51
|
Immunity orchestrates a bridge in gut-brain axis of neurodegenerative diseases. Ageing Res Rev 2023; 85:101857. [PMID: 36669690 DOI: 10.1016/j.arr.2023.101857] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
Neurodegenerative diseases, in particular for Alzheimer's disease (AD), Parkinson's disease (PD) and Multiple sclerosis (MS), are a category of diseases with progressive loss of neuronal structure or function (encompassing neuronal death) leading to neuronal dysfunction, whereas the underlying pathogenesis remains to be clarified. As the microbiological ecosystem of the intestinal microbiome serves as the second genome of the human body, it is strongly implicated as an essential element in the initiation and/or progression of neurodegenerative diseases. Nevertheless, the precise underlying principles of how the intestinal microflora impact on neurodegenerative diseases via gut-brain axis by modulating the immune function are still poorly characterized. Consequently, an overview of initiating the development of neurodegenerative diseases and the contribution of intestinal microflora on immune function is discussed in this review.
Collapse
|
52
|
Yin F. Lipid metabolism and Alzheimer's disease: clinical evidence, mechanistic link and therapeutic promise. FEBS J 2023; 290:1420-1453. [PMID: 34997690 PMCID: PMC9259766 DOI: 10.1111/febs.16344] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disorder with multifactorial etiology, intersecting genetic and environmental risk factors, and a lack of disease-modifying therapeutics. While the abnormal accumulation of lipids was described in the very first report of AD neuropathology, it was not until recent decades that lipid dyshomeostasis became a focus of AD research. Clinically, lipidomic and metabolomic studies have consistently shown alterations in the levels of various lipid classes emerging in early stages of AD brains. Mechanistically, decades of discovery research have revealed multifaceted interactions between lipid metabolism and key AD pathogenic mechanisms including amyloidogenesis, bioenergetic deficit, oxidative stress, neuroinflammation, and myelin degeneration. In the present review, converging evidence defining lipid dyshomeostasis in AD is summarized, followed by discussions on mechanisms by which lipid metabolism contributes to pathogenesis and modifies disease risk. Furthermore, lipid-targeting therapeutic strategies, and the modification of their efficacy by disease stage, ApoE status, and metabolic and vascular profiles, are reviewed.
Collapse
Affiliation(s)
- Fei Yin
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, AZ, USA.,Department of Pharmacology, College of Medicine Tucson, University of Arizona, Tucson, AZ, USA.,Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
53
|
LPS-Activated Microglial Cell-Derived Conditioned Medium Protects HT22 Neuronal Cells against Glutamate-Induced Ferroptosis. Int J Mol Sci 2023; 24:ijms24032910. [PMID: 36769233 PMCID: PMC9917809 DOI: 10.3390/ijms24032910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/10/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Neuron-glia interactions are essential for the central nervous system's homeostasis. Microglial cells are one of the key support cells in the brain that respond to disruptions in such homeostasis. Although their participation in neuroinflammation is well known, studies investigating their role in ferroptosis, an iron-dependent form of nonapoptotic cell death, are lacking. To address this issue, we explored whether microglial (BV-2 cells) activation products can intensify, mitigate or block oxidative and/or ferroptotic damage in neuronal cells (HT22 cell line). Cultured BV-2 microglial cells were stimulated with 5-100 ng/mL lipopolysaccharide (LPS) for 24 h and, after confirmation of microglial activation, their culture medium (conditioned media; CM) was transferred to neuronal cells, which was subsequently (6 h later) exposed to glutamate or tert-butyl hydroperoxide (t-BuOOH). As a major finding, HT22 cells pretreated for 6 h with CM exhibited a significant ferroptosis-resistant phenotype characterized by decreased sensitivity to glutamate (15 mM)-induced cytotoxicity. However, no significant protective effects of LPS-activated microglial cell-derived CM were observed in t-BuOOH (30 µM)-challenged cells. In summary, activated microglia-derived molecules may protect neuronal cells against ferroptosis. The phenomenon observed in this work highlights the beneficial relationship between microglia and neurons, highlighting new possibilities for the control of ferroptosis.
Collapse
|
54
|
Mado H, Adamczyk-Sowa M, Sowa P. Role of Microglial Cells in the Pathophysiology of MS: Synergistic or Antagonistic? Int J Mol Sci 2023; 24:ijms24031861. [PMID: 36768183 PMCID: PMC9916250 DOI: 10.3390/ijms24031861] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Many studies indicate an important role of microglia and their cytokines in the pathophysiology of multiple sclerosis (MS). Microglia are the macrophages of the central nervous system (CNS). They have many functions, such as being "controllers" of the CNS homeostasis in pathological and healthy conditions, playing a key role in the active immune defense of the CNS. Macroglia exhibit a dual role, depending on the phenotype they adopt. First, they can exhibit neurotoxic effects, which are harmful in the case of MS. However, they also show neuroprotective and regenerative effects in this disease. Many of the effects of microglia are mediated through the cytokines they secrete, which have either positive or negative properties. Neurotoxic and pro-inflammatory effects can be mediated by microglia via lipopolysaccharide and gamma interferon. On the other hand, the mediators of anti-inflammatory and protective effects secreted by microglia can be, for example, interleukin-4 and -13. Further investigation into the role of microglia in MS pathophysiology may perhaps lead to the discovery of new therapies for MS, as recent research in this area has been very promising.
Collapse
Affiliation(s)
- Hubert Mado
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
- Correspondence: ; Tel.: +48-695948463; Fax: +48-323704597
| | - Monika Adamczyk-Sowa
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Paweł Sowa
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| |
Collapse
|
55
|
Wei Q, Deng Y, Yang Q, Zhan A, Wang L. The markers to delineate different phenotypes of macrophages related to metabolic disorders. Front Immunol 2023; 14:1084636. [PMID: 36814909 PMCID: PMC9940311 DOI: 10.3389/fimmu.2023.1084636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Macrophages have a wide variety of roles in physiological and pathological conditions, making them promising diagnostic and therapeutic targets in diseases, especially metabolic disorders, which have attracted considerable attention in recent years. Owing to their heterogeneity and polarization, the phenotypes and functions of macrophages related to metabolic disorders are diverse and complicated. In the past three decades, the rapid progress of macrophage research has benefited from the emergence of specific molecular markers to delineate different phenotypes of macrophages and elucidate their role in metabolic disorders. In this review, we analyze the functions and applications of commonly used and novel markers of macrophages related to metabolic disorders, facilitating the better use of these macrophage markers in metabolic disorder research.
Collapse
Affiliation(s)
- Quxing Wei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China.,Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China.,Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanyue Deng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China.,Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China.,Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qianqian Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China.,Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China.,Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Angyu Zhan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China.,Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China.,Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China.,Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China.,Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
56
|
McKee CG, Hoffos M, Vecchiarelli HA, Tremblay MÈ. Microglia: A pharmacological target for the treatment of age-related cognitive decline and Alzheimer's disease. Front Pharmacol 2023; 14:1125982. [PMID: 36969855 PMCID: PMC10034122 DOI: 10.3389/fphar.2023.1125982] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/03/2023] [Indexed: 03/29/2023] Open
Abstract
As individuals age, microglia, the resident immune cells of the central nervous system (CNS), become less effective at preserving brain circuits. Increases in microglial inflammatory activity are thought to contribute to age-related declines in cognitive functions and to transitions toward mild cognitive impairment (MCI) and Alzheimer's disease (AD). As microglia possess receptors for communicating with the CNS environment, pharmacological therapies targeting these pathways hold potential for promoting homeostatic microglial functions within the aging CNS. Preclinical and early phase clinical trials investigating the therapeutic effects of pharmacological agents acting on microglia, including reactive oxygen species, TREM2, fractalkine signaling, the complement cascade, and the NLRP3 inflammasome, are currently underway; however, important questions remain unanswered. Current challenges include target selectivity, as many of the signaling pathways are expressed in other cell types. Furthermore, microglia are a heterogenous cell population with transcriptomic, proteomic, and microscopy studies revealing distinct microglial states, whose activities and abundance shift across the lifespan. For example, homeostatic microglia can transform into pathological states characterized by markers of oxidative stress. Selective pharmacological targeting aimed at limiting transitions to pathological states or promoting homeostatic or protective states, could help to avoid potentially harmful off-target effects on beneficial states or other cell types. In this mini-review we cover current microglial pathways of interest for the prevention and treatment of age-related cognitive decline and CNS disorders of aging focusing on MCI and AD. We also discuss the heterogeneity of microglia described in these conditions and how pharmacological agents could target specific microglial states.
