51
|
Huang H. A Multicentre, Randomised, Double Blind, Parallel Design, Placebo Controlled Study to Evaluate the Efficacy and Safety of Uthever (NMN Supplement), an Orally Administered Supplementation in Middle Aged and Older Adults. FRONTIERS IN AGING 2022; 3:851698. [PMID: 35821806 PMCID: PMC9261366 DOI: 10.3389/fragi.2022.851698] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/02/2022] [Indexed: 11/14/2022]
Abstract
Objective: The purpose of the study was to evaluate the anti-aging effect of NMN and its safety in a double-blind, parallel, randomised controlled clinical trial. Methods: The study was carried out on 66 healthy subjects between the ages of 40 and65 years, instructed to take two capsules (each containing 150 mg. of NMN or starch powder) once a day after breakfast for 60 days. Results: At day 30, NAD+/NADH levels in the serum showed a noteworthy increase, i.e., by 11.3%, whereas the placebo group had shown no change at all. At the end of the study, i.e., day 60, the NAD+/NADH levels were increased further by 38% compared to baseline, against a mere 14.3% in the placebo group. In the case of SF 36, at day 60, the Uthever group showed a rise of 6.5%, whereas the placebo group was merely raised by 3.4%. At the end of the study, the mean HOMA IR Index showed a rise of 0.6% among the Uthever group and 30.6% among the Placebo group from baseline. Conclusion: The rise in the levels of NAD+/NADH at day 30 and day 60 illustrated the potential of Uthever to raise the levels of NAD+ in the cells, which is linked to higher energy levels and an anti-aging effect. Increased sensitivity to insulin has also been linked to anti-aging. There was no noteworthy change in HOMA score, in the Uthever group whereas there was a noteworthy rise in the placebo group, demonstrating the anti-aging effect of Uthever as in its absence, the parameters worsened. Clinical Trial Registration: (clinicaltrials.gov), identifier (NCT04228640 NMN).
Collapse
Affiliation(s)
- Hao Huang
- Effepharm (Shanghai) Co., Ltd., Shanghai, China
| |
Collapse
|
52
|
Hao Y, Yang Z, Li Q, Wang Z, Liu J, Wang J. 5-Heptadecylresorcinol Protects against Atherosclerosis in Apolipoprotein E-Deficient Mice by Modulating SIRT3 Signaling: The Possible Beneficial Effects of Whole Grain Consumption. Mol Nutr Food Res 2022; 66:e2101114. [PMID: 35297565 DOI: 10.1002/mnfr.202101114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/02/2022] [Indexed: 12/17/2022]
Abstract
SCOPE Whole grain consumption has been proven to be inversely associated with the risk of cardiovascular diseases. As a biomarker for whole grain dietary intake, 5-heptadecylresorcinol (AR-C17) has attracted increased attention due to its potential health-improving activity. However, the beneficial effect of AR-C17 on atherosclerosis prevention and the underlying mechanism remain unclear. METHODS AND RESULTS High-fat diet fed apolipoprotein E-deficient (ApoE-/- ) mice are administrated with or without AR-C17 (30 and 150 mg kg-1 ) for 16 weeks. Histological staining is performed for plaque analysis. Immunofluorescence, western blot, and seahorse cell analysis are carried out to investigate the action of mechanism of AR-C17. The results indicate that AR-C17 supplementation lowered serum total cholesterol, triglyceride, VLDL-C, and LDL-C levels. Moreover, the atherosclerotic plaques in the aortic root region of mice heart are significantly reduced by AR-C17 intervention compared with ApoE-/- control group. In addition, AR-C17 treatment alleviates endothelial cell damage and apoptosis by improving mitochondrial function via sirtuin3 signaling pathway both in ApoE-/- mice and oxidized-LDL-treated human umbilical vein endothelial cells. CONCLUSION AR-C17 may be applied as a promising grain-based dietary bioactive ingredient for atherosclerosis prevention. Meanwhile, as a mitochondrial protective agent, it can offer support for the suggested health claim of whole grain diet.
Collapse
Affiliation(s)
- Yiming Hao
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Zihui Yang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Qing Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Ziyuan Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing, 100048, China
| |
Collapse
|
53
|
Bugga P, Alam MJ, Kumar R, Pal S, Chattopadyay N, Banerjee SK. Sirt3 ameliorates mitochondrial dysfunction and oxidative stress through regulating mitochondrial biogenesis and dynamics in cardiomyoblast. Cell Signal 2022; 94:110309. [PMID: 35304284 DOI: 10.1016/j.cellsig.2022.110309] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/28/2022] [Accepted: 03/10/2022] [Indexed: 12/22/2022]
Abstract
Sirtuins are the endogenously present anti-aging protein deacetylases that regulate the mitochondrial biogenesis and function. Especially Sirt3, a mitochondrial sirtuin, is well known for maintaining mitochondrial function and health. In the present study, we have explored the novel role of Sirt3 in mitochondrial biogenesis and shown the role of Sirt3 in mito-nuclear communication through AMPK-α in Sirt3 knockdown and Sirt3 overexpressed H9c2 cells. The study found that impaired mitochondrial function in Sirt3-knockdown H9c2 cells was associated with decreased expression of mitochondrial DNA encoded genes, reduced SOD2 expression and activity. The study also revealed that Sirt3 knockdown affects mitochondrial biogenesis and dynamics. To further confirm the role of Sirt3 on mitochondrial biogenesis and health, we did Sirt3 overexpression in H9c2 cells. Sirt3 overexpression enhanced the expression of mitochondrial DNA encoded genes, increased SOD2 activity and altered mitochondrial dynamics. Sirt3 overexpression also caused an increase in mitochondrial biogenesis gene and protein (PGC-1α and TFAM) expression. All these changes were confirmed with mitochondrial functional parameters like basal respiration, maximal respiratory capacity, spare respiratory capacity and ATP production. We found decreased mitochondrial function in Sirt3-knockdown H9c2 cells when compared to control H9c2 cells. Together our data conclude that Sirt3 regulates cardiac mitochondrial health and function through the Sirt3-AMPKα-PGC-1α axis.
Collapse
Affiliation(s)
- Paramesha Bugga
- Non-Communicable Diseases Group, Translational Health Science and Technology Institute (THSTI), Faridabad, 121001, Haryana, INDIA
| | - Md Jahangir Alam
- Non-Communicable Diseases Group, Translational Health Science and Technology Institute (THSTI), Faridabad, 121001, Haryana, INDIA; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Roshan Kumar
- Non-Communicable Diseases Group, Translational Health Science and Technology Institute (THSTI), Faridabad, 121001, Haryana, INDIA.
| | - Subhashis Pal
- Endocrinology Department, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Naibedya Chattopadyay
- Endocrinology Department, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| | - Sanjay Kumar Banerjee
- Non-Communicable Diseases Group, Translational Health Science and Technology Institute (THSTI), Faridabad, 121001, Haryana, INDIA; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India.
| |
Collapse
|
54
|
Abstract
PURPOSE OF REVIEW Hypertension is a multifactorial disorder involving perturbations of the vasculature, the kidney, and the central nervous system. Hypertension represents a major risk factor for stroke, myocardial infarction, and heart failure. Despite treatment with multiple drugs, 37% of hypertensive patients remain hypertensive, likely due to the mechanisms contributing to blood pressure elevation that are not affected by current treatments. This review focuses on recently described novel role of mitochondrial deacetylase Sirt3 in vascular dysfunction and hypertension. RECENT FINDINGS In the past several years, we have shown that the mitochondria are dysfunctional in hypertension; however, the role of mitochondria in the pathogenesis of hypertension remains elusive. We recently showed that patients with essential hypertension have decreased levels of the mitochondrial deacetylase Sirt3 leading to hyperacetylation of mitochondrial proteins. There is likely a causative role. Indeed, genetic deletion of Sirt3 in mice promotes vascular dysfunction and hypertension. Sirt3 depletion promotes endothelial dysfunction, increases smooth muscle cell hypertrophy, instigates vascular inflammation, and induces age-dependent hypertension. SUMMARY Sirt3 is critical for vascular cell homeostasis, however, multiple risk factors impair Sirt3 leading to mitochondrial dysfunction and vascular dysregulation which contribute to hypertension and end-organ injury. Targeting Sirt3 may represent novel therapeutic approach to improve treatment of vascular dysfunction and reduce hypertension.
Collapse
Affiliation(s)
- Sergey Dikalov
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | |
Collapse
|
55
|
A “Weird” Mitochondrial Fatty Acid Oxidation as a Metabolic “Secret” of Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2339584. [PMID: 35178152 PMCID: PMC8847026 DOI: 10.1155/2022/2339584] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022]
Abstract
Cancer metabolism is an extensively studied field since the discovery of the Warburg effect about 100 years ago and continues to be increasingly intriguing and enigmatic so far. It has become clear that glycolysis is not the only abnormally activated metabolic pathway in the cancer cells, but the same is true for the fatty acid synthesis (FAS) and mevalonate pathway. In the last decade, a lot of data have been accumulated on the pronounced mitochondrial fatty acid oxidation (mFAO) in many types of cancer cells. In this article, we discuss how mFAO can escape normal regulation under certain conditions and be overactivated. Such abnormal activation of mitochondrial β-oxidation can also be combined with mutations in certain enzymes of the Krebs cycle that are common in cancer. If overactivated β-oxidation is combined with other common cancer conditions, such as dysfunctions in the electron transport complexes, and/or hypoxia, this may alter the redox state of the mitochondrial matrix. We propose the idea that the altered mitochondrial redox state and/or inhibited Krebs cycle at certain segments may link mitochondrial β-oxidation to the citrate-malate shuttle instead to the Krebs cycle. We call this abnormal metabolic condition “β-oxidation shuttle”. It is unconventional mFAO, a separate metabolic pathway, unexplored so far as a source of energy, as well as a source of cataplerosis, leading to biomass accumulation, accelerated oxygen consumption, and ultimately a source of proliferation. It is inefficient as an energy source and must consume significantly more oxygen per mole of ATP produced when combined with acetyl-CoA consuming pathways, such as the FAS and mevalonate pathway.
Collapse
|
56
|
Amirazodi M, Mehrabi A, Rajizadeh MA, Bejeshk MA, Esmaeilpour K, Daryanoosh F, Gaeini A. The effects of combined resveratrol and high intensity interval training on the hippocampus in aged male rats: An investigation into some signaling pathways related to mitochondria. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:254-262. [PMID: 35655601 PMCID: PMC9124540 DOI: 10.22038/ijbms.2022.57780.12853] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 02/01/2022] [Indexed: 11/21/2022]
Abstract
Objectives High-intensity interval training (HIIT) is a shape of interval training that provides ameliorated athletic capacity and has a good effect on health. Resveratrol is a natural polyphenol abundant in grapes and red wine and has been demonstrated to apply various useful health impacts on the body. This research aimed to evaluate the interactive effects of swimming HIIT and resveratrol consumption on SIRTs 3 & 4, NAD+/NADH, AMPK and SOD2 expression in aged rats. Materials and Methods In total, forty-five old male albino rats (Wistar) with the age of twenty months were allocated into 5 groups randomly. Control group (Ctrl), Swimming HIIT group (Ex: Exercise), Swimming HIIT with Resveratrol consumption group (R+Ex), Resveratrol consumption group (R) and solvent of resveratrol consumption group (vehicle). R+Ex group accomplished the exercise and consumed resveratrol (10 mg/kg/day, gavage) for 6 weeks. Results HIIT & resveratrol significantly increased NAD+/NADH, SOD 2 and AMPK in the aged rats. HIIT increased SIRT3, but resveratrol reduced it. As for SIRT4, HIIT decreased it, while resveratrol positively affected it. Conclusion Resveratrol and HIIT, especially their combination, have anti-oxidant and anti-aging effects on the hippocampus of old rats.
