51
|
Zhao Y, Wang S. Detection of MicroRNA Expression Dynamics Using LNA/DNA Nanobiosensor. Methods Mol Biol 2023; 2630:75-87. [PMID: 36689177 DOI: 10.1007/978-1-0716-2982-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The investigation of complex biological processes requires effective tools for probing the spatiotemporal dynamics of individual cells. Single-cell gene expression analysis, such as RNA in situ hybridization and single-cell PCR, has been demonstrated in various biological applications (Tautz and Pfeifle, Chromosoma 98(2):81-5, 1989; Stahlberg and Bengtsson, Methods 50(4):282-288, 2010; Sanchez-Freire et al., Nat Protoc 7(5):829-838, 2012). However, existing techniques require cell lysis or fixation. The dynamic information and spatiotemporal regulation of the biological process cannot be obtained with these methods. Real-time gene expression analysis in living cells remains an outstanding challenge in the field. Here, we described a single-cell gene expression analysis method in living mammalian cells using a locked nucleic acid/DNA (LNA/DNA) nanobiosensor. This LNA/DNA nanobiosensor consists of a fluorophore-labeled detecting strand and a quenching strand. The fluorophore-labeled LNA probe is designed to hybridize with the target microRNA (miRNA) specifically and displace from the quenching strand, allowing the fluorophore to fluorescence. Large-scale single-cell dynamic gene expression monitoring can be performed using time-lapse microscopy to study spatiotemporal distribution and heterogeneity in gene expression. Multiplex detection of miRNAs can be achieved using different fluorophore-labeled LNA/DNA nanobiosensors. This LNA/DNA protocol is fast, generally applicable, and easily accessible.
Collapse
Affiliation(s)
- Yuwen Zhao
- Department of Chemistry, Chemical and Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT, USA
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Shue Wang
- Department of Chemistry, Chemical and Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT, USA.
| |
Collapse
|
52
|
Li JQ, Dukes PV, Lee W, Sarkis M, Vo‐Dinh T. Machine learning using convolutional neural networks for SERS analysis of biomarkers in medical diagnostics. JOURNAL OF RAMAN SPECTROSCOPY : JRS 2022; 53:2044-2057. [PMID: 37067872 PMCID: PMC10087982 DOI: 10.1002/jrs.6447] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/14/2022] [Accepted: 08/09/2022] [Indexed: 05/30/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has wide diagnostic applications because of narrow spectral features that allow multiplexed analysis. Machine learning (ML) has been used for non-dye-labeled SERS spectra but has not been applied to SERS dye-labeled materials with known spectral shapes. Here, we compare the performances of spectral decomposition, support vector regression, random forest regression, partial least squares regression, and convolutional neural network (CNN) for SERS "spectral unmixing" from a multiplexed mixture of 7 SERS-active "nanorattles" loaded with different dyes for mRNA biomarker detection. We showed that CNN most accurately determined relative contributions of each distinct dye-loaded nanorattle. CNN and comparative models were then used to analyze SERS spectra from a singleplexed, point-of-care assay detecting an mRNA biomarker for head and neck cancer in 20 samples. The CNN, trained on simulated multiplexed data, determined the correct dye contributions from the singleplex assay with RMSElabel = 6.42 × 10-2. These results demonstrate the potential of CNN-based ML to advance SERS-based diagnostics.
Collapse
Affiliation(s)
- Joy Qiaoyi Li
- Fitzpatrick Institute for PhotonicsDuke UniversityDurhamNorth CarolinaUSA
- Biomedical Engineering DepartmentDuke UniversityDurhamNorth CarolinaUSA
| | - Priya Vohra Dukes
- Department of Head and Neck Surgery and Communication SciencesDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Walter Lee
- Department of Head and Neck Surgery and Communication SciencesDuke University School of MedicineDurhamNorth CarolinaUSA
- Global Health InstituteDuke UniversityDurhamNorth CarolinaUSA
| | - Michael Sarkis
- Department of Statistical ScienceDuke UniversityDurhamNorth CarolinaUSA
| | - Tuan Vo‐Dinh
- Fitzpatrick Institute for PhotonicsDuke UniversityDurhamNorth CarolinaUSA
- Biomedical Engineering DepartmentDuke UniversityDurhamNorth CarolinaUSA
- Chemistry DepartmentDuke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
53
|
Madè A, Greco S, Vausort M, Miliotis M, Schordan E, Baksi S, Zhang L, Baryshnikova E, Ranucci M, Cardani R, Fagherazzi G, Ollert M, Tastsoglou S, Vatsellas G, Hatzigeorgiou A, Firat H, Devaux Y, Martelli F. Association of miR-144 levels in the peripheral blood with COVID-19 severity and mortality. Sci Rep 2022; 12:20048. [PMID: 36414650 PMCID: PMC9681736 DOI: 10.1038/s41598-022-23922-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Coronavirus disease-2019 (COVID-19) can be asymptomatic or lead to a wide symptom spectrum, including multi-organ damage and death. Here, we explored the potential of microRNAs in delineating patient condition and predicting clinical outcome. Plasma microRNA profiling of hospitalized COVID-19 patients showed that miR-144-3p was dynamically regulated in response to COVID-19. Thus, we further investigated the biomarker potential of miR-144-3p measured at admission in 179 COVID-19 patients and 29 healthy controls recruited in three centers. In hospitalized patients, circulating miR-144-3p levels discriminated between non-critical and critical illness (AUCmiR-144-3p = 0.71; p = 0.0006), acting also as mortality predictor (AUCmiR-144-3p = 0.67; p = 0.004). In non-hospitalized patients, plasma miR-144-3p levels discriminated mild from moderate disease (AUCmiR-144-3p = 0.67; p = 0.03). Uncontrolled release of pro-inflammatory cytokines can lead to clinical deterioration. Thus, we explored the added value of a miR-144/cytokine combined analysis in the assessment of hospitalized COVID-19 patients. A miR-144-3p/Epidermal Growth Factor (EGF) combined score discriminated between non-critical and critical hospitalized patients (AUCmiR-144-3p/EGF = 0.81; p < 0.0001); moreover, a miR-144-3p/Interleukin-10 (IL-10) score discriminated survivors from nonsurvivors (AUCmiR-144-3p/IL-10 = 0.83; p < 0.0001). In conclusion, circulating miR-144-3p, possibly in combination with IL-10 or EGF, emerges as a noninvasive tool for early risk-based stratification and mortality prediction in COVID-19.
Collapse
Affiliation(s)
- Alisia Madè
- grid.419557.b0000 0004 1766 7370Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese, MI Italy
| | - Simona Greco
- grid.419557.b0000 0004 1766 7370Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese, MI Italy
| | - Melanie Vausort
- grid.451012.30000 0004 0621 531XCardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
| | - Marios Miliotis
- grid.418497.7Hellenic Pasteur Institute, 11521 Athens, Greece ,grid.410558.d0000 0001 0035 6670DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece
| | - Eric Schordan
- grid.450762.2Firalis SA, 35 Rue du Fort, 68330 Huningue, France
| | - Shounak Baksi
- grid.451012.30000 0004 0621 531XCardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
| | - Lu Zhang
- grid.451012.30000 0004 0621 531XBioinformatics Platform, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Ekaterina Baryshnikova
- grid.419557.b0000 0004 1766 7370Department of Cardiovascular Anesthesia and ICU, IRCCS Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese, MI Italy
| | - Marco Ranucci
- grid.419557.b0000 0004 1766 7370Department of Cardiovascular Anesthesia and ICU, IRCCS Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese, MI Italy
| | - Rosanna Cardani
- grid.419557.b0000 0004 1766 7370BioCor Biobank, UOC SMEL-1 of Clinical Pathology, Department of Pathology and Laboratory Medicine, IRCCS-Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese, MI Italy
| | - Guy Fagherazzi
- grid.451012.30000 0004 0621 531XDeep Digital Phenotyping Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Markus Ollert
- grid.451012.30000 0004 0621 531XDepartment of Infection and Immunity, Luxembourg Institute of Health, 29, Rue Henri Koch, 4354 Esch-Sur-Alzette, Luxembourg ,grid.10825.3e0000 0001 0728 0170Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis (ORCA), University of Southern Denmark, 5000 Odense, Denmark
| | - Spyros Tastsoglou
- grid.418497.7Hellenic Pasteur Institute, 11521 Athens, Greece ,grid.410558.d0000 0001 0035 6670DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece
| | - Giannis Vatsellas
- grid.417593.d0000 0001 2358 8802Greek Genome Center, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Artemis Hatzigeorgiou
- grid.418497.7Hellenic Pasteur Institute, 11521 Athens, Greece ,grid.410558.d0000 0001 0035 6670DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece
| | - Hüseyin Firat
- grid.450762.2Firalis SA, 35 Rue du Fort, 68330 Huningue, France
| | - Yvan Devaux
- grid.451012.30000 0004 0621 531XCardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
| | - Fabio Martelli
- grid.419557.b0000 0004 1766 7370Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese, MI Italy
| |
Collapse
|
54
|
Azlan A, Yunus MA, Abdul Halim M, Azzam G. Revised Annotation and Characterization of Novel Aedes albopictus miRNAs and Their Potential Functions in Dengue Virus Infection. BIOLOGY 2022; 11:biology11101536. [PMID: 36290439 PMCID: PMC9598099 DOI: 10.3390/biology11101536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/02/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
Abstract
Simple Summary Aedes albopictus (Ae. albopictus) is an important vector of the dengue virus. Genetics and molecular studies of virus infection in mosquito vectors are important to uncover the basic biology of the virus. It has been reported that miRNAs are important and possess functional roles in virus infection in Ae. albopictus. Here, we report a comprehensive catalog of miRNAs using the latest genome version of Ae. albopictus. We discovered a total of 72 novel mature miRNAs, 44 of which were differentially expressed in C6/36 cells infected with the dengue virus. Target prediction analysis revealed that the differentially expressed miRNAs were involved in lipid metabolism and protein processing in the endoplasmic reticulum. Results from this study provide a valuable resource for researchers to study miRNAs in this mosquito vector, especially in host–virus interactions. Abstract The Asian tiger mosquito, Ae. albopictus, is a highly invasive species that transmits several arboviruses including dengue (DENV), Zika (ZIKV), and chikungunya (CHIKV). Although several studies have identified microRNAs (miRNAs) in Ae. albopictus, it is crucial to extend and improve current annotations with both the newly improved genome assembly and the increased number of small RNA-sequencing data. We combined our high-depth sequence data and 26 public datasets to re-annotate Ae. albopictus miRNAs and found a total of 72 novel mature miRNAs. We discovered that the expression of novel miRNAs was lower than known miRNAs. Furthermore, compared to known miRNAs, novel miRNAs are prone to expression in a stage-specific manner. Upon DENV infection, a total of 44 novel miRNAs were differentially expressed, and target prediction analysis revealed that miRNA-target genes were involved in lipid metabolism and protein processing in endoplasmic reticulum. Taken together, the miRNA annotation profile provided here is the most comprehensive to date. We believed that this would facilitate future research in understanding virus–host interactions, particularly in the role of miRNAs.
Collapse
Affiliation(s)
- Azali Azlan
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia
| | - Muhammad Amir Yunus
- Infectomics Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Mardani Abdul Halim
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
- Correspondence: (M.A.H.); (G.A.)
| | - Ghows Azzam
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang 43000, Selangor, Malaysia
- Correspondence: (M.A.H.); (G.A.)
| |
Collapse
|
55
|
Onyiba CI, Scarlett CJ, Weidenhofer J. The Mechanistic Roles of Sirtuins in Breast and Prostate Cancer. Cancers (Basel) 2022; 14:cancers14205118. [PMID: 36291902 PMCID: PMC9600935 DOI: 10.3390/cancers14205118] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary There are diverse reports of the dual role of sirtuin genes and proteins in breast and prostate cancers. This review discusses the current information on the tumor promotion or suppression roles of SIRT1–7 in breast and prostate cancers. Precisely, we highlight that sirtuins regulate various proteins implicated in proliferation, apoptosis, autophagy, chemoresistance, invasion, migration, and metastasis of both breast and prostate cancer. We also provide evidence of the direct regulation of sirtuins by miRNAs, highlighting the consequences of this regulation in breast and prostate cancer. Overall, this review reveals the potential value of sirtuins as biomarkers and/or targets for improved treatment of breast and prostate cancers. Abstract Mammalian sirtuins (SIRT1–7) are involved in a myriad of cellular processes, including apoptosis, proliferation, differentiation, epithelial-mesenchymal transition, aging, DNA repair, senescence, viability, survival, and stress response. In this review, we discuss the current information on the mechanistic roles of SIRT1–7 and their downstream effects (tumor promotion or suppression) in cancers of the breast and prostate. Specifically, we highlight the involvement of sirtuins in the regulation of various proteins implicated in proliferation, apoptosis, autophagy, chemoresistance, invasion, migration, and metastasis of breast and prostate cancer. Additionally, we highlight the available information regarding SIRT1–7 regulation by miRNAs, laying much emphasis on the consequences in the progression of breast and prostate cancer.
Collapse
Affiliation(s)
- Cosmos Ifeanyi Onyiba
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Ourimbah, NSW 2258, Australia
- Correspondence:
| | - Christopher J. Scarlett
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Ourimbah, NSW 2258, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Judith Weidenhofer
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Ourimbah, NSW 2258, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
56
|
Brancaccio M, Giachino C, Iazzetta AM, Cordone A, De Marino E, Affinito O, Vivo M, Calabrò V, Pollice A, Angrisano T. Integrated Bioinformatics Analysis Reveals Novel miRNA as Biomarkers Associated with Preeclampsia. Genes (Basel) 2022; 13:genes13101781. [PMID: 36292666 PMCID: PMC9601722 DOI: 10.3390/genes13101781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/04/2022] Open
Abstract
Preeclampsia is a leading cause of perinatal maternal-foetal mortality and morbidity. This study aims to identify the key microRNAs (miRNA) in preeclampsia and uncover their potential functions. We downloaded the miRNA expression profile of GSE119799 for plasma and GSE177049 for the placenta. Each dataset consisted of five patients (PE) and five controls (N). From a technical point of view, we analysed the counts per million (CPM) for both datasets, highlighting 358 miRNAs in common, 78 unique for plasma and 298 unique for placenta. At the same time, we performed an expression differential analysis (|logFC| ≥ 1|and FDR ≤ 0.05) to evaluate the biological impact of the miRNAs. This approach allowed us to highlight 321 miRNAs in common between plasma and placenta, within which four were upregulated in plasma. Furthermore, the same analysis revealed five miRNAs expressed exclusively in plasma; these were also upregulated. In conclusion, the in-depth bioinformatics analysis conducted during our study will allow us, on the one hand, to verify the targets of each of the nine identified miRNAs; on the other hand, to use them both as new non-invasive biomarkers and as therapeutic targets for the development of personalised treatments.