Collapse
Affiliation(s)
- Chloe G. McKee
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Madison Hoffos
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec City, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
- *Correspondence: Marie-Ève Tremblay,
| |
Collapse
|
57
|
Qin J, Ma Z, Chen X, Shu S. Microglia activation in central nervous system disorders: A review of recent mechanistic investigations and development efforts. Front Neurol 2023; 14:1103416. [PMID: 36959826 PMCID: PMC10027711 DOI: 10.3389/fneur.2023.1103416] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/13/2023] [Indexed: 03/09/2023] Open
Abstract
Microglia are the principal resident immune cells in the central nervous system (CNS) and play important roles in the development of CNS disorders. In recent years, there have been significant developments in our understanding of microglia, and we now have greater insight into the temporal and spatial patterns of microglia activation in a variety of CNS disorders, as well as the interactions between microglia and neurons. A variety of signaling pathways have been implicated. However, to date, all published clinical trials have failed to demonstrate efficacy over placebo. This review summarizes the results of recent important studies and attempts to provide a mechanistic view of microglia activation, inflammation, tissue repair, and CNS disorders.
Collapse
|
58
|
Gupta DP, Park SH, Lee YS, Lee S, Lim S, Byun J, Cho IH, Song GJ. Daphne genkwa flower extract promotes the neuroprotective effects of microglia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154486. [PMID: 36240609 DOI: 10.1016/j.phymed.2022.154486] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Microglia are innate immune cells in the central nervous system that play a crucial role in neuroprotection by releasing neurotrophic factors, removing pathogens through phagocytosis, and regulating brain homeostasis. The constituents extracted from the roots and stems of the Daphne genkwa plant have shown neuroprotective effects in an animal model of Parkinson's disease. However, the effect of Daphne genkwa plant extract on microglia has yet to be demonstrated. PURPOSE To study the anti-inflammatory and neuroprotective effects of Daphne genkwa flower extract (GFE) in microglia and explore the underlying mechanisms. METHODS In-vitro mRNA expression levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase, Arginase1, and brain derived neurotropic factor (BDNF) were analyzed by reverse transcription polymerase chain reaction in microglia cells. Nitric oxide (NO) and TNF-α protein were respectively analyzed by Griess reagent and Enzyme Linked Immunosorbent Assay. Immunoreactivity of Iba-1, Neu-N, and BDNF in mouse brain were analyzed by immunofluorescence staining. Phagocytosis capacity of microglia was examined using fluorescent zymosan-red particles. RESULTS GFE significantly inhibited lipopolysaccharide (LPS)-induced neuroinflammation and promoted neuroprotection both in vitro and in vivo. First, GFE inhibited the LPS-induced inflammatory factors NO, iNOS, and TNF-α in microglial cell lines and primary glial cells, thus demonstrating anti-inflammatory effects. Arginase1 and BDNF mRNA levels were increased in primary glial cells treated with GFE. Phagocytosis was also increased in microglia treated with GFE, suggesting a neuroprotective effect of GFE. In vivo, neuroprotective and anti-neuroinflammatory effects of GFE were also found in the mouse brain, as oral administration of GFE significantly inhibited LPS-induced neuronal loss and inflammatory activation of microglia. CONCLUSION GFE has anti-inflammatory effects and promotes microglial neuroprotective effects. GFE inhibited the pro-inflammatory mediators and enhanced neuroprotective microglia activity by increasing BDNF expression and phagocytosis. These novel findings of the GFE effect on microglia show an innovative approach that can potentially promote neuroprotection for the prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Deepak Prasad Gupta
- Department of Medical Science, Catholic Kwandong University College of Medicine, Gangneung, Gangwon-do, Korea
| | - Sung Hee Park
- Department of Medical Science, Catholic Kwandong University College of Medicine, Gangneung, Gangwon-do, Korea
| | - Young-Sun Lee
- Department of Medical Science, Catholic Kwandong University College of Medicine, Gangneung, Gangwon-do, Korea; The Convergence Institute of Healthcare and Medical Science, Catholic Kwandong University, International St. Mary's Hospital, Incheon, Korea
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Korea
| | - Sujin Lim
- Department of Life Science, The Catholic University of Korea, Bucheon, Korea
| | - Jiin Byun
- Department of Life Science, The Catholic University of Korea, Bucheon, Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Korea.
| | - Gyun Jee Song
- Department of Medical Science, Catholic Kwandong University College of Medicine, Gangneung, Gangwon-do, Korea; The Convergence Institute of Healthcare and Medical Science, Catholic Kwandong University, International St. Mary's Hospital, Incheon, Korea.
| |
Collapse
|
59
|
Honkisz-Orzechowska E, Popiołek-Barczyk K, Linart Z, Filipek-Gorzała J, Rudnicka A, Siwek A, Werner T, Stark H, Chwastek J, Starowicz K, Kieć-Kononowicz K, Łażewska D. Anti-inflammatory effects of new human histamine H 3 receptor ligands with flavonoid structure on BV-2 neuroinflammation. Inflamm Res 2023; 72:181-194. [PMID: 36370200 PMCID: PMC9925557 DOI: 10.1007/s00011-022-01658-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Microglia play an important role in the neuroinflammation developed in response to various pathologies. In this study, we examined the anti-inflammatory effect of the new human histamine H3 receptor (H3R) ligands with flavonoid structure in murine microglial BV-2 cells. MATERIAL AND METHODS The affinity of flavonoids (E243 -flavone and IIIa-IIIc-chalcones) for human H3R was evaluated in the radioligand binding assay. The cytotoxicity on BV-2 cell viability was investigated with the MTS assay. Preliminary evaluation of anti-inflammatory properties was screened by the Griess assay in an in vitro neuroinflammation model of LPS-treated BV-2 cells. The expression and secretion of pro-inflammatory cytokines were evaluated by real-time qPCR and ELISA, respectively. The expression of microglial cell markers were determined by immunocytochemistry. RESULTS Chalcone derivatives showed high affinity at human H3R with Ki values < 25 nM. At the highest nontoxic concentration (6.25 μM) compound IIIc was the most active in reducing the level of nitrite in Griess assay. Additionally, IIIc treatment attenuated inflammatory process in murine microglia cells by down-regulating pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) at both the level of mRNA and protein level. Our immunocytochemistry studies revealed expression of microglial markers (Iba1, CD68, CD206) in BV-2 cell line. CONCLUSIONS These results emphasize the importance of further research to accurately identify the anti-inflammatory mechanism of action of chalcones.