Collapse
Affiliation(s)
- Maryam Amirazodi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Shiraz University International Division, Shiraz University, Shiraz, Iran
| | - Amin Mehrabi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Exercise Physiology, Kish International Campus, University of Tehran, Kish, Iran
| | - Mohammad Amin Rajizadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and Pharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Department of Physiology and Pharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Abbasali Gaeini
- Department of Exercise Physiology, University of Tehran, Tehran, Iran
| |
Collapse
|
57
|
Ruankham W, Suwanjang W, Phopin K, Songtawee N, Prachayasittikul V, Prachayasittikul S. Modulatory Effects of Alpha-Mangostin Mediated by SIRT1/3-FOXO3a Pathway in Oxidative Stress-Induced Neuronal Cells. Front Nutr 2022; 8:714463. [PMID: 35155508 PMCID: PMC8835347 DOI: 10.3389/fnut.2021.714463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
Backgroundalpha-Mangostin, a polyphenolic xanthone, is primarily found in the pericarp of mangosteen throughout Southeast Asia and is considered as the “Queen of Fruit” in Thailand. Nonetheless, it is not clarified how alpha-mangostin protects neuronal cells against oxidative stress.ObjectiveIn this study, molecular mechanisms underlying the neuroprotective effect of alpha-mangostin in defending hydrogen peroxide (H2O2)-induced neurotoxicity was explored.Methodscytotoxicity, reactive oxygen species (ROS) generation, apoptotic cascades, and protein expression profiles were performed incorporation of molecular docking.ResultsHuman SH-SY5Y cells were pretreated with 1 μM alpha-mangostin for 3 h prior to exposure to 400 μM H2O2. alpha-Mangostin significantly inhibited oxidative stress-induced cell death in neuronal cells by reducing BAX protein, decreasing caspase-3/7 activation, and increasing anti-apoptotic BCL-2 protein. Collectively, alpha-mangostin was demonstrated to be a prominent ROS suppressor which reversed the reduction of antioxidant enzymes (CAT and SOD2). Surprisingly, alpha-mangostin significantly promoted the expression of the sirtuin family and the FOXO3a transcription factor exerting beneficial effects on cell survival and longevity. A molecular docking study predicted that alpha-mangostin is directly bound to the active site of SIRT1.ConclusionFindings from this study suggest that alpha-mangostin potentially serves as a promising therapeutic compound against oxidative stress by activation of the SIRT1/3-FOXO3a pathway comparable to the effect of memantine, an anti-AD drug used for the treatment of moderate to severe dementia.
Collapse
Affiliation(s)
- Waralee Ruankham
- Faculty of Medical Technology, Center for Research and Innovation, Mahidol University, Bangkok, Thailand
| | - Wilasinee Suwanjang
- Faculty of Medical Technology, Center for Research and Innovation, Mahidol University, Bangkok, Thailand
- *Correspondence: Wilasinee Suwanjang
| | - Kamonrat Phopin
- Faculty of Medical Technology, Center for Research and Innovation, Mahidol University, Bangkok, Thailand
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Napat Songtawee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Supaluk Prachayasittikul
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| |
Collapse
|
58
|
Phillips MA, Arnold KR, Vue Z, Beasley HK, Garza-Lopez E, Marshall AG, Morton DJ, McReynolds MR, Barter TT, Hinton A. Combining Metabolomics and Experimental Evolution Reveals Key Mechanisms Underlying Longevity Differences in Laboratory Evolved Drosophila melanogaster Populations. Int J Mol Sci 2022; 23:1067. [PMID: 35162994 PMCID: PMC8835531 DOI: 10.3390/ijms23031067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/22/2022] Open
Abstract
Experimental evolution with Drosophila melanogaster has been used extensively for decades to study aging and longevity. In recent years, the addition of DNA and RNA sequencing to this framework has allowed researchers to leverage the statistical power inherent to experimental evolution to study the genetic basis of longevity itself. Here, we incorporated metabolomic data into to this framework to generate even deeper insights into the physiological and genetic mechanisms underlying longevity differences in three groups of experimentally evolved D. melanogaster populations with different aging and longevity patterns. Our metabolomic analysis found that aging alters mitochondrial metabolism through increased consumption of NAD+ and increased usage of the TCA cycle. Combining our genomic and metabolomic data produced a list of biologically relevant candidate genes. Among these candidates, we found significant enrichment for genes and pathways associated with neurological development and function, and carbohydrate metabolism. While we do not explicitly find enrichment for aging canonical genes, neurological dysregulation and carbohydrate metabolism are both known to be associated with accelerated aging and reduced longevity. Taken together, our results provide plausible genetic mechanisms for what might be driving longevity differences in this experimental system. More broadly, our findings demonstrate the value of combining multiple types of omic data with experimental evolution when attempting to dissect mechanisms underlying complex and highly polygenic traits such as aging.
Collapse
Affiliation(s)
- Mark A. Phillips
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA;
| | - Kenneth R. Arnold
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA; (K.R.A.); (T.T.B.)
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (Z.V.); (H.K.B.); (A.G.M.)
| | - Heather K. Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (Z.V.); (H.K.B.); (A.G.M.)
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - Edgar Garza-Lopez
- Hinton and Garza-Lopez Family Consulting Company, Iowa City, IA 52246, USA;
| | - Andrea G. Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (Z.V.); (H.K.B.); (A.G.M.)
| | - Derrick J. Morton
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA;
| | - Melanie R. McReynolds
- Department of Biochemistry and Molecular Biology, Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA;
| | - Thomas T. Barter
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA; (K.R.A.); (T.T.B.)
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (Z.V.); (H.K.B.); (A.G.M.)
- Hinton and Garza-Lopez Family Consulting Company, Iowa City, IA 52246, USA;
| |
Collapse
|
59
|
Richardson KK, Ling W, Krager K, Fu Q, Byrum SD, Pathak R, Aykin-Burns N, Kim HN. Ionizing Radiation Activates Mitochondrial Function in Osteoclasts and Causes Bone Loss in Young Adult Male Mice. Int J Mol Sci 2022; 23:675. [PMID: 35054859 PMCID: PMC8775597 DOI: 10.3390/ijms23020675] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
The damaging effects of ionizing radiation (IR) on bone mass are well-documented in mice and humans and are most likely due to increased osteoclast number and function. However, the mechanisms leading to inappropriate increases in osteoclastic bone resorption are only partially understood. Here, we show that exposure to multiple fractions of low-doses (10 fractions of 0.4 Gy total body irradiation [TBI]/week, i.e., fractionated exposure) and/or a single exposure to the same total dose of 4 Gy TBI causes a decrease in trabecular, but not cortical, bone mass in young adult male mice. This damaging effect was associated with highly activated bone resorption. Both osteoclast differentiation and maturation increased in cultures of bone marrow-derived macrophages from mice exposed to either fractionated or singular TBI. IR also increased the expression and enzymatic activity of mitochondrial deacetylase Sirtuin-3 (Sirt3)-an essential protein for osteoclast mitochondrial activity and bone resorption in the development of osteoporosis. Osteoclast progenitors lacking Sirt3 exposed to IR exhibited impaired resorptive activity. Taken together, targeting impairment of osteoclast mitochondrial activity could be a novel therapeutic strategy for IR-induced bone loss, and Sirt3 is likely a major mediator of this effect.
Collapse
Affiliation(s)
- Kimberly K. Richardson
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.K.R.); (W.L.); (Q.F.)
| | - Wen Ling
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.K.R.); (W.L.); (Q.F.)
| | - Kimberly Krager
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.K.); (R.P.); (N.A.-B.)
| | - Qiang Fu
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.K.R.); (W.L.); (Q.F.)
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.K.); (R.P.); (N.A.-B.)
| | - Nukhet Aykin-Burns
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.K.); (R.P.); (N.A.-B.)
| | - Ha-Neui Kim
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.K.R.); (W.L.); (Q.F.)
| |
Collapse
|
60
|
Ahmedy OA, Abdelghany TM, El-Shamarka MEA, Khattab MA, El-Tanbouly DM. Apigenin attenuates LPS-induced neurotoxicity and cognitive impairment in mice via promoting mitochondrial fusion/mitophagy: role of SIRT3/PINK1/Parkin pathway. Psychopharmacology (Berl) 2022; 239:3903-3917. [PMID: 36287214 PMCID: PMC9671996 DOI: 10.1007/s00213-022-06262-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/06/2022] [Indexed: 11/26/2022]
Abstract
RATIONALE Alteration of the NAD+ metabolic pathway is proposed to be implicated in lipopolysaccharide (LPS)-induced neurotoxicity and mitochondrial dysfunction in neurodegenerative diseases. Apigenin, a naturally-occurring flavonoid, has been reported to maintain NAD+ levels and to preserve various metabolic functions. OBJECTIVES This study aimed to explore the effect of apigenin on mitochondrial SIRT3 activity as a mediator through which it could modulate mitochondrial quality control and to protect against intracerebrovascular ICV/LPS-induced neurotoxicity. METHODS Mice received apigenin (40 mg/kg; p.o) for 7 consecutive days. One hour after the last dose, LPS (12 µg/kg, icv) was administered. RESULTS Apigenin robustly guarded against neuronal degenerative changes and maintained a normal count of intact neurons in mice hippocampi. Consequently, it inhibited the deleterious effect of LPS on cognitive functions. Apigenin was effective in preserving the NAD+/NADH ratio to boost mitochondrial sirtuin-3 (SIRT3), activity, and ATP production. It conserved normal mitochondrial features via induction of the master regulator of mitochondrial biogenesis, peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α), along with mitochondrial transcription factor A (TFAM) and the fusion proteins, mitofusin 2 (MFN2), and optic atrophy-1 (OPA1). Furthermore, it increased phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) and parkin expression as well as the microtubule-associated protein 1 light chain 3 II/I ratio (LC3II/I) to induce degradation of unhealthy mitochondria via mitophagy. CONCLUSIONS These observations reveal the marked neuroprotective potential of apigenin against LPS-induced neurotoxicity through inhibition of NAD+ depletion and activation of SIRT3 to maintain adequate mitochondrial homeostasis and function.
Collapse
Affiliation(s)
- Omaima A Ahmedy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Tarek M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE24HH, UK
- Institute of Translational and Clinical Research, Newcastle University, Newcastle Upon Tyne, NE24HH, UK
| | - Marwa E A El-Shamarka
- Department of Narcotics, Ergogenic Aids and Poisons, Medical Research Division, National Research Center, Cairo, 12622, Egypt
| | - Mohamed A Khattab
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Cairo, 12211, Egypt
| | - Dalia M El-Tanbouly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
61
|
Zhou Q, Wang W, Wu J, Qiu S, Yuan S, Fu PL, Qian QR, Xu YZ. Ubiquitin-specific protease 3 attenuates interleukin-1β-mediated chondrocyte senescence by deacetylating forkhead box O-3 via sirtuin-3. Bioengineered 2021; 13:2017-2027. [PMID: 34847835 PMCID: PMC8974216 DOI: 10.1080/21655979.2021.2012552] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Osteoarthritis (OA) affects approximately 12% of the aging Western population. The sirtuin/forkhead box O (SIRT/FOXO) signaling pathway plays essential roles in various biological processes. Despite it has been demonstrated that ubiquitin-specific protease 3 (USP3) inhibits chondrocyte apoptosis induced by interleukin (IL)-1β, the role of USP3/SIRT3/FOXO3 in the senescence of chondrocytes in OA is unclear. This study initially isolated articular chondrocytes and investigated the role of USP3 in IL-1β-induced senescence of chondrocytes. After USP3 was overexpressed or silenced by lentivirus, expressions of genes and proteins were detected using quantitative polymerase chain reaction and immunoblotting, respectively. Cell cycle analysis was performed using flow cytometry. Reactive oxygen species (ROS) levels and senescence were analyzed. Then, SIRT3 was inhibited or overexpressed to explore the underlying mechanism. We found that overexpression of USP3 hindered IL-1β-mediated cell cycle arrest, ROS generation, and chondrocyte senescence. The inhibition of SIRT3 blocked the protective effect of USP3 on cell senescence, whereas the overexpression of SIRT3 abolished USP3-silencing-induced cell senescence. Furthermore, SIRT3 attenuated cell senescence, probably by deacetylating FOXO3. USP3 upregulated SIRT3 to deacetylate FOXO3 and attenuated IL-1β-induced chondrocyte senescence. This study demonstrated that USP3 probably attenuated IL-1β-mediated chondrocyte senescence by deacetylating FOXO3 via SIRT3.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China.,Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Wei Wang
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Jun Wu
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Shang Qiu
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu, PR China
| | - Shuai Yuan
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Pei-Liang Fu
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Qi-Rong Qian
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Yao-Zeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China
| |
Collapse
|
62
|
Tubeimoside I Ameliorates Myocardial Ischemia-Reperfusion Injury through SIRT3-Dependent Regulation of Oxidative Stress and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5577019. [PMID: 34795840 PMCID: PMC8595016 DOI: 10.1155/2021/5577019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/13/2021] [Accepted: 10/23/2021] [Indexed: 12/31/2022]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a phenomenon that reperfusion leads to irreversible damage to the myocardium and increases mortality in acute myocardial infarction (AMI) patients. There is no effective drug to treat MIRI. Tubeimoside I (TBM) is a triterpenoid saponin purified from Chinese traditional medicine tubeimu. In this study, 4 mg/kg TBM was given to mice intraperitoneally at 15 min after ischemia. And TBM treatment improved postischemic cardiac function, decreased infarct size, diminished lactate dehydrogenase release, ameliorated oxidative stress, and reduced apoptotic index. Notably, ischemia-reperfusion induced a significant decrease in cardiac SIRT3 expression and activity, while TBM treatment upregulated SIRT3's expression and activity. However, the cardioprotective effects of TBM were largely abolished by a SIRT3 inhibitor 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP). This suggests that SIRT3 plays an essential role in TBM's cardioprotective effects. In vitro, TBM also protected H9c2 cells against simulated ischemia/reperfusion (SIR) injury by attenuating oxidative stress and apoptosis, and siSIRT3 diminished its protective effects. Taken together, our results demonstrate for the first time that TBM protects against MIRI through SIRT3-dependent regulation of oxidative stress and apoptosis. TBM might be a potential drug candidate for MIRI treatment.
