato elicited by the application of the most widely used tobacco rattle virus (TRV)-based vectors, using comprehensive genome-wide analyses. Our data illustrated multiple biological processes with functional implications, including (1) the enhanced activity of miR167 in guiding the cleavage of an auxin response factor; (2) reduced accumulation of phased secondary small interfering RNAs from two genomic loci; (3) altered expression of ~500 protein-coding transcripts; and (4) twenty long noncoding RNAs specifically responsive to TRV vectors. Importantly, we unraveled large-scale changes in mRNA alternative splicing patterns. These observations will facilitate future application of VIGS vectors for functional studies benefiting the plant research community and help deepen the understanding of plant-virus interactions.
Collapse
Affiliation(s)
- Yi Zheng
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Biao Ding
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA.
- USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA.
| | - Ying Wang
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Biological Sciences, Mississippi State University, Starkville, MS, 39759, USA.
| |
Collapse
|
73
|
Kim H, Cho WK, Lian S, Kim KH. Identification of residues or motif(s) of the rice stripe virus NS3 protein required for self-interaction and for silencing suppressor activity. Virus Res 2017; 235:14-23. [PMID: 28392445 DOI: 10.1016/j.virusres.2017.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Indexed: 11/20/2022]
Abstract
Rice stripe virus (RSV) is an important pathogen of rice. The RSV genome consists of four single-stranded RNA segments that encode seven viral proteins. A previous report found that NS3 is a viral suppressor of RNA silencing and self interacts. Using a model that predicts protein structure, we identified amino acid residues or motifs, including four α-helix motifs, required for NS3 self-interaction. We then used yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays to study the interactions between full-length NS3 and its truncated and alanine substitution mutants. Y2H and BiFC results showed that the N-terminal region of NS3 is essential for self-interaction. All α-helix deletion mutants and substitution mutants lost the ability to self-interact. To identify the relationship between NS3 self-interaction and silencing suppressor activity, we used a GFP silencing system in Nicotiana benthamiana with Agrobacterium-mediated transient overexpression of each mutated NS3 protein. All of the deletion and the α-helix substitution mutants that had lost the ability to self-interact also lost their silencing suppressor ability. The substitution of amino acids with alanine at positions 70-75, 76-83, and 173-177, however, resulted in mutants that were able to self-interact but were unable to function as silencing suppressors. These results suggest that RSV requires NS3 self-interaction to suppress RNA silencing and to thereby counter host defenses.
Collapse
Affiliation(s)
- Hangil Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Won Kyong Cho
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sen Lian
- College of Crop Protection and Agronomy, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
74
|
Noronha Fernandes-Brum C, Marinho Rezende P, Cherubino Ribeiro TH, Ricon de Oliveira R, Cunha de Sousa Cardoso T, Rodrigues do Amaral L, de Souza Gomes M, Chalfun-Junior A. A genome-wide analysis of the RNA-guided silencing pathway in coffee reveals insights into its regulatory mechanisms. PLoS One 2017; 12:e0176333. [PMID: 28448529 PMCID: PMC5407642 DOI: 10.1371/journal.pone.0176333] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/10/2017] [Indexed: 11/28/2022] Open
Abstract
microRNAs (miRNAs) are derived from self-complementary hairpin structures, while small-interfering RNAs (siRNAs) are derived from double-stranded RNA (dsRNA) or hairpin precursors. The core mechanism of sRNA production involves DICER-like (DCL) in processing the smallRNAs (sRNAs) and ARGONAUTE (AGO) as effectors of silencing, and siRNA biogenesis also involves action of RNA-Dependent RNA Polymerase (RDR), Pol IV and Pol V in biogenesis. Several other proteins interact with the core proteins to guide sRNA biogenesis, action, and turnover. We aimed to unravel the components and functions of the RNA-guided silencing pathway in a non-model plant species of worldwide economic relevance. The sRNA-guided silencing complex members have been identified in the Coffea canephora genome, and they have been characterized at the structural, functional, and evolutionary levels by computational analyses. Eleven AGO proteins, nine DCL proteins (which include a DCL1-like protein that was not previously annotated), and eight RDR proteins were identified. Another 48 proteins implicated in smallRNA (sRNA) pathways were also identified. Furthermore, we identified 235 miRNA precursors and 317 mature miRNAs from 113 MIR families, and we characterized ccp-MIR156, ccp-MIR172, and ccp-MIR390. Target prediction and gene ontology analyses of 2239 putative targets showed that significant pathways in coffee are targeted by miRNAs. We provide evidence of the expansion of the loci related to sRNA pathways, insights into the activities of these proteins by domain and catalytic site analyses, and gene expression analysis. The number of MIR loci and their targeted pathways highlight the importance of miRNAs in coffee. We identified several roles of sRNAs in C. canephora, which offers substantial insight into better understanding the transcriptional and post-transcriptional regulation of this major crop.