Collapse
Affiliation(s)
- Ewelina Honkisz-Orzechowska
- Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688, Kraków, Poland.
| | - Katarzyna Popiołek-Barczyk
- grid.418903.70000 0001 2227 8271Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Zuzanna Linart
- grid.5522.00000 0001 2162 9631Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Jadwiga Filipek-Gorzała
- grid.5522.00000 0001 2162 9631Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Rudnicka
- grid.5522.00000 0001 2162 9631Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Agata Siwek
- grid.5522.00000 0001 2162 9631Faculty of Pharmacy, Department of Pharmacobiology, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Tobias Werner
- grid.411327.20000 0001 2176 9917Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Holger Stark
- grid.411327.20000 0001 2176 9917Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Jakub Chwastek
- grid.418903.70000 0001 2227 8271Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Katarzyna Starowicz
- grid.418903.70000 0001 2227 8271Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- grid.5522.00000 0001 2162 9631Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Dorota Łażewska
- Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688, Kraków, Poland.
| |
Collapse
|
60
|
Hu Y, Hill RA, Yoshimura M. Role of Adenylyl Cyclase Type 7 in Functions of BV-2 Microglia. Int J Mol Sci 2022; 24:ijms24010347. [PMID: 36613790 PMCID: PMC9820266 DOI: 10.3390/ijms24010347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
To assess the role of adenylyl cyclase type 7 (AC7) in microglia's immune function, we generated AC7 gene knockout (AC7 KO) clones from a mouse microglial cell line, BV-2, using the CRISPR-Cas9 gene editing system. The ability of BV-2 cells to generate cAMP and their innate immune functions were examined in the presence or absence of ethanol. The parental BV-2 cells showed robust cAMP production when stimulated with prostaglandin-E1 (PGE1) and ethanol increased cAMP production in a dose-dependent manner. AC7 KO clones of BV-2 cells showed diminished and ethanol-insensitive cAMP production. The phagocytic activity of the parental BV-2 cells was inhibited in the presence of PGE1; AC7 KO BV-2 cells showed lower and PGE1-insensitive phagocytic activity. Innate immune activities of the parental BV-2 cells, including bacterial killing, nitric oxide synthesis, and expression of arginase 1 and interleukin 10 were activated as expected with small effects of ethanol. However, the innate immune activities of AC7 KO cells were either drastically diminished or not detected. The data presented suggest that AC7 has an important role in the innate immune functions of microglial cells. AC7's involvement in ethanol's effects on immune functions remains unclear. Further studies are needed.
Collapse
Affiliation(s)
- Yawen Hu
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Rebecca A. Hill
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine Louisiana State University, Baton Rouge, LA 70803, USA
| | - Masami Yoshimura
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine Louisiana State University, Baton Rouge, LA 70803, USA
- Correspondence: ; Tel.:+1-225-578-9759
| |
Collapse
|
61
|
Zalewska T, Pawelec P, Ziabska K, Ziemka-Nalecz M. Sexual Dimorphism in Neurodegenerative Diseases and in Brain Ischemia. Biomolecules 2022; 13:26. [PMID: 36671411 PMCID: PMC9855831 DOI: 10.3390/biom13010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
Epidemiological studies and clinical observations show evidence of sexual dimorphism in brain responses to several neurological conditions. It is suggested that sex-related differences between men and women may have profound effects on disease susceptibility, pathophysiology, and progression. Sexual differences of the brain are achieved through the complex interplay of several factors contributing to this phenomenon, such as sex hormones, as well as genetic and epigenetic differences. Despite recent advances, the precise link between these factors and brain disorders is incompletely understood. This review aims to briefly outline the most relevant aspects that differ between men and women in ischemia and neurodegenerative disorders (AD, PD, HD, ALS, and SM). Recognition of disparities between both sexes could aid the development of individual approaches to ameliorate or slow the progression of intractable disorders.
Collapse
Affiliation(s)
- Teresa Zalewska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 A. Pawinskiego Str., 02-106 Warsaw, Poland
| | | | | | | |
Collapse
|
62
|
Cycloastragenol suppresses M1 and promotes M2 polarization in LPS-stimulated BV-2 cells and ischemic stroke mice. Int Immunopharmacol 2022; 113:109290. [DOI: 10.1016/j.intimp.2022.109290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/05/2022]
|
63
|
Merighi S, Nigro M, Travagli A, Gessi S. Microglia and Alzheimer's Disease. Int J Mol Sci 2022; 23:12990. [PMID: 36361780 PMCID: PMC9657945 DOI: 10.3390/ijms232112990] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 07/30/2023] Open
Abstract
There is a huge need for novel therapeutic and preventative approaches to Alzheimer's disease (AD) and neuroinflammation seems to be one of the most fascinating solutions. The primary cell type that performs immunosurveillance and helps clear out unwanted chemicals from the brain is the microglia. Microglia work to reestablish efficiency and stop further degeneration in the early stages of AD but mainly fail in the illness's later phases. This may be caused by a number of reasons, e.g., a protracted exposure to cytokines that induce inflammation and an inappropriate accumulation of amyloid beta (Aβ) peptide. Extracellular amyloid and/or intraneuronal phosphorylated tau in AD can both activate microglia. The activation of TLRs and scavenger receptors, inducing the activation of numerous inflammatory pathways, including the NF-kB, JAK-STAT, and NLRP3 inflammasome, facilitates microglial phagocytosis and activation in response to these mediators. Aβ/tau are taken up by microglia, and their removal from the extracellular space can also have protective effects, but if the illness worsens, an environment that is constantly inflamed and overexposed to an oxidative environment might encourage continuous microglial activation, which can lead to neuroinflammation, oxidative stress, iron overload, and neurotoxicity. The complexity and diversity of the roles that microglia play in health and disease necessitate the urgent development of new biomarkers that identify the activity of different microglia. It is imperative to comprehend the intricate mechanisms that result in microglial impairment to develop new immunomodulating therapies that primarily attempt to recover the physiological role of microglia, allowing them to carry out their core function of brain protection.
Collapse
Affiliation(s)
- Stefania Merighi
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | | | | | | |
Collapse
|
64
|
Wei Y, Li X. Different phenotypes of microglia in animal models of Alzheimer disease. Immun Ageing 2022; 19:44. [PMID: 36209099 PMCID: PMC9547462 DOI: 10.1186/s12979-022-00300-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/19/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022]
Abstract
Microglia are immune-competent cells that are critically involved in maintaining normal brain function. A prominent characteristic of Alzheimer disease (AD) is microglial proliferation and activation concentrated around amyloid plaques in the brain. Recent research has revealed numerous microglial phenotypes related to aging and AD, apart from the traditional M1 and M2 types. Redox signalling modulates the acquisition of the classical or alternative microglia activation phenotypes. The numerous microglial functions can be achieved through these multiple phenotypes, which are associated with distinct molecular signatures.
Collapse
Affiliation(s)
- Yun Wei
- grid.464481.b0000 0004 4687 044XXiyuan Hospital of China Academy of Chinese Medical Sciences, 100091 Beijing, China
| | - Xianxiao Li
- Jingxi Cancer Hospital, 100161 Beijing, China
| |
Collapse
|
65
|
Crosstalk between PI3K/AKT/KLF4 signaling and microglia M1/M2 polarization as a novel mechanistic approach towards flibanserin repositioning in parkinson's disease. Int Immunopharmacol 2022; 112:109191. [PMID: 36055034 DOI: 10.1016/j.intimp.2022.109191] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 02/07/2023]
Abstract
Balancing microglia M1/M2 polarization has been shown as a prospective therapeutic strategy for Parkinson's disease (PD). Various vital signaling pathways are likely to govern the microglial phenotype. The implication of 5HT1A receptors in neurodegenerative disorders has raised interest in exploring the repositioning of flibanserin (Flib), a 5HT1A agonist, as an effective neuroprotective agent for PD. Therefore, this study was designed to assess the ability of Flib to modulate microglia phenotype switching from M1 to M2 via PI3K/AKT downstream targets in a rotenone model of PD. Rats received rotenone (1.5 mg/kg) every other day and were concurrently treated with Flib (40 mg/kg/day) with or without wortmannin (15 μg/kg/day), a PI3K inhibitor, for 21 days. Flib improved the motor perturbations induced by rotenone, as confirmed by the reversion of histopathological damage and tyrosine hydroxylase immunohistochemical alterations in both the striata and substantia nigra. The molecular signaling of Flib was elaborated by inducing striatal AKT phosphorylation and the expression of its substantial target, KLF4. Flib induced STAT6 phosphorylation to promote M2 polarization as demonstrated by the increased CD163++ microglial count with striatal arginase activity. In parallel, it markedly inhibited M1 activation as evidenced by the reduction in CD86++ microglia count with striatal proinflammatory mediators, IL-1β and iNOS. The pre-administration of wortmannin mostly negated Flib's neuroprotective effects. In conclusion, Flib AKT/ KLF4-dependently amended M1/M2 microglial imbalance to exert a promising neuroprotective effect, highlighting its potential as a revolutionary candidate for conquering PD.