Collapse
|
63
|
Lee IS, Chang JH, Kim DW, Kim SG, Kim TW. The effect of 4-hexylresorinol administration on NAD+ level and SIRT activity in Saos-2 cells. Maxillofac Plast Reconstr Surg 2021; 43:39. [PMID: 34719767 PMCID: PMC8558123 DOI: 10.1186/s40902-021-00326-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
Background 4-hexylresorcinol (4HR) has been shown to have anti-oxidant activity similar to that of resveratrol. As resveratrol increases sirtuin (SIRT) activity, 4HR might behave similarly to resveratrol. Method In this study, the expression levels of SIRT1, SIRT3, and SIRT6 were evaluated after 4HR administration (1–100 μM). As NAD+ is a substrate for SIRTs, its levels with SIRT activity were also studied. Results In the results, SIRT3 (100 μM at 24 h) and SIRT6 (1–100 μM at 24 h and 10 μM at 8 h) were shown to have significantly higher expression levels compared to untreated control (p < 0.05). Pan-SIRT activity and the NAD+ level was significantly increased compared to that of the untreated control (p < 0.05; 10 and 100 μM at 24 h). Conclusion 4HR administration increased SIRT activity and the NAD+ level in Saos-2 cells.
Collapse
Affiliation(s)
- In-Song Lee
- Department of Orthodontics, School of Dentistry, Seoul National University, Seoul, 3080, Republic of Korea
| | - Jun-Ho Chang
- Department of Orthodontics, School of Dentistry, Seoul National University, Seoul, 3080, Republic of Korea
| | - Dae-Won Kim
- Department of Oral Biochemistry, College of Dentistry, Gangneung-Wonju National University, Jibyun-dong, Gangneung, Gangwondo, 28644, Republic of Korea
| | - Seong-Gon Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Jibyun-dong, Gangneung, Gangwondo, 28644, Republic of Korea.
| | - Tae-Woo Kim
- Department of Orthodontics, School of Dentistry, Seoul National University, Seoul, 3080, Republic of Korea.
| |
Collapse
|
64
|
Silaghi CN, Farcaș M, Crăciun AM. Sirtuin 3 (SIRT3) Pathways in Age-Related Cardiovascular and Neurodegenerative Diseases. Biomedicines 2021; 9:biomedicines9111574. [PMID: 34829803 PMCID: PMC8615405 DOI: 10.3390/biomedicines9111574] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 01/08/2023] Open
Abstract
Age-associated cardiovascular and neurodegenerative diseases lead to high morbidity and mortality around the world. Sirtuins are vital enzymes for metabolic adaptation and provide protective effects against a wide spectrum of pathologies. Among sirtuins, mitochondrial sirtuin 3 (SIRT3) is an essential player in preserving the habitual metabolic profile. SIRT3 activity declines as a result of aging-induced changes in cellular metabolism, leading to increased susceptibility to endothelial dysfunction, hypertension, heart failure and neurodegenerative diseases. Stimulating SIRT3 activity via lifestyle, pharmacological or genetic interventions could protect against a plethora of pathologies and could improve health and lifespan. Thus, understanding how SIRT3 operates and how its protective effects could be amplified, will aid in treating age-associated diseases and ultimately, in enhancing the quality of life in elders.
Collapse
|
65
|
Impact of Dietary Modifications on Plasma Sirtuins 1, 3 and 5 in Older Overweight Individuals Undergoing 12-Weeks of Circuit Training. Nutrients 2021; 13:nu13113824. [PMID: 34836079 PMCID: PMC8624957 DOI: 10.3390/nu13113824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022] Open
Abstract
Sirtuins are nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases that regulate numerous pathways such as mitochondrial energy metabolism in the human body. Lower levels of these enzymes were linked to diseases such as diabetes mellitus and were also described as a result of aging. Sirtuins were previously shown to be under the control of exercise and diet, which are modifiable lifestyle factors. In this study, we analyzed SIRT1, SIRT3 and SIRT5 in blood from a subset of healthy elderly participants who took part in a 12-week randomized, controlled trial during which they performed, twice-weekly, resistance and aerobic training only (EX), the exercise routine combined with dietary counseling in accordance with the guidelines of the German Nutrition Society (EXDC), the exercise routine combined with intake of 2 g/day oil from Calanus finmarchicus (EXCO), or received no treatment and served as the control group (CON). In all study groups performing exercise, a significant increase in activities of SIRT1 (EX: +0.15 U/mg (+0.56/−[−0.16]), EXDC: +0.25 U/mg (+0.52/−0.06), EXCO: +0.40 U/mg (+0.88/−[−0.12])) and SIRT3 (EX: +0.80 U/mg (+3.18/−0.05), EXDC: 0.95 U/mg (+3.88/−0.55), EXCO: 1.60 U/mg (+2.85/−0.70)) was detected. Group comparisons revealed that differences in SIRT1 activity in EXCO and EXDC differed significantly from CON (CON vs. EXCO, p = 0.003; CON vs. EXDC, p = 0.010). For SIRT3, increases in all three intervention groups were significantly different from CON (CON vs. EX, p = 0.007; CON vs. EXDC, p < 0.001, CON vs. EXCO, p = 0.004). In contrast, differences in SIRT5-activities were less pronounced. Altogether, the analyses showed that the activity of SIRT1 and SIRT3 increased in response to the exercise intervention and that this increase may potentially be enhanced by additional dietary modifications.
Collapse
|
66
|
Chen J, Zhang Y, Gao J, Li T, Gan X, Yu H. Sirtuin 3 deficiency exacerbates age-related periodontal disease. J Periodontal Res 2021; 56:1163-1173. [PMID: 34591326 PMCID: PMC9293453 DOI: 10.1111/jre.12930] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/26/2021] [Indexed: 02/05/2023]
Abstract
Background Sirtuin 3 (SIRT3), a mitochondrial NAD+‐dependent deacetylase, has received much attention for its effect on metabolism and aging. However, the role of SIRT3 in periodontal disease remains unknown. Objective This study aimed to investigate the functional role of SIRT3 in age‐related periodontal disease and underlying mechanisms. Methods Sixteen mice were randomly assigned into four groups: the young wild type (WT), the aged WT, the young SIRT3‐knockout (KO), and the aged SIRT3‐KO. SIRT3 and cyclophilin D (CypD) expression and protein lysine acetylation levels in alveolar bones were detected by western blot. The bone architecture and the distance of CEJ‐ABC were assessed using micro‐CT and HE staining. The osteoclast number was observed through tartrate‐resistant acid phosphatase (TRAP) staining. Mitochondrial morphology in SIRT3 knockdown MC3T3‐E1 osteoblastic cells was analyzed by Immunofluorescence staining. In gingival tissues, the NAD+/NADH ratio was measured, and oxidative stress was detected by MitoSOX staining, HO‐1 staining, and MnSOD expression. Mitochondrial biogenesis was measured by PGC‐1α expression and oxygen consumption rate (OCR). Results In parallel with the imbalanced NAD+/NADH ratio, the SIRT3 expression was significantly decreased in the alveolar bones of the aged mice, accompanied by a global elevation of protein acetylation levels. The aged SIRT3‐KO group showed the highest rate of bone resorption and the largest number of TRAP‐positive osteoclasts among the four groups. Moreover, the reactive oxygen species level was up‐regulated in the young and the aged SIRT3‐KO groups. SIRT3 deficiency promoted mitochondrial fission and increased the CypD expression. Furthermore, the lack of SIRT3 reduced the PGC‐1α expression in gingival tissues and exhibited a significant reduction in maximal OCR. Conclusion Reduced SIRT3 abundance contributes to aged‐related periodontal disease via the exacerbation of oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Junsheng Chen
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Faculty of Medicine and Dentistry, Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Yarong Zhang
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Gao
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Li
- West China-Washington Mitochondria and Metabolism Center and Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xueqi Gan
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haiyang Yu
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
67
|
Mohamed Asik R, Suganthy N, Aarifa MA, Kumar A, Szigeti K, Mathe D, Gulyás B, Archunan G, Padmanabhan P. Alzheimer's Disease: A Molecular View of β-Amyloid Induced Morbific Events. Biomedicines 2021; 9:biomedicines9091126. [PMID: 34572312 PMCID: PMC8468668 DOI: 10.3390/biomedicines9091126] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 12/26/2022] Open
Abstract
Amyloid-β (Aβ) is a dynamic peptide of Alzheimer’s disease (AD) which accelerates the disease progression. At the cell membrane and cell compartments, the amyloid precursor protein (APP) undergoes amyloidogenic cleavage by β- and γ-secretases and engenders the Aβ. In addition, externally produced Aβ gets inside the cells by receptors mediated internalization. An elevated amount of Aβ yields spontaneous aggregation which causes organelles impairment. Aβ stimulates the hyperphosphorylation of tau protein via acceleration by several kinases. Aβ travels to the mitochondria and interacts with its functional complexes, which impairs the mitochondrial function leading to the activation of apoptotic signaling cascade. Aβ disrupts the Ca2+ and protein homeostasis of the endoplasmic reticulum (ER) and Golgi complex (GC) that promotes the organelle stress and inhibits its stress recovery machinery such as unfolded protein response (UPR) and ER-associated degradation (ERAD). At lysosome, Aβ precedes autophagy dysfunction upon interacting with autophagy molecules. Interestingly, Aβ act as a transcription regulator as well as inhibits telomerase activity. Both Aβ and p-tau interaction with neuronal and glial receptors elevate the inflammatory molecules and persuade inflammation. Here, we have expounded the Aβ mediated events in the cells and its cosmopolitan role on neurodegeneration, and the current clinical status of anti-amyloid therapy.
Collapse
Affiliation(s)
- Rajmohamed Mohamed Asik
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (R.M.A.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Natarajan Suganthy
- Department of Nanoscience and Technology, Alagappa University, Karaikudi 630003, Tamil Nadu, India;
| | - Mohamed Asik Aarifa
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Arvind Kumar
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India;
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (K.S.); (D.M.)
- CROmed Translational Research Centers, 1094 Budapest, Hungary
| | - Domokos Mathe
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (K.S.); (D.M.)
- CROmed Translational Research Centers, 1094 Budapest, Hungary
- In Vivo Imaging Advanced Core Facility, Hungarian Center of Excellence for Molecular Medicine (HCEMM), 1094 Budapest, Hungary
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (R.M.A.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| | - Govindaraju Archunan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
- Marudupandiyar College, Thanjavur 613403, Tamil Nadu, India
- Correspondence: (G.A.); (P.P.)
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (R.M.A.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Correspondence: (G.A.); (P.P.)
| |
Collapse
|
68
|
Pourbagher-Shahri AM, Farkhondeh T, Talebi M, Kopustinskiene DM, Samarghandian S, Bernatoniene J. An Overview of NO Signaling Pathways in Aging. Molecules 2021; 26:molecules26154533. [PMID: 34361685 PMCID: PMC8348219 DOI: 10.3390/molecules26154533] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Nitric Oxide (NO) is a potent signaling molecule involved in the regulation of various cellular mechanisms and pathways under normal and pathological conditions. NO production, its effects, and its efficacy, are extremely sensitive to aging-related changes in the cells. Herein, we review the mechanisms of NO signaling in the cardiovascular system, central nervous system (CNS), reproduction system, as well as its effects on skin, kidneys, thyroid, muscles, and on the immune system during aging. The aging-related decline in NO levels and bioavailability is also discussed in this review. The decreased NO production by endothelial nitric oxide synthase (eNOS) was revealed in the aged cardiovascular system. In the CNS, the decline of the neuronal (n)NOS production of NO was related to the impairment of memory, sleep, and cognition. NO played an important role in the aging of oocytes and aged-induced erectile dysfunction. Aging downregulated NO signaling pathways in endothelial cells resulting in skin, kidney, thyroid, and muscle disorders. Putative therapeutic agents (natural/synthetic) affecting NO signaling mechanisms in the aging process are discussed in the present study. In summary, all of the studies reviewed demonstrate that NO plays a crucial role in the cellular aging processes.