Collapse
Affiliation(s)
- Christiane Noronha Fernandes-Brum
- Department of Biology, Section of Plant Physiology, Laboratory of Plant Molecular Physiology (LFMP), Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Pâmela Marinho Rezende
- Department of Biology, Section of Plant Physiology, Laboratory of Plant Molecular Physiology (LFMP), Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Thales Henrique Cherubino Ribeiro
- Department of Biology, Section of Plant Physiology, Laboratory of Plant Molecular Physiology (LFMP), Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | | | - Thaís Cunha de Sousa Cardoso
- Institute of Genetics and Biochemistry (INGEB),Laboratory of Bioinformatics and Molecular Analysis (LBAM), Federal University of Uberlândia (UFU)- Campus Patos de Minas, Patos de Minas, Minas Gerais, Brasil
| | - Laurence Rodrigues do Amaral
- Institute of Genetics and Biochemistry (INGEB),Laboratory of Bioinformatics and Molecular Analysis (LBAM), Federal University of Uberlândia (UFU)- Campus Patos de Minas, Patos de Minas, Minas Gerais, Brasil
| | - Matheus de Souza Gomes
- Institute of Genetics and Biochemistry (INGEB),Laboratory of Bioinformatics and Molecular Analysis (LBAM), Federal University of Uberlândia (UFU)- Campus Patos de Minas, Patos de Minas, Minas Gerais, Brasil
| | - Antonio Chalfun-Junior
- Department of Biology, Section of Plant Physiology, Laboratory of Plant Molecular Physiology (LFMP), Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| |
Collapse
|
75
|
Zhou CJ, Zhang XY, Liu SY, Wang Y, Li DW, Yu JL, Han CG. Synergistic infection of BrYV and PEMV 2 increases the accumulations of both BrYV and BrYV-derived siRNAs in Nicotiana benthamiana. Sci Rep 2017; 7:45132. [PMID: 28345652 PMCID: PMC5366869 DOI: 10.1038/srep45132] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/15/2017] [Indexed: 11/13/2022] Open
Abstract
Viral synergism is caused by co-infection of two unrelated viruses, leading to more severe symptoms or increased titres of one or both viruses. Synergistic infection of phloem-restricted poleroviruses and umbraviruses has destructive effects on crop plants. The mechanism underlying this synergy remains elusive. In our study, synergism was observed in co-infections of a polerovirus Brassica yellows virus (BrYV) and an umbravirus Pea enation mosaic virus 2 (PEMV 2) on Nicotiana benthamiana, which led to (1) increased titres of BrYV, (2) appearance of severe symptoms, (3) gain of mechanical transmission capacity of BrYV, (4) broader distribution of BrYV to non-vascular tissues. Besides, profiles of virus-derived small interfering RNAs (vsiRNAs) from BrYV and PEMV 2 in singly and doubly infected plants were obtained by small RNA deep sequencing. Our results showed that accumulation of BrYV vsiRNAs increased tremendously and ratio of positive to negative strand BrYV vsiRNAs differed between singly infected and co-infected plants. Positions to which the BrYV vsiRNAs mapped to the viral genome varied considerably during synergistic infection. Moreover, target genes of vsiRNAs were predicted and annotated. Our results revealed the synergistic characteristics during co-infection of BrYV and PEMV 2, and implied possible effects of synergism have on vsiRNAs.