Collapse
|
66
|
Microglial Dynamics Modulate Vestibular Compensation in a Rodent Model of Vestibulopathy and Condition the Expression of Plasticity Mechanisms in the Deafferented Vestibular Nuclei. Cells 2022; 11:cells11172693. [PMID: 36078101 PMCID: PMC9454928 DOI: 10.3390/cells11172693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Unilateral vestibular loss (UVL) induces a vestibular syndrome composed of posturo-locomotor, oculomotor, vegetative, and perceptivo-cognitive symptoms. With time, these functional deficits progressively disappear due to a phenomenon called vestibular compensation, known to be supported by the expression in the deafferented vestibular nuclei (VNs) of various adaptative plasticity mechanisms. UVL is known to induce a neuroinflammatory response within the VNs, thought to be caused by the structural alteration of primary vestibular afferents. The acute inflammatory response, expressed in the deafferented VNs was recently proven to be crucial for the expression of the endogenous plasticity supporting functional recovery. Neuroinflammation is supported by reactive microglial cells, known to have various phenotypes with adverse effects on brain tissue. Here, we used markers of pro-inflammatory and anti-inflammatory phenotypes of reactive microglia to study microglial dynamics following a unilateral vestibular neurectomy (UVN) in the adult rat. In addition, to highlight the role of acute inflammation in vestibular compensation and its underlying mechanisms, we enhanced the inflammatory state of the deafferented VNs using systemic injections of lipopolysaccharide (LPS) during the acute phase after a UVN. We observed that the UVN induced the expression of both M1 proinflammatory and M2 anti-inflammatory microglial phenotypes in the deafferented VNs. The acute LPS treatment exacerbated the inflammatory reaction and increased the M1 phenotype while decreasing M2 expression. These effects were associated with impaired postlesional plasticity in the deafferented VNs and exacerbated functional deficits. These results highlight the importance of a homeostatic inflammatory level in the expression of the adaptative plasticity mechanisms underlying vestibular compensation. Understanding the rules that govern neuroinflammation would provide therapeutic leads in neuropathologies associated with these processes.
Collapse
|
67
|
Kishk A, Pacheco MP, Heurtaux T, Sinkkonen L, Pang J, Fritah S, Niclou SP, Sauter T. Review of Current Human Genome-Scale Metabolic Models for Brain Cancer and Neurodegenerative Diseases. Cells 2022; 11:2486. [PMID: 36010563 PMCID: PMC9406599 DOI: 10.3390/cells11162486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Brain disorders represent 32% of the global disease burden, with 169 million Europeans affected. Constraint-based metabolic modelling and other approaches have been applied to predict new treatments for these and other diseases. Many recent studies focused on enhancing, among others, drug predictions by generating generic metabolic models of brain cells and on the contextualisation of the genome-scale metabolic models with expression data. Experimental flux rates were primarily used to constrain or validate the model inputs. Bi-cellular models were reconstructed to study the interaction between different cell types. This review highlights the evolution of genome-scale models for neurodegenerative diseases and glioma. We discuss the advantages and drawbacks of each approach and propose improvements, such as building bi-cellular models, tailoring the biomass formulations for glioma and refinement of the cerebrospinal fluid composition.
Collapse
Affiliation(s)
- Ali Kishk
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Maria Pires Pacheco
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Tony Heurtaux
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
- Luxembourg Center of Neuropathology, L-3555 Dudelange, Luxembourg
| | - Lasse Sinkkonen
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Jun Pang
- Department of Computer Science, University of Luxembourg, L-4364 Esch-sur-Alzette, Luxembourg
| | - Sabrina Fritah
- NORLUX Neuro-Oncology Laboratory, Luxembourg Institute of Health, Department of Cancer Research, L-1526 Luxembourg, Luxembourg
| | - Simone P. Niclou
- NORLUX Neuro-Oncology Laboratory, Luxembourg Institute of Health, Department of Cancer Research, L-1526 Luxembourg, Luxembourg
| | - Thomas Sauter
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| |
Collapse
|
68
|
Wendimu MY, Hooks SB. Microglia Phenotypes in Aging and Neurodegenerative Diseases. Cells 2022; 11:2091. [PMID: 35805174 PMCID: PMC9266143 DOI: 10.3390/cells11132091] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/08/2023] Open
Abstract
Neuroinflammation is a hallmark of many neurodegenerative diseases (NDs) and plays a fundamental role in mediating the onset and progression of disease. Microglia, which function as first-line immune guardians of the central nervous system (CNS), are the central drivers of neuroinflammation. Numerous human postmortem studies and in vivo imaging analyses have shown chronically activated microglia in patients with various acute and chronic neuropathological diseases. While microglial activation is a common feature of many NDs, the exact role of microglia in various pathological states is complex and often contradictory. However, there is a consensus that microglia play a biphasic role in pathological conditions, with detrimental and protective phenotypes, and the overall response of microglia and the activation of different phenotypes depends on the nature and duration of the inflammatory insult, as well as the stage of disease development. This review provides a comprehensive overview of current research on the various microglia phenotypes and inflammatory responses in health, aging, and NDs, with a special emphasis on the heterogeneous phenotypic response of microglia in acute and chronic diseases such as hemorrhagic stroke (HS), Alzheimer's disease (AD), and Parkinson's disease (PD). The primary focus is translational research in preclinical animal models and bulk/single-cell transcriptome studies in human postmortem samples. Additionally, this review covers key microglial receptors and signaling pathways that are potential therapeutic targets to regulate microglial inflammatory responses during aging and in NDs. Additionally, age-, sex-, and species-specific microglial differences will be briefly reviewed.
Collapse
Affiliation(s)
| | - Shelley B. Hooks
- Hooks Lab, Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
69
|
Long HZ, Zhou ZW, Cheng Y, Luo HY, Li FJ, Xu SG, Gao LC. The Role of Microglia in Alzheimer’s Disease From the Perspective of Immune Inflammation and Iron Metabolism. Front Aging Neurosci 2022; 14:888989. [PMID: 35847685 PMCID: PMC9284275 DOI: 10.3389/fnagi.2022.888989] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/13/2022] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease (AD), the most common type of senile dementia, includes the complex pathogenesis of abnormal deposition of amyloid beta-protein (Aβ), phosphorylated tau (p-tau) and neuroimmune inflammatory. The neurodegenerative process of AD triggers microglial activation, and the overactivation of microglia produces a large number of neuroimmune inflammatory factors. Microglia dysfunction can lead to disturbances in iron metabolism and enhance iron-induced neuronal degeneration in AD, while elevated iron levels in brain areas affect microglia phenotype and function. In this manuscript, we firstly discuss the role of microglia in AD and then introduce the role of microglia in the immune-inflammatory pathology of AD. Their role in AD iron homeostasis is emphasized. Recent studies on microglia and ferroptosis in AD are also reviewed. It will help readers better understand the role of microglia in iron metabolism in AD, and provides a basis for better regulation of iron metabolism disorders in AD and the discovery of new potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Hui-Zhi Long
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Zi-Wei Zhou
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Yan Cheng
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hong-Yu Luo
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Feng-Jiao Li
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Shuo-Guo Xu
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Li-Chen Gao
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
- *Correspondence: Li-Chen Gao,
| |
Collapse
|
70
|
de Almeida MMA, Pieropan F, Footz T, David JM, David JP, da Silva VDA, Dos Santos Souza C, Voronova A, Butt AM, Costa SL. Agathisflavone Modifies Microglial Activation State and Myelination in Organotypic Cerebellar Slices Culture. J Neuroimmune Pharmacol 2022; 17:206-217. [PMID: 33881709 DOI: 10.1007/s11481-021-09991-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 03/10/2021] [Indexed: 12/29/2022]
Abstract
Oligodendrocytes produce the myelin that is critical for rapid neuronal transmission in the central nervous system (CNS). Disruption of myelin has devastating effects on CNS function, as in the demyelinating disease multiple sclerosis (MS). Microglia are the endogenous immune cells of the CNS and play a central role in demyelination and repair. There is a need for new potential therapies that regulate myelination and microglia to promote repair. Agathisflavone (FAB) is a non-toxic flavonoid that is known for its anti-inflammatory and neuroprotective properties. Here, we examined the effects of FAB (5-50 μM) on myelination and microglia in organotypic cerebellar slices prepared from P10-P12 Sox10-EGFP and Plp1-DsRed transgenic mice. Immunofluorescence labeling for myelin basic protein (MBP) and neurofilament (NF) demonstrates that FAB significantly increased the proportion of MBP + /NF + axons but did not affect the overall number of oligodendroglia or axons, or the expression of oligodendroglial proteins CNPase and MBP. FAB is known to be a phytoestrogen, but blockade of α- or β- estrogen receptors (ER) indicated the myelination promoting effects of FAB were not mediated by ER. Examination of microglial responses by Iba1 immunohistochemistry demonstrated that FAB markedly altered microglial morphology, characterized by smaller somata and reduced branching of their processes, consistent with a decreased state of activation, and increased Iba1 protein expression. The results provide evidence that FAB increases the extent of axonal coverage by MBP immunopositive oligodendroglial processes and has a modulatory effect upon microglial cells, which are important therapeutic strategies in multiple neuropathologies.