Collapse
Affiliation(s)
- Ali Mohammad Pourbagher-Shahri
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Marjan Talebi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran;
| | - Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu Pr. 13, LT-50161 Kaunas, Lithuania;
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur 9318614139, Iran
- Correspondence: (S.S.); (J.B.)
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu Pr. 13, LT-50161 Kaunas, Lithuania;
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu Pr. 13, LT-50161 Kaunas, Lithuania
- Correspondence: (S.S.); (J.B.)
| |
Collapse
|
69
|
Bussulo SKD, Ferraz CR, Carvalho TT, Verri WA, Borghi SM. Redox interactions of immune cells and muscle in the regulation of exercise-induced pain and analgesia: implications on the modulation of muscle nociceptor sensory neurons. Free Radic Res 2021; 55:757-775. [PMID: 34238089 DOI: 10.1080/10715762.2021.1953696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The mechanistic interactions among redox status of leukocytes, muscle, and exercise in pain regulation are still poorly understood and limit targeted treatment. Exercise benefits are numerous, including the treatment of chronic pain. However, unaccustomed exercise may be reported as undesirable as it may contribute to pain. The aim of the present review is to evaluate the relationship between oxidative metabolism and acute exercise-induced pain, and as to whether improved antioxidant capacity underpins the analgesic effects of regular exercise. Preclinical and clinical studies addressing relevant topics on mechanisms by which exercise modulates the nociceptive activity and how redox status can outline pain and analgesia are discussed, in sense of translating into refined outcomes. Emerging evidence points to the role of oxidative stress-induced signaling in sensitizing nociceptor sensory neurons. In response to acute exercise, there is an increase in oxidative metabolism, and consequently, pain. Instead, regular exercise can modulate redox status in favor of antioxidant capacity and repair mechanisms, which have consequently increased resistance to oxidative stress, damage, and pain. Data indicate that acute sessions of unaccustomed prolonged and/or intense exercise increase oxidative metabolism and regulate exercise-induced pain in the post-exercise recovery period. Further, evidence demonstrates regular exercise improves antioxidant status, indicating its therapeutic utility for chronic pain disorders. An improved comprehension of the role of redox status in exercise can provide helpful insights into immune-muscle communication during pain modulatory effects of exercise and support new therapeutic efforts and rationale for the promotion of exercise.
Collapse
Affiliation(s)
- Sylvia K D Bussulo
- Center for Research in Health Sciences, University of Northern Paraná, Londrina, Brazil
| | - Camila R Ferraz
- Department of Pathology, Biological Sciences Center, Rodovia Celso Garcia Cid, State University of Londrina, Londrina, Brazil
| | - Thacyana T Carvalho
- Department of Pathology, Biological Sciences Center, Rodovia Celso Garcia Cid, State University of Londrina, Londrina, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Biological Sciences Center, Rodovia Celso Garcia Cid, State University of Londrina, Londrina, Brazil
| | - Sergio M Borghi
- Center for Research in Health Sciences, University of Northern Paraná, Londrina, Brazil.,Department of Pathology, Biological Sciences Center, Rodovia Celso Garcia Cid, State University of Londrina, Londrina, Brazil
| |
Collapse
|
70
|
Di Emidio G, Falone S, Artini PG, Amicarelli F, D’Alessandro AM, Tatone C. Mitochondrial Sirtuins in Reproduction. Antioxidants (Basel) 2021; 10:antiox10071047. [PMID: 34209765 PMCID: PMC8300669 DOI: 10.3390/antiox10071047] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/17/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Mitochondria act as hubs of numerous metabolic pathways. Mitochondrial dysfunctions contribute to altering the redox balance and predispose to aging and metabolic alterations. The sirtuin family is composed of seven members and three of them, SIRT3-5, are housed in mitochondria. They catalyze NAD+-dependent deacylation and the ADP-ribosylation of mitochondrial proteins, thereby modulating gene expression and activities of enzymes involved in oxidative metabolism and stress responses. In this context, mitochondrial sirtuins (mtSIRTs) act in synergistic or antagonistic manners to protect from aging and aging-related metabolic abnormalities. In this review, we focus on the role of mtSIRTs in the biological competence of reproductive cells, organs, and embryos. Most studies are focused on SIRT3 in female reproduction, providing evidence that SIRT3 improves the competence of oocytes in humans and animal models. Moreover, SIRT3 protects oocytes, early embryos, and ovaries against stress conditions. The relationship between derangement of SIRT3 signaling and the imbalance of ROS and antioxidant defenses in testes has also been demonstrated. Very little is known about SIRT4 and SIRT5 functions in the reproductive system. The final goal of this work is to understand whether sirtuin-based signaling may be taken into account as potential targets for therapeutic applications in female and male infertility.
Collapse
Affiliation(s)
- Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.F.); (F.A.); (A.M.D.); (C.T.)
- Correspondence: ; Tel.: +39-(0)-862-433-441
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.F.); (F.A.); (A.M.D.); (C.T.)
| | - Paolo Giovanni Artini
- Department of Obstetrics and Gynecology “P. Fioretti”, University of Pisa, 56126 Pisa, Italy;
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.F.); (F.A.); (A.M.D.); (C.T.)
| | - Anna Maria D’Alessandro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.F.); (F.A.); (A.M.D.); (C.T.)
| | - Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.F.); (F.A.); (A.M.D.); (C.T.)
| |
Collapse
|
71
|
Kovács Z, Brunner B, Ari C. Beneficial Effects of Exogenous Ketogenic Supplements on Aging Processes and Age-Related Neurodegenerative Diseases. Nutrients 2021; 13:nu13072197. [PMID: 34206738 PMCID: PMC8308443 DOI: 10.3390/nu13072197] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022] Open
Abstract
Life expectancy of humans has increased continuously up to the present days, but their health status (healthspan) was not enhanced by similar extent. To decrease enormous medical, economical and psychological burden that arise from this discrepancy, improvement of healthspan is needed that leads to delaying both aging processes and development of age-related diseases, thereby extending lifespan. Thus, development of new therapeutic tools to alleviate aging processes and related diseases and to increase life expectancy is a topic of increasing interest. It is widely accepted that ketosis (increased blood ketone body levels, e.g., β-hydroxybutyrate) can generate neuroprotective effects. Ketosis-evoked neuroprotective effects may lead to improvement in health status and delay both aging and the development of related diseases through improving mitochondrial function, antioxidant and anti-inflammatory effects, histone and non-histone acetylation, β-hydroxybutyrylation of histones, modulation of neurotransmitter systems and RNA functions. Administration of exogenous ketogenic supplements was proven to be an effective method to induce and maintain a healthy state of nutritional ketosis. Consequently, exogenous ketogenic supplements, such as ketone salts and ketone esters, may mitigate aging processes, delay the onset of age-associated diseases and extend lifespan through ketosis. The aim of this review is to summarize the main hallmarks of aging processes and certain signaling pathways in association with (putative) beneficial influences of exogenous ketogenic supplements-evoked ketosis on lifespan, aging processes, the most common age-related neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis), as well as impaired learning and memory functions.
Collapse
Affiliation(s)
- Zsolt Kovács
- Department of Biology, Savaria University Centre, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary; (Z.K.); (B.B.)
| | - Brigitta Brunner
- Department of Biology, Savaria University Centre, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary; (Z.K.); (B.B.)
- Faculty of Sciences, Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary
| | - Csilla Ari
- Behavioral Neuroscience Research Laboratory, Department of Psychology, University of South Florida, 4202 E. Fowler Ave, PCD 3127, Tampa, FL 33620, USA
- Ketone Technologies LLC, 2780 E. Fowler Ave. #226, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-(813)-2409925
| |
Collapse
|
72
|
Cheresh P, Kim SJ, Jablonski R, Watanabe S, Lu Z, Chi M, Helmin KA, Gius D, Budinger GRS, Kamp DW. SIRT3 Overexpression Ameliorates Asbestos-Induced Pulmonary Fibrosis, mt-DNA Damage, and Lung Fibrogenic Monocyte Recruitment. Int J Mol Sci 2021; 22:6856. [PMID: 34202229 PMCID: PMC8268084 DOI: 10.3390/ijms22136856] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 01/28/2023] Open
Abstract
Alveolar epithelial cell (AEC) mitochondrial (mt) DNA damage and fibrotic monocyte-derived alveolar macrophages (Mo-AMs) are implicated in the pathobiology of pulmonary fibrosis. We showed that sirtuin 3 (SIRT3), a mitochondrial protein regulating cell fate and aging, is deficient in the AECs of idiopathic pulmonary fibrosis (IPF) patients and that asbestos- and bleomycin-induced lung fibrosis is augmented in Sirt3 knockout (Sirt3-/-) mice associated with AEC mtDNA damage and intrinsic apoptosis. We determined whether whole body transgenic SIRT3 overexpression (Sirt3Tg) protects mice from asbestos-induced pulmonary fibrosis by mitigating lung mtDNA damage and Mo-AM recruitment. Crocidolite asbestos (100 µg/50 µL) or control was instilled intratracheally in C57Bl6 (Wild-Type) mice or Sirt3Tg mice, and at 21 d lung fibrosis (histology, fibrosis score, Sircol assay) and lung Mo-AMs (flow cytometry) were assessed. Compared to controls, Sirt3Tg mice were protected from asbestos-induced pulmonary fibrosis and had diminished lung mtDNA damage and Mo-AM recruitment. Further, pharmacologic SIRT3 inducers (i.e., resveratrol, viniferin, and honokiol) each diminish oxidant-induced AEC mtDNA damage in vitro and, in the case of honokiol, protection occurs in a SIRT3-dependent manner. We reason that SIRT3 preservation of AEC mtDNA is a novel therapeutic focus for managing patients with IPF and other types of pulmonary fibrosis.
Collapse
Affiliation(s)
- Paul Cheresh
- Jesse Brown VA Medical Center, Division of Pulmonary & Critical Care Medicine, Chicago, IL 60612, USA; (P.C.); (S.-J.K.); (Z.L.); (G.R.S.B.)
- Department of Medicine, Feinberg School of Medicine, Pulmonary and Critical Care Medicine, Northwestern University, Simpson & Querrey Biomedical Research Center 5-303, 303 E Superior St., Chicago, IL 60611, USA; (S.W.); (M.C.); (K.A.H.)
| | - Seok-Jo Kim
- Jesse Brown VA Medical Center, Division of Pulmonary & Critical Care Medicine, Chicago, IL 60612, USA; (P.C.); (S.-J.K.); (Z.L.); (G.R.S.B.)
- Department of Medicine, Feinberg School of Medicine, Pulmonary and Critical Care Medicine, Northwestern University, Simpson & Querrey Biomedical Research Center 5-303, 303 E Superior St., Chicago, IL 60611, USA; (S.W.); (M.C.); (K.A.H.)
| | - Renea Jablonski
- Section of Pulmonary and Critical Care, Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA;
| | - Satoshi Watanabe
- Department of Medicine, Feinberg School of Medicine, Pulmonary and Critical Care Medicine, Northwestern University, Simpson & Querrey Biomedical Research Center 5-303, 303 E Superior St., Chicago, IL 60611, USA; (S.W.); (M.C.); (K.A.H.)
| | - Ziyan Lu
- Jesse Brown VA Medical Center, Division of Pulmonary & Critical Care Medicine, Chicago, IL 60612, USA; (P.C.); (S.-J.K.); (Z.L.); (G.R.S.B.)