Collapse
Affiliation(s)
- Cui-Ji Zhou
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, 100193, P. R. China
| | - Xiao-Yan Zhang
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, 100193, P. R. China
| | - Song-Yu Liu
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, 100193, P. R. China
| | - Ying Wang
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, 100193, P. R. China
| | - Da-Wei Li
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, 100193, P. R. China
| | - Jia-Lin Yu
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, 100193, P. R. China
| | - Cheng-Gui Han
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, 100193, P. R. China
| |
Collapse
|
76
|
Calil IP, Fontes EPB. Plant immunity against viruses: antiviral immune receptors in focus. ANNALS OF BOTANY 2017; 119:711-723. [PMID: 27780814 PMCID: PMC5604577 DOI: 10.1093/aob/mcw200] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 08/05/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND Among the environmental limitations that affect plant growth, viruses cause major crop losses worldwide and represent serious threats to food security. Significant advances in the field of plant-virus interactions have led to an expansion of potential strategies for genetically engineered resistance in crops during recent years. Nevertheless, the evolution of viral virulence represents a constant challenge in agriculture that has led to a continuing interest in the molecular mechanisms of plant-virus interactions that affect disease or resistance. SCOPE AND CONCLUSION This review summarizes the molecular mechanisms of the antiviral immune system in plants and the latest breakthroughs reported in plant defence against viruses. Particular attention is given to the immune receptors and transduction pathways in antiviral innate immunity. Plants counteract viral infection with a sophisticated innate immune system that resembles the non-viral pathogenic system, which is broadly divided into pathogen-associated molecular pattern (PAMP)-triggered immunity and effector-triggered immunity. An additional recently uncovered virus-specific defence mechanism relies on host translation suppression mediated by a transmembrane immune receptor. In all cases, the recognition of the virus by the plant during infection is central for the activation of these innate defences, and, conversely, the detection of host plants enables the virus to activate virulence strategies. Plants also circumvent viral infection through RNA interference mechanisms by utilizing small RNAs, which are often suppressed by co-evolving virus suppressors. Additionally, plants defend themselves against viruses through hormone-mediated defences and activation of the ubiquitin-26S proteasome system (UPS), which alternatively impairs and facilitates viral infection. Therefore, plant defence and virulence strategies co-evolve and co-exist; hence, disease development is largely dependent on the extent and rate at which these opposing signals emerge in host and non-host interactions. A deeper understanding of plant antiviral immunity may facilitate innovative biotechnological, genetic and breeding approaches for crop protection and improvement.
Collapse
Affiliation(s)
- Iara P. Calil
- Departamento de Bioquímica e Biologia Molecular/National Institute of Science and Technology in Plant–Pest Interactions/Bioagro, Universidade Federal de Viçosa, 36570.000, Viçosa, MG, Brazil
| | - Elizabeth P. B. Fontes
- Departamento de Bioquímica e Biologia Molecular/National Institute of Science and Technology in Plant–Pest Interactions/Bioagro, Universidade Federal de Viçosa, 36570.000, Viçosa, MG, Brazil
- For correspondence. E-mail
| |
Collapse
|
77
|
Machado JPB, Calil IP, Santos AA, Fontes EPB. Translational control in plant antiviral immunity. Genet Mol Biol 2017; 40:292-304. [PMID: 28199446 PMCID: PMC5452134 DOI: 10.1590/1678-4685-gmb-2016-0092] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/27/2016] [Indexed: 01/11/2023] Open
Abstract
Due to the limited coding capacity of viral genomes, plant viruses depend extensively on the host cell machinery to support the viral life cycle and, thereby, interact with a large number of host proteins during infection. Within this context, as plant viruses do not harbor translation-required components, they have developed several strategies to subvert the host protein synthesis machinery to produce rapidly and efficiently the viral proteins. As a countermeasure against infection, plants have evolved defense mechanisms that impair viral infections. Among them, the host-mediated translational suppression has been characterized as an efficient mean to restrict infection. To specifically suppress translation of viral mRNAs, plants can deploy susceptible recessive resistance genes, which encode translation initiation factors from the eIF4E and eIF4G family and are required for viral mRNA translation and multiplication. Additionally, recent evidence has demonstrated that, alternatively to the cleavage of viral RNA targets, host cells can suppress viral protein translation to silence viral RNA. Finally, a novel strategy of plant antiviral defense based on suppression of host global translation, which is mediated by the transmembrane immune receptor NIK1 (nuclear shuttle protein (NSP)-Interacting Kinase1), is discussed in this review.