Collapse
Affiliation(s)
- Monique Marylin Alves de Almeida
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Bahia, Brazil
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Francesca Pieropan
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK
| | - Tim Footz
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Jorge Mauricio David
- Department of General and Inorganic Chemistry, Institute of Chemistry, Federal University of Bahia, Bahia, Brazil
| | - Juceni Pereira David
- Department of Medication, Faculty of Pharmacy, Federal University of Bahia, Bahia, Brazil
| | | | - Cleide Dos Santos Souza
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Bahia, Brazil
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Anastassia Voronova
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Arthur Morgan Butt
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK.
| | - Silvia Lima Costa
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Bahia, Brazil.
| |
Collapse
|
71
|
Francesca F, Caitlin A, Sarah L, Robyn GL. Antroquinonol administration in animal preclinical studies for Alzheimer's disease (AD): A new avenue for modifying progression of AD pathophysiology. Brain Behav Immun Health 2022; 21:100435. [PMID: 35252893 PMCID: PMC8892093 DOI: 10.1016/j.bbih.2022.100435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/28/2022] [Accepted: 02/22/2022] [Indexed: 11/28/2022] Open
Abstract
Despite the rise of Alzheimer's disease (AD) in an ageing population, no cure is currently available for this disorder. This study assessed the role of a natural compound, Antroquinonol, in modifying the progression of AD when administered at the start and/or before appearance of symptoms and when the disease was well established, in a transgenic animal model. Antroquinonol was administered daily for 8 weeks, in 11 week (early stage) and 9 month (late stage) male transgenic mice (3 times Transgenic mice PS1M146V, APPSwe, and tauP301L, 3 Tg XAD) and their respective aged controls. Behavioural testing (including Elevated Plus Maze Watermaze, Recognition object testing and Y maze) was performed at the end of the drug administration. In addition AD biomarkers (Amyloid beta 42 (Aβ42), tau and phospho-tau levels), oxidative stress and inflammatory markers, were assessed in tested mice brains after their sacrifice at the end of the treatment. When administered before the start of symptoms at 11 weeks, Antroquinonol treatment at 34 mg/kg (D2) and more consistently at 75 mg/kg (D3), had a significant effect on reducing systemic inflammatory markers (Interleukin 1, IL-1β and TNF-α) and AD biomarker (Amyloid Beta 42, Aβ42 and tau) levels in the brain. The reduction of behavioural impairment reported for 3TgXAD mice was observed significantly for the D3 drug dose only and for all behavioural tests, when administered at 11 weeks. Similarly, beneficial effects of Antroquinonol (at higher dose D3) were noted in the transgenic mice in terms of AD biomarkers (tau and phosphorylated-tau), systemic inflammatory (IL-1β), brain anti-inflammatory (Nrf2) and oxidative (3-Nitrotyrosine, 3NT) markers. Improvement of memory impairment was also reported when Antroquinonol (D3) was administered at late stage (9 months). Since Antroquinonol has been used without adverse effects in previous successful clinical trials, this drug may offer a new avenue of treatment to modify AD development and progression.
Collapse
Affiliation(s)
- Fernandez Francesca
- School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, 1100 Nudgee Rd, Banyo, Queensland, 4014, Australia
- Centre for Genomics and Personalised Medicine, Genomics Research Centre, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia
| | - Aust Caitlin
- School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, 1100 Nudgee Rd, Banyo, Queensland, 4014, Australia
- Centre for Genomics and Personalised Medicine, Genomics Research Centre, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia
| | - Lye Sarah
- School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, 1100 Nudgee Rd, Banyo, Queensland, 4014, Australia
- Centre for Genomics and Personalised Medicine, Genomics Research Centre, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia
| | - Griffiths Lyn Robyn
- Centre for Genomics and Personalised Medicine, Genomics Research Centre, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia
- Corresponding author. Centre for Genomics and Personalised Health Genomics Research Centre, Queensland University of Technology, Australia.
| |
Collapse
|
72
|
Zileuton, a 5-Lipoxygenase Inhibitor, Attenuates Haemolysate-Induced BV-2 Cell Activation by Suppressing the MyD88/NF-κB Pathway. Int J Mol Sci 2022; 23:ijms23094910. [PMID: 35563304 PMCID: PMC9104905 DOI: 10.3390/ijms23094910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
M1 microglia induce neuroinflammation-related neuronal death in animal models of spontaneous subarachnoid haemorrhage. Zileuton is a 5-lipoxygenase inhibitor that reduces the levels of downstream pro-inflammatory cytokines. This study aimed to investigate whether zileuton inhibits microglial activation and describe its underlying mechanisms. BV-2 cells were exposed to 1 mg/mL haemolysate for 30 min, followed by treatment with different concentrations (5, 10, 15, or 20 μM) of zileuton for 24 h. The cells were then assessed for viability, polarisation, and protein expression levels. Haemolysate increases the viability of BV-2 cells and induces M1 polarisation. Subsequent exposure to high concentrations of zileuton decreased the viability of BV-2 cells, shifted the polarisation to the M2 phenotype, suppressed the expression of 5-lipoxygenase, decreased tumour necrosis factor α levels, and increased interleukin-10 levels. Furthermore, high concentrations of zileuton suppressed the expression of myeloid differentiation primary response protein 88 and reduced the phosphorylated-nuclear factor-kappa B (NF-kB)/NF-kB ratio. Therefore, phenotype reversal from M1 to M2 is a possible mechanism by which zileuton attenuates haemolysate-induced neuroinflammation after spontaneous subarachnoid haemorrhage.
