51
|
A comparative evaluation of machine learning algorithms for predicting syngas fermentation outcomes. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
52
|
Hengsbach JN, Sabel-Becker B, Ulber R, Holtmann D. Microbial electrosynthesis of methane and acetate—comparison of pure and mixed cultures. Appl Microbiol Biotechnol 2022; 106:4427-4443. [PMID: 35763070 PMCID: PMC9259517 DOI: 10.1007/s00253-022-12031-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/01/2022]
Abstract
Abstract The electrochemical process of microbial electrosynthesis (MES) is used to drive the metabolism of electroactive microorganisms for the production of valuable chemicals and fuels. MES combines the advantages of electrochemistry, engineering, and microbiology and offers alternative production processes based on renewable raw materials and regenerative energies. In addition to the reactor concept and electrode design, the biocatalysts used have a significant influence on the performance of MES. Thus, pure and mixed cultures can be used as biocatalysts. By using mixed cultures, interactions between organisms, such as the direct interspecies electron transfer (DIET) or syntrophic interactions, influence the performance in terms of productivity and the product range of MES. This review focuses on the comparison of pure and mixed cultures in microbial electrosynthesis. The performance indicators, such as productivities and coulombic efficiencies (CEs), for both procedural methods are discussed. Typical products in MES are methane and acetate, therefore these processes are the focus of this review. In general, most studies used mixed cultures as biocatalyst, as more advanced performance of mixed cultures has been seen for both products. When comparing pure and mixed cultures in equivalent experimental setups a 3-fold higher methane and a nearly 2-fold higher acetate production rate can be achieved in mixed cultures. However, studies of pure culture MES for methane production have shown some improvement through reactor optimization and operational mode reaching similar performance indicators as mixed culture MES. Overall, the review gives an overview of the advantages and disadvantages of using pure or mixed cultures in MES. Key points • Undefined mixed cultures dominate as inoculums for the MES of methane and acetate, which comprise a high potential of improvement • Under similar conditions, mixed cultures outperform pure cultures in MES • Understanding the role of single species in mixed culture MES is essential for future industrial applications
Collapse
Affiliation(s)
- Jan-Niklas Hengsbach
- Department of Mechanical and Process Engineering, Institute of Bioprocess Engineering, Technical University Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Björn Sabel-Becker
- Department of Life Science Engineering, Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen, 35390, Giessen, Germany
| | - Roland Ulber
- Department of Mechanical and Process Engineering, Institute of Bioprocess Engineering, Technical University Kaiserslautern, 67663, Kaiserslautern, Germany.
| | - Dirk Holtmann
- Department of Life Science Engineering, Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen, 35390, Giessen, Germany
| |
Collapse
|
53
|
Genome-Scale Mining of Acetogens of the Genus Clostridium Unveils Distinctive Traits in [FeFe]- and [NiFe]-Hydrogenase Content and Maturation. Microbiol Spectr 2022; 10:e0101922. [PMID: 35735976 PMCID: PMC9431212 DOI: 10.1128/spectrum.01019-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Knowledge of the organizational and functional properties of hydrogen metabolism is pivotal to the construction of a framework supportive of a hydrogen-fueled low-carbon economy. Hydrogen metabolism relies on the mechanism of action of hydrogenases. In this study, we investigated the genomes of several industrially relevant acetogens of the genus Clostridium (C. autoethanogenum, C. ljungdahlii, C. carboxidivorans, C. drakei, C. scatologenes, C. coskatii, C. ragsdalei, C. sp. AWRP) to systematically identify their intriguingly diversified hydrogenases’ repertoire. An entirely computational annotation pipeline unveiled common and strain-specific traits in the functional content of [NiFe]- and [FeFe]-hydrogenases. Hydrogenases were identified and categorized into functionally distinct classes by the combination of sequence homology, with respect to a database of curated nonredundant hydrogenases, with the analysis of sequence patterns characteristic of the mode of action of [FeFe]- and [NiFe]-hydrogenases. The inspection of the genes in the neighborhood of the catalytic subunits unveiled a wide agreement between their genomic arrangement and the gene organization templates previously developed for the predicted hydrogenase classes. Subunits’ characterization of the identified hydrogenases allowed us to glean some insights on the redox cofactor-binding determinants in the diaphorase subunits of the electron-bifurcating [FeFe]-hydrogenases. Finally, the reliability of the inferred hydrogenases was corroborated by the punctual analysis of the maturation proteins necessary for the biosynthesis of [NiFe]- and [FeFe]-hydrogenases. IMPORTANCE Mastering hydrogen metabolism can support a sustainable carbon-neutral economy. Of the many microorganisms metabolizing hydrogen, acetogens of the genus Clostridium are appealing, with some of them already in usage as industrial workhorses. Having provided detailed information on the hydrogenase content of an unprecedented number of clostridial acetogens at the gene level, our study represents a valuable knowledge base to deepen our understanding of hydrogenases’ functional specificity and/or redundancy and to develop a large array of biotechnological processes. We also believe our study could serve as a basis for future strain-engineering approaches, acting at the hydrogenases’ level or at the level of their maturation proteins. On the other side, the wealth of functional elements discussed in relation to the identified hydrogenases is worthy of further investigation by biochemical and structural studies to ultimately lead to the usage of these enzymes as valuable catalysts.
Collapse
|
54
|
Onyeaka H, Ekwebelem OC. A review of recent advances in engineering bacteria for enhanced CO 2 capture and utilization. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2022; 20:4635-4648. [PMID: 35755182 PMCID: PMC9207427 DOI: 10.1007/s13762-022-04303-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 04/12/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Carbon dioxide (CO2) is emitted into the atmosphere due to some anthropogenic activities, such as the combustion of fossil fuels and industrial output. As a result, fears about catastrophic global warming and climate change have intensified. In the face of these challenges, conventional CO2 capture technologies are typically ineffective, dangerous, and contribute to secondary pollution in the environment. Biological systems for CO2 conversion, on the other hand, provide a potential path forward owing to its high application selectivity and adaptability. Moreover, many bacteria can use CO2 as their only source of carbon and turn it into value-added products. The purpose of this review is to discuss recent significant breakthroughs in engineering bacteria to utilize CO2 and other one-carbon compounds as substrate. In the same token, the paper also summarizes and presents aspects such as microbial CO2 fixation pathways, engineered bacteria involved in CO2 fixation, up-to-date genetic and metabolic engineering approaches for CO2 fixation, and promising research directions for the production of value-added products from CO2. This review's findings imply that using biological systems like modified bacteria to manage CO2 has the added benefit of generating useful industrial byproducts like biofuels, pharmaceutical compounds, and bioplastics. The major downside, from an economic standpoint, thus far has been related to methods of cultivation. However, thanks to genetic engineering approaches, this can be addressed by large production yields. As a result, this review aids in the knowledge of various biological systems that can be used to construct a long-term CO2 mitigation technology at an industrial scale, in this instance bacteria-based CO2capture/utilization technology.
Collapse
Affiliation(s)
- H. Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - O. C. Ekwebelem
- Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001 Nigeria
| |
Collapse
|
55
|
Stark C, Münßinger S, Rosenau F, Eikmanns BJ, Schwentner A. The Potential of Sequential Fermentations in Converting C1 Substrates to Higher-Value Products. Front Microbiol 2022; 13:907577. [PMID: 35722332 PMCID: PMC9204031 DOI: 10.3389/fmicb.2022.907577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Today production of (bulk) chemicals and fuels almost exclusively relies on petroleum-based sources, which are connected to greenhouse gas release, fueling climate change. This increases the urgence to develop alternative bio-based technologies and processes. Gaseous and liquid C1 compounds are available at low cost and often occur as waste streams. Acetogenic bacteria can directly use C1 compounds like CO, CO2, formate or methanol anaerobically, converting them into acetate and ethanol for higher-value biotechnological products. However, these microorganisms possess strict energetic limitations, which in turn pose limitations to their potential for biotechnological applications. Moreover, efficient genetic tools for strain improvement are often missing. However, focusing on the metabolic abilities acetogens provide, they can prodigiously ease these technological disadvantages. Producing acetate and ethanol from C1 compounds can fuel via bio-based intermediates conversion into more energy-demanding, higher-value products, by deploying aerobic organisms that are able to grow with acetate/ethanol as carbon and energy source. Promising new approaches have become available combining these two fermentation steps in sequential approaches, either as separate fermentations or as integrated two-stage fermentation processes. This review aims at introducing, comparing, and evaluating the published approaches of sequential C1 fermentations, delivering a list of promising organisms for the individual fermentation steps and giving an overview of the existing broad spectrum of products based on acetate and ethanol. Understanding of these pioneering approaches allows collecting ideas for new products and may open avenues toward making full use of the technological potential of these concepts for establishment of a sustainable biotechnology.
Collapse
Affiliation(s)
- Christina Stark
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Sini Münßinger
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, University of Ulm, Ulm, Germany
| | - Bernhard J. Eikmanns
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
- *Correspondence: Bernhard J. Eikmanns,
| | - Andreas Schwentner
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| |
Collapse
|
56
|
Bajracharya S, Krige A, Matsakas L, Rova U, Christakopoulos P. Advances in cathode designs and reactor configurations of microbial electrosynthesis systems to facilitate gas electro-fermentation. BIORESOURCE TECHNOLOGY 2022; 354:127178. [PMID: 35436538 DOI: 10.1016/j.biortech.2022.127178] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
In gas fermentation, a range of chemolithoautotrophs fix single-carbon (C1) gases (CO2 and CO) when H2 or other reductants are available. Microbial electrosynthesis (MES) enables CO2 reduction by generating H2 or reducing equivalents with the sole input of renewable electricity. A combined approach as gas electro-fermentation is attractive for the sustainable production of biofuels and biochemicals utilizing C1 gases. Various platform compounds such as acetate, butyrate, caproate, ethanol, butanol and bioplastics can be produced. However, technological challenges pertaining to the microbe-material interactions such as poor gas-liquid mass transfer, low biomass and biofilm coverage on cathode, low productivities still exist. We are presenting a review on latest developments in MES focusing on the configuration and design of cathodes that can address the challenges and support the gas electro-fermentation. Overall, the opportunities for advancing CO and CO2-based biochemicals and biofuels production in MES with suitable cathode/reactor design are prospected.