Collapse
Affiliation(s)
- Mariarita Brancaccio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
- Correspondence: (M.B.); (T.A.); Tel.: +39-33-93121924 (M.B.); +39-34-94670474 (T.A.)
| | - Caterina Giachino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | | | - Antonio Cordone
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Elena De Marino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Ornella Affinito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Maria Vivo
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, Italy
| | - Viola Calabrò
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Alessandra Pollice
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Tiziana Angrisano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- Correspondence: (M.B.); (T.A.); Tel.: +39-33-93121924 (M.B.); +39-34-94670474 (T.A.)
| |
Collapse
|
57
|
Niedra H, Peculis R, Litvina HD, Megnis K, Mandrika I, Balcere I, Romanovs M, Steina L, Stukens J, Breiksa A, Nazarovs J, Sokolovska J, Liutkeviciene R, Vilkevicute A, Konrade I, Rovite V. Genome wide analysis of circulating miRNAs in growth hormone secreting pituitary neuroendocrine tumor patients’ plasma. Front Oncol 2022; 12:894317. [PMID: 36158656 PMCID: PMC9500360 DOI: 10.3389/fonc.2022.894317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/15/2022] [Indexed: 12/05/2022] Open
Abstract
Background Circulating plasma miRNAs have been increasingly studied in the field of pituitary neuroendocrine tumor (PitNET) research. Our aim was to discover circulating plasma miRNAs species associated with growth hormone (GH) secreting PitNETs versus assess how the plasma levels of discovered miRNA candidates are impacted by SSA therapy and whether there is a difference in their levels between GH secreting PitNETs versus other PitNET types and healthy individuals. Design We compared plasma miRNA content and levels before and after surgery focusing on GH secreting PitNET patients. Selected miRNA candidates from our data and literature were then tested in a longitudinal manner in somatostatin analogues (SSA) treatment group. Additionally, we validated selected targets in an independent GH secreting PitNET group. Methods miRNA candidates were discovered using the whole miRNA sequencing approach and differential expression analysis. Selected miRNAs were then analyzed using real-time polymerase chain reaction (qPCR). Results Whole miRNA sequencing discovered a total of 16 differentially expressed miRNAs (DEMs) in GH secreting PitNET patients’ plasma 24 hours after surgery and 19 DEMs between GH secreting PitNET patients’ plasma and non-functioning (NF) PitNET patients’ plasma. Seven miRNAs were selected for further testing of which miR-625-5p, miR-503-5p miR-181a-2-3p and miR-130b-3p showed a significant downregulation in plasma after 1 month of SSA treatment. mir-625-5p was found to be significantly downregulated in plasma of GH secreting PitNET patients vs. NF PitNET patients. miR-625-5p alongside miR-130b-3p were also found to be downregulated in GH PitNETs compared to healthy individuals. Conclusions Our study suggests that expression of plasma miRNAs miR-625-5p, miR-503-5p miR-181a-2-3p and miR-130b-3p in GH secreting PitNETs is affected by SSA treatment. Additionally, miR-625-5p can distinguish GH secreting PitNETs from other PitNET types and healthy controls warranting further research on these miRNAs for treatment efficacy.
Collapse
Affiliation(s)
- Helvijs Niedra
- Department of molecular and functional genomics, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Raitis Peculis
- Department of molecular and functional genomics, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Helena Daiga Litvina
- Department of molecular and functional genomics, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Kaspars Megnis
- Department of molecular and functional genomics, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Ilona Mandrika
- Department of molecular and functional genomics, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Inga Balcere
- Department of Endocrinology, Riga East Clinical University Hospital, Riga, Latvia
- Department of Internal Diseases, Riga Stradins University, Riga, Latvia
| | - Mihails Romanovs
- Department of Endocrinology, Riga East Clinical University Hospital, Riga, Latvia
| | - Liva Steina
- Department of Neurosurgery, Faculty of Medicine Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Janis Stukens
- Department of Neurosurgery, Faculty of Medicine Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Austra Breiksa
- Department of Neurosurgery, Faculty of Medicine Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Jurijs Nazarovs
- Department of Neurosurgery, Faculty of Medicine Pauls Stradins Clinical University Hospital, Riga, Latvia
| | | | - Rasa Liutkeviciene
- Institute of Neuroscience, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Alvita Vilkevicute
- Institute of Neuroscience, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ilze Konrade
- Department of Endocrinology, Riga East Clinical University Hospital, Riga, Latvia
- Department of Internal Diseases, Riga Stradins University, Riga, Latvia
| | - Vita Rovite
- Department of molecular and functional genomics, Latvian Biomedical Research and Study Centre, Riga, Latvia
- *Correspondence: Vita Rovite,
| |
Collapse
|
58
|
Expression of MicroRNAs in Sepsis-Related Organ Dysfunction: A Systematic Review. Int J Mol Sci 2022; 23:ijms23169354. [PMID: 36012630 PMCID: PMC9409129 DOI: 10.3390/ijms23169354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a critical condition characterized by increased levels of pro-inflammatory cytokines and proliferating cells such as neutrophils and macrophages in response to microbial pathogens. Such processes lead to an abnormal inflammatory response and multi-organ failure. MicroRNAs (miRNA) are single-stranded non-coding RNAs with the function of gene regulation. This means that miRNAs are involved in multiple intracellular pathways and thus contribute to or inhibit inflammation. As a result, their variable expression in different tissues and organs may play a key role in regulating the pathophysiological events of sepsis. Thanks to this property, miRNAs may serve as potential diagnostic and prognostic biomarkers in such life-threatening events. In this narrative review, we collect the results of recent studies on the expression of miRNAs in heart, blood, lung, liver, brain, and kidney during sepsis and the molecular processes in which they are involved. In reviewing the literature, we find at least 122 miRNAs and signaling pathways involved in sepsis-related organ dysfunction. This may help clinicians to detect, prevent, and treat sepsis-related organ failures early, although further studies are needed to deepen the knowledge of their potential contribution.
Collapse
|
59
|
Leija-Montoya AG, González-Ramírez J, Martínez-Coronilla G, Mejía-León ME, Isiordia-Espinoza M, Sánchez-Muñoz F, Chávez-Cortez EG, Pitones-Rubio V, Serafín-Higuera N. Roles of microRNAs and Long Non-Coding RNAs Encoded by Parasitic Helminths in Human Carcinogenesis. Int J Mol Sci 2022; 23:ijms23158173. [PMID: 35897749 PMCID: PMC9331937 DOI: 10.3390/ijms23158173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 12/14/2022] Open
Abstract
Infectious agents such as viruses, bacteria, and parasites can lead to cancer development. Infection with the helminthic parasite Schistosoma haematobium can cause cancer of the urinary bladder in humans, and infection with the parasites Clonorchis sinensis and Opisthorchis viverrini can promote cholangiocarcinoma. These three pathogens have been categorized as “group 1: carcinogenic to humans” by the International Agency for Research on Cancer (IARC). Additionally, the parasite Schistosoma japonicum has been associated with liver and colorectal cancer and classified as “group 2B: possibly carcinogenic to humans”. These parasites express regulatory non-coding RNAs as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), which modulate genic expression in different biological processes. In this review, we discuss the potential roles of miRNAS and lncRNAs encoded by helminthic parasites that are classified by the IARC as carcinogenic and possibly carcinogenic to humans. The miRNAs of these parasites may be involved in carcinogenesis by modulating the biological functions of the pathogen and the host and by altering microenvironments prone to tumor growth. miRNAs were identified in different host fluids. Additionally, some miRNAs showed direct antitumoral effects. Together, these miRNAs show potential for use in future therapeutic and diagnostic applications. LncRNAs have been less studied in these parasites, and their biological effects in the parasite–host interaction are largely unknown.
Collapse
Affiliation(s)
- Ana Gabriela Leija-Montoya
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Centro Cívico, Mexicali 21000, BC, Mexico; (A.G.L.-M.); (G.M.-C.); (M.E.M.-L.)
| | - Javier González-Ramírez
- Facultad de Enfermería, Universidad Autónoma de Baja California, Av. Álvaro Obregón y Calle “G” S/N, Col. Nueva, Mexicali 21100, BC, Mexico;
| | - Gustavo Martínez-Coronilla
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Centro Cívico, Mexicali 21000, BC, Mexico; (A.G.L.-M.); (G.M.-C.); (M.E.M.-L.)
| | - María Esther Mejía-León
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Centro Cívico, Mexicali 21000, BC, Mexico; (A.G.L.-M.); (G.M.-C.); (M.E.M.-L.)
| | - Mario Isiordia-Espinoza
- Instituto de Investigación en Ciencias Médicas, Departamento de Clínicas, División de Ciencias Biomédicas, Centro Universitario de Los Altos, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47600, JAL, Mexico;
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología, Juan Badiano No. 1, Col. Sección XVI, Tlapan 140080, DF, Mexico;
| | - Elda Georgina Chávez-Cortez
- Centro de Ciencias de la Salud, Facultad de Odontología, Universidad Autónoma de Baja California, Zotoluca s/n, Fracc. Calafia, Mexicali 21040, BC, Mexico; (E.G.C.-C.); (V.P.-R.)
| | - Viviana Pitones-Rubio
- Centro de Ciencias de la Salud, Facultad de Odontología, Universidad Autónoma de Baja California, Zotoluca s/n, Fracc. Calafia, Mexicali 21040, BC, Mexico; (E.G.C.-C.); (V.P.-R.)
| | - Nicolas Serafín-Higuera
- Centro de Ciencias de la Salud, Facultad de Odontología, Universidad Autónoma de Baja California, Zotoluca s/n, Fracc. Calafia, Mexicali 21040, BC, Mexico; (E.G.C.-C.); (V.P.-R.)
- Correspondence:
| |
Collapse
|
60
|
MicroRNAs as Potential Tools for Predicting Cancer Patients’ Susceptibility to SARS-CoV-2 Infection and Vaccination Response. Cells 2022; 11:cells11152279. [PMID: 35892576 PMCID: PMC9332853 DOI: 10.3390/cells11152279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease (COVID-19) is an infectious disease that is caused by a highly contagious and severe acute respiratory syndrome—coronavirus 2 (SARS-CoV-2). This infection started to spread across the world in 2019 and rapidly turned into a global pandemic, causing an urgent necessity for treatment strategies development. The mRNA vaccines against SARS-CoV-2 can trigger an immune response, providing genetic information that allows the production of spike glycoproteins. MiRNAs play a crucial role in diverse key cellular processes, including antiviral defense. Several miRNAs are described as key factors in SARS-CoV-2 human infection through the regulation of ACE2 levels and by the inhibition of SARS-CoV-2 replication and spike expression. Consequently, these molecules have been considered as highly promising biomarkers. In numerous human malignancies, it has been recognized that miRNAs expression is dysregulated. Since miRNAs can target SARS-CoV-2-associated mRNAs, in cancer patients, the deregulation of these molecules can impair the immune response to the vaccines. Therefore, in this review, we propose a miRNA profile of seven SARS-CoV-2-related miRNAs, namely miR-214, miR-98-5p, miR-7-5p, miR-24-3p, miR-145-5p, miR-223-3p and miR-15b-5p, that are deregulated in a high number of cancers and have the potential to be used as prognostic biomarkers to stratify cancer patients.
Collapse
|
61
|
Viral Encoded miRNAs in Tumorigenesis: Theranostic Opportunities in Precision Oncology. Microorganisms 2022; 10:microorganisms10071448. [PMID: 35889167 PMCID: PMC9321719 DOI: 10.3390/microorganisms10071448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
About 15% of all human cancers have a viral etiology. Although progress has been made, understanding the viral oncogenesis and associated molecular mechanisms remain complex. The discovery of cellular miRNAs has led to major breakthroughs. Interestingly, viruses have also been discovered to encode their own miRNAs. These viral, small, non-coding miRNAs are also known as viral-miRNAs (v-miRNAs). Although the function of v-miRNAs largely remains to be elucidated, their role in tumorigenesis cannot be ignored. V-miRNAs have also been shown to exploit the cellular machinery to benefit viral replication and survival. Although the discovery of Hepatitis C virus (HCV), and its viral miRNAs, is a work in progress, the existence of HPV-, EBV-, HBV-, MCPyV- and KSHV-encoded miRNA has been documented. V-miRNAs have been shown to target host factors to advance tumorigenesis, evade and suppress the immune system, and deregulate both the cell cycle and the apoptotic machinery. Although the exact mechanisms of v-miRNAs-induced tumorigenesis are still unclear, v-miRNAs are active role-players in tumorigenesis, viral latency and cell transformation. Furthermore, v-miRNAs can function as posttranscriptional gene regulators of both viral and host genes. Thus, it has been proposed that v-miRNAs may serve as diagnostic biomarkers and therapeutic targets for cancers with a viral etiology. Although significant challenges exist in their clinical application, emerging reports demonstrate their potent role in precision medicine. This review will focus on the roles of HPV-, HCV-, EBV-, HBV-, MCPyV-, and KSHV-produced v-miRNAs in tumorigenesis, as effectors in immune evasion, as diagnostic biomarkers and as novel anti-cancer therapeutic targets. Finally, it will discuss the challenges and opportunities associated with v-miRNAs theranostics in precision oncology.