Collapse
Affiliation(s)
- João Paulo B Machado
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, 36571.000, Viçosa, MG, Brazil
| | - Iara P Calil
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, 36571.000, Viçosa, MG, Brazil
| | - Anésia A Santos
- Department of General Biology, Universidade Federal de Viçosa, 36571.000, Viçosa, MG, Brazil
| | - Elizabeth P B Fontes
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, 36571.000, Viçosa, MG, Brazil
| |
Collapse
|
78
|
Khalid A, Zhang Q, Yasir M, Li F. Small RNA Based Genetic Engineering for Plant Viral Resistance: Application in Crop Protection. Front Microbiol 2017; 8:43. [PMID: 28167936 PMCID: PMC5253543 DOI: 10.3389/fmicb.2017.00043] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/06/2017] [Indexed: 11/13/2022] Open
Abstract
Small RNAs regulate a large set of gene expression in all plants and constitute a natural immunity against viruses. Small RNA based genetic engineering (SRGE) technology had been explored for crop protection against viruses for nearly 30 years. Viral resistance has been developed in diverse crops with SRGE technology and a few viral resistant crops have been approved for commercial release. In this review we summarized the efforts generating viral resistance with SRGE in different crops, analyzed the evolution of the technology, its efficacy in different crops for different viruses and its application status in different crops. The challenge and potential solution for application of SRGE in crop protection are also discussed.
Collapse
Affiliation(s)
| | | | | | - Feng Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
79
|
Cordero T, Cerdán L, Carbonell A, Katsarou K, Kalantidis K, Daròs JA. Dicer-Like 4 Is Involved in Restricting the Systemic Movement of Zucchini yellow mosaic virus in Nicotiana benthamiana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:63-71. [PMID: 27958768 DOI: 10.1094/mpmi-11-16-0239-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Zucchini yellow mosaic virus (ZYMV) induces serious diseases in cucurbits. To create a tool to screen for resistance genes, we cloned a wild ZYMV isolate and inserted the visual marker Rosea1 to obtain recombinant clone ZYMV-Ros1. While in some plant-virus combinations Rosea1 induces accumulation of anthocyanins in infected tissues, ZYMV-Ros1 infection of cucurbits did not lead to detectable anthocyanin accumulation. However, the recombinant virus did induce dark red pigmentation in infected tissues of the model plant Nicotiana benthamiana. In this species, ZYMV-Ros1 multiplied efficiently in local inoculated tissue but only a few progeny particles established infection foci in upper leaves. We used this system to analyze the roles of Dicer-like (DCL) genes, core components of plant antiviral RNA silencing pathways, in ZYMV infection. ZYMV-Ros1 local replication was not significantly affected in single DCL knockdown lines nor in double DCL2/4 and triple DCL2/3/4 knockdown lines. ZYMV-Ros1 systemic accumulation was not affected in knockdown lines DCL1, DCL2, and DCL3. However in DCL4 and also in DCL2/4 and DCL2/3/4 knockdown lines, ZYMV-Ros1 systemic accumulation dramatically increased, which highlights the key role of DCL4 in restricting virus systemic movement. The effect of DCL4 on ZYMV systemic movement was confirmed with a wild-type version of the virus.
Collapse
Affiliation(s)
- Teresa Cordero
- 1 Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), 46022 Valencia, Spain; and
| | - Lidia Cerdán
- 1 Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), 46022 Valencia, Spain; and
| | - Alberto Carbonell
- 1 Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), 46022 Valencia, Spain; and
| | - Konstantina Katsarou
- 2 Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology; and Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Kriton Kalantidis
- 2 Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology; and Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - José-Antonio Daròs
- 1 Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), 46022 Valencia, Spain; and
| |
Collapse
|
80
|
Mickiewicz A, Sarzyńska J, Miłostan M, Kurzyńska-Kokorniak A, Rybarczyk A, Łukasiak P, Kuliński T, Figlerowicz M, Błażewicz J. Modeling of the catalytic core of Arabidopsis thaliana Dicer-like 4 protein and its complex with double-stranded RNA. Comput Biol Chem 2016; 66:44-56. [PMID: 27907832 DOI: 10.1016/j.compbiolchem.2016.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/11/2016] [Accepted: 11/16/2016] [Indexed: 12/20/2022]
Abstract
Plant Dicer-like proteins (DCLs) belong to the Ribonuclease III (RNase III) enzyme family. They are involved in the regulation of gene expression and antiviral defense through RNA interference pathways. A model plant, Arabidopsis thaliana encodes four DCL proteins (AtDCL1-4) that produce different classes of small regulatory RNAs. Our studies focus on AtDCL4 that processes double-stranded RNAs (dsRNAs) into 21 nucleotide trans-acting small interfering RNAs. So far, little is known about the structures of plant DCLs and the complexes they form with dsRNA. In this work, we present models of the catalytic core of AtDCL4 and AtDCL4-dsRNA complex constructed by computational methods. We built a homology model of the catalytic core of AtDCL4 comprising Platform, PAZ, Connector helix and two RNase III domains. To assemble the AtDCL4-dsRNA complex two modeling approaches were used. In the first method, to establish conformations that allow building a consistent model of the complex, we used Normal Mode Analysis for both dsRNA and AtDCL4. The second strategy involved template-based approach for positioning of the PAZ domain and manual arrangement of the Connector helix. Our results suggest that the spatial orientation of the Connector helix, Platform and PAZ relative to the RNase III domains is crucial for measuring dsRNA of defined length. The modeled complexes provide information about interactions that may contribute to the relative orientations of these domains and to dsRNA binding. All these information can be helpful for understanding the mechanism of AtDCL4-mediated dsRNA recognition and binding, to produce small RNA of specific size.