- Department of Medicine, Feinberg School of Medicine, Pulmonary and Critical Care Medicine, Northwestern University, Simpson & Querrey Biomedical Research Center 5-303, 303 E Superior St., Chicago, IL 60611, USA; (S.W.); (M.C.); (K.A.H.)
| | - Monica Chi
- Department of Medicine, Feinberg School of Medicine, Pulmonary and Critical Care Medicine, Northwestern University, Simpson & Querrey Biomedical Research Center 5-303, 303 E Superior St., Chicago, IL 60611, USA; (S.W.); (M.C.); (K.A.H.)
| | - Kathryn A. Helmin
- Department of Medicine, Feinberg School of Medicine, Pulmonary and Critical Care Medicine, Northwestern University, Simpson & Querrey Biomedical Research Center 5-303, 303 E Superior St., Chicago, IL 60611, USA; (S.W.); (M.C.); (K.A.H.)
| | - David Gius
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - G. R. Scott Budinger
- Jesse Brown VA Medical Center, Division of Pulmonary & Critical Care Medicine, Chicago, IL 60612, USA; (P.C.); (S.-J.K.); (Z.L.); (G.R.S.B.)
- Department of Medicine, Feinberg School of Medicine, Pulmonary and Critical Care Medicine, Northwestern University, Simpson & Querrey Biomedical Research Center 5-303, 303 E Superior St., Chicago, IL 60611, USA; (S.W.); (M.C.); (K.A.H.)
| | - David W. Kamp
- Jesse Brown VA Medical Center, Division of Pulmonary & Critical Care Medicine, Chicago, IL 60612, USA; (P.C.); (S.-J.K.); (Z.L.); (G.R.S.B.)
- Department of Medicine, Feinberg School of Medicine, Pulmonary and Critical Care Medicine, Northwestern University, Simpson & Querrey Biomedical Research Center 5-303, 303 E Superior St., Chicago, IL 60611, USA; (S.W.); (M.C.); (K.A.H.)
| |
Collapse
|
73
|
Ling W, Krager K, Richardson KK, Warren AD, Ponte F, Aykin-Burns N, Manolagas SC, Almeida M, Kim HN. Mitochondrial Sirt3 contributes to the bone loss caused by aging or estrogen deficiency. JCI Insight 2021; 6:146728. [PMID: 33878033 PMCID: PMC8262324 DOI: 10.1172/jci.insight.146728] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/14/2021] [Indexed: 12/20/2022] Open
Abstract
Altered mitochondria activity in osteoblasts and osteoclasts has been implicated in the loss of bone mass associated with aging and estrogen deficiency — the 2 most common causes of osteoporosis. However, the mechanisms that control mitochondrial metabolism in bone cells during health or disease remain unknown. The mitochondrial deacetylase sirtuin-3 (Sirt3) has been earlier implicated in age-related diseases. Here, we show that deletion of Sirt3 had no effect on the skeleton of young mice but attenuated the age-related loss of bone mass in both sexes. This effect was associated with impaired bone resorption. Osteoclast progenitors from aged Sirt3-null mice were able to differentiate into osteoclasts, though the differentiated cells exhibited impaired polykaryon formation and resorptive activity, as well as decreased oxidative phosphorylation and mitophagy. The Sirt3 inhibitor LC-0296 recapitulated the effects of Sirt3 deletion in osteoclast formation and mitochondrial function, and its administration to aging mice increased bone mass. Deletion of Sirt3 also attenuated the increase in bone resorption and loss of bone mass caused by estrogen deficiency. These findings suggest that Sirt3 inhibition and the resulting impairment of osteoclast mitochondrial function could be a novel therapeutic intervention for the 2 most important causes of osteoporosis.
Collapse
Affiliation(s)
- Wen Ling
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology, Department of Internal Medicine
| | - Kimberly Krager
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kimberly K Richardson
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology, Department of Internal Medicine
| | - Aaron D Warren
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology, Department of Internal Medicine.,Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| | - Filipa Ponte
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology, Department of Internal Medicine
| | - Nukhet Aykin-Burns
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Stavros C Manolagas
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology, Department of Internal Medicine.,Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA.,Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Maria Almeida
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology, Department of Internal Medicine.,Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA.,Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ha-Neui Kim
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology, Department of Internal Medicine.,Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| |
Collapse
|
74
|
Jiang W, Liu H, Wan R, Wu Y, Shi Z, Huang W. Mechanisms linking mitochondrial mechanotransduction and chondrocyte biology in the pathogenesis of osteoarthritis. Ageing Res Rev 2021; 67:101315. [PMID: 33684550 DOI: 10.1016/j.arr.2021.101315] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/12/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
Mechanical loading is essential for chondrocyte health. Chondrocytes can sense and respond to various extracellular mechanical signals through an integrated set of mechanisms. Recently, it has been found that mitochondria, acting as critical mechanotransducers, are at the intersection between extracellular mechanical signals and chondrocyte biology. Much attention has been focused on identifying how mechanical loading-induced mitochondrial dysfunction contributes to the pathogenesis of osteoarthritis. In contrast, little is known regarding the mechanisms underlying functional alterations in mitochondria induced by mechanical stimulation. In this review, we describe how chondrocytes perceive environmental mechanical signals. We discuss how mechanical load induces mitochondrial functional alterations and highlight the major unanswered questions in this field. We speculate that AMP-activated protein kinase (AMPK), a master regulator of energy homeostasis, may play an important role in coupling force transmission to mitochondrial health and intracellular biological responses.
Collapse
|
75
|
Heiat F, Ghanbarzadeh M, Shojaeifard M, Ranjbar R. The effect of high-intensity interval training on the expression levels of PGC-1α and SIRT3 proteins and aging index of slow-twitch and fast-twitch of healthy male rats. Sci Sports 2021. [DOI: 10.1016/j.scispo.2020.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
76
|
Gómez-Zorita S, Milton-Laskibar I, Macarulla MT, Biasutto L, Fernández-Quintela A, Miranda J, Lasa A, Segues N, Bujanda L, Portillo MP. Pterostilbene modifies triglyceride metabolism in hepatic steatosis induced by high-fat high-fructose feeding: a comparison with its analog resveratrol. Food Funct 2021; 12:3266-3279. [PMID: 33877249 DOI: 10.1039/d0fo03320k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The use of phenolic compounds as a new therapeutic approach against NAFLD has emerged recently. In the present study, we aim to study the effect of pterostilbene in the prevention of liver steatosis developed as a consequence of high-fat (saturated) high-fructose feeding, by analysing the changes induced in metabolic pathways involved in triglyceride accumulation. Interestingly, a comparison with the anti-steatotic effect of its parent compound resveratrol will be made for the first time. Rats were distributed into 5 experimental groups and fed either a standard laboratory diet or a high-fat high-fructose diet supplemented with or without pterostilbene (15 or 30 mg per kg per d) or resveratrol (30 mg per kg per d) for 8 weeks. Serum triglyceride, cholesterol, NEFA and transaminase levels were quantified. Liver histological analysis was carried out by haematoxylin-eosin staining. Different pathways involved in liver triglyceride metabolism, including fatty acid synthesis, uptake and oxidation, triglyceride assembly and triglyceride release, were studied. Pterostilbene was shown to partially prevent high-fat high-fructose feeding induced liver steatosis in rats, demonstrating a dose-response pattern. In this dietary model, it acts mainly by reducing de novo lipogenesis and increasing triglyceride assembly and release. Improvement in mitochondrial functionality was also appreciated. At the same dose, the magnitude of pterostilbene and resveratrol induced effects, as well as the involved mechanisms of action, were similar.
Collapse
Affiliation(s)
- S Gómez-Zorita
- Nutrition and Obesity group, Department of Nutrition and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Lucio Lascaray Research Center, 01006 Vitoria-Gasteiz, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Quiñones M, Hernández-Bautista R, Beiroa D, Heras V, Torres-Leal FL, Lam BYH, Senra A, Fernø J, Gómez-Valadés AG, Schwaninger M, Prevot V, Yeo G, Claret M, López M, Diéguez C, Al-Massadi O, Nogueiras R. Sirt3 in POMC neurons controls energy balance in a sex- and diet-dependent manner. Redox Biol 2021; 41:101945. [PMID: 33744652 PMCID: PMC8005845 DOI: 10.1016/j.redox.2021.101945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
Sirtuin 3 (SIRT3) is one of the seven mammalian sirtuin homologs of the yeast Sir2 gene that has emerged as an important player in the regulation of energy metabolism in peripheral tissues. However, its role in the hypothalamus has not been explored. Herein, we show that the genetic inhibition of SIRT3 in the hypothalamic arcuate nucleus (ARC) induced a negative energy balance and improvement of several metabolic parameters. These effects are specific for POMC neurons, because ablation of SIRT3 in POMC, but not in AgRP neurons, decreased body weight and adiposity, increased energy expenditure and brown adipose tissue (BAT) activity, and induced browning in white adipose tissue (WAT). Notably, the depletion of SIRT3 in POMC neurons caused these effects in male mice fed a chow diet but failed to affect energy balance in males fed a high fat diet and females under both type of diets. Overall, we provide the first evidence pointing for a key role of SIRT3 in POMC neurons in the regulation of energy balance.
Collapse
Affiliation(s)
- Mar Quiñones
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain.
| | - René Hernández-Bautista
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Daniel Beiroa
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Violeta Heras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Francisco L Torres-Leal
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; Metabolic Diseases, Exercise and Nutrition (DOMEN) Research Group, Federal University of Piauí, Teresina, Brazil
| | - Brian Y H Lam
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Ana Senra
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Alicia García Gómez-Valadés
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, European Genomic Institute for Diabetes (EGID), F-59000, Lille, France
| | - Giles Yeo
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Marc Claret
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036, Barcelona, Spain; School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Omar Al-Massadi
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Travesía da Choupana S/n, 15706, Santiago de Compostela, Spain.
| | - Ruben Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain; Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain.
| |
Collapse
|
78
|
Li Q, Wang H, Zhang J, Kong APS, Li G, Lam TP, Cheng JCY, Lee WYW. Deletion of SIRT3 inhibits osteoclastogenesis and alleviates aging or estrogen deficiency-induced bone loss in female mice. Bone 2021; 144:115827. [PMID: 33359008 DOI: 10.1016/j.bone.2020.115827] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/27/2020] [Accepted: 12/17/2020] [Indexed: 11/21/2022]
Abstract
SIRT3 has been speculated to affect osteoclast activity through its important roles in regulating mitochondrial function. It remains unclear whether SIRT3 affects osteoclast activity in female mice which is relevant to postmenopausal osteoporosis. We hypothesized that deletion of SIRT3 could modulate bone remodeling in female mice under physiological aging process or ovariectomy (OVX)-induced bone loss. We found that SIRT3 level was markedly increased in primary bone marrow-derived macrophages (BMMs) from both 26-month-old aged mice and OVX mice. Knockdown of SIRT3 in vitro inhibited osteoclast differentiation and mitochondrial biogenesis, and deletion of SIRT3 increased trabecular bone mass in female mice due to impaired osteoclastogenesis. The effect of SIRT3 on bone remodeling appears to be age-dependent as revealed by comparing the effect of SIRT3 deletion on 5-week-old, 3-month-old and 6-month-old female mice. Interestingly, Sirt3-/- mice were more resistant to bone loss following estrogen deficiency resulting from OVX. Our findings demonstrated that SIRT3 could play critical roles in bone remodeling and estrogen deficiency-induced bone loss in female mice, suggesting that SIRT3 and its downstream effectors might be potential novel therapeutic targets for the management of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Qiangqiang Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China; SH Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Haixing Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jiajun Zhang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China; SH Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alice Pik-Shan Kong
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tsz-Ping Lam
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China; SH Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jack Chun-Yiu Cheng
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China; SH Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wayne Yuk-Wai Lee
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China; SH Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
79
|
Loharch S, Chhabra S, Kumar A, Swarup S, Parkesh R. Discovery and characterization of small molecule SIRT3-specific inhibitors as revealed by mass spectrometry. Bioorg Chem 2021; 110:104768. [PMID: 33676042 DOI: 10.1016/j.bioorg.2021.104768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/03/2021] [Accepted: 02/20/2021] [Indexed: 01/01/2023]
Abstract
Sirtuins play a prominent role in several cellular processes and are implicated in various diseases. The understanding of biological roles of sirtuins is limited because of the non-availability of small molecule inhibitors, particularly the specific inhibitors directed against a particular SIRT. We performed a high-throughput screening of pharmacologically active compounds to discover novel, specific, and selective sirtuin inhibitor. Several unique in vitro sirtuin inhibitor pharmacophores were discovered. Here, we present the discovery of novel chemical scaffolds specific for SIRT3. We have demonstrated the in vitro activity of these compounds using label-free mass spectroscopy. We have further validated our results using biochemical, biophysical, and computational studies. Determination of kinetic parameters shows that the SIRT3 specific inhibitors have a moderately longer residence time, possibly implying high in vivo efficacy. The molecular docking results revealed the differential selectivity pattern of these inhibitors against sirtuins. The discovery of specific inhibitors will improve the understanding of ligand selectivity in sirtuins, and the binding mechanism as revealed by docking studies can be further exploited for discovering selective and potent ligands targeting sirtuins.