Collapse
Affiliation(s)
- Suman Bajracharya
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87 Luleå, Sweden.
| | - Adolf Krige
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87 Luleå, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87 Luleå, Sweden
| |
Collapse
|
57
|
Bourgade B, Humphreys CM, Millard J, Minton NP, Islam MA. Design, Analysis, and Implementation of a Novel Biochemical Pathway for Ethylene Glycol Production in Clostridium autoethanogenum. ACS Synth Biol 2022; 11:1790-1800. [PMID: 35543716 PMCID: PMC9127970 DOI: 10.1021/acssynbio.1c00624] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
![]()
The platform chemical
ethylene glycol (EG) is used to manufacture
various commodity chemicals of industrial importance, but largely
remains synthesized from fossil fuels. Although several novel metabolic
pathways have been reported for its bioproduction in model organisms,
none has been reported for gas-fermenting, non-model acetogenic chassis
organisms. Here, we describe a novel, synthetic biochemical pathway
to convert acetate into EG in the industrially important gas-fermenting
acetogen,Clostridium autoethanogenum. We not only developed a computational workflow to design and analyze
hundreds of novel biochemical pathways for EG production but also
demonstrated a successful pathway construction in the chosen host.
The EG production was achieved using a two-plasmid system to bypass
unfeasible expression levels and potential toxic enzymatic interactions.
Although only a yield of 0.029 g EG/g fructose was achieved and therefore
requiring further strain engineering efforts to optimize the designed
strain, this work demonstrates an important proof-of-concept approach
to computationally design and experimentally implement fully synthetic
metabolic pathways in a metabolically highly specific, non-model host
organism.
Collapse
Affiliation(s)
- Barbara Bourgade
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, U.K
| | - Christopher M. Humphreys
- BBSRC/EPSRC Synthetic Biology Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, U.K
| | - James Millard
- BBSRC/EPSRC Synthetic Biology Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Nigel P. Minton
- BBSRC/EPSRC Synthetic Biology Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, U.K
| | - M. Ahsanul Islam
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, U.K
| |
Collapse
|
58
|
Kobayashi S, Kato J, Wada K, Takemura K, Kato S, Fujii T, Iwasaki Y, Aoi Y, Morita T, Matsushika A, Murakami K, Nakashimada Y. Reversible Hydrogenase Activity Confers Flexibility to Balance Intracellular Redox in Moorella thermoacetica. Front Microbiol 2022; 13:897066. [PMID: 35633713 PMCID: PMC9133594 DOI: 10.3389/fmicb.2022.897066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Hydrogen (H2) converted to reducing equivalents is used by acetogens to fix and metabolize carbon dioxide (CO2) to acetate. The utilization of H2 enables not only autotrophic growth, but also mixotrophic metabolism in acetogens, enhancing carbon utilization. This feature seems useful, especially when the carbon utilization efficiency of organic carbon sources is lowered by metabolic engineering to produce reduced chemicals, such as ethanol. The potential advantage was tested using engineered strains of Moorella thermoacetica that produce ethanol. By adding H2 to the fructose-supplied culture, the engineered strains produced increased levels of acetate, and a slight increase in ethanol was observed. The utilization of a knockout strain of the major acetate production pathway, aimed at increasing the carbon flux to ethanol, was unexpectedly hindered by H2-mediated growth inhibition in a dose-dependent manner. Metabolomic analysis showed a significant increase in intracellular NADH levels due to H2 in the ethanol-producing strain. Higher NADH level was shown to be the cause of growth inhibition because the decrease in NADH level by dimethyl sulfoxide (DMSO) reduction recovered the growth. When H2 was not supplemented, the intracellular NADH level was balanced by the reversible electron transfer from NADH oxidation to H2 production in the ethanol-producing strain. Therefore, reversible hydrogenase activity confers the ability and flexibility to balance the intracellular redox state of M. thermoacetica. Tuning of the redox balance is required in order to benefit from H2-supplemented mixotrophy, which was confirmed by engineering to produce acetone.
Collapse
Affiliation(s)
- Shunsuke Kobayashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Junya Kato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Keisuke Wada
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Kaisei Takemura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Setsu Kato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Tatsuya Fujii
- National Institute of Advanced Industrial Science and Technology (AIST), Higashihiroshima, Japan
| | - Yuki Iwasaki
- National Institute of Advanced Industrial Science and Technology (AIST), Higashihiroshima, Japan
| | - Yoshiteru Aoi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Tomotake Morita
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Akinori Matsushika
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
- National Institute of Advanced Industrial Science and Technology (AIST), Higashihiroshima, Japan
| | - Katsuji Murakami
- National Institute of Advanced Industrial Science and Technology (AIST), Higashihiroshima, Japan
| | - Yutaka Nakashimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
- *Correspondence: Yutaka Nakashimada,
| |
Collapse
|
59
|
Sheldon RA, Brady D. Green Chemistry, Biocatalysis, and the Chemical Industry of the Future. CHEMSUSCHEM 2022; 15:e202102628. [PMID: 35026060 DOI: 10.1002/cssc.202102628] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/11/2022] [Indexed: 06/14/2023]
Abstract
In the movement to decarbonize our economy and move away from fossil fuels we will need to harness the waste products of our activities, such as waste lignocellulose, methane, and carbon dioxide. Our wastes need to be integrated into a circular economy where used products are recycled into a manufacturing carbon cycle. Key to this will be the recycling of plastics at the resin and monomer levels. Biotechnology is well suited to a future chemical industry that must adapt to widely distributed and diverse biological chemical feedstocks. Our increasing mastery of biotechnology is allowing us to develop enzymes and organisms that can synthesize a widening selection of desirable bulk chemicals, including plastics, at commercially viable productivities. Integration of bioreactors with electrochemical systems will permit new production opportunities with enhanced productivities and the advantage of using a low-carbon electricity from renewable and sustainable sources.
Collapse
Affiliation(s)
- Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg, 2000, South Africa
- Department of Biotechnology, Delft University of Technology, Section BOC, van der Maasweg 9, 2629 HZ, Delft, Netherlands
| | - Dean Brady
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg, 2000, South Africa
| |
Collapse
|
60
|
Katakojwala R, Tharak A, Sarkar O, Venkata Mohan S. Design and evaluation of gas fermentation systems for CO 2 reduction to C2 and C4 fatty acids: Non-genetic metabolic regulation with pressure, pH and reaction time. BIORESOURCE TECHNOLOGY 2022; 351:126937. [PMID: 35248708 DOI: 10.1016/j.biortech.2022.126937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Addressing the carbon emissions through microbial mediated fermentation is an emerging interest. Custom designed and fabricated gas fermentation (GF) systems were evaluated to optimize the headspace pressure, pH (6.5, 7.5, and 8.5), fermentation time, and substrate concentration by employing enriched homoacetogenic chemolithoautotrophs in non-genetic approach. Headspace pressure showed marked influence on the metabolic conversion of inorganic carbon to acetic and butyric acids with 26% higher productivity than the control (atmospheric pressure). Maximum volatile fatty acid (VFA) yield of 3.7 g/L was observed at alkaline pH (8.5) under 2 bar pressure at carbon load of 10 g/L, 96 h). Acetic (3.0 g/L) and butyric (0.7 g/L) acids were the major products upon conversion of 85% of the inorganic substrate. A better in-situ buffering (β = 0.048) at pH 8.5 along with higher reductive current (RCC: -4.4 mA) depicted better performance of GF towards CO2 reduction.