Collapse
Affiliation(s)
- Agnieszka Mickiewicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland; European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznań, Poland
| | - Joanna Sarzyńska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland; European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznań, Poland.
| | - Maciej Miłostan
- Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznań, Poland; European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznań, Poland
| | - Anna Kurzyńska-Kokorniak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Agnieszka Rybarczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland; Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznań, Poland; European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznań, Poland
| | - Piotr Łukasiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland; Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznań, Poland; European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznań, Poland
| | - Tadeusz Kuliński
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland; Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznań, Poland; European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznań, Poland
| | - Jacek Błażewicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland; Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznań, Poland; European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznań, Poland
| |
Collapse
|
81
|
Li J, Zheng H, Zhang C, Han K, Wang S, Peng J, Lu Y, Zhao J, Xu P, Wu X, Li G, Chen J, Yan F. Different Virus-Derived siRNAs Profiles between Leaves and Fruits in Cucumber Green Mottle Mosaic Virus-Infected Lagenaria siceraria Plants. Front Microbiol 2016; 7:1797. [PMID: 27881977 PMCID: PMC5101232 DOI: 10.3389/fmicb.2016.01797] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/25/2016] [Indexed: 01/24/2023] Open
Abstract
RNA silencing is an evolutionarily conserved antiviral mechanism, through which virus-derived small interfering RNAs (vsiRNAs) playing roles in host antiviral defense are produced in virus-infected plant. Deep sequencing technology has revolutionized the study on the interaction between virus and plant host through the analysis of vsiRNAs profile. However, comparison of vsiRNA profiles in different tissues from a same host plant has been rarely reported. In this study, the profiles of vsiRNAs from leaves and fruits of Lagenaria siceraria plants infected with Cucumber green mottle mosaic virus (CGMMV) were comprehensively characterized and compared. Many more vsiRNAs were present in infected leaves than in fruits. vsiRNAs from both leaves and fruits were mostly 21- and 22-nt in size as previously described in other virus-infected plants. Interestingly, vsiRNAs were predominantly produced from the viral positive strand RNAs in infected leaves, whereas in infected fruits they were derived equally from the positive and negative strands. Many leaf-specific positive vsiRNAs with lengths of 21-nt (2058) or 22-nt (3996) were identified but only six (21-nt) and one (22-nt) positive vsiRNAs were found to be specific to fruits. vsiRNAs hotspots were only present in the 5'-terminal and 3'-terminal of viral positive strand in fruits, while multiple hotspots were identified in leaves. Differences in GC content and 5'-terminal nucleotide of vsiRNAs were also observed in the two organs. To our knowledge, this provides the first high-resolution comparison of vsiRNA profiles between different tissues of the same host plant.