Collapse
|
62
|
Demey B, Bentz M, Descamps V, Morel V, Francois C, Castelain S, Helle F, Brochot E. BK Polyomavirus bkv-miR-B1-5p: A Stable Micro-RNA to Monitor Active Viral Replication after Kidney Transplantation. Int J Mol Sci 2022; 23:ijms23137240. [PMID: 35806242 PMCID: PMC9266457 DOI: 10.3390/ijms23137240] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Bkv-miR-B1-5p is a viral micro-RNA (miRNA) specifically produced during BK polyomavirus (BKPyV) replication. Recent studies have suggested using bkv-miR-B1-5p as a biomarker to monitor viral infection and predict complications in kidney transplant patients. To identify the technical limitations of this miRNA quantification in biological samples, knowledge of its stability and distribution in the extracellular compartment is necessary. Moreover, a proof of concept for using bkv-miR-B1-5p as a biomarker of active replication in chronic infection is still missing in the published literature. Methods: The stability of bkv-miR-B1-5p was evaluated in samples derived from cell cultures and in urine from BKPyV-infected kidney transplant recipients. The miRNA was quantified in different fractions of the extracellular compartment, including exosomes, and protein binding was evaluated. Finally, we developed an in vitro model for chronic culture of BKPyV clinical isolates to observe changes in the bkv-miR-B1-5p level during persistent infections. Results: Bkv-miR-B1-5p is a stable biomarker in samples from humans and in vitro experiments. Marginally associated with the exosomes, most of the circulating bkv-miR-B1-5p is bound to proteins, especially Ago2, so the miRNA quantification does not require specific exosome isolation. The bkv-miR-B1-5p level is predictable of viral infectivity, which makes it a potential specific biomarker of active BKPyV replication after kidney transplantation.
Collapse
Affiliation(s)
- Baptiste Demey
- Laboratoire de Virologie, Centre Hospitalier Universitaire, F-80000 Amiens, France; (V.D.); (V.M.); (C.F.); (S.C.)
- UR UPJV 4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, F-80000 Amiens, France; (M.B.); (F.H.)
- Correspondence: (B.D.); (E.B.); Tel.: +33-322087065 (B.D.)
| | - Marine Bentz
- UR UPJV 4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, F-80000 Amiens, France; (M.B.); (F.H.)
| | - Véronique Descamps
- Laboratoire de Virologie, Centre Hospitalier Universitaire, F-80000 Amiens, France; (V.D.); (V.M.); (C.F.); (S.C.)
- UR UPJV 4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, F-80000 Amiens, France; (M.B.); (F.H.)
| | - Virginie Morel
- Laboratoire de Virologie, Centre Hospitalier Universitaire, F-80000 Amiens, France; (V.D.); (V.M.); (C.F.); (S.C.)
- UR UPJV 4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, F-80000 Amiens, France; (M.B.); (F.H.)
| | - Catherine Francois
- Laboratoire de Virologie, Centre Hospitalier Universitaire, F-80000 Amiens, France; (V.D.); (V.M.); (C.F.); (S.C.)
- UR UPJV 4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, F-80000 Amiens, France; (M.B.); (F.H.)
| | - Sandrine Castelain
- Laboratoire de Virologie, Centre Hospitalier Universitaire, F-80000 Amiens, France; (V.D.); (V.M.); (C.F.); (S.C.)
- UR UPJV 4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, F-80000 Amiens, France; (M.B.); (F.H.)
| | - Francois Helle
- UR UPJV 4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, F-80000 Amiens, France; (M.B.); (F.H.)
| | - Etienne Brochot
- Laboratoire de Virologie, Centre Hospitalier Universitaire, F-80000 Amiens, France; (V.D.); (V.M.); (C.F.); (S.C.)
- UR UPJV 4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, F-80000 Amiens, France; (M.B.); (F.H.)
- Correspondence: (B.D.); (E.B.); Tel.: +33-322087065 (B.D.)
| |
Collapse
|
63
|
Rojas-Pirela M, Andrade-Alviárez D, Medina L, Castillo C, Liempi A, Guerrero-Muñoz J, Ortega Y, Maya JD, Rojas V, Quiñones W, Michels PA, Kemmerling U. MicroRNAs: master regulators in host-parasitic protist interactions. Open Biol 2022; 12:210395. [PMID: 35702995 PMCID: PMC9198802 DOI: 10.1098/rsob.210395] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs present in a wide diversity of organisms. MiRNAs regulate gene expression at a post-transcriptional level through their interaction with the 3' untranslated regions of target mRNAs, inducing translational inhibition or mRNA destabilization and degradation. Thus, miRNAs regulate key biological processes, such as cell death, signal transduction, development, cellular proliferation and differentiation. The dysregulation of miRNAs biogenesis and function is related to the pathogenesis of diseases, including parasite infection. Moreover, during host-parasite interactions, parasites and host miRNAs determine the probability of infection and progression of the disease. The present review is focused on the possible role of miRNAs in the pathogenesis of diseases of clinical interest caused by parasitic protists. In addition, the potential role of miRNAs as targets for the design of drugs and diagnostic and prognostic markers of parasitic diseases is also discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile,Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile,Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela
| | - Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Lisvaneth Medina
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Christian Castillo
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile,Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Chile
| | - Ana Liempi
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Jesús Guerrero-Muñoz
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Yessica Ortega
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile,Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela
| | - Juan Diego Maya
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Verónica Rojas
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Paul A. Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| |
Collapse
|
64
|
Kooshkaki O, Asghari A, Mahdavi R, Azarkar G, Parsamanesh N. Potential of MicroRNAs As Biomarkers and Therapeutic Targets in Respiratory Viruses: A Literature Review. DNA Cell Biol 2022; 41:544-563. [PMID: 35699380 DOI: 10.1089/dna.2021.1101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression through recognition of cognate sequences and interference of transcriptional, translational, or epigenetic processes. Hundreds of miRNA genes have been found in diverse viruses, and many of these are phylogenetically conserved. Respiratory viruses are the most frequent causative agents of disease in humans, with a significant impact on morbidity and mortality worldwide. Recently, the role of miRNAs in respiratory viral gene regulation, as well as host gene regulation during disease progression, has become a field of interest. This review highlighted the importance of various miRNAs and their potential role in fighting with respiratory viruses as therapeutic molecules with a focus on COVID-19.
Collapse
Affiliation(s)
- Omid Kooshkaki
- Department of Hematology, Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Arghavan Asghari
- Department of Hematology, Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.,Department of Hematology, Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Reza Mahdavi
- Department of Hematology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ghodsiyeh Azarkar
- Department of Hematology, Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Negin Parsamanesh
- Department of Hematology, Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Science, Zanjan, Iran
| |
Collapse
|
65
|
Goud VR, Chakraborty R, Chakraborty A, Lavudi K, Patnaik S, Sharma S, Patnaik S. A bioinformatic approach of targeting SARS-CoV-2 replication by silencing a conserved alternative reserve of the orf8 gene using host miRNAs. Comput Biol Med 2022; 145:105436. [PMID: 35366472 PMCID: PMC8942883 DOI: 10.1016/j.compbiomed.2022.105436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/11/2022] [Accepted: 03/20/2022] [Indexed: 12/16/2022]
Abstract
The causative agent of the COVID-19 pandemic, the SARS-CoV-2 virus has yielded multiple relevant mutations, many of which have branched into major variants. The Omicron variant has a huge similarity with the original viral strain (first COVID-19 strain from Wuhan). Among different genes, the highly variable orf8 gene is responsible for crucial host interactions and has undergone multiple mutations and indels. The sequence of the orf8 gene of the Omicron variant is, however, identical with the gene sequence of the wild type. orf8 modulates the host immunity making it easier for the virus to conceal itself and remain undetected. Variants seem to be deleting this gene without affecting the viral replication. While analyzing, we came across the conserved orf7a gene in the viral genome which exhibits a partial sequence homology as well as functional similarity with the SARS-CoV-2 orf8. Hence, we have proposed here in our hypothesis that, orf7a might be an alternative reserve of orf8 present in the virus which was compensating for the lost gene. A computational approach was adopted where we screened various miRNAs targeted against the orf8 gene. These miRNAs were then docked onto the orf8 mRNA sequences. The same set of miRNAs was then used to check for their binding affinity with the orf7a reference mRNA. Results showed that miRNAs targeting the orf8 had favorable shape complementarity and successfully docked with the orf7a gene as well. These findings provide a basis for developing new therapeutic approaches where both orf8 and orf7a can be targeted simultaneously.
Collapse
Affiliation(s)
| | | | | | - Kousalya Lavudi
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Sriram Patnaik
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Swati Sharma
- School of Biotechnology, KIIT University, Bhubaneswar, India,Dept. of Skill Buildings Shri Ramasamy Memorial University, Sikkim, Gangtok, 737102, India
| | - Srinivas Patnaik
- School of Biotechnology, KIIT University, Bhubaneswar, India,Corresponding author. School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| |
Collapse
|
66
|
Ruiz M, González S, Bonnet C, Deng SX. Extracellular miR-6723-5p could serve as a biomarker of limbal epithelial stem/progenitor cell population. Biomark Res 2022; 10:36. [PMID: 35642012 PMCID: PMC9153202 DOI: 10.1186/s40364-022-00384-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/16/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Dysfunction or loss of limbal stem cells can result in limbal stem cell deficiency (LSCD), a disease that cause corneal opacity, pain, and loss of vision. Cultivated limbal epithelial transplantation (CLET) can be used to restore stem cell niche homeostasis and replenish the progenitor pool. Transplantation has been reported with high success rate, but there is an unmet need of prognostic markers that correlate with clinical outcomes. To date, the progenitor content in the graft is the only parameter that has been retrospectively linked to success. METHODS In this study, we investigate extracellular micro RNAs (miRNAs) associated with stem/progenitor cells in cultivated limbal epithelial cells (cLECs). Using micro RNA sequencing and linear regression modelling, we identify a miRNA signature in cultures containing high proportion of stem/progenitor cells. We then develop a robust RNA extraction workflow from culture media to confirm a positive miRNA correlation with stem/progenitor cell proportion. RESULTS miR-6723-5p is associated with cultures containing high proportion of stem/progenitor cells, and is detected in the basal layer of corneal epithelium. CONCLUSIONS These results indicate that miR-6723-5p could potentially serve as a stem/progenitor cell marker in cLECs.
Collapse
Affiliation(s)
- M. Ruiz
- Cornea Division, Stein Eye Institute, University of California, 100 Stein Plaza, Los Angeles, CA 90095 USA
| | - S. González
- Cornea Division, Stein Eye Institute, University of California, 100 Stein Plaza, Los Angeles, CA 90095 USA
| | - C. Bonnet
- Cornea Division, Stein Eye Institute, University of California, 100 Stein Plaza, Los Angeles, CA 90095 USA
- Cornea Department, Paris University, Cochin Hospital, AP-HP, F-75014 Paris, France
| | - S. X. Deng
- Cornea Division, Stein Eye Institute, University of California, 100 Stein Plaza, Los Angeles, CA 90095 USA
| |
Collapse
|
67
|
Romanescu C, Schreiner TG, Mukovozov I. The Role of Human Herpesvirus 6 Infection in Alzheimer’s Disease Pathogenicity—A Theoretical Mosaic. J Clin Med 2022; 11:jcm11113061. [PMID: 35683449 PMCID: PMC9181317 DOI: 10.3390/jcm11113061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD), a neurodegenerative disorder generally affecting older adults, is the most common form of dementia worldwide. The disease is marked by severe cognitive and psychiatric decline and has dramatic personal and social consequences. Considerable time and resources are dedicated to the pursuit of a better understanding of disease mechanisms; however, the ultimate goal of obtaining a viable treatment option remains elusive. Neurodegenerative disease as an outcome of gene–environment interaction is a notion widely accepted today; a clear understanding of how external factors are involved in disease pathogenesis is missing, however. In the case of AD, significant effort has been invested in the study of viral pathogens and their role in disease mechanisms. The current scoping review focuses on the purported role HHV-6 plays in AD pathogenesis. First, early studies demonstrating evidence of HHV-6 cantonment in either post-mortem AD brain specimens or in peripheral blood samples of living AD patients are reviewed. Next, selected examples of possible mechanisms whereby viral infection can directly or indirectly contribute to AD pathogenesis are presented, such as autophagy dysregulation, the interaction between miR155 and HHV-6, and amyloid-beta as an antimicrobial peptide. Finally, closely related topics such as HHV-6 penetration in the CNS, HHV-6 involvement in neuroinflammation, and a brief discussion on HHV-6 epigenetics are examined.
Collapse
Affiliation(s)
- Constantin Romanescu
- Clinical Section IV, “St. Parascheva” Infectious Disease Hospital, 700116 Iași, Romania
- Correspondence: (C.R.); (T.G.S.)
| | - Thomas Gabriel Schreiner
- Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 21–23 Professor Dimitrie Mangeron Blvd.,700050 Iasi, Romania
- Correspondence: (C.R.); (T.G.S.)
| | - Ilya Mukovozov
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| |
Collapse
|
68
|
Sasso J, Ambrose BJB, Tenchov R, Datta RS, Basel MT, DeLong RK, Zhou QA. The Progress and Promise of RNA Medicine─An Arsenal of Targeted Treatments. J Med Chem 2022; 65:6975-7015. [PMID: 35533054 PMCID: PMC9115888 DOI: 10.1021/acs.jmedchem.2c00024] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Indexed: 02/08/2023]
Abstract
In the past decade, there has been a shift in research, clinical development, and commercial activity to exploit the many physiological roles of RNA for use in medicine. With the rapid success in the development of lipid-RNA nanoparticles for mRNA vaccines against COVID-19 and with several approved RNA-based drugs, RNA has catapulted to the forefront of drug research. With diverse functions beyond the role of mRNA in producing antigens or therapeutic proteins, many classes of RNA serve regulatory roles in cells and tissues. These RNAs have potential as new therapeutics, with RNA itself serving as either a drug or a target. Here, based on the CAS Content Collection, we provide a landscape view of the current state and outline trends in RNA research in medicine across time, geography, therapeutic pipelines, chemical modifications, and delivery mechanisms.