Collapse
Affiliation(s)
- Ranaprathap Katakojwala
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Athmakuri Tharak
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Omprakash Sarkar
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
61
|
Marcel M, Darina E, Patrick K, Aline H, Gabriele P, Stefan J, Jochen B. Impact of different trace elements on metabolic routes during heterotrophic growth of C. ljungdahlii investigated through online measurement of the carbon dioxide transfer rate. Biotechnol Prog 2022; 38:e3263. [PMID: 35434968 DOI: 10.1002/btpr.3263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/30/2022] [Accepted: 04/15/2022] [Indexed: 11/09/2022]
Abstract
Synthesis gas fermentation using acetogenic clostridia is a rapidly increasing research area. It offers the possibility to produce platform chemicals from sustainable C1 carbon sources. The Wood-Ljungdahl pathway (WLP), which allows acetogens to grow autotrophically, is also active during heterotrophic growth. It acts as an electron sink and allows for the utilization of a wide variety of soluble substrates and increases ATP yields during heterotrophic growth. While glycolysis leads to CO2 evolution, WLP activity results in CO2 fixation. Thus, a reduction of net CO2 emissions during growth with sugars is an indicator of WLP activity. To study the effect of trace elements and ventilation rates on the interaction between glycolysis and the WLP, the model acetogen Clostridium ljungdahlii was cultivated in YTF medium, a complex medium generally employed for heterotrophic growth, with fructose as growth substrate. The recently reported anaRAMOS device was used for online measurement of metabolic activity, in form of CO2 evolution. The addition of multiple trace elements (iron, cobalt, manganese, zinc, nickel, copper, selenium, and tungsten) was tested, to study the interaction between glycolysis and the Wood ljungdahl pathway. While the addition of iron(II) increased growth rates and ethanol production, added nickel(II) increased WLP activity and acetate formation, reducing net CO2 production by 28%. Also, higher CO2 availability through reduced volumetric gas flow resulted in 25% reduction of CO2 evolution. These online metabolic data demonstrate that the anaRAMOS is a valuable tool in the investigation of metabolic responses i.e. to determine nutrient requirements that results in reduced CO2 production. Thereby the media composition can be optimized depending on the specific goal. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mann Marcel
- RWTH Aachen University, AVT - Biochemical Engineering, Aachen, Germany
| | - Effert Darina
- RWTH Aachen University, AVT - Biochemical Engineering, Aachen, Germany
| | - Kottenhahn Patrick
- RWTH Aachen University, AVT - Biochemical Engineering, Aachen, Germany.,Department for Industrial Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr. 6, Aachen, Germany
| | - Hüser Aline
- RWTH Aachen University, AVT - Biochemical Engineering, Aachen, Germany
| | - Philipps Gabriele
- Department for Industrial Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr. 6, Aachen, Germany
| | - Jennewein Stefan
- Department for Industrial Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr. 6, Aachen, Germany
| | - Büchs Jochen
- RWTH Aachen University, AVT - Biochemical Engineering, Aachen, Germany
| |
Collapse
|
62
|
de Lima LA, Ingelman H, Brahmbhatt K, Reinmets K, Barry C, Harris A, Marcellin E, Köpke M, Valgepea K. Faster Growth Enhances Low Carbon Fuel and Chemical Production Through Gas Fermentation. Front Bioeng Biotechnol 2022; 10:879578. [PMID: 35497340 PMCID: PMC9039284 DOI: 10.3389/fbioe.2022.879578] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/14/2022] [Indexed: 12/13/2022] Open
Abstract
Gas fermentation offers both fossil carbon-free sustainable production of fuels and chemicals and recycling of gaseous and solid waste using gas-fermenting microbes. Bioprocess development, systems-level analysis of biocatalyst metabolism, and engineering of cell factories are advancing the widespread deployment of the commercialised technology. Acetogens are particularly attractive biocatalysts but effects of the key physiological parameter–specific growth rate (μ)—on acetogen metabolism and the gas fermentation bioprocess have not been established yet. Here, we investigate the μ-dependent bioprocess performance of the model-acetogen Clostridium autoethanogenum in CO and syngas (CO + CO2+H2) grown chemostat cultures and assess systems-level metabolic responses using gas analysis, metabolomics, transcriptomics, and metabolic modelling. We were able to obtain steady-states up to μ ∼2.8 day−1 (∼0.12 h−1) and show that faster growth supports both higher yields and productivities for reduced by-products ethanol and 2,3-butanediol. Transcriptomics data revealed differential expression of 1,337 genes with increasing μ and suggest that C. autoethanogenum uses transcriptional regulation to a large extent for facilitating faster growth. Metabolic modelling showed significantly increased fluxes for faster growing cells that were, however, not accompanied by gene expression changes in key catabolic pathways for CO and H2 metabolism. Cells thus seem to maintain sufficient “baseline” gene expression to rapidly respond to CO and H2 availability without delays to kick-start metabolism. Our work advances understanding of transcriptional regulation in acetogens and shows that faster growth of the biocatalyst improves the gas fermentation bioprocess.
Collapse
Affiliation(s)
- Lorena Azevedo de Lima
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Henri Ingelman
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Kush Brahmbhatt
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Kristina Reinmets
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Craig Barry
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, Australia
| | | | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, Australia
| | | | - Kaspar Valgepea
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
- *Correspondence: Kaspar Valgepea,
| |
Collapse
|
63
|
Zhang C, Ottenheim C, Weingarten M, Ji L. Microbial Utilization of Next-Generation Feedstocks for the Biomanufacturing of Value-Added Chemicals and Food Ingredients. Front Bioeng Biotechnol 2022; 10:874612. [PMID: 35480982 PMCID: PMC9035589 DOI: 10.3389/fbioe.2022.874612] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/14/2022] [Indexed: 12/04/2022] Open
Abstract
Global shift to sustainability has driven the exploration of alternative feedstocks beyond sugars for biomanufacturing. Recently, C1 (CO2, CO, methane, formate and methanol) and C2 (acetate and ethanol) substrates are drawing great attention due to their natural abundance and low production cost. The advances in metabolic engineering, synthetic biology and industrial process design have greatly enhanced the efficiency that microbes use these next-generation feedstocks. The metabolic pathways to use C1 and C2 feedstocks have been introduced or enhanced into industrial workhorses, such as Escherichia coli and yeasts, by genetic rewiring and laboratory evolution strategies. Furthermore, microbes are engineered to convert these low-cost feedstocks to various high-value products, ranging from food ingredients to chemicals. This review highlights the recent development in metabolic engineering, the challenges in strain engineering and bioprocess design, and the perspectives of microbial utilization of C1 and C2 feedstocks for the biomanufacturing of value-added products.
Collapse
Affiliation(s)
- Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- *Correspondence: Congqiang Zhang, ,
| | - Christoph Ottenheim
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Melanie Weingarten
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - LiangHui Ji
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| |
Collapse
|
64
|
Abstract
Microbes that can recycle one-carbon (C1) greenhouse gases into fuels and chemicals are vital for the biosustainability of future industries. Acetogens are the most efficient known microbes for fixing carbon oxides CO2 and CO. Understanding proteome allocation is important for metabolic engineering as it dictates metabolic fitness. Here, we use absolute proteomics to quantify intracellular concentrations for >1,000 proteins in the model acetogen Clostridium autoethanogenum grown autotrophically on three gas mixtures (CO, CO+H2, or CO+CO2+H2). We detect the prioritization of proteome allocation for C1 fixation and the significant expression of proteins involved in the production of acetate and ethanol as well as proteins with unclear functions. The data also revealed which isoenzymes are likely relevant in vivo for CO oxidation, H2 metabolism, and ethanol production. The integration of proteomic and metabolic flux data demonstrated that enzymes catalyze high fluxes with high concentrations and high in vivo catalytic rates. We show that flux adjustments were dominantly accompanied by changing enzyme catalytic rates rather than concentrations. IMPORTANCE Acetogen bacteria are important for maintaining biosustainability as they can recycle gaseous C1 waste feedstocks (e.g., industrial waste gases and syngas from gasified biomass or municipal solid waste) into fuels and chemicals. Notably, the acetogen Clostridium autoethanogenum is being used as a cell factory in industrial-scale gas fermentation. Here, we perform reliable absolute proteome quantification for the first time in an acetogen. This is important as our work advances both rational metabolic engineering of acetogen cell factories and accurate in silico reconstruction of their phenotypes. Furthermore, this absolute proteomics data set serves as a reference toward a better systems-level understanding of the ancient metabolism of acetogens.
Collapse
|
65
|
Hu L, Guo S, Wang B, Fu R, Fan D, Jiang M, Fei Q, Gonzalez R. Bio-valorization of C1 gaseous substrates into bioalcohols: Potentials and challenges in reducing carbon emissions. Biotechnol Adv 2022; 59:107954. [DOI: 10.1016/j.biotechadv.2022.107954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 11/02/2022]
|
66
|
Calvo DC, Luna HJ, Arango JA, Torres CI, Rittmann BE. Determining global trends in syngas fermentation research through a bibliometric analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114522. [PMID: 35066199 DOI: 10.1016/j.jenvman.2022.114522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Syngas fermentation, in which microorganisms convert H2, CO, and CO2 to acids and alcohols, is a promising alternative for carbon cycling and valorization. The intellectual landscape of the topic was characterized through a bibliometric analysis using a search query (SQ) that included all relevant documents on syngas fermentation available through the Web of Science database up to December 31st, 2021. The SQ was validated with a preliminary analysis in bibliometrix and a review of titles and abstracts of all sources. Although syngas fermentation began in the early 1980s, it grew rapidly beginning in 2008, with 92.5% of total publications and 87.3% of total citations from 2008 to 2021. The field has been steadily moving from fundamentals towards applications, suggesting that the field is maturing scientifically. The greatest number of publications and citations are from the USA, and researchers in China, Germany, and Spain also are highly active. Although collaborations have increased in the past few years, author-cluster analysis shows specialized research domains with little collaboration between groups. Based on topic trends, the main challenges to be address are related to mass-transfer limitations, and researchers are starting to explore mixed cultures, genetic engineering, microbial chain elongation, and biorefineries.