Collapse
Affiliation(s)
- Junmin Li
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Hongying Zheng
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Chenhua Zhang
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Kelei Han
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Shu Wang
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Jiejun Peng
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Yuwen Lu
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Jinping Zhao
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Pei Xu
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Institute of Vegetable, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Xiaohua Wu
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Institute of Vegetable, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Guojing Li
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Institute of Vegetable, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Jianping Chen
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Fei Yan
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| |
Collapse
|
82
|
Brosseau C, El Oirdi M, Adurogbangba A, Ma X, Moffett P. Antiviral Defense Involves AGO4 in an Arabidopsis-Potexvirus Interaction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:878-888. [PMID: 27762650 DOI: 10.1094/mpmi-09-16-0188-r] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In plants, RNA silencing regulates gene expression through the action of Dicer-like (DCL) and Argonaute (AGO) proteins via micro RNAs and RNA-dependent DNA methylation (RdDM). In addition, RNA silencing functions as an antiviral defense mechanism by targeting virus-derived double-stranded RNA. Plants encode multiple AGO proteins with specialized functions, including AGO4-like proteins that affect RdDM and AGO2, AGO5, and AGO1, which have antiviral activities. Here, we show that AGO4 is also required for defense against the potexvirus Plantago asiatica mosaic virus (PlAMV), most likely independent of RdDM components such as DCL3, Pol IV, and Pol V. Transient assays showed that AGO4 has direct antiviral activity on PlAMV and, unlike RdDM, this activity does not require nuclear localization of AGO4. Furthermore, although PlAMV infection causes a decrease in AGO4 expression, PlAMV causes a change in AGO4 localization from a largely nuclear to a largely cytoplasmic distribution. These results indicate an important role for AGO4 in targeting plant RNA viruses as well as demonstrating novel mechanisms of regulation of and by AGO4, independent of its canonical role in regulating gene expression by RdDM.
Collapse
Affiliation(s)
- Chantal Brosseau
- 1 Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Mohamed El Oirdi
- 1 Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
- 2 Current address: Department of Biology, PYD, King Faisal University, Al Hasa, Kingdom of Saudi Arabia; and
| | - Ayooluwa Adurogbangba
- 1 Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Xiaofang Ma
- 1 Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
- 3 College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Peter Moffett
- 1 Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| |
Collapse
|
83
|
Katsarou K, Mavrothalassiti E, Dermauw W, Van Leeuwen T, Kalantidis K. Combined Activity of DCL2 and DCL3 Is Crucial in the Defense against Potato Spindle Tuber Viroid. PLoS Pathog 2016; 12:e1005936. [PMID: 27732664 PMCID: PMC5061435 DOI: 10.1371/journal.ppat.1005936] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 09/14/2016] [Indexed: 12/22/2022] Open
Abstract
Viroids are self replicating non-coding RNAs capable of infecting a wide range of plant hosts. They do not encode any proteins, thus the mechanism by which they escape plant defenses remains unclear. RNAi silencing is a major defense mechanism against virus infections, with the four DCL proteins being principal components of the pathway. We have used Nicotiana benthamiana as a model to study Potato spindle tuber viroid infection. This viroid is a member of the Pospiviroidae family and replicates in the nucleus via an asymmetric rolling circle mechanism. We have created knock-down plants for all four DCL genes and their combinations. Previously, we showed that DCL4 has a positive effect on PSTVd infectivity since viroid levels drop when DCL4 is suppressed. Here, we show that PSTVd levels remain decreased throughout infection in DCL4 knockdown plants, and that simultaneous knockdown of DCL1, DCL2 or DCL3 together with DCL4 cannot reverse this effect. Through infection of plants suppressed for multiple DCLs we further show that a combined suppression of DCL2 and DCL3 has a major effect in succumbing plant antiviral defense. Based on our results, we further suggest that Pospoviroids may have evolved to be primarily processed by DCL4 as it seems to be a DCL protein with less detrimental effects on viroid infectivity. These findings pave the way to delineate the complexity of the relationship between viroids and plant RNA silencing response.
Collapse
Affiliation(s)
- Konstantina Katsarou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | | | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Belgium
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, The Netherlands
| | - Kriton Kalantidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| |
Collapse
|
84
|
Andika IB, Kondo H, Sun L. Interplays between Soil-Borne Plant Viruses and RNA Silencing-Mediated Antiviral Defense in Roots. Front Microbiol 2016; 7:1458. [PMID: 27695446 PMCID: PMC5023674 DOI: 10.3389/fmicb.2016.01458] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/31/2016] [Indexed: 12/18/2022] Open
Abstract
Although the majority of plant viruses are transmitted by arthropod vectors and invade the host plants through the aerial parts, there is a considerable number of plant viruses that infect roots via soil-inhabiting vectors such as plasmodiophorids, chytrids, and nematodes. These soil-borne viruses belong to diverse families, and many of them cause serious diseases in major crop plants. Thus, roots are important organs for the life cycle of many viruses. Compared to shoots, roots have a distinct metabolism and particular physiological characteristics due to the differences in development, cell composition, gene expression patterns, and surrounding environmental conditions. RNA silencing is an important innate defense mechanism to combat virus infection in plants, but the specific information on the activities and molecular mechanism of RNA silencing-mediated viral defense in root tissue is still limited. In this review, we summarize and discuss the current knowledge regarding RNA silencing aspects of the interactions between soil-borne viruses and host plants. Overall, research evidence suggests that soil-borne viruses have evolved to adapt to the distinct mechanism of antiviral RNA silencing in roots.