Collapse
Affiliation(s)
- Janet
M. Sasso
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Barbara J. B. Ambrose
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Rumiana Tenchov
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Ruchira S. Datta
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Matthew T. Basel
- College
of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Robert K. DeLong
- Nanotechnology
Innovation Center Kansas State, Kansas State
University, Manhattan, Kansas 66506, United States
| | - Qiongqiong Angela Zhou
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| |
Collapse
|
69
|
Helicobacter pylori Infection Mediates Inflammation and Tumorigenesis-Associated Genes Through miR-155-5p: An Integrative Omics and Bioinformatics-Based Investigation. Curr Microbiol 2022; 79:192. [PMID: 35551487 DOI: 10.1007/s00284-022-02880-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 04/15/2022] [Indexed: 11/03/2022]
Abstract
Helicobacter pylori (H. pylori) is a major human pathogenic bacterium that survives in the gastric mucosa. The aim of this study is to evaluate the expression of the target gene network of miR-155-5p in H. pylori-related gastritis using a combination of public gene expression datasets and web-based platforms. To evaluate the expression of genes related to gastritis, we used two datasets from Gene Expression Omnibus (GEO) database. Then, we determined the overlaps between the predicted miR-155-5p target genes and gastritis-dysregulated GEO datasets genes; in the next step, we identified the possible miR-155-5p target-DEGs (Target-Differentially Expressed Genes). Also, we performed multiple bioinformatics analyses to identify the most important targets and downstream pathways associated with this miRNA. Using the UCSC cancer genomic browser analysis tool, we investigated the expression of hub genes in relation to gastric cancer and H. pylori infection, as well as the potential role of hub genes in gastritis, inflammation, and cancer. In this regard, 28 differentially expressed target genes of miR-155-5p were identified. Most of the captured target genes were correlated with the host immune response and inflammation. Based on the specific patterns of expression in gastritis and cancer, CD9, MST1R, and ADAM10 were candidates for the most probable targets of miR-155-5p. Although the focus of this study is primarily on bioinformatics, we think that our findings should be experimentally validated before they can be used as potential therapeutic and diagnostic tools.
Collapse
|
70
|
Ishihara K, Fukazawa K. Cell-membrane-inspired polymers for constructing biointerfaces with efficient molecular recognition. J Mater Chem B 2022; 10:3397-3419. [PMID: 35389394 DOI: 10.1039/d2tb00242f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fabrication of devices that accurately recognize, detect, and separate target molecules from mixtures is a crucial aspect of biotechnology for applications in medical, pharmaceutical, and food sciences. This technology has also been recently applied in solving environmental and energy-related problems. In molecular recognition, biomolecules are typically complexed with a substrate, and specific molecules from a mixture are recognized, captured, and reacted. To increase sensitivity and efficiency, the activity of the biomolecules used for capture should be maintained, and non-specific reactions on the surface should be prevented. This review summarizes polymeric materials that are used for constructing biointerfaces. Precise molecular recognition occurring at the surface of cell membranes is fundamental to sustaining life; therefore, materials that mimic the structure and properties of this particular surface are emphasized in this article. The requirements for biointerfaces to eliminate nonspecific interactions of biomolecules are described. In particular, the major issue of protein adsorption on biointerfaces is discussed by focusing on the structure of water near the interface from a thermodynamic viewpoint; moreover, the structure of polymer molecules that control the water structure is considered. Methodologies enabling stable formation of these interfaces on material surfaces are also presented.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kyoko Fukazawa
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
71
|
Noor F, Saleem MH, Javed MR, Chen JT, Ashfaq UA, Okla MK, Abdel-Maksoud MA, Alwasel YA, Al-Qahtani WH, Alshaya H, Yasin G, Aslam S. Comprehensive computational analysis reveals H5N1 influenza virus-encoded miRNAs and host-specific targets associated with antiviral immune responses and protein binding. PLoS One 2022; 17:e0263901. [PMID: 35533150 PMCID: PMC9084522 DOI: 10.1371/journal.pone.0263901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/30/2022] [Indexed: 02/06/2023] Open
Abstract
H5N1 virus (H5N1V) is highly contagious among birds and it was first detected in humans in 1997 during a poultry outbreak in Hong Kong. As the mechanism of its pathogenesis inside the host is still lacking, in this in-silico study we hypothesized that H5N1V might create miRNAs, which could target the genes associated with host cellular regulatory pathways, thus provide persistent refuge to the virus. Using bioinformatics approaches, several H5N1V produced putative miRNAs as well as the host genes targeted by these miRNAs were found. Functional enrichment analysis of targeted genes revealed their involvement in many biological pathways that facilitate their host pathogenesis. Eventually, the microarray dataset (GSE28166) was analyzed to validate the altered expression level of target genes and found the genes involved in protein binding and adaptive immune responses. This study presents novel miRNAs and their targeted genes, which upon experimental validation could facilitate in developing new therapeutics against H5N1V infection.
Collapse
Affiliation(s)
- Fatima Noor
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Rizwan Javed
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Mohammad K. Okla
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mostafa A. Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Yasmeen A. Alwasel
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Wahidah H. Al-Qahtani
- Department of food sciences & nutrition, College of food & Agriculture sciences, King Saud University, Riyadh, Saudi Arabia
| | - Huda Alshaya
- Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, United States of America
| | - Ghulam Yasin
- Department of Botany, Bahauddin Zakariya University, Multan, Pakistan
| | - Sidra Aslam
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
72
|
Lodde V, Floris M, Muroni MR, Cucca F, Idda ML. Non-coding RNAs in malaria infection. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1697. [PMID: 34651456 PMCID: PMC9286032 DOI: 10.1002/wrna.1697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/02/2021] [Accepted: 09/21/2021] [Indexed: 12/31/2022]
Abstract
Malaria is one of the most severe infectious diseases affecting humans and it is caused by protozoan pathogens of the species Plasmodium (spp.). The malaria parasite Plasmodium is characterized by a complex, multistage life cycle that requires tight gene regulation which allows for host invasion and defense against host immune responses. Unfortunately, the mechanisms regulating gene expression during Plasmodium infection remain largely elusive, though several lines of evidence implicate a major involvement of non-coding RNAs (ncRNAs). The ncRNAs have been found to play a key role in regulating transcriptional and post-transcriptional events in a broad range of organisms including Plasmodium. In Plasmodium ncRNAs have been shown to regulate key events in the multistage life cycle and virulence ability. Here we review recent progress involving ncRNAs (microRNAs, long non-coding RNAs, and circular RNAs) and their role as regulators of gene expression during Plasmodium infection in human hosts with focus on the possibility of using these molecules as biomarkers for monitoring disease status. We also discuss the surprising function of ncRNAs in mediating the complex interplay between parasite and human host and future perspectives of the field. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Valeria Lodde
- Department of Biomedical SciencesUniversity of SassariSassariItaly
| | - Matteo Floris
- Department of Biomedical SciencesUniversity of SassariSassariItaly
| | - Maria Rosaria Muroni
- Department of Medical, Surgical, and Experimental SciencesUniversity of SassariSassariItaly
| | - Francesco Cucca
- Department of Biomedical SciencesUniversity of SassariSassariItaly
| | - Maria Laura Idda
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR)SassariItaly
| |
Collapse
|
73
|
Periwal N, Sharma P, Arora P, Pandey S, Kaur B, Sood V. A novel binary k-mer approach for classification of coding and non-coding RNAs across diverse species. Biochimie 2022; 199:112-122. [PMID: 35476940 DOI: 10.1016/j.biochi.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/12/2022] [Accepted: 04/21/2022] [Indexed: 12/01/2022]
Abstract
Classification among coding sequences (CDS) and non-coding RNA (ncRNA) sequences is a challenge and several machine learning models have been developed for the same. Since the frequency of curated CDS is many-folds as compared to that of the ncRNAs, we devised a novel approach to work with the complete datasets from fifteen diverse species. In our proposed binary approach, we replaced all the 'A's and 'T's with '0's and 'G's and 'C's with '1's to obtain a binary form of CDS and ncRNAs. The k-mer analysis of these binary sequences revealed that the frequency of binary patterns among the CDS and ncRNAs can be used as features to distinguish among them. Using insights from these distinguishing frequencies, we used k-nearest neighbor classifier to classify among them. Our strategy is not only time-efficient but leads to significantly increased performance metrics in terms of Matthews Correlation Coefficient (MCC), Accuracy, F1 score, Precision, Recall and AUC-ROC, for species like P. paniscus, M. mulatta, M. lucifugus, G. gallus, C. japonica, C. abingdonii, A. carolinensis, D. melanogaster and C. elegans when compared with the conventional ATGC approach. Additionally, we also show that the performance obtained for diverse species tested on the model based on H. sapiens, correlated with the geological evolutionary timeline, thereby further strengthening our approach. Therefore, we propose that CDS and ncRNAs can be efficiently classified using "2-character" binary frequency as compared to "4-character" frequency of ATGC approach. Thus, our highly efficient binary approach can replace the more complex ATGC approach successfully.
Collapse
Affiliation(s)
- Neha Periwal
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Delhi, 110062, India
| | - Priya Sharma
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Delhi, 110062, India
| | - Pooja Arora
- Department of Zoology, Hansraj College, University of Delhi, Delhi, 110007, India
| | - Saurabh Pandey
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Delhi, 110062, India
| | - Baljeet Kaur
- Department of Computer Science, Hansraj College, University of Delhi, Delhi, 110007, India.
| | - Vikas Sood
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Delhi, 110062, India.
| |
Collapse
|
74
|
Detection of SARS-CoV-2 infection by microRNA profiling of the upper respiratory tract. PLoS One 2022; 17:e0265670. [PMID: 35381016 PMCID: PMC8982876 DOI: 10.1371/journal.pone.0265670] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
Host biomarkers are increasingly being considered as tools for improved COVID-19 detection and prognosis. We recently profiled circulating host-encoded microRNA (miRNAs) during SARS-CoV-2 infection, revealing a signature that classified COVID-19 cases with 99.9% accuracy. Here we sought to develop a signature suited for clinical application by analyzing specimens collected using minimally invasive procedures. Eight miRNAs displayed altered expression in anterior nasal tissues from COVID-19 patients, with miR-142-3p, a negative regulator of interleukin-6 (IL-6) production, the most strongly upregulated. Supervised machine learning analysis revealed that a three-miRNA signature (miR-30c-2-3p, miR-628-3p and miR-93-5p) independently classifies COVID-19 cases with 100% accuracy. This study further defines the host miRNA response to SARS-CoV-2 infection and identifies candidate biomarkers for improved COVID-19 detection.
Collapse
|
75
|
Figueiredo DLA, Ximenez JPB, Seiva FRF, Panis C, Bezerra RDS, Ferrasa A, Cecchini AL, de Medeiros AI, Almeida AMF, Ramão A, Boldt ABW, Moya CF, Chin CM, de Paula D, Rech D, Gradia DF, Malheiros D, Venturini D, Tavares ER, Carraro E, Ribeiro EMDSF, Pereira EM, Tuon FF, Follador FAC, Fernandes GSA, Volpato H, Cólus IMDS, de Oliveira JC, Rodrigues JHDS, dos Santos JL, Visentainer JEL, Brandi JC, Serpeloni JM, Bonini JS, de Oliveira KB, Fiorentin K, Lucio LC, Faccin-Galhardi LC, Ferreto LED, Lioni LMY, Consolaro MEL, Vicari MR, Arbex MA, Pileggi M, Watanabe MAE, Costa MAR, Giannini MJSM, Amarante MK, Khalil NM, de Lima QA, Herai RH, Guembarovski RL, Shinsato RN, Mainardes RM, Giuliatti S, Yamada-Ogatta SF, Gerber VKDQ, Pavanelli WR, da Silva WC, Petzl-Erler ML, Valente V, Soares CP, Cavalli LR, Silva WA. COVID-19: The question of genetic diversity and therapeutic intervention approaches. Genet Mol Biol 2022; 44:e20200452. [PMID: 35421211 PMCID: PMC9075701 DOI: 10.1590/1678-4685-gmb-2020-0452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 12/24/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2), is the largest pandemic in modern history with very high infection rates and considerable mortality. The disease, which emerged in China's Wuhan province, had its first reported case on December 29, 2019, and spread rapidly worldwide. On March 11, 2020, the World Health Organization (WHO) declared the COVID-19 outbreak a pandemic and global health emergency. Since the outbreak, efforts to develop COVID-19 vaccines, engineer new drugs, and evaluate existing ones for drug repurposing have been intensively undertaken to find ways to control this pandemic. COVID-19 therapeutic strategies aim to impair molecular pathways involved in the virus entrance and replication or interfere in the patients' overreaction and immunopathology. Moreover, nanotechnology could be an approach to boost the activity of new drugs. Several COVID-19 vaccine candidates have received emergency-use or full authorization in one or more countries, and others are being developed and tested. This review assesses the different strategies currently proposed to control COVID-19 and the issues or limitations imposed on some approaches by the human and viral genetic variability.