Collapse
Affiliation(s)
- Diana C Calvo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, PO Box 85287-3005, USA; Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, PO Box 85287-3005, USA.
| | - Hector J Luna
- Grupo GRESIA, Department of Environmental Engineering, Universidad Antonio Nariño, Bogotá, 110231, Colombia; Environmental and Chemical Technology Group, Department of Chemistry, Federal University of Ouro Preto, Campus University, Campus Universitario, Brazil
| | - Jineth A Arango
- Pontificia Universidad Católica de Valparaíso, Valparaíso, 2362803, Chile.
| | - Cesar I Torres
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, PO Box 85287-3005, USA.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, PO Box 85287-3005, USA.
| |
Collapse
|
67
|
Abstract
The majority of the genes present in bacterial genomes remain poorly characterized, with up to one-third of those that are protein encoding having no definitive function. Transposon insertion sequencing represents a high-throughput technique that can help rectify this deficiency. The technology, however, can only be realistically applied to those species in which high rates of DNA transfer can be achieved. Here, we have developed a number of approaches that overcome this barrier in the autotrophic species Clostridium autoethanogenum by using a mariner-based transposon system. The inherent instability of such systems in the Escherichia coli conjugation donor due to transposition events was counteracted through the incorporation of a conditionally lethal codA marker on the plasmid backbone. Relatively low frequencies of transformation of the plasmid into C. autoethanogenum were circumvented through the use of a plasmid that is conditional for replication coupled with the routine implementation of an Illumina library preparation protocol that eliminates plasmid-based reads. A transposon library was then used to determine the essential genes needed for growth using carbon monoxide as the sole carbon and energy source. IMPORTANCE Although microbial genome sequences are relatively easily determined, assigning gene function remains a bottleneck. Consequently, relatively few genes are well characterized, leaving the function of many as either hypothetical or entirely unknown. High-throughput transposon sequencing can help remedy this deficiency, but is generally only applicable to microbes with efficient DNA transfer procedures. These exclude many microorganisms of importance to humankind either as agents of disease or as industrial process organisms. Here, we developed approaches to facilitate transposon insertion sequencing in the acetogen Clostridium autoethanogenum, a chassis being exploited to convert single-carbon waste gases CO and CO2 into chemicals and fuels at an industrial scale. This allowed the determination of gene essentiality under heterotrophic and autotrophic growth, providing insights into the utilization of CO as a sole carbon and energy source. The strategies implemented are translatable and will allow others to apply transposon insertion sequencing to other microbes where DNA transfer has until now represented a barrier to progress.
Collapse
|
68
|
Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale. Nat Biotechnol 2022; 40:335-344. [DOI: 10.1038/s41587-021-01195-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/09/2021] [Indexed: 12/21/2022]
|
69
|
Biosynthesis of butyrate from methanol and carbon monoxide by recombinant Acetobacterium woodii. Int Microbiol 2022; 25:551-560. [PMID: 35179672 PMCID: PMC9307552 DOI: 10.1007/s10123-022-00234-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/21/2021] [Accepted: 01/11/2022] [Indexed: 10/27/2022]
Abstract
Methanol is one of the most widely produced organic substrates from syngas and can serve as a bio-feedstock to cultivate acetogenic bacteria which allows a major contribution to reducing greenhouse gas. Acetobacterium woodii is one of the very few acetogens that can utilize methanol to produce acetate as sole product. Since A. woodii is genetically tractable, it is an interesting candidate to introduce recombinant pathways for production of bio-commodities from methanol. In this study, we introduced the butyrate production operon from a related acetogen, Eubacterium callanderi KIST612, into A. woodii and show a stable production of butyrate from methanol. This study also reveals how butyrate production by recombinant A. woodii strains can be enhanced with addition of electrons in the form of carbon monoxide. Our results not only show a stable expression system of non-native enzymes in A. woodii but also increase in the product spectrum of A. woodii to compounds with higher economic value.
Collapse
|
70
|
Hoyt KO, Woolston BM. Adapting isotopic tracer and metabolic flux analysis approaches to study C1 metabolism. Curr Opin Biotechnol 2022; 75:102695. [PMID: 35182834 DOI: 10.1016/j.copbio.2022.102695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 12/20/2022]
Abstract
Single-carbon (C1, or one-carbon) substrates are promising feedstocks for sustainable biofuel and biochemical production. Crucial to the goal of engineering C1-utilizing strains for improved production is a quantitative understanding of the organization, regulation and rates of the reactions that underpin C1 metabolism. 13C Metabolic flux analysis (MFA) is a well-established platform for interrogating these questions with multi-carbon substrates, and uses the differential labeling of metabolites that results from feeding a substrate with position-specific incorporation of 13C in order to infer quantitative fluxes and pathway topology. Adapting isotopic tracer approaches to C1 metabolism, where position-specific substrate labeling is impossible, requires additional experimental considerations. Here we review recent studies that have developed isotopic tracer approaches to overcome the challenge of uniform metabolite labeling and provide quantitative insight into C1 metabolism.
Collapse
Affiliation(s)
- Kathryn O Hoyt
- Department of Chemical Engineering, 201 Cullinane, Northeastern University, 360 Huntington Avenue, Boston, MA 02115-5000, USA
| | - Benjamin M Woolston
- Department of Chemical Engineering, 201 Cullinane, Northeastern University, 360 Huntington Avenue, Boston, MA 02115-5000, USA.
| |
Collapse
|
71
|
Logroño W, Nikolausz M, Harms H, Kleinsteuber S. Physiological Effects of 2-Bromoethanesulfonate on Hydrogenotrophic Pure and Mixed Cultures. Microorganisms 2022; 10:microorganisms10020355. [PMID: 35208809 PMCID: PMC8877471 DOI: 10.3390/microorganisms10020355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 01/27/2023] Open
Abstract
Mixed or pure cultures can be used for biomethanation of hydrogen. Sodium 2-bromoethanesulfonate (BES) is an inhibitor of methanogenesis used to investigate competing reactions like homoacetogenesis in mixed cultures. To understand the effect of BES on the hydrogenotrophic metabolism in a biomethanation process, anaerobic granules from a wastewater treatment plant, a hydrogenotrophic enrichment culture, and pure cultures of Methanococcus maripaludis and Methanobacterium formicicum were incubated under H2/CO2 headspace in the presence or absence of BES, and the turnover of H2, CO2, CH4, formate and acetate was analyzed. Anaerobic granules produced the highest amount of formate after 24 h of incubation in the presence of BES. Treating the enrichment culture with BES led to the accumulation of formate. M. maripaludis produced more formate than M. formicicum when treated with BES. The non-inhibited methanogenic communities produced small amounts of formate whereas the pure cultures did not. The highest amount of acetate was produced by the anaerobic granules concomitantly with formate consumption. These results indicate that formate is an important intermediate of hydrogenotrophic metabolism accumulating upon methanogenesis inhibition.
Collapse
|
72
|
Nyyssölä A, Suhonen A, Ritala A, Oksman-Caldentey KM. The role of single cell protein in cellular agriculture. Curr Opin Biotechnol 2022; 75:102686. [PMID: 35093677 DOI: 10.1016/j.copbio.2022.102686] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/23/2021] [Accepted: 01/10/2022] [Indexed: 11/03/2022]
Abstract
More food needs to be produced for the growing human population, but the possibilities of expanding the area of arable land are limited. Cellular Agriculture is an emerging field of biotechnology, aimed at finding alternatives to agricultural production of various commodities. As a part of Cellular Agriculture, the use of microbes and microalgae as food and feed with high protein content, so-called single cell protein (SCP), is gaining renewed scientific and commercial interest. In this review, we give an introduction to SCP production by heterotrophic microbial species, phototrophs, methanotrophs and autotrophic hydrogen oxidizers, as well as highlight some challenges and the latest developments in the growing SCP industry.
Collapse
Affiliation(s)
- Antti Nyyssölä
- VTT Technical Research Centre of Finland Ltd., Tietotie 2, 02150 Espoo, Finland
| | - Anniina Suhonen
- VTT Technical Research Centre of Finland Ltd., Tietotie 2, 02150 Espoo, Finland
| | - Anneli Ritala
- VTT Technical Research Centre of Finland Ltd., Tietotie 2, 02150 Espoo, Finland
| | | |
Collapse
|
73
|
Kajla S, Kumari R, Nagi GK. Microbial CO2 fixation and biotechnology in reducing industrial CO2 emissions. Arch Microbiol 2022; 204:149. [DOI: 10.1007/s00203-021-02677-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022]
|
74
|
Piatek P, Humphreys C, Raut MP, Wright PC, Simpson S, Köpke M, Minton NP, Winzer K. Agr Quorum Sensing influences the Wood-Ljungdahl pathway in Clostridium autoethanogenum. Sci Rep 2022; 12:411. [PMID: 35013405 PMCID: PMC8748961 DOI: 10.1038/s41598-021-03999-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/07/2021] [Indexed: 01/04/2023] Open
Abstract
Acetogenic bacteria are capable of fermenting CO2 and carbon monoxide containing waste-gases into a range of platform chemicals and fuels. Despite major advances in genetic engineering and improving these biocatalysts, several important physiological functions remain elusive. Among these is quorum sensing, a bacterial communication mechanism known to coordinate gene expression in response to cell population density. Two putative agr systems have been identified in the genome of Clostridium autoethanogenum suggesting bacterial communication via autoinducing signal molecules. Signal molecule-encoding agrD1 and agrD2 genes were targeted for in-frame deletion. During heterotrophic growth on fructose as a carbon and energy source, single deletions of either gene did not produce an observable phenotype. However, when both genes were simultaneously inactivated, final product concentrations in the double mutant shifted to a 1.5:1 ratio of ethanol:acetate, compared to a 0.2:1 ratio observed in the wild type control, making ethanol the dominant fermentation product. Moreover, CO2 re-assimilation was also notably reduced in both hetero- and autotrophic growth conditions. These findings were supported through comparative proteomics, which showed lower expression of carbon monoxide dehydrogenase, formate dehydrogenase A and hydrogenases in the ∆agrD1∆agrD2 double mutant, but higher levels of putative alcohol and aldehyde dehydrogenases and bacterial micro-compartment proteins. These findings suggest that Agr quorum sensing, and by inference, cell density play a role in carbon resource management and use of the Wood-Ljungdahl pathway as an electron sink.