Collapse
Affiliation(s)
- Ida Bagus Andika
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
- Group of Plant-Microbe Interactions, Institute of Plant Science and Resources, Okayama UniversityKurashiki, Japan
| | - Hideki Kondo
- Group of Plant-Microbe Interactions, Institute of Plant Science and Resources, Okayama UniversityKurashiki, Japan
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| |
Collapse
|
85
|
Fletcher SJ, Shrestha A, Peters JR, Carroll BJ, Srinivasan R, Pappu HR, Mitter N. The Tomato Spotted Wilt Virus Genome Is Processed Differentially in its Plant Host Arachis hypogaea and its Thrips Vector Frankliniella fusca. FRONTIERS IN PLANT SCIENCE 2016; 7:1349. [PMID: 27656190 PMCID: PMC5013717 DOI: 10.3389/fpls.2016.01349] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
Thrips-transmitted tospoviruses are economically important viruses affecting a wide range of field and horticultural crops worldwide. Tomato spotted wilt virus (TSWV) is the type member of the Tospovirus genus with a broad host range of more than 900 plant species. Interactions between these viruses and their plant hosts and insect vectors via RNAi pathways are likely a key determinant of pathogenicity. The current investigation, for the first time, compares biogenesis of small RNAs between the plant host and insect vector in the presence or absence of TSWV. Unique viral small interfering RNA (vsiRNA) profiles are evident for Arachis hypogaea (peanut) and Frankliniella fusca (thrips vector) following infection with TSWV. Differences between vsiRNA profiles for these plant and insect species, such as the relative abundance of 21 and 22 nt vsiRNAs and locations of alignment hotspots, reflect the diverse siRNA biosynthesis pathways of their respective kingdoms. The presence of unique vsiRNAs in F. fusca samples indicates that vsiRNA generation takes place within the thrips, and not solely through uptake via feeding on vsiRNAs produced in infected A. hypogaea. The study also shows key vsiRNA profile differences for TSWV among plant families, which are evident in the case of A. hypogaea, a legume, and members of Solanaceae (S. lycopersicum and Nicotiana benthamiana). Distinctively, overall small RNA (sRNA) biogenesis in A. hypogaea is markedly affected with an absence of the 24 nt sRNAs in TSWV-infected plants, possibly leading to wide-spread molecular and phenotypic perturbations specific to this species. These findings add significant information on the host-virus-vector interaction in terms of RNAi pathways and may lead to better crop and vector specific control strategies.
Collapse
Affiliation(s)
- Stephen J. Fletcher
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. LuciaQLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| | - Anita Shrestha
- Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, TiftonGA, USA
| | - Jonathan R. Peters
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. LuciaQLD, Australia
| | - Bernard J. Carroll
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. LuciaQLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| | - Rajagopalbabu Srinivasan
- Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, TiftonGA, USA
| | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, PullmanWA, USA
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. LuciaQLD, Australia
| |
Collapse
|
86
|
Hadidi A, Flores R, Candresse T, Barba M. Next-Generation Sequencing and Genome Editing in Plant Virology. Front Microbiol 2016; 7:1325. [PMID: 27617007 PMCID: PMC4999435 DOI: 10.3389/fmicb.2016.01325] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/11/2016] [Indexed: 01/18/2023] Open
Abstract
Next-generation sequencing (NGS) has been applied to plant virology since 2009. NGS provides highly efficient, rapid, low cost DNA, or RNA high-throughput sequencing of the genomes of plant viruses and viroids and of the specific small RNAs generated during the infection process. These small RNAs, which cover frequently the whole genome of the infectious agent, are 21-24 nt long and are known as vsRNAs for viruses and vd-sRNAs for viroids. NGS has been used in a number of studies in plant virology including, but not limited to, discovery of novel viruses and viroids as well as detection and identification of those pathogens already known, analysis of genome diversity and evolution, and study of pathogen epidemiology. The genome engineering editing method, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has been successfully used recently to engineer resistance to DNA geminiviruses (family, Geminiviridae) by targeting different viral genome sequences in infected Nicotiana benthamiana or Arabidopsis plants. The DNA viruses targeted include tomato yellow leaf curl virus and merremia mosaic virus (begomovirus); beet curly top virus and beet severe curly top virus (curtovirus); and bean yellow dwarf virus (mastrevirus). The technique has also been used against the RNA viruses zucchini yellow mosaic virus, papaya ringspot virus and turnip mosaic virus (potyvirus) and cucumber vein yellowing virus (ipomovirus, family, Potyviridae) by targeting the translation initiation genes eIF4E in cucumber or Arabidopsis plants. From these recent advances of major importance, it is expected that NGS and CRISPR-Cas technologies will play a significant role in the very near future in advancing the field of plant virology and connecting it with other related fields of biology.