Collapse
Affiliation(s)
- Saurabh Loharch
- GNRPC, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - Sonali Chhabra
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Abhinit Kumar
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Sapna Swarup
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Raman Parkesh
- GNRPC, CSIR-Institute of Microbial Technology, Chandigarh 160036, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India.
| |
Collapse
|
80
|
Li Q, Cheng JC, Jiang Q, Lee WY. Role of sirtuins in bone biology: Potential implications for novel therapeutic strategies for osteoporosis. Aging Cell 2021; 20:e13301. [PMID: 33393735 PMCID: PMC7884050 DOI: 10.1111/acel.13301] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022] Open
Abstract
The decline in bone mass and bone strength and musculoskeletal problems associated with aging constitute a major challenge for affected individuals and the healthcare system globally. Sirtuins 1-7 (SIRT1-SIRT7) are a family of nicotinamide adenine dinucleotide-dependent deacetylases with remarkable abilities to promote longevity and counteract age-related diseases. Sirtuin knockout and transgenic models have provided novel insights into the function and signaling of these proteins in bone homeostasis. Studies have revealed that sirtuins play a critical role in normal skeletal development and homeostasis through their direct action on bone cells and that their dysregulation might contribute to different bone diseases. Preclinical studies have demonstrated that mice treated with sirtuin agonists show protection against age-related, postmenopausal, and immobilization-induced osteoporosis. These findings suggest that sirtuins could be potential targets for the modulation of the imbalance in bone remodeling and treatment of osteoporosis and other bone disorders. The aim of this review was to provide a comprehensive updated review of the current knowledge on sirtuin biology, focusing specifically on their roles in bone homeostasis and osteoporosis, and potential pharmacological interventions targeting sirtuins for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Qiangqiang Li
- SH Ho Scoliosis Research LaboratoryDepartment of Orthopaedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing UniversityThe Chinese University of Hong KongHong Kong SARChina
- Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
| | - Jack Chun‐yiu Cheng
- SH Ho Scoliosis Research LaboratoryDepartment of Orthopaedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing UniversityThe Chinese University of Hong KongHong Kong SARChina
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive SurgeryDrum Tower Hospital affiliated to Medical School of Nanjing UniversityNanjingChina
| | - Wayne Yuk‐wai Lee
- SH Ho Scoliosis Research LaboratoryDepartment of Orthopaedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing UniversityThe Chinese University of Hong KongHong Kong SARChina
- Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
| |
Collapse
|
81
|
Wang JS, Yoon SH, Wein MN. Role of histone deacetylases in bone development and skeletal disorders. Bone 2021; 143:115606. [PMID: 32829038 PMCID: PMC7770092 DOI: 10.1016/j.bone.2020.115606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 02/08/2023]
Abstract
Bone cells must constantly respond to hormonal and mechanical cues to change gene expression programs. Of the myriad of epigenomic mechanisms used by cells to dynamically alter cell type-specific gene expression, histone acetylation and deacetylation has received intense focus over the past two decades. Histone deacetylases (HDACs) represent a large family of proteins with a conserved deacetylase domain first described to deacetylate lysine residues on histone tails. It is now appreciated that multiple classes of HDACs exist, some of which are clearly misnamed in that acetylated lysine residues on histone tails is not the major function of their deacetylase domain. Here, we will review the roles of proteins bearing deacetylase domains in bone cells, focusing on current genetic evidence for each individual HDAC gene. While class I HDACs are nuclear proteins whose primary role is to deacetylate histones, class IIa and class III HDACs serve other important cellular functions. Detailed knowledge of the roles of individual HDACs in bone development and remodeling will set the stage for future efforts to specifically target individual HDAC family members in the treatment of skeletal diseases such as osteoporosis.
Collapse
Affiliation(s)
- Jialiang S Wang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sung-Hee Yoon
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
82
|
Ruankham W, Suwanjang W, Wongchitrat P, Prachayasittikul V, Prachayasittikul S, Phopin K. Sesamin and sesamol attenuate H 2O 2-induced oxidative stress on human neuronal cells via the SIRT1-SIRT3-FOXO3a signaling pathway. Nutr Neurosci 2021; 24:90-101. [PMID: 30929586 DOI: 10.1080/1028415x.2019.1596613] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background: An imbalance of free radicals and antioxidant defense systems in physiological processes can result in protein/DNA damage, inflammation, and cellular apoptosis leading to neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Sesamin and sesamol, compounds derived from sesame seeds and oil, have been reported to exert various pharmacological effects, especially antioxidant activity. However, their molecular mechanisms against the oxidative stress induced by exogenous hydrogen peroxide (H2O2) remain to be elucidated. Aim: In this study, neuroprotective effects of sesamin and sesamol on H2O2-induced human neuroblastoma (SH-SY5Y) cell death and possible signaling pathways in the cells were explored. Methods: MTT assay and flow cytometry were conducted to determine cell viability and apoptotic profiles of neuronal cells treated with sesamin and sesamol. Carboxy-DCFDA assay was used to measure reactive oxygen species (ROS). Moreover, Western blot analysis was performed to investigate protein profiles associated with neuroprotection. Results: Pretreatment of the cells with 1 µM of sesamin and sesamol remarkably reduced the SH-SY5Y cell death induced by 400 µM H2O2 as well as the intracellular ROS production. Moreover, the molecular mechanisms underlying neuroprotection of the compounds were associated with activating SIRT1-SIRT3-FOXO3a expression, inhibiting BAX (proapoptotic protein), and upregulating BCL-2 (anti-apoptotic protein). Conclusion: The findings suggest that sesamin and sesamol are compounds that potentially protect neuronal cells against oxidative stress similar to that of the resveratrol, the reference compound. These antioxidants are thus of interest for further investigation in in vivo models of neuroprotection.
Collapse
Affiliation(s)
- Waralee Ruankham
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Wilasinee Suwanjang
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Prapimpun Wongchitrat
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Kamonrat Phopin
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
83
|
Anamika, Trigun SK. Sirtuin-3 activation by honokiol restores mitochondrial dysfunction in the hippocampus of the hepatic encephalopathy rat model of ammonia neurotoxicity. J Biochem Mol Toxicol 2021; 35:e22735. [PMID: 33522075 DOI: 10.1002/jbt.22735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/06/2020] [Accepted: 01/20/2021] [Indexed: 11/11/2022]
Abstract
The neurotoxic level of ammonia in the brain during liver cirrhosis causes a nervous system disorder, hepatic encephalopathy (HE), by affecting mitochondrial functions. Sirtuin-3 (SIRT3) is emerging as a master regulator of mitochondrial integrity, which is currently being focused as a pathogenic hotspot for HE. This article describes SIRT3 level versus mitochondrial dysfunction markers in the hippocampus of the control, the moderate-grade hepatic encephalopathy (MoHE), developed in thioacetamide-induced (100 mg/kg bw ip for 10 days) liver cirrhotic rats, and the MoHE rats treated with an SIRT3 activator, honokiol (HKL; 10 mg/kg bw ip), for 7 days from 8th day of the thioacetamide schedule. As compared with the control group rats, hippocampus mitochondria of MoHE rats showed a significant decline in SIRT3 expression and its activity with concordant enhancement of ROS and declined membrane permeability transition and organelle viability scores. This was consistent with the declined mitochondrial thiol level and thiol-regenerating enzyme, isocitrate dehydrogenase 2. Also, significantly declined activities of electron transport chain complexes I, III, IV, and Q10 , decreased NAD+ /NADH and ATP/AMP ratios, and enhanced number of the shrunken mitochondria were recorded in the hippocampus of those MoHE rats. However, all these mitochondrial aberrations were observed to regain their normal profiles/levels, concordant to the enhanced SIRT3 expression and its activity due to treatment with HKL. The findings suggest a role of SIRT3 in mitochondrial structure-function derangements associated with MoHE pathogenesis and SIRT3 activation by HKL as a relevant strategy to protect mitochondrial integrity during ammonia neurotoxicity.
Collapse
Affiliation(s)
- Anamika
- Biochemistry Section, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Surendra K Trigun
- Biochemistry Section, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
84
|
Soares EL, Dos Santos FA, Mroczek T, de Lima DC, Josefino HVB, da Silva LAB, Mecca LEA, Franco GCN. Effect of caloric restriction on alveolar bone loss in rats. Life Sci 2021; 269:119067. [PMID: 33465390 DOI: 10.1016/j.lfs.2021.119067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Affiliation(s)
| | | | - Tayline Mroczek
- Department of Health Sciences, Universidade Estadual de Ponta Grossa, PR, Brazil
| | | | | | | | | | | |
Collapse
|
85
|
Morris G, Walker AJ, Walder K, Berk M, Marx W, Carvalho AF, Maes M, Puri BK. Increasing Nrf2 Activity as a Treatment Approach in Neuropsychiatry. Mol Neurobiol 2021; 58:2158-2182. [PMID: 33411248 DOI: 10.1007/s12035-020-02212-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor encoded by NFE2L2. Under oxidative stress, Nrf2 does not undergo its normal cytoplasmic degradation but instead travels to the nucleus, where it binds to a DNA promoter and initiates transcription of anti-oxidative genes. Nrf2 upregulation is associated with increased cellular levels of glutathione disulfide, glutathione peroxidase, glutathione transferases, thioredoxin and thioredoxin reductase. Given its key role in governing the cellular antioxidant response, upregulation of Nrf2 has been suggested as a common therapeutic target in neuropsychiatric illnesses such as major depressive disorder, bipolar disorder and schizophrenia, which are associated with chronic oxidative and nitrosative stress, characterised by elevated levels of reactive oxygen species, nitric oxide and peroxynitrite. These processes lead to extensive lipid peroxidation, protein oxidation and carbonylation, and oxidative damage to nuclear and mitochondrial DNA. Intake of N-acetylcysteine, coenzyme Q10 and melatonin is accompanied by increased Nrf2 activity. N-acetylcysteine intake is associated with improved cerebral mitochondrial function, decreased central oxidative and nitrosative stress, reduced neuroinflammation, alleviation of endoplasmic reticular stress and suppression of the unfolded protein response. Coenzyme Q10, which acts as a superoxide scavenger in neuroglial mitochondria, instigates mitohormesis, ameliorates lipid peroxidation in the inner mitochondrial membrane, activates uncoupling proteins, promotes mitochondrial biogenesis and has positive effects on the plasma membrane redox system. Melatonin, which scavenges mitochondrial free radicals, inhibits mitochondrial nitric oxide synthase, restores mitochondrial calcium homeostasis, deacetylates and activates mitochondrial SIRT3, ameliorates increased permeability of the blood-brain barrier and intestine and counters neuroinflammation and glutamate excitotoxicity.
Collapse
Affiliation(s)
- G Morris
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - A J Walker
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - K Walder
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - M Berk
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia.,CMMR Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - W Marx
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - A F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - M Maes
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia.,Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
86
|
Thangaraj A, Chivero ET, Tripathi A, Singh S, Niu F, Guo ML, Pillai P, Periyasamy P, Buch S. HIV TAT-mediated microglial senescence: Role of SIRT3-dependent mitochondrial oxidative stress. Redox Biol 2020; 40:101843. [PMID: 33385630 PMCID: PMC7779826 DOI: 10.1016/j.redox.2020.101843] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/10/2020] [Accepted: 12/20/2020] [Indexed: 02/07/2023] Open
Abstract
The advent of combined antiretroviral treatment (cART) as a treatment for HIV-1 infection has not only resulted in a dramatic decrease in the peripheral viral load but has also led to increased life expectancy of the infected individuals. Paradoxically, increased lifespan is accompanied with higher prevalence of age-related comorbidities, including HIV-associated neurocognitive disorders (HAND). Present study was aimed at exploring the role of HIV TAT protein in mediating microglial mitochondrial oxidative stress, ultimately resulting in neuroinflammation and microglial senescence. Our findings demonstrated that exposure of mouse primary microglial cells (mPMs) to HIV TAT protein resulted in a senescence-like phenotype, that was characterized by elevated expression of both p16 and p21 proteins, increased numbers of senescence-associated-β-galactosidase positive cells, augmented cell-cycle arrest, increased release of proinflammatory cytokines and decreased telomerase activity. Additionally, exposure of mPMs to HIV TAT also resulted downregulation of SIRT3 with a concomitant increase in mitochondrial oxidative stress. Dual luciferase reporter assay identified miR-505 as a novel target of SIRT3, which was upregulated in mPMs exposed to HIV TAT. Furthermore, transient transfection of mPMs with either the SIRT3 plasmid or miRNA-505 inhibitor upregulated the expression of SIRT3 and mitochondrial antioxidant enzymes, with a concomitant decrease in microglial senescence. These in vitro findings were also validated in the prefrontal cortices and striatum of HIV transgenic rats as well as cART-treated HIV-infected individuals. In summary, this study underscores a yet undiscovered novel mechanism(s) underlying HIV TAT-mediated induction of senescence phenotype in microglia, involving the miR-505-SIRT3 axis-mediated induction of mitochondrial oxidative stress. HIV TAT induces senescence-like phenotype in microglia. HIV TAT decreases SIRT3 with concomitant increase of mitochondrial ROS. Overexpression of SIRT3 attenuated HIV TAT-mediated microglial senescence. miR-505 negatively regulate SIRT3 expression. miR-505 inhibition prevents SIRT3-mediated mitochondria stress and glial senescence.