Collapse
Affiliation(s)
- Pawel Piatek
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7465, Trondheim, Norway
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, UK
| | - Christopher Humphreys
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, UK
| | - Mahendra P Raut
- Department of Chemical and Biological Engineering, The ChELSI Institute, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Phillip C Wright
- University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Sean Simpson
- LanzaTech Inc., 8045 Lamon Ave, Suite 400, Skokie, IL, 60077, USA
| | - Michael Köpke
- LanzaTech Inc., 8045 Lamon Ave, Suite 400, Skokie, IL, 60077, USA
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, UK
| | - Klaus Winzer
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, UK.
| |
Collapse
|
75
|
Engineering the Reductive Glycine Pathway: A Promising Synthetic Metabolism Approach for C1-Assimilation. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 180:299-350. [DOI: 10.1007/10_2021_181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
76
|
Pavan M, Reinmets K, Garg S, Mueller AP, Marcellin E, Köpke M, Valgepea K. Advances in systems metabolic engineering of autotrophic carbon oxide-fixing biocatalysts towards a circular economy. Metab Eng 2022; 71:117-141. [DOI: 10.1016/j.ymben.2022.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/16/2022]
|
77
|
Patel A, Mulder DW, Söll D, Krahn N. Harnessing selenocysteine to enhance microbial cell factories for hydrogen production. FRONTIERS IN CATALYSIS 2022; 2. [PMID: 36844461 PMCID: PMC9961374 DOI: 10.3389/fctls.2022.1089176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hydrogen is a clean, renewable energy source, that when combined with oxygen, produces heat and electricity with only water vapor as a biproduct. Furthermore, it has the highest energy content by weight of all known fuels. As a result, various strategies have engineered methods to produce hydrogen efficiently and in quantities that are of interest to the economy. To approach the notion of producing hydrogen from a biological perspective, we take our attention to hydrogenases which are naturally produced in microbes. These organisms have the machinery to produce hydrogen, which when cleverly engineered, could be useful in cell factories resulting in large production of hydrogen. Not all hydrogenases are efficient at hydrogen production, and those that are, tend to be oxygen sensitive. Therefore, we provide a new perspective on introducing selenocysteine, a highly reactive proteinogenic amino acid, as a strategy towards engineering hydrogenases with enhanced hydrogen production, or increased oxygen tolerance.
Collapse
Affiliation(s)
- Armaan Patel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - David W Mulder
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO, United States
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States.,Department of Chemistry, Yale University, New Haven, CT, United States
| | - Natalie Krahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
78
|
Hong Y, Zeng AP. Biosynthesis Based on One-Carbon Mixotrophy. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 180:351-371. [DOI: 10.1007/10_2021_198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
79
|
Benalcázar EA, Noorman H, Filho RM, Posada JA. Decarbonizing ethanol production via gas fermentation: impact of the CO/H2/CO2 mix source on greenhouse gas emissions and production costs. Comput Chem Eng 2022. [DOI: 10.1016/j.compchemeng.2022.107670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
80
|
Lamaison S, Wakerley D, Kracke F, Moore T, Zhou L, Lee DU, Wang L, Hubert MA, Aviles Acosta JE, Gregoire JM, Duoss EB, Baker S, Beck VA, Spormann AM, Fontecave M, Hahn C, Jaramillo TF. Designing a Zn-Ag Catalyst Matrix and Electrolyzer System for CO 2 Conversion to CO and Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103963. [PMID: 34672402 DOI: 10.1002/adma.202103963] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/24/2021] [Indexed: 06/13/2023]
Abstract
CO2 emissions can be transformed into high-added-value commodities through CO2 electrocatalysis; however, efficient low-cost electrocatalysts are needed for global scale-up. Inspired by other emerging technologies, the authors report the development of a gas diffusion electrode containing highly dispersed Ag sites in a low-cost Zn matrix. This catalyst shows unprecedented Ag mass activity for CO production: -614 mA cm-2 at 0.17 mg of Ag. Subsequent electrolyte engineering demonstrates that halide anions can further improve stability and activity of the Zn-Ag catalyst, outperforming pure Ag and Au. Membrane electrode assemblies are constructed and coupled to a microbial process that converts the CO to acetate and ethanol. Combined, these concepts present pathways to design catalysts and systems for CO2 conversion toward sought-after products.
Collapse
Affiliation(s)
- Sarah Lamaison
- Collège de France, Sorbonne University, Laboratory of the Chemistry of Biological Processes, CNRS UMR 8229, Paris, 75231, France
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - David Wakerley
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Frauke Kracke
- Department of Civil & Environmental Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Thomas Moore
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Lan Zhou
- Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA, 91125, USA
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Dong Un Lee
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Lei Wang
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - McKenzie A Hubert
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jaime E Aviles Acosta
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - John M Gregoire
- Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA, 91125, USA
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Eric B Duoss
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Sarah Baker
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Victor A Beck
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Alfred M Spormann
- Department of Civil & Environmental Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Marc Fontecave
- Collège de France, Sorbonne University, Laboratory of the Chemistry of Biological Processes, CNRS UMR 8229, Paris, 75231, France
| | - Christopher Hahn
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Thomas F Jaramillo
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| |
Collapse
|
81
|
Biggs BW, Alper HS, Pfleger BF, Tyo KEJ, Santos CNS, Ajikumar PK, Stephanopoulos G. Enabling commercial success of industrial biotechnology. Science 2021; 374:1563-1565. [PMID: 34941395 DOI: 10.1126/science.abj5040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Bradley W Biggs
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Keith E J Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | | | | | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
82
|
Jain S, Katsyv A, Basen M, Müller V. The monofunctional CO dehydrogenase CooS is essential for growth of Thermoanaerobacter kivui on carbon monoxide. Extremophiles 2021; 26:4. [PMID: 34919167 PMCID: PMC8683389 DOI: 10.1007/s00792-021-01251-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/07/2021] [Indexed: 11/28/2022]
Abstract
Thermoanaerobacter kivui is a thermophilic acetogen that can grow on carbon monoxide as sole carbon and energy source. To identify the gene(s) involved in CO oxidation, the genome sequence was analyzed. Two genes potentially encoding CO dehydrogenases were identified. One, cooS, potentially encodes a monofunctional CO dehydrogenase, whereas another, acsA, potentially encodes the CODH component of the CODH/ACS complex. Both genes were cloned, a His-tag encoding sequence was added, and the proteins were produced from a plasmid in T. kivui. His-AcsA copurified by affinity chromatography with AcsB, the acetyl-CoA synthase of the CO dehydrogenase/acetyl CoA synthase complex. His-CooS copurified with CooF1, a small iron-sulfur center containing protein likely involved in electron transport. Both protein complexes had CO:ferredoxin oxidoreductase as well as CO:methyl viologen oxidoreductase activity, but the activity of CooSF1 was 15-times and 231-times lower, respectively. To underline the importance of CooS, the gene was deleted in the CO-adapted strain. Interestingly, the ∆cooS deletion mutant did not grow on CO anymore. These experiments clearly demonstrated that CooS is essential for growth of T. kivui on CO. This is in line with the hypothesis that CooS is the CO-oxidizing enzyme in cells growing on CO.
Collapse
Affiliation(s)
- Surbhi Jain
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Alexander Katsyv
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Mirko Basen
- Microbiology, Institute of Biological Sciences, University of Rostock, 18059, Rostock, Germany
| | - Volker Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
| |
Collapse
|
83
|
Biological conversion of carbon monoxide and hydrogen by anaerobic culture: Prospect of anaerobic digestion and thermochemical processes combination. Biotechnol Adv 2021; 58:107886. [PMID: 34915147 DOI: 10.1016/j.biotechadv.2021.107886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/26/2021] [Accepted: 12/08/2021] [Indexed: 01/04/2023]
Abstract
Waste biomass is considered a promising renewable energy feedstock that can be converted by anaerobic digestion. However, anaerobic digestion application can be challenging due to the structural complexity of several waste biomass kinds. Therefore, coupling anaerobic digestion with thermochemical processes can offset the limitations and convert the hardly biodegradable waste biomass, including digestate residue, into value-added products: syngas and pyrogas (gaseous mixtures consisting mainly of H2, CO, CO2), bio-oil, and biochar for further valorisation. In this review, the utilisation boundaries and benefits of the aforementioned products by anaerobic culture are discussed. First, thermochemical process parameters for an enhanced yield of desired products are summarised. Particularly, the microbiology of CO and H2 mixture biomethanation and fermentation in anaerobic digestion is presented. Finally, the state-of-the-art biological conversion of syngas and pyrogas to CH4 mediated by anaerobic culture is adequately described. Extensive research shows the successful selective biological conversion of CO and H2 to CH4, acetic acid, and alcohols. The main bottleneck is the gas-liquid mass transfer which can be enhanced appropriately by bioreactors' configurations. A few research groups focus on bio-oil and biochar addition into anaerobic digesters. However, according to the literature review, there has been no research for utilising all value-added products at once in anaerobic digestion published so far. Although synergic effects of such can be expected. In summary, the combination of anaerobic digestion and thermochemical processes is a promising alternative for wide-scale waste biomass utilisation in practice.