Collapse
Affiliation(s)
- David Livingstone Alves Figueiredo
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Medicina, Guarapuava, PR, Brazil
- Instituto para Pesquisa do Câncer (IPEC), Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - João Paulo Bianchi Ximenez
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicologia e Ciência de Alimentos, Ribeirão Preto, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Fábio Rodrigues Ferreira Seiva
- Universidade Estadual do Norte do Paraná (UENP), Centro de Ciências Biológicas, Bandeirantes, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Carolina Panis
- Universidade Estadual do Oeste do Paraná, Francisco Beltrão, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Rafael dos Santos Bezerra
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Hemocentro Regional de Ribeirão Preto, Ribeirão Preto, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Adriano Ferrasa
- Universidade Estadual de Ponta Grossa, Ponta Grossa, Programa de Pós Graduação em Computação Aplicada, Ponta Grossa, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Alessandra Lourenço Cecchini
- Universidade Estadual de Londrina, Departamento de Patologia Geral, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Alexandra Ivo de Medeiros
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Ana Marisa Fusco Almeida
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Anelisa Ramão
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Ciências Biológicas, Guarapuava, PR, Brazil
| | - Angelica Beate Winter Boldt
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Carla Fredrichsen Moya
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Medicina Veterinária, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Chung Man Chin
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Fármacos e Medicamentos, Araraquara, SP, Brazil
- União das Faculdades dos Grandes Lagos (UNILAGO), Centro de Pesquisa Avançada em Medicina, São José do Rio Preto, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Daniel de Paula
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Farmácia, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Daniel Rech
- Universidade Estadual do Oeste do Paraná (UNIOESTE), Hospital do Câncer Francisco Beltrão, Laboratório de Biologia de Tumores, Francisco Beltrão, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Daniela Fiori Gradia
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Danielle Malheiros
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Danielle Venturini
- Universidade Estadual de Londrina, Centro de Ciências da Saúde, Departamento de patologia, clínica e toxicologia, Laboratório de bioquímica clínica, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Eliandro Reis Tavares
- Universidade Estadual de Londrina, Departamento de Microbiologia, Centro de Ciências Biológicas, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Emerson Carraro
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Laboratório de Virologia Clínica, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Enilze Maria de Souza Fonseca Ribeiro
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Evani Marques Pereira
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Enfermagem, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Felipe Francisco Tuon
- Universidade Católica do Paraná, Laboratório de Doenças Infecciosas Emergentes, Pontifícia Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Franciele Aní Caovilla Follador
- Universidade Estadual do Oeste do Paraná, Departamento de Ciências da Vida, Programa de Pós-Graduação em Ciências Aplicadas à Saúde, Francisco Beltrão, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Glaura Scantamburlo Alves Fernandes
- Universidade Estadual de Londrina, Departamento de Biologia Geral, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Hélito Volpato
- Universidade Estadual do Paraná (UNESPAR), Faculdade de Ciências Biológicas, Centro de Ciências Humanas e Educação, Paranavaí, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Ilce Mara de Syllos Cólus
- Universidade Estadual de Londrina, Departamento de Biologia Geral, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Jaqueline Carvalho de Oliveira
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Jean Henrique da Silva Rodrigues
- Universidade do Estado de São Paulo (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Fármacos e Medicamentos, Araraquara, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Jean Leandro dos Santos
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Fármacos e Medicamentos, Araraquara, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Jeane Eliete Laguila Visentainer
- Universidade Estadual de Maringá, Laboratório de Imunogenética, Maringá, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Juliana Cristina Brandi
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Juliana Mara Serpeloni
- Universidade Estadual de Londrina, Departamento de Biologia Geral, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Juliana Sartori Bonini
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Laboratório de Neuropsicofarmacologia, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Karen Brajão de Oliveira
- Universidade Estadual de Londrina, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Laboratório de Genética Molecular e Imunologia, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Karine Fiorentin
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Léia Carolina Lucio
- Universidade Estadual do Oeste do Paraná, Programa de Pós-Graduação em Ciências Aplicadas à Saúde, Centro de Ciências da Saúde, Francisco Beltrão, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Ligia Carla Faccin-Galhardi
- Universidade Estadual de Londrina, Departamento de Microbiologia, Centro de Ciências Biológicas, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Lirane Elize Defante Ferreto
- Universidade Estadual do Oeste do Paraná, Programa de Pós-Graduação em Ciências Aplicadas à Saúde, Centro de Ciências da Saúde, Francisco Beltrão, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Lucy Megumi Yamauchi Lioni
- Universidade Estadual do Norte do Paraná (UENP), Centro de Ciências Biológicas, Bandeirantes, PR, Brazil
- Universidade Estadual de Londrina, Departamento de Microbiologia, Centro de Ciências Biológicas, Londrina, PR, Brazil
| | - Marcia Edilaine Lopes Consolaro
- Universidade Estadual de Maringá, Departamento de Análises Clínicas e Biomedicina, Maringá, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Marcelo Ricardo Vicari
- Universidade Estadual de Ponta Grossa, Departamento de Biologia e Genética Estrutural e Molecular, Ponta Grossa, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Marcos Abdo Arbex
- Universidade de Araraquara, Faculdade de Medicina, Área temática de Pneumologia, Araraquara, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Marcos Pileggi
- Universidade Estadual de Ponta Grossa, Departamento de Biologia e Genética Estrutural e Molecular, Ponta Grossa, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Maria Angelica Ehara Watanabe
- Universidade Estadual de Londrina, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Laboratório de Imunologia, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Maria Antônia Ramos Costa
- Universidade do Estado do Paraná, Colegiada de Enfermagem, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Maria José S. Mendes Giannini
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Marla Karine Amarante
- Universidade Estadual de Londrina, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Laboratório de Imunologia, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Najeh Maissar Khalil
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Farmácia, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Quirino Alves de Lima
- Universidade Estadual de Maringá, Laboratório de Imunogenética, Maringá, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Roberto H. Herai
- Universidade Católica do Paraná (PUCPR), Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Laboratório Experimental Multiusuário, Curitiba, PR, Brazil
- Universitário Católico Salesiano Auxilium (UNISALESIANO), Faculdade de Medicina, Centro Araçatuba, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Roberta Losi Guembarovski
- Universidade Estadual de Londrina, Departamento de Biologia Geral, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Rogério N. Shinsato
- Universidade Católica do Paraná (PUCPR), Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Laboratório Experimental Multiusuário, Curitiba, PR, Brazil
- Universitário Católico Salesiano Auxilium (UNISALESIANO), Faculdade de Medicina, Centro Araçatuba, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Rubiana Mara Mainardes
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Farmácia, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Silvana Giuliatti
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Hemocentro Regional de Ribeirão Preto, Ribeirão Preto, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Sueli Fumie Yamada-Ogatta
- Universidade Estadual de Londrina, Departamento de Microbiologia, Centro de Ciências Biológicas, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Viviane Knuppel de Quadros Gerber
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Enfermagem, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Wander Rogério Pavanelli
- Universidade Estadual de Londrina, Laboratório de Imunoparasitologia de Doenças Negligenciadas e Câncer, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Weber Claudio da Silva
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Farmácia, Guarapuava, PR, Brazil
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Laboratório de Neuropsicofarmacologia, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Maria Luiza Petzl-Erler
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Valeria Valente
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brazil
- Faculdade de Medicina de Ribeirão Preto, Centro de Terapia Celular (CEPID/FAPESP), Ribeirão Preto, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Christiane Pienna Soares
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Luciane Regina Cavalli
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Wilson Araujo Silva
- Instituto para Pesquisa do Câncer (IPEC), Guarapuava, PR, Brazil
- Faculdade de Medicina de Ribeirão Preto, Centro de Terapia Celular (CEPID/FAPESP), Ribeirão Preto, SP, Brazil
- Instituto Nacional de Ciência e Tecnologia em Células-Tronco e Terapia Celular (INCT/CNPq), Ribeirão Preto, SP, Brazil
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| |
Collapse
|
76
|
Zhang C, Owen LA, Lillvis JH, Zhang SX, Kim IK, DeAngelis MM. AMD Genomics: Non-Coding RNAs as Biomarkers and Therapeutic Targets. J Clin Med 2022; 11:jcm11061484. [PMID: 35329812 PMCID: PMC8954267 DOI: 10.3390/jcm11061484] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 12/04/2022] Open
Abstract
Age-related macular degeneration (AMD) is a progressive neurodegenerative disease that is the world’s leading cause of blindness in the aging population. Although the clinical stages and forms of AMD have been elucidated, more specific prognostic tools are required to determine when patients with early and intermediate AMD will progress into the advanced stages of AMD. Another challenge in the field has been the appropriate development of therapies for intermediate AMD and advanced atrophic AMD. After numerous negative clinical trials, an anti-C5 agent and anti-C3 agent have recently shown promising results in phase 3 clinical trials, in terms of slowing the growth of geographic atrophy, an advanced form of AMD. Interestingly, both drugs appear to be associated with an increased incidence of wet AMD, another advanced form of the disease, and will require frequent intravitreal injections. Certainly, there remains a need for other therapeutic agents with the potential to prevent progression to advanced stages of the disease. Investigation of the role and clinical utility of non-coding RNAs (ncRNAs) is a major advancement in biology that has only been minimally applied to AMD. In the following review, we discuss the clinical relevance of ncRNAs in AMD as both biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Charles Zhang
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (C.Z.); (L.A.O.); (J.H.L.); (S.X.Z.)
| | - Leah A. Owen
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (C.Z.); (L.A.O.); (J.H.L.); (S.X.Z.)
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
- Department of Population Health Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
- Department of Obstetrics and Gynecology, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
| | - John H. Lillvis
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (C.Z.); (L.A.O.); (J.H.L.); (S.X.Z.)
- Veterans Administration Western New York Healthcare System, Buffalo, NY 14212, USA
| | - Sarah X. Zhang
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (C.Z.); (L.A.O.); (J.H.L.); (S.X.Z.)
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| | - Ivana K. Kim
- Retina Service, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Correspondence: (I.K.K.); (M.M.D.)
| | - Margaret M. DeAngelis
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (C.Z.); (L.A.O.); (J.H.L.); (S.X.Z.)
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
- Department of Population Health Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
- Veterans Administration Western New York Healthcare System, Buffalo, NY 14212, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Genetics, Genomics and Bioinformatics Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Correspondence: (I.K.K.); (M.M.D.)
| |
Collapse
|
77
|
Liu X, Wen YZ, Huang ZL, Shen X, Wang JH, Luo YH, Chen WX, Lun ZR, Li HB, Qu LH, Shan H, Zheng LL. SARS-CoV-2 causes a significant stress response mediated by small RNAs in the blood of COVID-19 patients. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:751-762. [PMID: 35003892 PMCID: PMC8719421 DOI: 10.1016/j.omtn.2021.12.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 12/29/2021] [Indexed: 12/24/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a serious impact on the world. In this study, small RNAs from the blood of COVID-19 patients with moderate or severe symptoms were extracted for high-throughput sequencing and analysis. Interestingly, the levels of a special group of tRNA-derived small RNAs (tsRNAs) were found to be dramatically upregulated after SARS-CoV-2 infection, particularly in coronavirus disease 2019 (COVID-19) patients with severe symptoms. In particular, the 3′CCA tsRNAs from tRNA-Gly were highly consistent with the inflammation indicator C-reactive protein (CRP). In addition, we found that the majority of significantly changed microRNAs (miRNAs) were associated with endoplasmic reticulum (ER)/unfolded protein response (UPR) sensors, which may lead to the induction of proinflammatory cytokine and immune responses. This study found that SARS-CoV-2 infection caused significant changes in the levels of stress-associated small RNAs in patient blood and their potential functions. Our research revealed that the cells of COVID-19 patients undergo tremendous stress and respond, which can be reflected or regulated by small non-coding RNA (sncRNAs), thus providing potential thought for therapeutic intervention in COVID-19 by modulating small RNA levels or activities.
Collapse
Affiliation(s)
- Xi Liu
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, P. R. China
| | - Yan-Zi Wen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zi-Liang Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xia Shen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China.,Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou 511458, P. R. China.,Center for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Jun-Hao Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yi-Hai Luo
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Wen-Xin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhao-Rong Lun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Hui-Bin Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Liang-Hu Qu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Hong Shan
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, P. R. China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, P. R. China.,Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, P. R. China
| | - Ling-Ling Zheng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
78
|
miRNAs in Cancer (Review of Literature). Int J Mol Sci 2022; 23:ijms23052805. [PMID: 35269947 PMCID: PMC8910953 DOI: 10.3390/ijms23052805] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are short, noncoding, single-stranded RNA molecules that regulate gene expression at the post-transcriptional level by binding to mRNAs. miRNAs affect the course of processes of fundamental importance for the proper functioning of the organism. These processes include cell division, proliferation, differentiation, cell apoptosis and the formation of blood vessels. Altered expression of individual miRNAs has been shown in numerous cancers, which may indicate the oncogenic or suppressor potential of the molecules in question. This paper discusses the current knowledge about the possibility of using miRNA as a diagnostic marker and a potential target in modern anticancer therapies.
Collapse
|
79
|
Ozturk EA, Caner A. Liquid Biopsy for Promising Non-invasive Diagnostic Biomarkers in Parasitic Infections. Acta Parasitol 2022; 67:1-17. [PMID: 34176040 DOI: 10.1007/s11686-021-00444-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Liquid biopsy refers to the sampling and molecular analysis of body fluids such as blood, saliva, and urine in contrast to conventional tissue biopsies. Liquid biopsy approach can offer powerful non-invasive biomarkers (circulating markers) for diagnosis and monitoring treatment response of a variety of diseases, including parasitic infections. METHODS In this review, we concentrate on cell-free DNA (cfDNA), microRNA (miRNA), and exosomes in the published literature. RESULTS Considering the high prevalence and severity of parasitic infections worldwide, circulating biomarkers can provide a new insight into the diagnosis and prognosis of parasites in the near future. Moreover, identifying and characterizing parasite- or host-derived circulating markers are important for a better understanding of the pathogenesis of parasite infection and host-parasite relationship at the molecular level. Profiling of biomarkers for parasitic diseases is a promising potential field, though further studies and optimization strategies are required, both in vitro and in vivo. CONCLUSION In this review, we discuss three approaches in the liquid biopsy including circulating cfDNA, miRNAs, and exosomes for diagnosis and evaluation of parasites and summarize circulating biomarkers in non-invasive samples during parasitic infections.
Collapse
Affiliation(s)
- Eylem Akdur Ozturk
- Department of Parasitology, Çukurova University Faculty of Medicine, Adana, Turkey
| | - Ayse Caner
- Department of Parasitology, Ege University Faculty of Medicine, 35100, Izmir, Turkey.
- Cancer Research Center, Ege University, Izmir, Turkey.
| |
Collapse
|
80
|
Kataria P, Surela N, Chaudhary A, Das J. MiRNA: Biological Regulator in Host-Parasite Interaction during Malaria Infection. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042395. [PMID: 35206583 PMCID: PMC8874942 DOI: 10.3390/ijerph19042395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 12/26/2022]
Abstract
Malaria is a severe life-threatening disease caused by the bites of parasite-infected female Anopheles mosquitoes. It remains a significant problem for the most vulnerable children and women. Recent research has helped establish the relationship between microRNAs (miRNAs) and many other diseases. MiRNAs are the class of small non-coding RNAs consisting of 18–23 nucleotides in length that are evolutionarily conserved and regulate gene expression at a post-transcriptional level and play a significant role in various molecular mechanisms such as cell survival, cell proliferation, and differentiation. MiRNAs can help detect malaria infection as the malaria parasite could alter the miRNA expression of the host. These alterations can be diagnosed by the molecular diagnostic tool that can indicate disease. We summarize the current understanding of miRNA during malaria infection. miRNAs can also be used as biomarkers, and initial research has unearthed their potential in diagnosing and managing various diseases such as malaria.