Collapse
|
73
|
Sun M, Li X, Sun J, Wang H, Xie Q, Wang M. The Top-Cited Original Articles on the Role of Microglia in Neurodegenerative Diseases: A Bibliometric and Visualized Study. Front Aging Neurosci 2022; 14:869964. [PMID: 35478696 PMCID: PMC9037152 DOI: 10.3389/fnagi.2022.869964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/11/2022] [Indexed: 01/23/2023] Open
Abstract
BackgroundMicroglia participants to neuronal loss during brain development, inflammation, ischemia, and neurodegeneration. This bibliometric and visualized study aimed to confirm the top 100 cited original research in the field and to analyze their characteristics.MethodsThe Web of Science database (WOS) was retrieved using the specific search strategy. The top 100 cited original articles that focused on the role of microglia in neurodegenerative diseases (NDs) were filtered by two researchers independently. The trend of yearly publications and citations, citation densities, languages, and global contributions were analyzed. The highly cited countries, authors, institutions, and journals were visualized by bibliographic coupling analysis. The highly cited authors and journals in the references were visualized by co-citation analysis. The research hotspots were revealed by co-occurrence analysis and burst detection of author keywords.ResultsThe top 100 cited articles were published during the period 1988 to 2019. The peak of publication occurred in 2005 and 2006. The yearly total citations presented a rising trend. The highly cited articles were contributed by 26 countries, the United States was the country with the overwhelming number of publications and cited times. Stevens, Beth was the author with the largest number of cited times. Mcgeer PL was the author most frequently cited in the references. Harvard University was the institution with the greatest number of cited times and publications. Nature was the journal with the largest number of cited times. Journal of neuroscience was both the most often published and most frequently cited journal in the references. “Microglia”, “inflammation”, “Alzheimer’s disease” were the most frequently used keywords, and their average occurred time was around 2005. “Dementia,” “delirium,” “priming” were keywords that averagely occurred around 2010. The burst detection revealed that “TNF-beta,” “macrophage,” and “inflammation” were keywords that frequently burst in recent years.ConclusionThis bibliometric and visualized study revealed the top 100 cited original research that discussed the role of microglia in NDs. The United States was the biggest contributor, Harford University was the most influential institution. Journal of Neuroscience was the most often published and cited journal. Alzheimer’s disease was the hotspot in microglia and NDs. Recent research mainly focused on inflammation.
Collapse
|
74
|
Guo S, Wang H, Yin Y. Microglia Polarization From M1 to M2 in Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:815347. [PMID: 35250543 PMCID: PMC8888930 DOI: 10.3389/fnagi.2022.815347] [Citation(s) in RCA: 415] [Impact Index Per Article: 138.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
Microglia-mediated neuroinflammation is a common feature of neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Microglia can be categorized into two opposite types: classical (M1) or alternative (M2), though there’s a continuum of different intermediate phenotypes between M1 and M2, and microglia can transit from one phenotype to another. M1 microglia release inflammatory mediators and induce inflammation and neurotoxicity, while M2 microglia release anti-inflammatory mediators and induce anti-inflammatory and neuroprotectivity. Microglia-mediated neuroinflammation is considered as a double-edged sword, performing both harmful and helpful effects in neurodegenerative diseases. Previous studies showed that balancing microglia M1/M2 polarization had a promising therapeutic prospect in neurodegenerative diseases. We suggest that shifting microglia from M1 to M2 may be significant and we focus on the modulation of microglia polarization from M1 to M2, especially by important signal pathways, in neurodegenerative diseases.
Collapse
|
75
|
Silpa L, Sim R, Russell AJ. Recent Advances in Small Molecule Stimulation of Regeneration and Repair. Bioorg Med Chem Lett 2022; 61:128601. [PMID: 35123003 DOI: 10.1016/j.bmcl.2022.128601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/02/2022]
Abstract
Therapeutic approaches to stimulate regeneration and repair have the potential to transform healthcare and improve outcomes for patients suffering from numerous chronic degenerative diseases. To date most approaches have involved the transplantation of therapeutic cells, and while there have been a small number of clinical approvals, major hurdles exist to the routine adoption of such therapies. In recent years humans and other mammals have been shown to possess a regenerative capacity across multiple tissues and organs, and an innate regenerative and repair response has been shown to be activated in these organs in response to injury. These realisations have inspired a transformative approach in regenerative medicine: the development of new agents to directly target these innate regeneration and repair pathways. In this article we will review the current state of the art in the discovery of small molecule modulators of regeneration and their translation towards therapeutic agents, focussing specifically on the areas of neuroregeneration and cardiac regeneration.
Collapse
Affiliation(s)
- Laurence Silpa
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford OX1 3TA
| | - Rachel Sim
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford OX1 3TA
| | - Angela J Russell
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford OX1 3TA; Department of Pharmacology, University of Oxford, University of Oxford OX1 3QT.
| |
Collapse
|
76
|
Matisz C, Gruber A. Neuroinflammatory remodeling of the anterior cingulate cortex as a key driver of mood disorders in gastrointestinal disease and disorders. Neurosci Biobehav Rev 2022; 133:104497. [DOI: 10.1016/j.neubiorev.2021.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
|
77
|
Park SH, Lee YS, Yang HJ, Song GJ. Fluoxetine Potentiates Phagocytosis and Autophagy in Microglia. Front Pharmacol 2021; 12:770610. [PMID: 34899324 PMCID: PMC8662994 DOI: 10.3389/fphar.2021.770610] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/07/2021] [Indexed: 11/18/2022] Open
Abstract
Fluoxetine is a classic antidepressant drug, and its immunomodulatory effects have recently been reported in many disease models. In addition, it has strong antineuroinflammatory effects in stroke and neurodegenerative animal models. However, the effect of fluoxetine on microglia phagocytosis and its molecular mechanisms have not yet been studied. In this study, we investigated whether fluoxetine has a regulatory effect on microglial function. Microglia cell lines and primary mouse microglia were treated with fluoxetine, and the production of inflammatory cytokines and neurotrophic factors and the phagocytosis of amyloid β were measured. Fluoxetine significantly attenuated the production of lipopolysaccharide-induced proinflammatory cytokines and oxidative stress in microglia. Fluoxetine also significantly potentiated microglia phagocytosis and autophagy. In addition, autophagy flux inhibitors attenuated fluoxetine-induced phagocytosis. In conclusion, fluoxetine induces autophagy and potentiates phagocytosis in microglia, which can be a novel molecular mechanism of the neuroinflammatory and neuroprotective effects of fluoxetine.
Collapse
Affiliation(s)
- Sung Hee Park
- Department of Medical Science, Catholic Kwandong University College of Medicine, Gangneung, Korea
| | - Young-Sun Lee
- Department of Medical Science, Catholic Kwandong University College of Medicine, Gangneung, Korea.,The Convergence Institute of Healthcare and Medical Science, Catholic Kwandong University, International St. Mary's Hospital, Incheon, Korea
| | - Hyun-Jeong Yang
- Department of Integrative Biosciences, University of Brain Education, Cheonan, Korea
| | - Gyun Jee Song
- Department of Medical Science, Catholic Kwandong University College of Medicine, Gangneung, Korea.,The Convergence Institute of Healthcare and Medical Science, Catholic Kwandong University, International St. Mary's Hospital, Incheon, Korea
| |
Collapse
|
78
|
Zhao J, He Z, Wang J. MicroRNA-124: A Key Player in Microglia-Mediated Inflammation in Neurological Diseases. Front Cell Neurosci 2021; 15:771898. [PMID: 34795564 PMCID: PMC8593194 DOI: 10.3389/fncel.2021.771898] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/14/2021] [Indexed: 01/07/2023] Open
Abstract
Neurological disorders are mainly characterized by progressive neuron loss and neurological deterioration, which cause human disability and death. However, many types of neurological disorders have similar pathological mechanisms, including the neuroinflammatory response. Various microRNAs (miRs), such as miR-21, miR-124, miR-146a, and miR-132 were recently shown to affect a broad spectrum of biological functions in the central nervous system (CNS). Microglia are innate immune cells with important roles in the physiological and pathological activities of the CNS. Recently, abnormal expression of miR-124 was shown to be associated with the occurrence and development of various diseases in CNS via regulating microglia function. In addition, miR-124 is a promising biomarker and therapeutic target. Studies on the role of miR-124 in regulating microglia function involved in pathogenesis of neurological disorders at different stages will provide new ideas for the use of miR-124 as a therapeutic target for different CNS diseases.