Collapse
Affiliation(s)
- Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Ashutosh Tripathi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Seema Singh
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Ming-Lei Guo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Prakash Pillai
- Division of Neurobiology, Department of Zoology, Faculty of Science, The M.S. University of Baroda, Vadodara, India
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|
87
|
A Sex-Specific Role of Endothelial Sirtuin 3 on Blood Pressure and Diastolic Dysfunction in Female Mice. Int J Mol Sci 2020; 21:ijms21249744. [PMID: 33371209 PMCID: PMC7766145 DOI: 10.3390/ijms21249744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is characterized by a diastolic dysfunction and is highly prevalent in aged women. Our study showed that ablation of endothelial Sirtuin 3 (SIRT3) led to diastolic dysfunction in male mice. However, the sex-specific role of endothelial SIRT3 deficiency on blood pressure and diastolic function in female mice remains to be investigated. METHODS AND RESULTS In this study, we demonstrate that the ablation of endothelial SIRT3 in females elevated blood pressure as compared with control female mice. Diastolic function measurement also showed that the isovolumic relaxation time (IVRT) and myocardial performance index (MPI) were significantly increased, whereas the E' velocity/A' velocity (E'/A') ratio was reduced in the endothelial-specific SIRT3 knockout (SIRT3 ECKO) female mice. To further investigate the regulatory role of endothelial SIRT3 on blood pressure and diastolic dysfunction in metabolic stress, SIRT3 ECKO female mice were fed a normal diet and high-fat diet (HFD) for 20 weeks. The knockout of endothelial SIRT3 resulted in an increased blood pressure in female mice fed with an HFD. Intriguingly, SIRT3 ECKO female mice + HFD exhibited impaired coronary flow reserve (CFR) and more severe diastolic dysfunction as evidenced by an elevated IVRT as compared with control female mice + HFD. In addition, female SIRT3 ECKO mice had higher blood pressure and diastolic dysfunction as compared to male SIRT3 ECKO mice. Moreover, female SIRT3 ECKO mice + HFD had an impaired CFR and diastolic dysfunction as compared to male SIRT3 ECKO mice + HFD. CONCLUSIONS These results implicate a sex-specific role of endothelial SIRT3 in regulating blood pressure and diastolic function in mice. Deficiency of endothelial SIRT3 may be responsible for a diastolic dysfunction in aged female.
Collapse
|
88
|
Sherin F, Gomathy S, Antony S. Sirtuin3 in Neurological Disorders. Curr Drug Res Rev 2020; 13:140-147. [PMID: 33290206 DOI: 10.2174/2589977512666201207200626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/16/2020] [Accepted: 10/02/2020] [Indexed: 11/22/2022]
Abstract
Sirtuins are NAD+ dependent enzymes that have a predominant role in neurodegenerative disorders and also regulate the inflammatory process, protein aggregation, etc. The relation between Sirtuins with that of the nervous system and neurodegeneration are widely studied consequently. Sirtuins have a strong role in metabolic syndrome in mitochondria also. The activities of Sirtuins can be altered by using small molecules that would be developed into drugs and it is proven that manipulation of SIRT1 activity influences neurodegenerative disease models. They are especially thrilling since using small molecules, which would be developed into a drug, it is feasible to alter the activities of sirtuins. Different functions of Sirtuins are depended upon their subcellular localization. In this review paper, we are discussing different Sirtuins, differential expression of sirtuins, and expression of sirtuin in the brain and briefly about sirtuin3 (SIRT3).
Collapse
Affiliation(s)
- Farhath Sherin
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty,. India
| | - S Gomathy
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty,. India
| | - Shanish Antony
- Department of Pharmacy, Govt. Medical College of Pharmaceutical Sciences, Kerala University of Health Sciences, Kottayam, . India
| |
Collapse
|
89
|
Natural Antioxidant Control of Neuropathic Pain-Exploring the Role of Mitochondrial SIRT3 Pathway. Antioxidants (Basel) 2020; 9:antiox9111103. [PMID: 33182469 PMCID: PMC7698145 DOI: 10.3390/antiox9111103] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain is a chronic painful disease. Data have shown that reactive oxygen species (ROS) are implicated in chronic pain. Particularly, the enhanced ROS production alters the mitochondrial genome and proteome through the accumulation of lipid peroxidation products, such as 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA). Sirtuin 3 (SIRT3) is a mitochondrial protein and its activity can reduce ROS levels by modulating key antioxidant enzymes, such as manganese superoxide dismutase (MnSOD). Here, we evaluated the role of SIRT3 in the maintenance of basal levels of ROS in a model of chronic constriction injury (CCI) of the sciatic nerve and the protective effects of a natural antioxidant, the bergamot polyphenolic fraction (BPF). Rats were exposed to CCI of the sciatic nerve in the presence or absence of BPF (25–75 mg/kg). Level of acetylation, post-translational modulation on cysteine residues of proteins by HNE and SIRT3 activation, were detected in the spinal cord through western blotting, WES methodology and enzymatic assays. Our results reported that SIRT3 carbonylation and therefore its inactivation contributes to mitochondrial MnSOD hyperacetylation during CCI induced neuropathic pain in rats. In particular, we have demonstrated a close relation between oxidative stress, hyperalgesia, allodynia and sirtuins inactivation reverted by BPF administration.
Collapse
|
90
|
Sadeghian M, Rahmani S, Khalesi S, Hejazi E. A review of fasting effects on the response of cancer to chemotherapy. Clin Nutr 2020; 40:1669-1681. [PMID: 33153820 DOI: 10.1016/j.clnu.2020.10.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/17/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Studies suggest that fasting before or during chemotherapy may induce differential stress resistance, reducing the adverse effects of chemotherapy and enhancing the efficacy of drugs. In this article, we review the effects of fasting, including intermittent, periodic, water-only short-term fasting, and caloric restriction on the responsiveness of tumor cells to cytotoxic drugs, their protective effect on normal cells, and possible mechanisms of action. METHODS We could not perform a systematic review due to the wide variation in the study population, design, dependent measures, and outcomes (eg, type of cancer, treatment variation, experimental setting, etc.). However, a systematic approach to search and review literature was used. The electronic databases PubMed (MEDLINE), Scopus, and Embase were searched up to July 2020. RESULTS Fasting potentially improves the response of tumor cells to chemotherapy by (1) repairing DNA damage in normal tissues (but not tumor cells); (2) upregulating autophagy flux as a protection against damage to organelles and some cancer cells; (3) altering apoptosis and increasing tumor cells' sensitivity to the apoptotic stimuli, and preventing apoptosis-mediated damage to normal cells; (4) depleting regulatory T cells and improving the stimulation of CD8 cells; and (5) accumulating unfolded proteins and protecting cancer cells from immune surveillance. We also discuss how 'fasting-mimicking diet' as a modified form of fasting enables patients to eat a low calorie, low protein, and low sugar diet while achieving similar metabolic outcomes of fasting. CONCLUSION This review suggests the potential benefits of fasting in combination with chemotherapy to reduce tumor progression and increase the effectiveness of chemotherapy. However, with limited human trials, it is not possible to generalize the findings from animal and in vitro studies. More human studies with adequate sample size and follow-ups are required to confirm these findings.
Collapse
Affiliation(s)
- Mehdi Sadeghian
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Sepideh Rahmani
- Department of Nutrition, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saman Khalesi
- Physical Activity Research Group, Appleton Institute & School of Health Medical and Applied Sciences, Central Queensland University, Brisbane, Australia
| | - Ehsan Hejazi
- Department of Clinical Nutrition and Dietetics, School of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
91
|
Lilja S, Oldenburg J, Pointner A, Dewald L, Lerch M, Hippe B, Switzeny O, Haslberger A. Epigallocatechin Gallate Effectively Affects Senescence and Anti-SASP via SIRT3 in 3T3-L1 Preadipocytes in Comparison with Other Bioactive Substances. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4793125. [PMID: 33149809 PMCID: PMC7603628 DOI: 10.1155/2020/4793125] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/28/2020] [Accepted: 10/09/2020] [Indexed: 01/10/2023]
Abstract
AIM We investigated different bioactive compounds including epigallocatechin gallate (EGCG), anthocyanidin, resveratrol, phloretin, spermidine, butyrate, and β-hydroxybutyrate with regard to their effect on SIRT3 via NRF2 and modulation of the proinflammatory senescence-associated secretory phenotype (SASP) in senescence induced 3T3-L1 preadipocytes. METHODS For induction of senescence, 3T3-L1 preadipocytes were incubated with bromodeoxyuridine (BrdU) for 8 days. Cell cycle inhibition was observed, and β-galactosidase activity was measured. After BrdU treatment, cells were treated with different bioactive compounds in various concentrations for 96 h. ELISA was used for determining proinflammatory cytokine IL6 in SASP cells. RESULTS CDKN1a increased significantly after BrdU incubation compared to untreated control (p < 0.01). All secondary plant ingredients used for treatment, but not anthocyanidin 50 μM, decrease CDKN1a expression (p < 0.05), whereas most endogenous substances did not attenuate CDKN1a. IL6 secretion positively correlated with CDKN1a (p < 0.01), whereas EGCG could diminish both, IL6 and CDKN1a with the strongest effect (p < 0.01). Although NRF2 positively correlated with SIRT3 activation (p < 0.05), only resveratrol (p < 0.01) and anthocyanidin (p < 0.05) could activate NRF2 significantly. Solely anthocyanidin 50 μM (p < 0.05) and 100 μM (p < 0.01) and EGCG 50 μM (p < 0.01) could increase SIRT3 expression. Activation of SIRT3 with EGCG correlated with lowered IL6 secretion significantly (p < 0.05) but not with anthocyanidin. CONCLUSION Accumulation of senescent cells in adipose tissue plays an important role in obesity and age-related diseases. SIRT3, located in the mitochondria, can regulate ROS via different pathways. Thus, targeting SIRT3 activating compounds such as EGCG may delay senescence of cells and senescence induced inflammatory processes.
Collapse
Affiliation(s)
- Stephanie Lilja
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria
| | - Julia Oldenburg
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria
| | - Angelika Pointner
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria
| | - Laura Dewald
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria
| | - Mariam Lerch
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria
| | - Berit Hippe
- HealthBioCare GmbH Nußdorferstraße 67, 1090 Wien, Austria
| | | | | |
Collapse
|
92
|
Sirtuin 3 Inhibits Airway Epithelial Mitochondrial Oxidative Stress in Cigarette Smoke-Induced COPD. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7582980. [PMID: 33005288 PMCID: PMC7503124 DOI: 10.1155/2020/7582980] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Mitochondrial damage in airway epithelial cells plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). Sirtuin 3 (Sirt3) is a mitochondrial deacetylase regulating mitochondrial function, but its role in the pathogenesis of COPD is still unknown. The aim of the present study was to investigate the effect of Sirt3 on airway epithelial mitochondria in cigarette smoke-induced COPD. Our present study has shown serious airway inflammation, alveolar space enlargement, and mitochondrial damage of the airway epithelium in COPD rats. Compared to the control rats, Sirt3 protein expression was significantly decreased in the airway epithelium and lung tissue homogenate from COPD rats. In airway epithelial cells (BEAS-2B), cigarette smoke extract (CSE) treatment significantly decreased mRNA and protein expression of Sirt3 and manganese superoxide dismutase (MnSOD), as well as MnSOD activity in a concentration and time-dependent manner. Sirt3 siRNA further significantly intensified the decreases in MnSOD expression and activity and aggravated mitochondrial oxidative stress and cell injury when airway epithelial cells were treated with 7.5% CSE. In contrast, Sirt3 overexpression significantly prevented the decrease of MnSOD expression and activity and improved mitochondrial oxidative stress and cell injury in CSE-treated airway epithelial cells. These data suggest that Sirt3 inhibits airway epithelial mitochondrial oxidative stress possibly through the regulation of MnSOD, thereby contributing to the pathogenesis of COPD.