Collapse
Affiliation(s)
- Poonam Kataria
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi 110077, India; (P.K.); (N.S.); (A.C.)
| | - Neha Surela
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi 110077, India; (P.K.); (N.S.); (A.C.)
| | - Amrendra Chaudhary
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi 110077, India; (P.K.); (N.S.); (A.C.)
| | - Jyoti Das
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi 110077, India; (P.K.); (N.S.); (A.C.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Correspondence: or ; Tel.: +91-25307203; Fax: +91-25307177
| |
Collapse
|
81
|
John Cremin C, Dash S, Huang X. Big Data: Historic Advances and Emerging Trends in Biomedical Research. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
82
|
Sankar S, Maruthai K, Bobby Z, Adhisivam B. MicroRNA Expression in Neonates with Late-onset Sepsis - A Cross-sectional Comparative Study. Immunol Invest 2022; 51:1647-1659. [PMID: 35026963 DOI: 10.1080/08820139.2021.2020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Neonatal sepsis is a major health concern among neonates with higher morbidity and mortality rate. Studies have recently speculated the importance of differential expression of circulating mature micro-RNAs (miRNAs) which could serve as diagnostic as well as prognostic markers for risk of mortality in neonatal sepsis. This study aimed to analyze the expression pattern and to assess the diagnostic/prognostic value of miRNAs miR-21, miR-29a miR-31, miR-146a, and miR-155 in late-onset neonatal sepsis. METHODS A cross-sectional comparative study was conducted including 42 healthy controls and 42 neonates with late-onset neonatal sepsis. SYBR green-based miScript RT-PCR assay was used for the expression analysis and the comparative Ct method 2-delta (Ct) method was used for relative quantification of the candidate miRNAs in plasma. Significantly higher expression of miR-21 and miR-155 and lower expression of miR-29a and miR-146a was observed in cases compared to control except miR-31. In subgroups analysis, miR-21(p = .03) showed a significant difference between pre-term and term neonates and miR-31 (p = .01) and miR-155 (p = .03) showed a significant difference between low-birth-weight and normal-birth-weight neonates. miR-146a showed significantly lower expression in the non-survivor group compared to the survivor group (p = .005). A receiver operating characteristic curve (ROC) analysis of miR-21 and miR-29a (0.829 and 0.787 AUC of ROC curves) showed good discrimination for the identification of sepsis from non-sepsis neonates. CONCLUSION The current study shows evidence of differential expression of miRNAs in neonatal sepsis and this altered expression of candidate miRNAs could be involved in immune dysregulation, thus leading to sepsis-related severity in newborns.
Collapse
Affiliation(s)
- Saranya Sankar
- Department of Neonatology, Jawaharlal Institute of Postgraduate Medical Education and Research (Jipmer), Puducherry, India
| | - Kathirvel Maruthai
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (Jipmer), Puducherry, India.,Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Zachariah Bobby
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (Jipmer), Puducherry, India
| | - Bethou Adhisivam
- Department of Neonatology, Jawaharlal Institute of Postgraduate Medical Education and Research (Jipmer), Puducherry, India
| |
Collapse
|
83
|
Ogonowski N, Salcidua S, Leon T, Chamorro-Veloso N, Valls C, Avalos C, Bisquertt A, Rentería ME, Orellana P, Duran-Aniotz C. Systematic Review: microRNAs as Potential Biomarkers in Mild Cognitive Impairment Diagnosis. Front Aging Neurosci 2022; 13:807764. [PMID: 35095478 PMCID: PMC8790149 DOI: 10.3389/fnagi.2021.807764] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
The rate of progression from Mild Cognitive Impairment (MCI) to Alzheimer's disease (AD) is estimated at >10% per year, reaching up to 80-90% after 6 years. MCI is considered an indicator of early-stage AD. In this context, the diagnostic screening of MCI is crucial for detecting individuals at high risk of AD before they progress and manifest further severe symptoms. Typically, MCI has been determined using neuropsychological assessment tools such as the Montreal Cognitive Assessment (MoCA) or Mini-Mental Status Examination (MMSE). Unfortunately, other diagnostic methods are not available or are unable to identify MCI in its early stages. Therefore, identifying new biomarkers for MCI diagnosis and prognosis is a significant challenge. In this framework, miRNAs in serum, plasma, and other body fluids have emerged as a promising source of biomarkers for MCI and AD-related cognitive impairments. Interestingly, miRNAs can regulate several signaling pathways via multiple and diverse targets in response to pathophysiological stimuli. This systematic review aims to describe the current state of the art regarding AD-related target genes modulated by differentially expressed miRNAs in peripheral fluids samples in MCI subjects to identify potential miRNA biomarkers in the early stages of AD. We found 30 articles that described five miRNA expression profiles from peripheral fluid in MCI subjects, showing possible candidates for miRNA biomarkers that may be followed up as fluid biomarkers or therapeutic targets of early-stage AD. However, additional research is needed to validate these miRNAs and characterize the precise neuropathological mechanisms.
Collapse
Affiliation(s)
- Natalia Ogonowski
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Cognitive Neuroscience Center (CNC), National Scientific and Technical Research Council (CONICET), Universidad de San Andrés, Buenos Aires, Argentina
| | - Stefanny Salcidua
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Faculty of Engineering and Sciences, Universidad Adolfo Ibanez, Santiago, Chile
| | - Tomas Leon
- Global Brain Health Institute, Trinity College, Dublin, Ireland
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | - Constanza Avalos
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
| | | | - Miguel E. Rentería
- Department of Genetics and Computational Biology, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Paulina Orellana
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Claudia Duran-Aniotz
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| |
Collapse
|
84
|
Farr RJ, Godde N, Cowled C, Sundaramoorthy V, Green D, Stewart C, Bingham J, O'Brien CM, Dearnley M. Machine Learning Identifies Cellular and Exosomal MicroRNA Signatures of Lyssavirus Infection in Human Stem Cell-Derived Neurons. Front Cell Infect Microbiol 2022; 11:783140. [PMID: 35004351 PMCID: PMC8739477 DOI: 10.3389/fcimb.2021.783140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/07/2021] [Indexed: 12/17/2022] Open
Abstract
Despite being vaccine preventable, rabies (lyssavirus) still has a significant impact on global mortality, disproportionally affecting children under 15 years of age. This neurotropic virus is deft at avoiding the immune system while travelling through neurons to the brain. Until recently, research efforts into the role of non-coding RNAs in rabies pathogenicity and detection have been hampered by a lack of human in vitro neuronal models. Here, we utilized our previously described human stem cell-derived neural model to investigate the effect of lyssavirus infection on microRNA (miRNA) expression in human neural cells and their secreted exosomes. Conventional differential expression analysis identified 25 cellular and 16 exosomal miRNAs that were significantly altered (FDR adjusted P-value <0.05) in response to different lyssavirus strains. Supervised machine learning algorithms determined 6 cellular miRNAs (miR-99b-5p, miR-346, miR-5701, miR-138-2-3p, miR-651-5p, and miR-7977) were indicative of lyssavirus infection (100% accuracy), with the first four miRNAs having previously established roles in neuronal function, or panic and impulsivity-related behaviors. Another 4-miRNA signatures in exosomes (miR-25-3p, miR-26b-5p, miR-218-5p, miR-598-3p) can independently predict lyssavirus infected cells with >99% accuracy. Identification of these robust lyssavirus miRNA signatures offers further insight into neural lineage responses to infection and provides a foundation for utilizing exosome miRNAs in the development of next-generation molecular diagnostics for rabies.
Collapse
Affiliation(s)
- Ryan J Farr
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Nathan Godde
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Christopher Cowled
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Vinod Sundaramoorthy
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Diane Green
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Cameron Stewart
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - John Bingham
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Carmel M O'Brien
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, VIC, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Megan Dearnley
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| |
Collapse
|
85
|
Ramoji A, Pahlow S, Pistiki A, Rueger J, Shaik TA, Shen H, Wichmann C, Krafft C, Popp J. Understanding Viruses and Viral Infections by Biophotonic Methods. TRANSLATIONAL BIOPHOTONICS 2022. [DOI: 10.1002/tbio.202100008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Anuradha Ramoji
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
- Center for Sepsis Control and Care Jena University Hospital, Am Klinikum 1, 07747 Jena Germany
| | - Susanne Pahlow
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743 Jena Germany
| | - Aikaterini Pistiki
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
| | - Jan Rueger
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
| | - Tanveer Ahmed Shaik
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
| | - Haodong Shen
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743 Jena Germany
| | - Christina Wichmann
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743 Jena Germany
| | - Christoph Krafft
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
| | - Juergen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
- Center for Sepsis Control and Care Jena University Hospital, Am Klinikum 1, 07747 Jena Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743 Jena Germany
| |
Collapse
|
86
|
Tao X, Mo L, Zeng L. Hyperoxia Induced Bronchopulmonary Dysplasia-Like Inflammation via miR34a-TNIP2-IL-1β Pathway. Front Pediatr 2022; 10:805860. [PMID: 35433535 PMCID: PMC9005975 DOI: 10.3389/fped.2022.805860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/07/2022] [Indexed: 11/15/2022] Open
Abstract
Lung injury induced by oxygen is a key contributor to the pathogenesis of preterm infant bronchopulmonary dysplasia (BPD). To date, there are comprehensive therapeutic strategy for this disease, but the underlying mechanism is still in progress. By using lentivirus, we constructed microRNA34a (miR34a)-overexpressing or knockdown A549 cell lines, and exposure to hyperoxia to mimic oxygen induce lung injury. In this study, we investigated 4 proinflammatory cytokines, interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), angiopoietin-1 (Ang-1), and Cyclooxygenase-2 (COX-2) in the secreted sputum of infants who received mechanical ventilation, and found that IL-1β was substantially elevated in the first week after oxygen therapy and with no significant decrease until the fourth week, while TNF-α, Ang-1, and COX-2 were increased in the first week but decreased quickly in the following weeks. In addition, in vitro assay revealed that hyperoxia significantly increased the expression of miR-34a, which positively regulated the proinflammatory cytokine IL-1β in a time- and concentration-dependent manner in A549 cells. Overexpressing or knockdown miR34 would exacerbate or inhibit production of IL-1β and its upstream NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome signaling pathway. Mechanically, it's found that TNFAIP3 interacting protein 2 (TNIP2), an inhibitor of nuclear factor κB (NF-κB), is a direct target of miR34a, negatively regulated activation of NLRP3 inflammasome and the production of IL-1β. Overexpressing TNIP2 ameliorated hyperoxia-induced production of IL-1β and cell apoptosis. Our findings suggest that TNIP2 may be a potential clinical marker in the diagnosis of BPD.
Collapse
Affiliation(s)
- Xuwei Tao
- Department of Neonatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luxia Mo
- Department of Neonatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingkong Zeng
- Department of Neonatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
87
|
Weingartner M, Stücheli S, Jebbawi F, Gottstein B, Beldi G, Lundström-Stadelmann B, Wang J, Odermatt A. Albendazole reduces hepatic inflammation and endoplasmic reticulum-stress in a mouse model of chronic Echinococcus multilocularis infection. PLoS Negl Trop Dis 2022; 16:e0009192. [PMID: 35030165 PMCID: PMC8794265 DOI: 10.1371/journal.pntd.0009192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 01/27/2022] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Echinococcus multilocularis causes alveolar echinococcosis (AE), a rising zoonotic disease in the northern hemisphere. Treatment of this fatal disease is limited to chemotherapy using benzimidazoles and surgical intervention, with frequent disease recurrence in cases without radical surgery. Elucidating the molecular mechanisms underlying E. multilocularis infections and host-parasite interactions ultimately aids developing novel therapeutic options. This study explored an involvement of unfolded protein response (UPR) and endoplasmic reticulum-stress (ERS) during E. multilocularis infection in mice. METHODS E. multilocularis- and mock-infected C57BL/6 mice were subdivided into vehicle, albendazole (ABZ) and anti-programmed death ligand 1 (αPD-L1) treated groups. To mimic a chronic infection, treatments of mice started six weeks post i.p. infection and continued for another eight weeks. Liver tissue was then collected to examine inflammatory cytokines and the expression of UPR- and ERS-related genes. RESULTS E. multilocularis infection led to an upregulation of UPR- and ERS-related proteins in the liver, including ATF6, CHOP, GRP78, ERp72, H6PD and calreticulin, whilst PERK and its target eIF2α were not affected, and IRE1α and ATF4 were downregulated. ABZ treatment in E. multilocularis infected mice reversed, or at least tended to reverse, these protein expression changes to levels seen in mock-infected mice. Furthermore, ABZ treatment reversed the elevated levels of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α and interferon (IFN)-γ in the liver of infected mice. Similar to ABZ, αPD-L1 immune-treatment tended to reverse the increased CHOP and decreased ATF4 and IRE1α expression levels. CONCLUSIONS AND SIGNIFICANCE AE caused chronic inflammation, UPR activation and ERS in mice. The E. multilocularis-induced inflammation and consecutive ERS was ameliorated by ABZ and αPD-L1 treatment, indicating their effectiveness to inhibit parasite proliferation and downregulate its activity status. Neither ABZ nor αPD-L1 themselves affected UPR in control mice. Further research is needed to elucidate the link between inflammation, UPR and ERS, and if these pathways offer potential for improved therapies of patients with AE.