Collapse
Affiliation(s)
- Jiuhan Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhenwei He
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jialu Wang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
79
|
Mohammadi M, Abdi M, Alidadi M, Mohamed W, Zibara K, Ragerdi Kashani I. Medroxyprogesterone acetate attenuates demyelination, modulating microglia activation, in a cuprizone neurotoxic demyelinating mouse model. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2021; 10:57-68. [PMID: 34824899 PMCID: PMC8610806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Clinical data reported a reduction of Multiple sclerosis (MS) symptoms during pregnancy when progesterone levels are high. Medroxyprogesterone acetate (MPA) is a synthetic progestin contraceptive with unknown neuroprotective effects. This study investigated the effect of a contraceptive dose of MPA on microglia polarization and neuroinflammation in the neurotoxic cuprizone (CPZ)-induced demyelinating mouse model of MS. Mice received 1 mg of MPA weekly, achieving similar serum concentrations in human contraceptive users. Results revealed that MPA therapy significantly reduced the demyelination in the corpus callosum. In addition, MPA treatment induced a significant reduction in microglia M1-markers (iNOS, IL-1β and TNF-α) while M2-markers (Arg-1, IL-10 and TGF-β) were significantly increased. Moreover, MPA resulted in a significant decrease in the number of iNOS positive cells (M1), whereas TREM-2 positive cells (M2) significantly increased. Furthermore, MPA decreased the protein expression levels of NF-κB and NLRP3 inflammasome as well as mRNA expression levels of the downstream product IL-18. In summary, MPA reduces the level of demyelination and has an anti-inflammatory role in CNS demyelination by inducing M2 microglia polarization and suppressing the M1 phenotype through the inhibition of NF-κB and NLRP3 inflammasome. Our results suggest that MPA should be a suitable contraceptive pharmacological agent in demyelinating diseases.
Collapse
Affiliation(s)
- Maryam Mohammadi
- Department of Anatomy, School of Medicine, Tehran University of Medical SciencesTehran, Iran
| | - Mahdad Abdi
- Department of Anatomy, School of Medicine, Tehran University of Medical SciencesTehran, Iran
| | - Mehdi Alidadi
- Department of Anatomy, School of Medicine, Tehran University of Medical SciencesTehran, Iran
| | - Wael Mohamed
- Department of Basic Medical Science, Kulliyyah of Medicine, International Islamic University MalaysiaKuantan, Pahang, Malaysia
- Clinical Pharmacology Department, Menoufia Medical SchoolMenoufia, Egypt
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences, Lebanese UniversityBeirut, Lebanon
| | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical SciencesTehran, Iran
| |
Collapse
|
80
|
Ni L, Zhuge F, Yang S, Ma L, Zheng A, Zhao Y, Hu L, Fu Z, Ni Y. Hydrolyzed Chicken Meat Extract Attenuates Neuroinflammation and Cognitive Impairment in Middle-Aged Mouse by Regulating M1/M2 Microglial Polarization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9800-9812. [PMID: 34404209 DOI: 10.1021/acs.jafc.1c03541] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aging is the most common cause of several neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease. The pathological hallmarks of age-dependent neuropathology consist of chronic neuroinflammation, oxidative stress, gliosis, learning disability, and cognitive decline. A novel hydrolyzed bioactive peptide mixture extracted from chicken meat, that is, hydrolyzed chicken extract (HCE) has been previously demonstrated to exert neuroprotective effects in rodents and humans. However, the mechanism of HCE on age-related neurological disorders remains unclear. Herein, we aimed to clarify the impact and mechanism of isolated bioactive components (BCs) from HCE on age-dependent neuroinflammation and cognitive impairment in middle-aged mice. We found that both BC and HCE supplementation ameliorated age-induced memory loss, alleviated hippocampal neuroinflammation and oxidative stress, followed by promoting hippocampal neurogenesis in mice. BC and HCE treatment also ameliorated age-dependent morphological anomalies and alleviated microgliosis and astrogliosis. In parallel, BC and HCE treatment showed a significant decrease in the NF-κB p65 and p38 MAPK signaling, which were associated with the enhancement of antioxidative enzymes activities. Furthermore, BC treatment attenuated the neuroinflammatory phenotypes by the decrease in M1-polarized microglia and the increase in M2-polarized microglia in vivo and in vitro. In addition, we found that cyclo(Phe-Phe), one of the cyclopeptides purified from BC, showed notable anti-inflammatory effects in BV2 cells. Taken together, BC might be used as a dietary supplement for alleviating age-dependent neuropathology in middle-aged individuals.
Collapse
Affiliation(s)
- Liyang Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Fen Zhuge
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, China
| | - Song Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Lingyan Ma
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Aqian Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yufeng Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Luting Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
81
|
Wu L, Li S, Pang S, Zhang B, Wang J, He B, Lv L, Wang W, Zhao N, Zhang Y. Effects of lead exposure on the activation of microglia in mice fed with high-fat diets. ENVIRONMENTAL TOXICOLOGY 2021; 36:1923-1931. [PMID: 34156151 DOI: 10.1002/tox.23312] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/05/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Lead (Pb) exposure can cause central nervous system (CNS) damage. The process of Pb neurotoxicity is accompanied by the microglia activation. In addition, microglia activation was observed under the intervention of high-fat diets (HFD). This study was designed to investigate the effect of Pb on the cognitive function of mice with HFD, with focus on the microglia activation in brain. Male C57BL/6J mice, 8 weeks of age, were randomly divided into control, HFD, Pb, and HFD + Pb groups. The results showed that HFD following Pb exposure could exacerbate the learning and memory impairment in mice. Pb exposure could promote microglia activation and increase the expression of M1 microglia marker and decrease the expression of M2 microglia marker in the hippocampus of mice with HFD. Our finding suggested that Pb exposure may aggravate CNS damage by promoting M1 polarization and inhibiting M2 polarization of hippocampal microglia in HFD mice.
Collapse
Affiliation(s)
- Lei Wu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Shuang Li
- Experiment Animal Center, North China University of Science and Technology, Tangshan, Hebei, China
| | - Shulan Pang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Bo Zhang
- JiTang college of North China University of Science and Technology, Tangshan, Hebei, China
| | - Jierui Wang
- Rheumatology Department, Kailuan General Hospital, Tangshan, Hebei, China
| | - Bin He
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Linyi Lv
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Weixuan Wang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Na Zhao
- Experiment Animal Center, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yanshu Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
- Experiment Animal Center, North China University of Science and Technology, Tangshan, Hebei, China
| |
Collapse
|
82
|
Fayazi N, Sheykhhasan M, Soleimani Asl S, Najafi R. Stem Cell-Derived Exosomes: a New Strategy of Neurodegenerative Disease Treatment. Mol Neurobiol 2021; 58:3494-3514. [PMID: 33745116 PMCID: PMC7981389 DOI: 10.1007/s12035-021-02324-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
Short-term symptomatic treatment and dose-dependent side effects of pharmacological treatment for neurodegenerative diseases have forced the medical community to seek an effective treatment for this serious global health threat. Therapeutic potential of stem cell for treatment of neurodegenerative disorders was identified in 1980 when fetal nerve tissue was used to treat Parkinson's disease (PD). Then, extensive studies have been conducted to develop this treatment strategy for neurological disease therapy. Today, stem cells and their secretion are well-known as a therapeutic environment for the treatment of neurodegenerative diseases. This new paradigm has demonstrated special characteristics related to this treatment, including neuroprotective and neurodegeneration, remyelination, reduction of neural inflammation, and recovery of function after induced injury. However, the exact mechanism of stem cells in repairing nerve damage is not yet clear; exosomes derived from them, an important part of their secretion, are introduced as responsible for an important part of such effects. Numerous studies over the past few decades have evaluated the therapeutic potential of exosomes in the treatment of various neurological diseases. In this review, after recalling the features and therapeutic history, we will discuss the latest stem cell-derived exosome-based therapies for these diseases.