Collapse
|
84
|
Abstract
Schism is the new normal for the bioeconomy concept. Since its proliferation in governments, the concept has been adapted to fit national or regional exigencies. Earlier this century the knowledge-based bioeconomy (KBBE) in Europe was seen as a technical and knowledge fix in the evolving sustainability landscape. At the OECD, the concept was further honed by imagining a future where biotechnologies contribute significantly to economic growth and development. Countries started to make national bioeconomy strategies. Some countries have diverged and made the bioeconomy both much larger and more general, involving a wide variety of sectors, such as industry, energy, healthcare, agriculture, aquaculture, forestry and fishing. Whatever the approach, what seems to be consistent is the need to reconcile environmental, social and economic sustainability. This paper attempts to establish one schism that could have ramifications for the future development of the bioeconomy. Some countries, including some of the largest economies but not exclusively so, are clearly following a biotechnology model, whereas others are clearly not. In the wake of the COVID-19 pandemic, biotechnologies offer outstanding potential in healthcare, although this sector is by no means included in all bioeconomy strategies. The paper also attempts to clarify how biotechnologies can address the grand challenges and the United Nations Sustainable Development Goals. The communities of scientists seem to have no difficulty with this, but citizens and governments find it more difficult. In fact, some biotechnologies are already well established, whereas others are emerging and more controversial.
Collapse
|
85
|
Exploiting Aerobic Carboxydotrophic Bacteria for Industrial Biotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 180:1-32. [PMID: 34894287 DOI: 10.1007/10_2021_178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Aerobic carboxydotrophic bacteria are a group of microorganisms which possess the unique trait to oxidize carbon monoxide (CO) as sole energy source with molecular oxygen (O2) to produce carbon dioxide (CO2) which subsequently is used for biomass formation via the Calvin-Benson-Bassham cycle. Moreover, most carboxydotrophs are also able to oxidize hydrogen (H2) with hydrogenases to drive the reduction of carbon dioxide in the absence of CO. As several abundant industrial off-gases contain significant amounts of CO, CO2, H2 as well as O2, these bacteria come into focus for industrial application to produce chemicals and fuels from such gases in gas fermentation approaches. Since the group of carboxydotrophic bacteria is rather unknown and not very well investigated, we will provide an overview about their lifestyle and the underlying metabolic characteristics, introduce promising members for industrial application, and give an overview of available genetic engineering tools. We will point to limitations and discuss challenges, which have to be overcome to apply metabolic engineering approaches and to utilize aerobic carboxydotrophs in the industrial environment.
Collapse
|
86
|
Ntagia E, Chatzigiannidou I, Carvajal-Arroyo JM, Arends JBA, Rabaey K. Continuous H 2/CO 2 fermentation for acetic acid production under transient and continuous sulfide inhibition. CHEMOSPHERE 2021; 285:131536. [PMID: 34273695 DOI: 10.1016/j.chemosphere.2021.131536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Waste gas fermentation powered by renewable H2 is reaching kiloton scale. The presence of sulfide, inherent to many waste gases, can cause inhibition, requiring additional gas treatment. In this work, acetogenesis and methanogenesis inhibition by sulfide were studied in a 10-L mixed-culture fermenter, supplied with CO2 and connected with a water electrolysis unit for electricity-powered H2 supply. Three cycles of inhibition (1.3 mM total dissolved sulfide (TDS)) and recovery were applied, then the fermenter was operated at 0.5 mM TDS for 35 days. During operation at 0.5 mM TDS the acetate production rate reached 7.1 ± 1.5 mmol C L-1 d-1. Furthermore, 43.7 ± 15.6% of the electrons, provided as H2, were distributed to acetate and 7.7 ± 4.1% to butyrate, the second most abundant fermentation product. Selectivity of sulfide as inhibitor was demonstrated by a 7 days lag-phase of methanogenesis recovery, compared to 48 h for acetogenesis and by the less than 1% electrons distribution to CH4, under 0.5 mM TDS. The microbial community was dominated by Eubacterium, Proteiniphilum and an unclassified member of the Eggerthellaceae family. The taxonomic diversity of the community decreased and conversely the phenotypic diversity increased, during operation. This work illustrated the scale-up potential of waste gas fermentations, by elucidating the effect of sulfide as a common gas impurity, and by demonstrating continuous, potentially renewable supply of electrons.
Collapse
Affiliation(s)
- Eleftheria Ntagia
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Gent, Belgium; CAPTURE, www.capture-resources.be, Belgium
| | - Ioanna Chatzigiannidou
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Jose M Carvajal-Arroyo
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Jan B A Arends
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Gent, Belgium; CAPTURE, www.capture-resources.be, Belgium
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Gent, Belgium; CAPTURE, www.capture-resources.be, Belgium.
| |
Collapse
|
87
|
Akkoyunlu B, Daly S, Casey E. Membrane bioreactors for the production of value-added products: Recent developments, challenges and perspectives. BIORESOURCE TECHNOLOGY 2021; 341:125793. [PMID: 34450442 DOI: 10.1016/j.biortech.2021.125793] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
The potential of membrane bioreactors to produce value-added products such as biofuels, biopolymers, proteins, organic acids and lipids at high productivities is emerging. Despite the promising results at laboratory scale, industrial deployment of this technology is hindered due to challenges associated with scale-up. This review aims to address these challenges and create a framework to encourage further research directed towards industrial application of membrane bioreactors to produce value-added products. This review describes the current state-of-the art in such bioreactor systems by exploiting membranes to increase the mass transfer rate of the limiting substrates, reach high cell concentrations and separate the inhibitory substances that may inhibit the bioconversion reaction. It also covers the current trends in commercialization, challenges linked with membrane usage, such as high costs and membrane fouling, and proposes possible future directions for the wider application of membrane bioreactors.
Collapse
Affiliation(s)
- Burcu Akkoyunlu
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland; BiOrbic Bioeconomy SFI Research Centre, University College Dublin, Dublin, Ireland
| | - Sorcha Daly
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland; BiOrbic Bioeconomy SFI Research Centre, University College Dublin, Dublin, Ireland
| | - Eoin Casey
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland; BiOrbic Bioeconomy SFI Research Centre, University College Dublin, Dublin, Ireland.
| |
Collapse
|
88
|
Wood JC, Marcellin E, Plan MR, Virdis B. High methanol-to-formate ratios induce butanol production in Eubacterium limosum. Microb Biotechnol 2021; 15:1542-1549. [PMID: 34841673 PMCID: PMC9049608 DOI: 10.1111/1751-7915.13963] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/06/2021] [Accepted: 10/20/2021] [Indexed: 11/29/2022] Open
Abstract
Unlike gaseous C1 feedstocks for acetogenic bacteria, there has been less attention on liquid C1 feedstocks, despite benefits in terms of energy efficiency, mass transfer and integration within existing fermentation infrastructure. Here, we present growth of Eubacterium limosum ATCC8486 using methanol and formate as substrates, finding evidence for the first time of native butanol production. We varied ratios of methanol‐to‐formate in batch serum bottle fermentations, showing butyrate is the major product (maximum specific rate 220 ± 23 mmol‐C gDCW‐1day‐1). Increasing this ratio showed methanol is the key feedstock driving the product spectrum towards more reduced products, such as butanol (maximum titre 2.0 ± 1.1 mM‐C). However, both substrates are required for a high growth rate (maximum 0.19 ± 0.011 h‐1) and cell density (maximum 1.2 ± 0.043 gDCW l‐1), with formate being the preferred substrate. In fact, formate and methanol are consumed in two distinct growth phases – growth phase 1, on predominately formate and growth phase 2 on methanol, which must balance. Because the second growth varied according to the first growth on formate, this suggests butanol production is due to overflow metabolism, similar to 2,3‐butanediol production in other acetogens. However, further research is required to confirm the butanol production pathway in E. limosum, particularly given, unlike other substrates, methanol likely results in mostly NADH generation, not reduced ferredoxin.
Collapse
Affiliation(s)
- Jamin C Wood
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, 4072, Australia.,Metabolomics Australia (Queensland node), The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Manuel R Plan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, 4072, Australia.,Metabolomics Australia (Queensland node), The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Bernardino Virdis
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, Brisbane, Qld, 4072, Australia
| |
Collapse
|
89
|
Conversion of Carbon Monoxide to Chemicals Using Microbial Consortia. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 180:373-407. [PMID: 34811579 DOI: 10.1007/10_2021_180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Syngas, a gaseous mixture of CO, H2 and CO2, can be produced by gasification of carbon-containing materials, including organic waste materials or lignocellulosic biomass. The conversion of bio-based syngas to chemicals is foreseen as an important process in circular bioeconomy. Carbon monoxide is also produced as a waste gas in many industrial sectors (e.g., chemical, energy, steel). Often, the purity level of bio-based syngas and waste gases is low and/or the ratios of syngas components are not adequate for chemical conversion (e.g., by Fischer-Tropsch). Microbes are robust catalysts to transform impure syngas into a broad spectrum of products. Fermentation of CO-rich waste gases to ethanol has reached commercial scale (by axenic cultures of Clostridium species), but production of other chemical building blocks is underexplored. Currently, genetic engineering of carboxydotrophic acetogens is applied to increase the portfolio of products from syngas/CO, but the limited energy metabolism of these microbes limits product yields and applications (for example, only products requiring low levels of ATP for synthesis can be produced). An alternative approach is to explore microbial consortia, including open mixed cultures and synthetic co-cultures, to create a metabolic network based on CO conversion that can yield products such as medium-chain carboxylic acids, higher alcohols and other added-value chemicals.