Collapse
Affiliation(s)
- Ahmed Hadidi
- United States Department of Agriculture – Agricultural Research ServiceBeltsville, MD, USA
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia–Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Université de BordeauxBordeaux, France
| | - Marina Barba
- Consiglio per la Ricerca in Agricoltura e l’analisi dell’Economia Agraria, Centro di Ricerca per la Patologia VegetaleRome, Italy
| |
Collapse
|
87
|
Wang J, Tang Y, Yang Y, Ma N, Ling X, Kan J, He Z, Zhang B. Cotton Leaf Curl Multan Virus-Derived Viral Small RNAs Can Target Cotton Genes to Promote Viral Infection. FRONTIERS IN PLANT SCIENCE 2016; 7:1162. [PMID: 27540385 PMCID: PMC4972823 DOI: 10.3389/fpls.2016.01162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/19/2016] [Indexed: 05/19/2023]
Abstract
RNA silencing is a conserved mechanism in plants that targets viruses. Viral small RNAs (vsiRNAs) can be generated from viral double-stranded RNA replicative intermediates within the infected host, or from host RNA-dependent RNA polymerases activity on viral templates. The abundance and profile of vsiRNAs in viral infections have been reported previously. However, the involvement of vsiRNAs during infection of the Geminiviridae family member cotton leaf curl virus (CLCuD), which causes significant economic losses in cotton growing regions, remains largely uncharacterized. Cotton leaf curl Multan virus (CLCuMuV) associated with a betasatellite called Cotton leaf curl Multan betasatellite (CLCuMuB) is a major constraint to cotton production in South Asia and is now established in Southern China. In this study, we obtained the profiles of vsiRNAs from CLCuMV and CLCuMB in infected upland cotton (Gossypium hirsutum) plants by deep sequencing. Our data showed that vsiRNA that were derived almost equally from sense and antisense CLCuD DNA strands accumulated preferentially as 21- and 22-nucleotide (nt) small RNA population and had a cytosine bias at the 5'-terminus. Polarity distribution revealed that vsiRNAs were almost continuously present along the CLCuD genome and hotspots of sense and antisense strands were mainly distributed in the Rep proteins region of CLCuMuV and in the C1 protein of CLCuMuB. In addition, hundreds of host transcripts targeted by vsiRNAs were predicted, many of which encode transcription factors associated with biotic and abiotic stresses. Quantitative real-time polymerase chain reaction analysis of selected potential vsiRNA targets showed that some targets were significantly down-regulated in CLCuD-infected cotton plants. We also verified the potential function of vsiRNA targets that may be involved in CLCuD infection by virus-induced gene silencing (VIGS) and 5'-rapid amplification of cDNA end (5'-RACE). Here, we provide the first report on vsiRNAs responses to CLCuD infection in cotton.
Collapse
Affiliation(s)
- Jinyan Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Yafei Tang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou, China
| | - Yuwen Yang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Na Ma
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Xitie Ling
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Jialiang Kan
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Zifu He
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou, China
- *Correspondence: Baolong Zhang, Zifu He,
| | - Baolong Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural SciencesNanjing, China
- *Correspondence: Baolong Zhang, Zifu He,
| |
Collapse
|