Collapse
|
93
|
Morita M, Kanasaki K. Sodium-glucose cotransporter-2 inhibitors for diabetic kidney disease: Targeting Warburg effects in proximal tubular cells. DIABETES & METABOLISM 2020; 46:353-361. [PMID: 32891754 DOI: 10.1016/j.diabet.2020.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/27/2020] [Accepted: 06/08/2020] [Indexed: 12/29/2022]
Abstract
Inhibitors of sodium-glucose cotransporter 2 (SGLT2) have undoubtedly shifted the paradigm for diabetes medicine and research and, especially, diabetic kidney disease (DKD). The pharmacological action of SGLT2 inhibitors is simply the release of glucose into urine; however, precisely how SGLT2 inhibitors contribute to the health of those with diabetes has still not been completely elucidated. Towards this end, the present review provides a novel insight into the action of SGLT2 inhibitors by highlighting a neglected fuel-burning system found in proximal tubular cells-'glycolysis'. In addition, exploring the details of the molecular mechanisms and clinical biomarkers of the organ protection conferred by SGLT2 inhibitors is now required to prepare for the next stage of clinical diabetes medicine-the 'post-SGLT2 inhibitor era'.
Collapse
Affiliation(s)
- Miwa Morita
- Department of Internal Medicine 1, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Keizo Kanasaki
- Department of Internal Medicine 1, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.
| |
Collapse
|
94
|
Zhou ZD, Tan EK. Oxidized nicotinamide adenine dinucleotide-dependent mitochondrial deacetylase sirtuin-3 as a potential therapeutic target of Parkinson's disease. Ageing Res Rev 2020; 62:101107. [PMID: 32535274 DOI: 10.1016/j.arr.2020.101107] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022]
Abstract
Mitochondrial impairment is associated with progressive dopamine (DA) neuron degeneration in Parkinson's disease (PD). Recent findings highlight that Sirtuin-3 (SIRT3), a mitochondrial protein, is an oxidized nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase and a key modulator in maintaining integrity and functions of mitochondria. SIRT3 plays vital roles in regulation of mitochondrial functions, including mitochondrial ATP generation and energy metabolism, anti-oxidant defense, and cell death and proliferation. SIRT3 can deacetylate the transcriptional factors and crosstalk with different signaling pathways to cooperatively modulate mitochondrial functions and regulate defensive mitochondrial quality control (QC) systems. Down-regulated NAD+ level and decreased SIRT3 activity are related to aging process and has been pathologically linked to PD pathogenesis. Further, SIRT3 can bind and deacetylate PTEN-induced kinase 1 (PINK1) and PD protein 2 E3 ubiquitin protein ligase (Parkin) to facilitate mitophagy. Leucine Rich Repeat Kinase 2 (LRRK2)-G2019S mutation in PD is linked to SIRT3 impairment. Furthermore, SIRT3 is inversely associated with α-synuclein aggregation and DA neuron degeneration in PD. SIRT3 chemical activators and NAD+ precursors can up-regulate SIRT3 activity to protect against DA neuron degeneration in PD models. Taken together, SIRT3 is a promising PD therapeutic target and studies of SIRT3 functional modulators with neuroprotective capability will be of clinical interest.
Collapse
Affiliation(s)
- Zhi Dong Zhou
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, 308433, Singapore; Duke-NUS Graduate Medical School, 8 College Road, 169857, Singapore.
| | - Eng King Tan
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, 308433, Singapore; Department of Neurology, Singapore General Hospital, Outram Road, 169608, Singapore; Duke-NUS Graduate Medical School, 8 College Road, 169857, Singapore.
| |
Collapse
|
95
|
Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative Stress in Cancer. Cancer Cell 2020; 38:167-197. [PMID: 32649885 DOI: 10.1016/jxcell.2020.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/29/2020] [Accepted: 05/29/2020] [Indexed: 05/28/2023]
Abstract
Contingent upon concentration, reactive oxygen species (ROS) influence cancer evolution in apparently contradictory ways, either initiating/stimulating tumorigenesis and supporting transformation/proliferation of cancer cells or causing cell death. To accommodate high ROS levels, tumor cells modify sulfur-based metabolism, NADPH generation, and the activity of antioxidant transcription factors. During initiation, genetic changes enable cell survival under high ROS levels by activating antioxidant transcription factors or increasing NADPH via the pentose phosphate pathway (PPP). During progression and metastasis, tumor cells adapt to oxidative stress by increasing NADPH in various ways, including activation of AMPK, the PPP, and reductive glutamine and folate metabolism.
Collapse
Affiliation(s)
- John D Hayes
- Division of Cellular Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK, Scotland.
| | - Albena T Dinkova-Kostova
- Division of Cellular Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK, Scotland; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
96
|
Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative Stress in Cancer. Cancer Cell 2020; 38:167-197. [PMID: 32649885 PMCID: PMC7439808 DOI: 10.1016/j.ccell.2020.06.001] [Citation(s) in RCA: 1308] [Impact Index Per Article: 261.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/29/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Contingent upon concentration, reactive oxygen species (ROS) influence cancer evolution in apparently contradictory ways, either initiating/stimulating tumorigenesis and supporting transformation/proliferation of cancer cells or causing cell death. To accommodate high ROS levels, tumor cells modify sulfur-based metabolism, NADPH generation, and the activity of antioxidant transcription factors. During initiation, genetic changes enable cell survival under high ROS levels by activating antioxidant transcription factors or increasing NADPH via the pentose phosphate pathway (PPP). During progression and metastasis, tumor cells adapt to oxidative stress by increasing NADPH in various ways, including activation of AMPK, the PPP, and reductive glutamine and folate metabolism.
Collapse
Affiliation(s)
- John D Hayes
- Division of Cellular Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK, Scotland.
| | - Albena T Dinkova-Kostova
- Division of Cellular Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK, Scotland; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
97
|
Mechanism of Action of Ketogenic Diet Treatment: Impact of Decanoic Acid and Beta-Hydroxybutyrate on Sirtuins and Energy Metabolism in Hippocampal Murine Neurons. Nutrients 2020; 12:nu12082379. [PMID: 32784510 PMCID: PMC7468807 DOI: 10.3390/nu12082379] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
The ketogenic diet (KD), a high-lipid and low-carbohydrate diet, has been used in the treatment of epilepsy, neurodegenerative disorders, inborn errors of metabolism and cancer; however, the exact mechanism/s of its therapeutic effect is not completely known. We hypothesized that sirtuins (SIRT)—a group of seven NAD-dependent enzymes and important regulators of energy metabolism may be altered under KD treatment. HT22 hippocampal murine neurons were incubated with two important KD metabolites–beta-hydroxybutyrate (BHB) (the predominant ketone body) and decanoic acid (C10), both accumulating under KD. Enzyme activity, protein, and gene expressions of SIRT 1-4, enzyme capacities of the mitochondrial respiratory chain complexes (MRC), citrate synthase (CS) and gene expression of monocarboxylate transporters were measured in control (untreated) and KD-treated cells. Incubation with both–BHB and C10 resulted in significant elevation of SIRT1 enzyme activity and an overall upregulation of the MRC. C10 incubation showed prominent increases in maximal activities of complexes I + III and complex IV of the MRC and ratios of their activities to that of CS, pointing towards a more efficient functioning of the mitochondria in C10-treated cells.
Collapse
|
98
|
Roles of Mitochondrial Sirtuins in Mitochondrial Function, Redox Homeostasis, Insulin Resistance and Type 2 Diabetes. Int J Mol Sci 2020; 21:ijms21155266. [PMID: 32722262 PMCID: PMC7432223 DOI: 10.3390/ijms21155266] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are the metabolic hubs that process a number of reactions including tricarboxylic acid cycle, β-oxidation of fatty acids and part of the urea cycle and pyrimidine nucleotide biosynthesis. Mitochondrial dysfunction impairs redox homeostasis and metabolic adaptation, leading to aging and metabolic disorders like insulin resistance and type 2 diabetes. SIRT3, SIRT4 and SIRT5 belong to the sirtuin family proteins and are located at mitochondria and also known as mitochondrial sirtuins. They catalyze NAD+-dependent deacylation (deacetylation, demalonylation and desuccinylation) and ADP-ribosylation and modulate the function of mitochondrial targets to regulate the metabolic status in mammalian cells. Emerging evidence has revealed that mitochondrial sirtuins coordinate the regulation of gene expression and activities of a wide spectrum of enzymes to orchestrate oxidative metabolism and stress responses. Mitochondrial sirtuins act in synergistic or antagonistic manners to promote respiratory function, antioxidant defense, insulin response and adipogenesis to protect individuals from aging and aging-related metabolic abnormalities. In this review, we focus on the molecular mechanisms by which mitochondrial sirtuins regulate oxidative metabolism and antioxidant defense and discuss the roles of their deficiency in the impairment of mitochondrial function and pathogenesis of insulin resistance and type 2 diabetes.
Collapse
|
99
|
Zhao L, Cao J, Hu K, He X, Yun D, Tong T, Han L. Sirtuins and their Biological Relevance in Aging and Age-Related Diseases. Aging Dis 2020; 11:927-945. [PMID: 32765955 PMCID: PMC7390530 DOI: 10.14336/ad.2019.0820] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022] Open
Abstract
Sirtuins, initially described as histone deacetylases and gene silencers in yeast, are now known to have many more functions and to be much more abundant in living organisms. The increasing evidence of sirtuins in the field of ageing and age-related diseases indicates that they may provide novel targets for treating diseases associated with aging and perhaps extend human lifespan. Here, we summarize some of the recent discoveries in sirtuin biology that clearly implicate the functions of sirtuins in the regulation of aging and age-related diseases. Furthermore, human sirtuins are considered promising therapeutic targets for anti-aging and ageing-related diseases and have attracted interest in scientific communities to develop small molecule activators or drugs to ameliorate a wide range of ageing disorders. In this review, we also summarize the discovery and development status of sirtuin-targeted drug and further discuss the potential medical strategies of sirtuins in delaying aging and treating age-related diseases.
Collapse
Affiliation(s)
- Lijun Zhao
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Jianzhong Cao
- 2Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kexin Hu
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Xiaodong He
- 2Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dou Yun
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Tanjun Tong
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Limin Han
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| |
Collapse
|
100
|
Yao YY, Ling EA, Lu D. Microglia mediated neuroinflammation - signaling regulation and therapeutic considerations with special reference to some natural compounds. Histol Histopathol 2020; 35:1229-1250. [PMID: 32662061 DOI: 10.14670/hh-18-239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neuroinflammation plays a central role in multiple neurodegenerative diseases and neurological disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), cerebral ischemic injury etc. In this connection, microglia, the key players in the central nervous system, mediate the inflammatory response process. In brain injuries, activated microglia can clear the cellular debris and invading pathogens and release neurotrophic factors; however, prolonged microglia activation may cause neuronal death through excessive release of inflammatory mediators. Therefore, it is of paramount importance to understand the underlying molecular mechanisms of microglia activation to design an effective therapeutic strategy to alleviate neuronal injury. Recent studies have shown that some natural compounds and herbal extracts possess anti-inflammatory properties that may suppress microglial activation and ameliorate neuroinflammation and hence are neuroprotective. In this review, we will update some of the common signaling pathways that regulate microglia activation. Among the various signaling pathways, the Notch-1, mitogen-activated protein kinases (MAPKs), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) have been reported to exacerbate microglia mediated neuroinflammation that is implicated in different neuropathological diseases. The search for natural compounds or agents, specifically those derived from natural herbal extracts such as Gastrodin, scutellarin, RG1 etc. has been the focus of many of our recent studies because they have been found to regulate microglia activation. The pharmacological effects of these agents and their potential mechanisms for regulating microglia activation are systematically reviewed here for a fuller understanding of their biochemical action and therapeutic potential for treatment of microglia mediated neuropathological diseases.
Collapse
Affiliation(s)
- Yue-Yi Yao
- Technology Transfer Center, Kunming Medical University, Kunming, China
| | - Eng-Ang Ling
- Department of Anatomy, Young Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Di Lu
- Technology Transfer Center, Kunming Medical University, Kunming, China.
| |
Collapse
|