Collapse
Affiliation(s)
- Michael Weingartner
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Simon Stücheli
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Fadi Jebbawi
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Bruno Gottstein
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Guido Beldi
- Department of Visceral Surgery and Medicine, University Hospital of Bern, Bern, Switzerland
| | | | - Junhua Wang
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
88
|
Sikka R, Bharti PK, Gupta H. microRNAs: An opportunity to overcome significant challenges in malaria detection and control. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100115. [PMID: 35801230 PMCID: PMC9253159 DOI: 10.1016/j.crphar.2022.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022] Open
Abstract
Organ damage and pathological disease states lead to the rapid release of microRNAs (miRNAs), a class of endogenous small non-coding RNAs, into the blood circulation. Because secreted miRNAs can be detected in biologic fluids such as plasma, they are currently being explored as promising non-invasive biomarkers of infectious and non-infectious diseases. Malaria remains a major global health challenge but still the potential of miRNAs has not been explored extensively in the context of malaria compared to other diseases. Here, we highlight important miRNAs found during different phases of the malaria life cycle in the anopheline vector and the human host. We have also put forward our opinion on how malaria parasite-stage-specific miRNAs can be incorporated into new diagnostic and prognostic tools to detect carrier mosquitoes and infected patients. In addition, we have emphasised the potential of miRNAs to be used as new therapeutics to treat severe malaria patients, an unresearched area of malaria control.
Collapse
|
89
|
Magdalena D, Magdalena G. Biological functions and diagnostic implications of microRNAs in Mycobacterium tuberculosis infection. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.333208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
90
|
The Landscape of Circulating miRNAs in the Post-Genomic Era. Genes (Basel) 2021; 13:genes13010094. [PMID: 35052434 PMCID: PMC8774581 DOI: 10.3390/genes13010094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 02/06/2023] Open
|
91
|
Abstract
There are strong incentives for human populations to develop antiviral systems. Similarly, genomes that encode antiviral systems have had strong selective advantages. Protein-guided immune systems, which have been well studied in mammals, are necessary for survival in our virus-laden environments. Small RNA–directed antiviral immune systems suppress invasion of cells by non-self genetic material via complementary base pairing with target sequences. These RNA silencing-dependent systems operate in diverse organisms. In mammals, there is strong evidence that microRNAs (miRNAs) regulate endogenous genes important for antiviral immunity, and emerging evidence that virus-derived nucleic acids can be directly targeted by small interfering RNAs (siRNAs), PIWI-interacting RNAs (piRNAs), and transfer RNAs (tRNAs) for protection in some contexts. In this review, we summarize current knowledge of the antiviral functions of each of these small RNA types and consider their conceptual and mechanistic overlap with innate and adaptive protein-guided immunity, including mammalian antiviral cytokines, as well as the prokaryotic RNA-guided immune system, CRISPR. In light of recent successes in delivery of RNA for antiviral purposes, most notably for vaccination, we discuss the potential for development of small noncoding RNA–directed antiviral therapeutics and prophylactics. Viruses are all around us and are likely inside some of the reader’s cells at this moment. Organisms are accommodated to this reality and encode various immune systems to limit virus replication. In mammals, the best studied immune systems are directed by proteins that specifically recognize viruses. These include diverse antibodies and T cell receptors, which recognize viral proteins, and pattern recognition receptors, some of which can recognize viral nucleic acids. In other organisms, including bacteria, immune systems directed by small RNAs are also well known; spacer-derived guide RNAs in CRISPR/Cas immune systems are one prominent example. The small RNAs directing these systems derive their specificity via complementary base pairing with their targets, which include both host and viral nucleic acids. Rather than having “traded in” these systems for more advanced protein-directed systems, increasing evidence supports the perspective that small RNA–directed immune systems remain active in mammalian antiviral immunity in some contexts. Here, we review what is known so far about the emerging roles of mammalian siRNAs, miRNAs, piRNAs, and tRNAs in directing immunity to viruses.
Collapse
Affiliation(s)
- Tomoko Takahashi
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- * E-mail: (TT); (NFP)
| | - Steven M. Heaton
- Genome Immunobiology RIKEN Hakubi Research Team, Cluster for Pioneering Research, RIKEN, Yokohama, Japan
- Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Nicholas F. Parrish
- Genome Immunobiology RIKEN Hakubi Research Team, Cluster for Pioneering Research, RIKEN, Yokohama, Japan
- Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
- * E-mail: (TT); (NFP)
| |
Collapse
|
92
|
Li C, Wu A, Song K, Gao J, Huang E, Bai Y, Liu X. Identifying Putative Causal Links between MicroRNAs and Severe COVID-19 Using Mendelian Randomization. Cells 2021; 10:cells10123504. [PMID: 34944012 PMCID: PMC8700362 DOI: 10.3390/cells10123504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022] Open
Abstract
The SARS-CoV-2 (COVID-19) pandemic has caused millions of deaths worldwide. Early risk assessment of COVID-19 cases can help direct early treatment measures that have been shown to improve the prognosis of severe cases. Currently, circulating miRNAs have not been evaluated as canonical COVID-19 biomarkers, and identifying biomarkers that have a causal relationship with COVID-19 is imperative. To bridge these gaps, we aim to examine the causal effects of miRNAs on COVID-19 severity in this study using two-sample Mendelian randomization approaches. Multiple studies with available GWAS summary statistics data were retrieved. Using circulating miRNA expression data as exposure, and severe COVID-19 cases as outcomes, we identified ten unique miRNAs that showed causality across three phenotype groups of COVID-19. Using expression data from an independent study, we validated and identified two high-confidence miRNAs, namely, hsa-miR-30a-3p and hsa-miR-139-5p, which have putative causal effects on developing cases of severe COVID-19. Using existing literature and publicly available databases, the potential causative roles of these miRNAs were investigated. This study provides a novel way of utilizing miRNA eQTL data to help us identify potential miRNA biomarkers to make better and early diagnoses and risk assessments of severe COVID-19 cases.
Collapse
Affiliation(s)
- Chang Li
- USF Genomics & College of Public Health, University of South Florida, Tampa, FL 33612, USA
- Correspondence: (C.L.); (Y.B.); (X.L.)
| | - Aurora Wu
- Emma Willard School, Troy, NY 12180, USA;
| | | | - Jeslyn Gao
- Simsbury High School, Simsbury, CT 06070, USA;
| | - Eric Huang
- James E. Taylor High School, Katy, TX 77450, USA;
| | - Yongsheng Bai
- Next-Gen Intelligent Science Training, Ann Arbor, MI 48105, USA
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
- Correspondence: (C.L.); (Y.B.); (X.L.)
| | - Xiaoming Liu
- USF Genomics & College of Public Health, University of South Florida, Tampa, FL 33612, USA
- Correspondence: (C.L.); (Y.B.); (X.L.)
| |
Collapse
|
93
|
Li MJ, An SY, Wu Y. Photoelectrochemical monitoring of miRNA based on Au NPs@g-C 3N 4 coupled with exonuclease-involved target cycle amplification. Anal Chim Acta 2021; 1187:339156. [PMID: 34753579 DOI: 10.1016/j.aca.2021.339156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022]
Abstract
Herein, a sensitive photoelectrochemical (PEC) biosensing platform was designed for quantitative monitoring of microRNA-141 (miRNA-141) based on Au nanoparticles@graphitic-like carbon nitride (Au NPs@g-C3N4) as the signal generator accompanying with T7 exonuclease (T7 Exo)-involved target cycle amplification process. Initially, the prepared Au NPs@g-C3N4 as the signal generator was coated on the electrode surface, which could produce a strong PEC signal due to the unique optical and electronic properties of g-C3N4 and the surface plasmonic resonance (SPR) enhanced effect of Au NPs. Meanwhile, the modified Au NPs@g-C3N4 was also considered as the fixed platform for immobilization of S1-S2 through Au-N bond. Thereafter, the T7 Exo-involved target cycle amplification process would be initiated in existence of miRNA-141 and T7 Exo, leading to abundant single chain S1 exposed on electrode surface. Ultimately, the S3-SiO2 composite was introduced through DNA hybridization, thereby producing high steric hindrance to block external electrons supply and light harvesting, which would further cause a significantly quenched PEC signal. Experimental results revealed that the PEC signal was gradually inhibited with the raising miRNA-141 concentration in the range from 1 fM to 1 nM with a detection limit of 0.3 fM. The PEC biosensor we proposed here provides a valuable scheme in miRNA assay for early disease diagnosis and biological research.
Collapse
Affiliation(s)
- Meng-Jie Li
- School of Civil Engineering and Architecture, Chongqing University of Science & Technology, Chongqing, 401331, PR China; Institute for Health and Environment, Chongqing University of Science & Technology, Chongqing, 401331, PR China.
| | - Si-Yu An
- School of Civil Engineering and Architecture, Chongqing University of Science & Technology, Chongqing, 401331, PR China; Institute for Health and Environment, Chongqing University of Science & Technology, Chongqing, 401331, PR China
| | - Ying Wu
- School of Civil Engineering and Architecture, Chongqing University of Science & Technology, Chongqing, 401331, PR China; Institute for Health and Environment, Chongqing University of Science & Technology, Chongqing, 401331, PR China
| |
Collapse
|
94
|
Micro-RNA Implications in Type-1 Diabetes Mellitus: A Review of Literature. Int J Mol Sci 2021; 22:ijms222212165. [PMID: 34830046 PMCID: PMC8621893 DOI: 10.3390/ijms222212165] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/24/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023] Open
Abstract
Type-1 diabetes mellitus (T1DM) is one of the most well-defined and complex metabolic disorders, characterized by hyperglycemia, with a constantly increasing incidence in children and adolescents. While current knowledge regarding the molecules related to the pathogenesis and diagnosis of T1DM is vast, the discovery of new molecules, such as micro ribonucleic acids (micro-RNAs, miRNAs), as well as their interactions with T1DM, has spurred novel prospects in the diagnosis of the disease. This review aims at summarizing current knowledge regarding miRNAs' biosynthesis and action pathways and their role as gene expression regulators in T1DM. MiRNAs follow a complex biosynthesis pathway, including cleaving and transport from nucleus to cytoplasm. After assembly of their final form, they inhibit translation or cause messenger RNA (mRNA) degradation, resulting in the obstruction of protein synthesis. Many studies have reported miRNA involvement in T1DM pathogenesis, mainly through interference with pancreatic b-cell function, insulin production and secretion. They are also found to contribute to β-cell destruction, as they aid in the production of autoreactive agents. Due to their elevated accumulation in various biological specimens, as well as their involvement in T1DM pathogenesis, their role as biomarkers in early preclinical T1DM diagnosis is widely hypothesized, with future studies concerning their diagnostic value deemed a necessity.
Collapse
|
95
|
In Silico Identification and Clinical Validation of a Novel Long Non-Coding RNA/mRNA/miRNA Molecular Network for Potential Biomarkers for Discriminating SARS CoV-2 Infection Severity. Cells 2021; 10:cells10113098. [PMID: 34831321 PMCID: PMC8625524 DOI: 10.3390/cells10113098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
(1) Background: The coronavirus (COVID-19) pandemic is still a major global health problem, despite the development of several vaccines and diagnostic assays. Moreover, the broad symptoms, from none to severe pneumonia, and the various responses to vaccines and the assays, make infection control challenging. Therefore, there is an urgent need to develop non-invasive biomarkers to quickly determine the infection severity. Circulating RNAs have been proven to be potential biomarkers for a variety of diseases, including infectious ones. This study aimed to develop a genetic network related to cytokines, with clinical validation for early infection severity prediction. (2) Methods: Extensive analyses of in silico data have established a novel IL11RA molecular network (IL11RNA mRNA, LncRNAs RP11-773H22.4 and hsa-miR-4257). We used different databases to confirm its validity. The differential expression within the retrieved network was clinically validated using quantitative RT-PCR, along with routine assessment diagnostic markers (CRP, LDH, D-dimmer, procalcitonin, Ferritin), in100 infected subjects (mild and severe cases) and 100 healthy volunteers. (3) Results: IL11RNA mRNA and LncRNA RP11-773H22.4, and the IL11RA protein, were significantly upregulated, and there was concomitant downregulation of hsa-miR-4257, in infected patients, compared to the healthy controls, in concordance with the infection severity. (4) Conclusion: The in-silico data and clinical validation led to the identification of a potential RNA/protein signature network for novel predictive biomarkers, which is in agreement with ferritin and procalcitonin for determination of COVID-19 severity.
Collapse
|
96
|
Huang PS, Liao CJ, Huang YH, Yeh CT, Chen CY, Tang HC, Chang CC, Lin KH. Functional and Clinical Significance of Dysregulated microRNAs in Liver Cancer. Cancers (Basel) 2021; 13:5361. [PMID: 34771525 PMCID: PMC8582514 DOI: 10.3390/cancers13215361] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 11/27/2022] Open
Abstract
Liver cancer is the leading cause of cancer-related mortality in the world. This mainly reflects the lack of early diagnosis tools and effective treatment methods. MicroRNAs (miRNAs) are a class of non-transcribed RNAs, some of which play important regulatory roles in liver cancer. Here, we discuss microRNAs with key impacts on liver cancer, such as miR-122, miR-21, miR-214, and miR-199. These microRNAs participate in various physiological regulatory pathways of liver cancer cells, and their modulation can have non-negligible effects in the treatment of liver cancer. We discuss whether these microRNAs can be used for better clinical diagnosis and/or drug development. With the advent of novel technologies, fast, inexpensive, and non-invasive RNA-based biomarker research has become a new mainstream approach. However, the clinical application of microRNA-based markers has been limited by the high sequence similarity among them and the potential for off-target problems. Therefore, researchers particularly value microRNAs that are specific to or have special functions in liver cancer. These include miR-122, which is specifically expressed in the liver, and miR-34, which is necessary for the replication of the hepatitis C virus in liver cancer. Clinical treatment drugs have been developed based on miR-34 and miR-122 (MRX34 and Miravirsen, respectively), but their side effects have not yet been overcome. Future research is needed to address these weaknesses and establish a feasible microRNA-based treatment strategy for liver cancer.
Collapse
Affiliation(s)
- Po-Shuan Huang
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (P.-S.H.); (C.-J.L.)
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Chia-Jung Liao
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (P.-S.H.); (C.-J.L.)
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Ya-Hui Huang
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-H.H.); (C.-T.Y.)
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-H.H.); (C.-T.Y.)
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Hui-Chi Tang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Cheng-Chih Chang
- Department of General Surgery, Chang Gung Memorial Hospital at Chia-yi, Chia-yi 613, Taiwan
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (P.-S.H.); (C.-J.L.)