Collapse
|
90
|
Screening of Gas Substrate and Medium Effects on 2,3-Butanediol Production with C. ljungdahlii and C. autoethanogenum Aided by Improved Autotrophic Cultivation Technique. FERMENTATION 2021. [DOI: 10.3390/fermentation7040264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Gas fermentation by acetogens of the genus Clostridium is an attractive technology since it affords the production of biochemicals and biofuels from industrial waste gases while contributing to mitigate the carbon cycle alterations. The acetogenic model organisms C. ljungdahlii and C. autoethanogenum have already been used in large scale industrial fermentations. Among the natural products, ethanol production has already attained industrial scale. However, some acetogens are also natural producers of 2,3-butanediol (2,3-BDO), a platform chemical of relevant industrial interest. Here, we have developed a lab-scale screening campaign with the aim of enhancing 2,3-BDO production. Our study generated comparable data on growth and 2,3-BDO production of several batch gas fermentations using C. ljungdahlii and C. autoethanogenum grown on different gas substrates of primary applicative interest (CO2 · H2, CO · CO2, syngas) and on different media featuring different compositions as regards trace metals, mineral elements and vitamins. CO · CO2 fermentation was found to be preferable for the production of 2,3-BDO, and a fair comparison of the strains cultivated in comparable conditions revealed that C. ljungdahlii produced 3.43-fold higher titer of 2,3-BDO compared to C. autoethanogenum. Screening of different medium compositions revealed that mineral elements, Zinc and Iron exert a major positive influence on 2,3-BDO titer and productivity. Moreover, the CO2 influence on CO fermentation was explored by characterizing C. ljungdahlii response with respect to different gas ratios in the CO · CO2 gas mixtures. The screening strategies undertaken in this study led to the production of 2.03 ± 0.05 g/L of 2,3-BDO, which is unprecedented in serum bottle experiments.
Collapse
|
91
|
Effect of Elevated Hydrogen Partial Pressure on Mixed Culture Homoacetogenesis. CHEMICAL ENGINEERING SCIENCE: X 2021. [DOI: 10.1016/j.cesx.2021.100118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
92
|
Perathoner S, Van Geem KM, Marin GB, Centi G. Reuse of CO 2 in energy intensive process industries. Chem Commun (Camb) 2021; 57:10967-10982. [PMID: 34596636 DOI: 10.1039/d1cc03154f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Closing the carbon cycle and enabling a carbon circular economy in energy intensive industries (iron and steel, cement, refineries, petrochemistry and fertilizers) are topics of increasing interest to meet the demanding target of defossilizing the production. The focus of this perspective contribution is on CO2 reuse technologies in this context. While this is a topic with abundant literature, the analysis of applying CO2 reuse technologies evidences the need to go beyond those receiving most of the attention today, such as conversion of CO2 to methanol. Depending on the specific context, different scenarios are expected. Some examples illustrating the search for novel solutions are provided, such as those starting from the efficient conversion of CO2 to CO. Once CO is produced from CO2 many bio-chemical and catalytic conversion routes open up next to direct uses of CO in the steel and chemical sector.
Collapse
Affiliation(s)
- Siglinda Perathoner
- University of Messina, Dept ChiBioFarAm, V.le F. Stagno D'Alcontres 32, 98166 Messina, Italy.
| | - Kevin M Van Geem
- University of Ghent, Department of Materials, Textiles and Chemical Engineering, Technologiepark125, 9052 Ghent, Belgium
| | - Guy B Marin
- University of Ghent, Department of Materials, Textiles and Chemical Engineering, Technologiepark125, 9052 Ghent, Belgium
| | - Gabriele Centi
- University of Messina, Dept ChiBioFarAm, V.le F. Stagno D'Alcontres 32, 98166 Messina, Italy. .,ERIC aisbl, Rond Point Robert Schuman, 14, B-1040 Brussels, Belgium
| |
Collapse
|
93
|
Jia D, He M, Tian Y, Shen S, Zhu X, Wang Y, Zhuang Y, Jiang W, Gu Y. Metabolic Engineering of Gas-Fermenting Clostridium ljungdahlii for Efficient Co-production of Isopropanol, 3-Hydroxybutyrate, and Ethanol. ACS Synth Biol 2021; 10:2628-2638. [PMID: 34549587 DOI: 10.1021/acssynbio.1c00235] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rational design and modification of autotrophic bacteria to efficiently produce high-value chemicals and biofuels are crucial for establishing a sustainable and economically viable process for one-carbon (C1) source utilization, which, however, remains a challenge in metabolic engineering. In this study, autotrophic Clostridium ljungdahlii was metabolically engineered to efficiently co-produce three important bulk chemicals, isopropanol, 3-hydroxybutyrate (3-HB), and ethanol (together, IHE), using syngas (CO2/CO). An artificial isopropanol-producing pathway was first constructed and optimized in C. ljungdahlii to achieve an efficient production of isopropanol and an unexpected product, 3-HB. Based on this finding, an endogenous active dehydrogenase capable of converting acetoacetate to 3-HB was identified in C. ljungdahlii, thereby revealing an efficient 3-HB-producing pathway. The engineered strain was further optimized to reassimilate acetic acid and synthesize 3-HB by introducing heterologous functional genes. Finally, the best-performing strain was able to produce 13.4, 3.0, and 28.4 g/L of isopropanol, 3-HB, and ethanol, respectively, in continuous gas fermentation. Therefore, this work represents remarkable progress in microbial production of bulk chemicals using C1 gases.
Collapse
Affiliation(s)
- Dechen Jia
- Key Laboratory of Synthetic Biology, The State Key Laboratory of Plant Carbon-Nitrogen Assimilation, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meiyu He
- Key Laboratory of Synthetic Biology, The State Key Laboratory of Plant Carbon-Nitrogen Assimilation, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yi Tian
- Key Laboratory of Synthetic Biology, The State Key Laboratory of Plant Carbon-Nitrogen Assimilation, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Shaohuang Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xianfeng Zhu
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yonghong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weihong Jiang
- Key Laboratory of Synthetic Biology, The State Key Laboratory of Plant Carbon-Nitrogen Assimilation, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yang Gu
- Key Laboratory of Synthetic Biology, The State Key Laboratory of Plant Carbon-Nitrogen Assimilation, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
94
|
Electron carriers involved in autotrophic and heterotrophic acetogenesis in the thermophilic bacterium Thermoanaerobacter kivui. Extremophiles 2021; 25:513-526. [PMID: 34647163 PMCID: PMC8578170 DOI: 10.1007/s00792-021-01247-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/27/2021] [Indexed: 12/05/2022]
Abstract
Thermoanaerobacter kivui is an acetogenic model organism that reduces CO2 with electrons derived from H2 or CO, or from organic substrates in the Wood–Ljugdahl pathway (WLP). For the calculation of ATP yields, it is necessary to know the electron carriers involved in coupling of the oxidative and reductive parts of metabolism. Analyses of key catabolic oxidoreductases in cell-free extract (CFE) or with purified enzymes revealed the physiological electron carriers involved. The glyceraldehyde-3-phosphate dehydrogenase (GA3P-DH) assayed in CFE was NAD+-specific, NADP+ was used with less than 4% and ferredoxin (Fd) was not used. The methylene-THF dehydrogenase was NADP+-specific, NAD+ or Fd were not used. A Nfn-type transhydrogenase that catalyzes reduced Fd-dependent reduction of NADP+ with NADH as electron donor was also identified in CFE. The electron carriers used by the potential electron-bifurcating hydrogenase (HydABC) could not be unambiguously determined in CFE for technical reasons. Therefore, the enzyme was produced homologously in T. kivui and purified by affinity chromatography. HydABC contained 33.9 ± 4.5 mol Fe/mol of protein and FMN; it reduced NADP+ but not NAD+. The methylene-THF reductase (MetFV) was also produced homologously in T. kivui and purified by affinity chromatography. MetFV contained 7.2 ± 0.4 mol Fe/mol of protein and FMN; the complex did neither use NADPH nor NADH as reductant but only reduced Fd. In sum, these analysis allowed us to propose a scheme for entire electron flow and bioenergetics in T. kivui.
Collapse
|
95
|
Duan H, He P, Shao L, Lü F. Functional genome-centric view of the CO-driven anaerobic microbiome. THE ISME JOURNAL 2021; 15:2906-2919. [PMID: 33911204 PMCID: PMC8443622 DOI: 10.1038/s41396-021-00983-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 03/17/2021] [Accepted: 04/09/2021] [Indexed: 02/02/2023]
Abstract
CO is a promising substrate for producing biochemicals and biofuels through mixed microbial cultures, where carboxydotrophs play a crucial role. The previous investigations of mixed microbial cultures focused primarily on overall community structures, but under-characterized taxa and intricate microbial interactions have not yet been precisely explicated. Here, we undertook DNA-SIP based metagenomics to profile the anaerobic CO-driven microbiomes under 95 and 35% CO atmospheres. The time-series analysis of the isotope-labeled amplicon sequencing revealed the essential roles of Firmicutes and Proteobacteria under high and low CO pressure, respectively, and Methanobacterium was the predominant archaeal genus. The functional enrichment analysis based on the isotope-labeled metagenomes suggested that the microbial cultures under high CO pressure had greater potential in expressing carboxylate metabolism and citrate cycle pathway. The genome-centric metagenomics reconstructed 24 discovered and 24 under-characterized metagenome-assembled genomes (MAGs), covering more than 94% of the metagenomic reads. The metabolic reconstruction of the MAGs described their potential functions in the CO-driven microbiomes. Some under-characterized taxa might be versatile in multiple processes; for example, under-characterized Rhodoplanes sp. and Desulfitobacterium_A sp. could encode the complete enzymes in CO oxidation and carboxylate production, improving functional redundancy. Finally, we proposed the putative microbial interactions in the conversion of CO to carboxylates and methane.