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-H.H.); (C.-T.Y.)
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| |
Collapse
|
97
|
Rincón-Riveros A, Morales D, Rodríguez JA, Villegas VE, López-Kleine L. Bioinformatic Tools for the Analysis and Prediction of ncRNA Interactions. Int J Mol Sci 2021; 22:11397. [PMID: 34768830 PMCID: PMC8583695 DOI: 10.3390/ijms222111397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/16/2022] Open
Abstract
Noncoding RNAs (ncRNAs) play prominent roles in the regulation of gene expression via their interactions with other biological molecules such as proteins and nucleic acids. Although much of our knowledge about how these ncRNAs operate in different biological processes has been obtained from experimental findings, computational biology can also clearly substantially boost this knowledge by suggesting possible novel interactions of these ncRNAs with other molecules. Computational predictions are thus used as an alternative source of new insights through a process of mutual enrichment because the information obtained through experiments continuously feeds through into computational methods. The results of these predictions in turn shed light on possible interactions that are subsequently validated experimentally. This review describes the latest advances in databases, bioinformatic tools, and new in silico strategies that allow the establishment or prediction of biological interactions of ncRNAs, particularly miRNAs and lncRNAs. The ncRNA species described in this work have a special emphasis on those found in humans, but information on ncRNA of other species is also included.
Collapse
Affiliation(s)
- Andrés Rincón-Riveros
- Bioinformatics and Systems Biology Group, Universidad Nacional de Colombia, Bogotá 111221, Colombia;
| | - Duvan Morales
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia;
| | - Josefa Antonia Rodríguez
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá 111221, Colombia;
| | - Victoria E. Villegas
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia;
| | - Liliana López-Kleine
- Department of Statistics, Faculty of Science, Universidad Nacional de Colombia, Bogotá 111221, Colombia
| |
Collapse
|
98
|
McDonald JT, Enguita FJ, Taylor D, Griffin RJ, Priebe W, Emmett MR, Sajadi MM, Harris AD, Clement J, Dybas JM, Aykin-Burns N, Guarnieri JW, Singh LN, Grabham P, Baylin SB, Yousey A, Pearson AN, Corry PM, Saravia-Butler A, Aunins TR, Sharma S, Nagpal P, Meydan C, Foox J, Mozsary C, Cerqueira B, Zaksas V, Singh U, Wurtele ES, Costes SV, Davanzo GG, Galeano D, Paccanaro A, Meinig SL, Hagan RS, Bowman NM, Wolfgang MC, Altinok S, Sapoval N, Treangen TJ, Moraes-Vieira PM, Vanderburg C, Wallace DC, Schisler JC, Mason CE, Chatterjee A, Meller R, Beheshti A. Role of miR-2392 in driving SARS-CoV-2 infection. Cell Rep 2021; 37:109839. [PMID: 34624208 PMCID: PMC8481092 DOI: 10.1016/j.celrep.2021.109839] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/13/2021] [Accepted: 09/24/2021] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation that have a major impact on many diseases and provide an exciting avenue toward antiviral therapeutics. From patient transcriptomic data, we determined that a circulating miRNA, miR-2392, is directly involved with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) machinery during host infection. Specifically, we show that miR-2392 is key in driving downstream suppression of mitochondrial gene expression, increasing inflammation, glycolysis, and hypoxia, as well as promoting many symptoms associated with coronavirus disease 2019 (COVID-19) infection. We demonstrate that miR-2392 is present in the blood and urine of patients positive for COVID-19 but is not present in patients negative for COVID-19. These findings indicate the potential for developing a minimally invasive COVID-19 detection method. Lastly, using in vitro human and in vivo hamster models, we design a miRNA-based antiviral therapeutic that targets miR-2392, significantly reduces SARS-CoV-2 viability in hamsters, and may potentially inhibit a COVID-19 disease state in humans.
Collapse
Affiliation(s)
- J Tyson McDonald
- COVID-19 International Research Team; Georgetown University School of Medicine, Washington, DC 20007, USA
| | - Francisco J Enguita
- COVID-19 International Research Team; Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Deanne Taylor
- COVID-19 International Research Team; The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert J Griffin
- COVID-19 International Research Team; University of Arkansas for Medical Sciences, Little Rock, AK 72211, USA
| | - Waldemar Priebe
- COVID-19 International Research Team; University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mark R Emmett
- COVID-19 International Research Team; University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | - Anthony D Harris
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jean Clement
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joseph M Dybas
- COVID-19 International Research Team; The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Joseph W Guarnieri
- COVID-19 International Research Team; The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Larry N Singh
- COVID-19 International Research Team; The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Peter Grabham
- COVID-19 International Research Team; Columbia University, New York, NY 10032, USA
| | - Stephen B Baylin
- COVID-19 International Research Team; Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Aliza Yousey
- COVID-19 International Research Team; Morehouse School of Medicine, Atlanta, GA 30310, USA
| | | | - Peter M Corry
- COVID-19 International Research Team; University of Arkansas for Medical Sciences, Little Rock, AK 72211, USA
| | - Amanda Saravia-Butler
- COVID-19 International Research Team; Logyx LLC, Mountain View, CA 94043, USA; NASA Ames Research Center, Moffett Field, CA 94035, USA
| | | | - Sadhana Sharma
- University of Colorado Boulder, Boulder, CO 80303, USA; Sachi Bioworks Inc., Boulder, CO 80301, USA
| | - Prashant Nagpal
- Sachi Bioworks Inc., Boulder, CO 80301, USA; Antimicrobial Regeneration Consortium, Boulder Labs, Boulder, CO 80301, USA; Quantum Biology Inc., Boulder, CO 80301, USA
| | - Cem Meydan
- Weill Cornell Medicine, New York, NY 10065, USA
| | | | | | - Bianca Cerqueira
- COVID-19 International Research Team; KBR Space & Science, San Antonio, TX 78235, USA; United States Air Force School of Aerospace Medicine, Lackland AFB, San Antonio, TX 78236, USA
| | - Viktorija Zaksas
- COVID-19 International Research Team; University of Chicago, Chicago, IL 60615, USA
| | - Urminder Singh
- COVID-19 International Research Team; Iowa State University, Ames, IA 50011, USA
| | - Eve Syrkin Wurtele
- COVID-19 International Research Team; Iowa State University, Ames, IA 50011, USA
| | | | | | - Diego Galeano
- COVID-19 International Research Team; Fundação Getulio Vargas, Rio de Janeiro, Brazil; National University of Asuncion, San Lorenzo, Central, Paraguay
| | - Alberto Paccanaro
- COVID-19 International Research Team; Fundação Getulio Vargas, Rio de Janeiro, Brazil; University of London, Egham Hill, Egham, UK
| | - Suzanne L Meinig
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Robert S Hagan
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalie M Bowman
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Selin Altinok
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | - Douglas C Wallace
- COVID-19 International Research Team; The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan C Schisler
- COVID-19 International Research Team; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christopher E Mason
- COVID-19 International Research Team; Weill Cornell Medicine, New York, NY 10065, USA; New York Genome Center, New York, NY, USA
| | - Anushree Chatterjee
- COVID-19 International Research Team; University of Colorado Boulder, Boulder, CO 80303, USA; Sachi Bioworks Inc., Boulder, CO 80301, USA; Antimicrobial Regeneration Consortium, Boulder Labs, Boulder, CO 80301, USA
| | - Robert Meller
- COVID-19 International Research Team; Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Afshin Beheshti
- COVID-19 International Research Team; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA.
| |
Collapse
|
99
|
Rashidi S, Mansouri R, Ali-Hassanzadeh M, Ghani E, Barazesh A, Karimazar M, Nguewa P, Carrera Silva EA. Highlighting the interplay of microRNAs from Leishmania parasites and infected-host cells. Parasitology 2021; 148:1434-1446. [PMID: 34218829 PMCID: PMC11010138 DOI: 10.1017/s0031182021001177] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/10/2021] [Accepted: 06/27/2021] [Indexed: 02/05/2023]
Abstract
Leishmania parasites, the causative agents of leishmaniasis, are protozoan parasites with the ability to modify the signalling pathway and cell responses of their infected host cells. These parasite strategies alter the host cell environment and conditions favouring their replication, survival and pathogenesis. Since microRNAs (miRNAs) are able to post-transcriptionally regulate gene expression processes, these biomolecules can exert critical roles in controlling Leishmania-host cell interplay. Therefore, the identification of relevant miRNAs differentially expressed in Leishmania parasites as well as in infected cells, which affect the host fitness, could be critical to understand the infection biology, pathogenicity and immune response against these parasites. Accordingly, the current review aims to address the differentially expressed miRNAs in both, the parasite and infected host cells and how these biomolecules change cell signalling and host immune responses during infection. A deep understanding of these processes could provide novel guidelines and therapeutic strategies for managing and treating leishmaniasis.
Collapse
Affiliation(s)
- Sajad Rashidi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Mansouri
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mohammad Ali-Hassanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Esmaeel Ghani
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Afshin Barazesh
- Department of Microbiology and Parasitology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammadreza Karimazar
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paul Nguewa
- University of Navarra, ISTUN Instituto de Salud Tropical, Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), c/Irunlarrea 1, 31008Pamplona, Spain
| | | |
Collapse
|
100
|
de Gonzalo-Calvo D, Benítez ID, Pinilla L, Carratalá A, Moncusí-Moix A, Gort-Paniello C, Molinero M, González J, Torres G, Bernal M, Pico S, Almansa R, Jorge N, Ortega A, Bustamante-Munguira E, Gómez JM, González-Rivera M, Micheloud D, Ryan P, Martinez A, Tamayo L, Aldecoa C, Ferrer R, Ceccato A, Fernández-Barat L, Motos A, Riera J, Menéndez R, Garcia-Gasulla D, Peñuelas O, Torres A, Bermejo-Martin JF, Barbé F. Circulating microRNA profiles predict the severity of COVID-19 in hospitalized patients. Transl Res 2021; 236:147-159. [PMID: 34048985 PMCID: PMC8149473 DOI: 10.1016/j.trsl.2021.05.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/04/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
We aimed to examine the circulating microRNA (miRNA) profile of hospitalized COVID-19 patients and evaluate its potential as a source of biomarkers for the management of the disease. This was an observational and multicenter study that included 84 patients with a positive nasopharyngeal swab Polymerase chain reaction (PCR) test for SARS-CoV-2 recruited during the first pandemic wave in Spain (March-June 2020). Patients were stratified according to disease severity: hospitalized patients admitted to the clinical wards without requiring critical care and patients admitted to the intensive care unit (ICU). An additional study was completed including ICU nonsurvivors and survivors. Plasma miRNA profiling was performed using reverse transcription polymerase quantitative chain reaction (RT-qPCR). Predictive models were constructed using least absolute shrinkage and selection operator (LASSO) regression. Ten circulating miRNAs were dysregulated in ICU patients compared to ward patients. LASSO analysis identified a signature of three miRNAs (miR-148a-3p, miR-451a and miR-486-5p) that distinguishes between ICU and ward patients [AUC (95% CI) = 0.89 (0.81-0.97)]. Among critically ill patients, six miRNAs were downregulated between nonsurvivors and survivors. A signature based on two miRNAs (miR-192-5p and miR-323a-3p) differentiated ICU nonsurvivors from survivors [AUC (95% CI) = 0.80 (0.64-0.96)]. The discriminatory potential of the signature was higher than that observed for laboratory parameters such as leukocyte counts, C-reactive protein (CRP) or D-dimer [maximum AUC (95% CI) for these variables = 0.73 (0.55-0.92)]. miRNA levels were correlated with the duration of ICU stay. Specific circulating miRNA profiles are associated with the severity of COVID-19. Plasma miRNA signatures emerge as a novel tool to assist in the early prediction of vital status deterioration among ICU patients.
Collapse
Affiliation(s)
- David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Iván D Benítez
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Lucía Pinilla
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Amara Carratalá
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Anna Moncusí-Moix
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Clara Gort-Paniello
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Marta Molinero
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Jessica González
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, Lleida, Spain
| | - Gerard Torres
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - María Bernal
- Laboratory Medicine Department, University Hospital Arnau de Vilanova, Lleida, Spain
| | - Silvia Pico
- Laboratory Medicine Department, University Hospital Arnau de Vilanova, Lleida, Spain
| | - Raquel Almansa
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Hospital Universitario Río Hortega de Valladolid, Valladolid, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Noelia Jorge
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Hospital Universitario Río Hortega de Valladolid, Valladolid, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Alicia Ortega
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Hospital Universitario Río Hortega de Valladolid, Valladolid, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | | | | | | | | | - Pablo Ryan
- Hospital Universitario Infanta Leonor, Madrid, Spain
| | | | - Luis Tamayo
- Hospital Universitario Río Hortega, Valladolid, Spain
| | - César Aldecoa
- Hospital Universitario Río Hortega, Valladolid, Spain
| | - Ricard Ferrer
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Intensive Care Department, Vall d'Hebron Hospital Universitari. SODIR Research Group, Vall d'Hebron Institut de Recerca (VHIR), Spain
| | - Adrián Ceccato
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Laia Fernández-Barat
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Servei de Pneumologia, Hospital Clinic. Universitat de Barcelona. IDIBAPS, Barcelona, Spain
| | - Ana Motos
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Servei de Pneumologia, Hospital Clinic. Universitat de Barcelona. IDIBAPS, Barcelona, Spain
| | - Jordi Riera
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Intensive Care Department, Vall d'Hebron Hospital Universitari. SODIR Research Group, Vall d'Hebron Institut de Recerca (VHIR), Spain
| | - Rosario Menéndez
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Pulmonology Service, University and Polytechnic Hospital La Fe, Valencia, Spain
| | | | - Oscar Peñuelas
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Hospital Universitario de Getafe, Madrid, Spain
| | - Antoni Torres
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Servei de Pneumologia, Hospital Clinic. Universitat de Barcelona. IDIBAPS, Barcelona, Spain
| | - Jesús F Bermejo-Martin
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Hospital Universitario Río Hortega de Valladolid, Valladolid, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Ferran Barbé
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|