Collapse
Affiliation(s)
- Haowen Duan
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, China
| | - Liming Shao
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, China
| | - Fan Lü
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| |
Collapse
|
96
|
Neuendorf CS, Vignolle GA, Derntl C, Tomin T, Novak K, Mach RL, Birner-Grünberger R, Pflügl S. A quantitative metabolic analysis reveals Acetobacterium woodii as a flexible and robust host for formate-based bioproduction. Metab Eng 2021; 68:68-85. [PMID: 34537366 DOI: 10.1016/j.ymben.2021.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/30/2021] [Accepted: 09/15/2021] [Indexed: 11/24/2022]
Abstract
Cheap and renewable feedstocks such as the one-carbon substrate formate are emerging for sustainable production in a growing chemical industry. We investigated the acetogen Acetobacterium woodii as a potential host for bioproduction from formate alone and together with autotrophic and heterotrophic co-substrates by quantitatively analyzing physiology, transcriptome, and proteome in chemostat cultivations in combination with computational analyses. Continuous cultivations with a specific growth rate of 0.05 h-1 on formate showed high specific substrate uptake rates (47 mmol g-1 h-1). Co-utilization of formate with H2, CO, CO2 or fructose was achieved without catabolite repression and with acetate as the sole metabolic product. A transcriptomic comparison of all growth conditions revealed a distinct adaptation of A. woodii to growth on formate as 570 genes were changed in their transcript level. Transcriptome and proteome showed higher expression of the Wood-Ljungdahl pathway during growth on formate and gaseous substrates, underlining its function during utilization of one-carbon substrates. Flux balance analysis showed varying flux levels for the WLP (0.7-16.4 mmol g-1 h-1) and major differences in redox and energy metabolism. Growth on formate, H2/CO2, and formate + H2/CO2 resulted in low energy availability (0.20-0.22 ATP/acetate) which was increased during co-utilization with CO or fructose (0.31 ATP/acetate for formate + H2/CO/CO2, 0.75 ATP/acetate for formate + fructose). Unitrophic and mixotrophic conversion of all substrates was further characterized by high energetic efficiencies. In silico analysis of bioproduction of ethanol and lactate from formate and autotrophic and heterotrophic co-substrates showed promising energetic efficiencies (70-92%). Collectively, our findings reveal A. woodii as a promising host for flexible and simultaneous bioconversion of multiple substrates, underline the potential of substrate co-utilization to improve the energy availability of acetogens and encourage metabolic engineering of acetogenic bacteria for the efficient synthesis of bulk chemicals and fuels from sustainable one carbon substrates.
Collapse
Affiliation(s)
- Christian Simon Neuendorf
- Technische Universität Wien, Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
| | - Gabriel A Vignolle
- Technische Universität Wien, Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
| | - Christian Derntl
- Technische Universität Wien, Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
| | - Tamara Tomin
- Technische Universität Wien, Institute for Chemical Technologies and Analytics, Research Group Bioanalytics, Getreidemarkt 9, 1060, Vienna, Austria.
| | - Katharina Novak
- Technische Universität Wien, Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
| | - Robert L Mach
- Technische Universität Wien, Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
| | - Ruth Birner-Grünberger
- Technische Universität Wien, Institute for Chemical Technologies and Analytics, Research Group Bioanalytics, Getreidemarkt 9, 1060, Vienna, Austria; Medical University of Graz, Diagnostic and Research Institute of Pathology, Center for Medical Research, Stiftingtalstrasse 24, 8036, Graz, Austria.
| | - Stefan Pflügl
- Technische Universität Wien, Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
| |
Collapse
|
97
|
Takemura K, Kato J, Kato S, Fujii T, Wada K, Iwasaki Y, Aoi Y, Matsushika A, Murakami K, Nakashimada Y. Autotrophic growth and ethanol production enabled by diverting acetate flux in the metabolically engineered Moorella thermoacetica. J Biosci Bioeng 2021; 132:569-574. [PMID: 34518108 DOI: 10.1016/j.jbiosc.2021.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 11/18/2022]
Abstract
Gas fermentation is a promising biological process for the conversion of CO2 or syngas into valuable chemicals. Homoacetogens are microorganisms growing autotrophically using CO2 and H2 or CO and metabolizing them to form acetate coupled with energy conservation. The challenge in the metabolic engineering of the homoacetogens is divergence of the acetate formation, whose intermediate is acetyl-CoA, to a targeted chemical with sufficient production of adenosine triphosphate (ATP). In this study, we report that an engineered strain of the thermophilic homoacetogen Moorella thermoacetica, in which a pool of acetyl-CoA is diverted to ethanol without ATP production, can maintain autotrophic growth on syngas. We estimated the ATP production in the engineered strains under different gaseous compositions by considering redox-balanced metabolism for ethanol and acetate formation. The culture test showed that the combination of retaining a level of acetate production and supplying the energy-rich CO allowed maintenance of the autotrophic growth during ethanol production. In contrast, autotrophy was collapsed by complete elimination of the acetate pathway or supplementation of H2-CO2. We showed that the intracellular level of ATP was significantly lowered on H2-CO2 in consistent with the incompetence. In the meantime, the complete disruption of the acetate pathway resulted in the redox imbalance to produce ethanol from CO, albeit a small loss in the ATP production. Thus, preservation of a fraction of acetate formation is required to maintain sufficient ATP and balanced redox in CO-containing gases for ethanol production.
Collapse
Affiliation(s)
- Kaisei Takemura
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8530, Japan
| | - Junya Kato
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8530, Japan
| | - Setsu Kato
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8530, Japan
| | - Tatsuya Fujii
- National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashihiroshima, Hiroshima 739-0046, Japan
| | - Keisuke Wada
- National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashihiroshima, Hiroshima 739-0046, Japan
| | - Yuki Iwasaki
- National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashihiroshima, Hiroshima 739-0046, Japan
| | - Yoshiteru Aoi
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8530, Japan
| | - Akinori Matsushika
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8530, Japan; National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashihiroshima, Hiroshima 739-0046, Japan
| | - Katsuji Murakami
- National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashihiroshima, Hiroshima 739-0046, Japan
| | - Yutaka Nakashimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8530, Japan.
| |
Collapse
|
98
|
Elisiário MP, De Wever H, Van Hecke W, Noorman H, Straathof AJJ. Membrane bioreactors for syngas permeation and fermentation. Crit Rev Biotechnol 2021; 42:856-872. [PMID: 34525894 DOI: 10.1080/07388551.2021.1965952] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Syngas fermentation to biofuels and chemicals is an emerging technology in the biobased economy. Mass transfer is usually limiting the syngas fermentation rate, due to the low aqueous solubilities of the gaseous substrates. Membrane bioreactors, as efficient gas-liquid contactors, are a promising configuration for overcoming this gas-to-liquid mass transfer limitation, so that sufficient productivity can be achieved. We summarize the published performances of these reactors. Moreover, we highlight numerous parameters settings that need to be used for the enhancement of membrane bioreactor performance. To facilitate this enhancement, we relate mass transfer and other performance indicators to the type of membrane material, module, and flow configuration. Hollow fiber modules with dense or asymmetric membranes on which biofilm might form seem suitable. A model-based approach is advocated to optimize their performance.
Collapse
Affiliation(s)
- Marina P Elisiário
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Heleen De Wever
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Wouter Van Hecke
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Henk Noorman
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.,DSM Biotechnology Center, Delft, The Netherlands
| | - Adrie J J Straathof
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
99
|
Moon J, Müller V. Physiology and genetics of ethanologenesis in the acetogenic bacterium Acetobacterium woodii. Environ Microbiol 2021; 23:6953-6964. [PMID: 34448343 DOI: 10.1111/1462-2920.15739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/22/2021] [Indexed: 11/28/2022]
Abstract
The acetogenic model bacterium Acetobacterium woodii is well-known to produce acetate by homoacetogenesis from sugars, but under certain conditions minor amounts of ethanol are produced in addition. Here, we have aimed to identify physiological conditions that increase electron and carbon flow towards ethanol production. Ethanol was only produced from fructose but not from H2 + CO2 , formate, pyruvate, lactate or alanine. In the absence of Na+ , the Wood-Ljungdahl pathway (WLP) of acetate formation is not functional. Therefore, the ethanol yield increased to 0.42 mol/mol (ethanol/fructose) with an ethanol/acetate ratio of 0.28 mol/mol. The presence of bicarbonate/CO2 stimulated electron and carbon flow through the WLP and led to less ethanol produced. Of the 11 potential alcohol dehydrogenase genes, the most upregulated during ethanologenesis was adh4. A deletion of adh4 led to an increase in ethanol production by 100% to a yield of 0.79 mol/mol (ethanol/fructose); this correlated with an increase in transcript abundance of adh6. In sum, our studies revealed low Na+ and bicarbonate/CO2 as factors that trigger ethanol formation and that a deletion of adh4 drastically increased ethanol formation in A. woodii.
Collapse
Affiliation(s)
- Jimyung Moon
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, Frankfurt, D-60438, Germany
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, Frankfurt, D-60438, Germany
| |
Collapse
|
100
|
Metabolic engineering strategies to enable microbial utilization of C1 feedstocks. Nat Chem Biol 2021; 17:845-855. [PMID: 34312558 DOI: 10.1038/s41589-021-00836-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
One-carbon (C1) substrates are preferred feedstocks for the biomanufacturing industry and have recently gained attention owing to their natural abundance, low production cost and availability as industrial by-products. However, native pathways to utilize these substrates are absent in most biotechnologically relevant microorganisms. Recent advances in synthetic biology, genome engineering and laboratory evolution are enabling the first steps towards the creation of synthetic C1-utilizing microorganisms. Here, we briefly review the native metabolism of methane, methanol, CO2, CO and formate, and how these C1-utilizing pathways can be engineered into heterologous hosts. In addition, this review analyses the potential, the challenges and the perspectives of C1-based biomanufacturing.
Collapse
|