Collapse
Affiliation(s)
- Nashmin Fayazi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Soleimani Asl
- Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
83
|
Zhang G, Ma L, Bai L, Li M, Guo T, Tian B, He Z, Fu Q. Inflammatory microenvironment-targeted nanotherapies. J Control Release 2021; 334:114-126. [PMID: 33887284 DOI: 10.1016/j.jconrel.2021.04.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/14/2022]
Abstract
Inflammatory microenvironments (IMEs) are common pathological characteristics and drive the development of multiple chronic diseases. Thus, IME-targeted therapies exhibit potential for the treatment of inflammatory diseases. Nanoplatforms have significant advantages in improving the efficiency of anti-inflammatory treatments. Owing to their improved therapeutic effects and reduced side effects, IME-targeted nanotherapies have recently drawn interest from the research community. This review introduces IMEs and discusses the application of IME-targeted nanotherapies for inflammatory diseases. The development of rational targeting strategies tailored to IMEs in damaged tissues can help promote therapies for chronic diseases.
Collapse
Affiliation(s)
- Guangshuai Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Lixue Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Lijun Bai
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mo Li
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110016, China
| | - Tiange Guo
- Laboratory Animal Department, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenyang 110016, China
| | - Baocheng Tian
- School of Pharmacy, Binzhou Medical University, No. 346, Guanhai Road, Yantai 264003, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
84
|
Saxena S, Kruys V, Vamecq J, Maze M. The Role of Microglia in Perioperative Neuroinflammation and Neurocognitive Disorders. Front Aging Neurosci 2021; 13:671499. [PMID: 34122048 PMCID: PMC8193130 DOI: 10.3389/fnagi.2021.671499] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022] Open
Abstract
The aseptic trauma of peripheral surgery activates a systemic inflammatory response that results in neuro-inflammation; the microglia, the resident immunocompetent cells in the brain, are a key element of the neuroinflammatory response. In most settings microglia perform a surveillance role in the brain detecting and responding to “invaders” to maintain homeostasis. However, microglia have also been implicated in producing harm possibly by changing its phenotype from its beneficial, anti-inflammatory state (termed M2) into an injurious pro-inflammatory state (termed M1); it is likely that there are intermediates states between these polar phenotypes and some consider that a gradient exists with a number of intermediates, rather than a strict dichotomy between M1 and M2. In the pro-inflammatory phenotypes, microglia can disrupt synaptic plasticity such as long- term potentiation that can result in disorders of learning and memory of the type observed in Peri-operative Neurocognitive Disorders. Therefore, investigators have sought strategies to prevent microglia from provoking this adverse event in the perioperative period. In preclinical studies microglia can be depleted by removing trophic factors required for its maintenance; subsequent repopulation with a more beneficial microglial phenotype may result in memory enhancement, improved sensory motor function, as well as suppression of neuroinflammatory and oxidative stress pathways. Another approach consists of preventing microglial activation using the non-specific P38 MAP kinase blockers such as minocycline. Perhaps a more physiologic approach is the use of inhibitors of potassium (K+) channels that are required to convert the microglia into an active state. In this context the specific K+ channels that are implicated are termed Kv1.3 and KCa3.1 and high selective inhibitors for each have been developed. Data are accumulating demonstrating the utility of these K+ channel blockers in preventing Perioperative Neurocognitive Disorders.
Collapse
Affiliation(s)
- Sarah Saxena
- Department of Anesthesia, University Hospital Center (CHU de Charleroi), Charleroi, Belgium.,Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, CA, United States
| | - Veronique Kruys
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| | - Joseph Vamecq
- Inserm, CHU Lille, Univ Lille, Department of Biochemistry and Molecular Biology, Laboratory of Hormonology, Metabolism-Nutrition and Oncology (HMNO), Center of Biology and Pathology (CBP) Pierre-Marie Degand, CHRU Lille, University of North France, Lille, France
| | - Mervyn Maze
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
85
|
Zhou L, Tao X, Pang G, Mu M, Sun Q, Liu F, Hu Y, Tao H, Li B, Xu K. Maternal Nicotine Exposure Alters Hippocampal Microglia Polarization and Promotes Anti-inflammatory Signaling in Juvenile Offspring in Mice. Front Pharmacol 2021; 12:661304. [PMID: 34045967 PMCID: PMC8144443 DOI: 10.3389/fphar.2021.661304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence reveal that maternal smoking or perinatal nicotine replacement therapy impairs hippocampal neurogenesis, neural development, and cognitive behaviors in the offspring. Microglia is a source of non-neural regulation of neuronal development and postnatal neurogenesis. In this study, we explored the impact of nicotine on the microglia during the development of hippocampus. Developmental nicotine exposure in a mouse model was conducted by supplementing nicotine in the drinking water to mother mice during gestation and lactation period. We found that juvenile offspring with maternal nicotine exposure presented physical and neurobehavioral development delay and an increase in anxiety-like behavior in the open field test on postnatal day (PND) 20. To further detect possible developmental neurotoxic effects of nicotine in offspring and underlying mechanism, whole genome microarray analysis of the expression profile of the hippocampus was performed on postnatal day 20. Significant alterations in the expression of genes related to inflammatory, neurotransmitter, and synapsis were observed in the hippocampus after maternal nicotine exposure, as compared to the vehicle control. Concurrently, an increase in microglial markers and the presence of M2 polarity state in the hippocampus of the nicotine offspring were observed by histological analysis and confocal z-stacking scanning. The M2 microglial polarization state was further confirmed with in vitro primary microglia culture by cytokine array, and double-positive expression of BDNF/Iba1 in microglia by immunohistochemical staining in the juvenile offspring hippocampus was visualized. We also found that nicotine offspring showed an increase of neurite length in the molecular layer and CA1 by Tuj1 staining, as well as an increase in the expression of synapse associated protein, PSD95, but the expression of NeuroD1 in CA1 and CA3 reduced. In summary, maternal nicotine exposure dysregulates immune-related genes expression by skewing the polarity of M2 microglia in the hippocampus, which may cause abnormal cognitive and behavioral performance in the offspring.
Collapse
Affiliation(s)
- Li Zhou
- Center for Medical Research, School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Xinrong Tao
- Center for Medical Research, School of Medicine, Anhui University of Science and Technology, Huainan, China.,Key Laboratory of Industrial Dust Control and Occupational Health, Ministry of Education, Anhui University of Science and Technology, Huainan, China.,Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety, Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, China.,Engineering Laboratory of Occupational Safety and Health, Anhui Province, Anhui University of Science and Technology, Huainan, China
| | - Gang Pang
- College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Min Mu
- Center for Medical Research, School of Medicine, Anhui University of Science and Technology, Huainan, China.,Key Laboratory of Industrial Dust Control and Occupational Health, Ministry of Education, Anhui University of Science and Technology, Huainan, China.,Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety, Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, China.,Engineering Laboratory of Occupational Safety and Health, Anhui Province, Anhui University of Science and Technology, Huainan, China
| | - Qixian Sun
- Center for Medical Research, School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Fei Liu
- Center for Medical Research, School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Yuting Hu
- Center for Medical Research, School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Huihui Tao
- Center for Medical Research, School of Medicine, Anhui University of Science and Technology, Huainan, China.,Key Laboratory of Industrial Dust Control and Occupational Health, Ministry of Education, Anhui University of Science and Technology, Huainan, China.,Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety, Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, China.,Engineering Laboratory of Occupational Safety and Health, Anhui Province, Anhui University of Science and Technology, Huainan, China
| | - Bing Li
- Center for Medical Research, School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Keyi Xu
- Center for Medical Research, School of Medicine, Anhui University of Science and Technology, Huainan, China.,Key Laboratory of Industrial Dust Control and Occupational Health, Ministry of Education, Anhui University of Science and Technology, Huainan, China.,Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety, Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, China.,Engineering Laboratory of Occupational Safety and Health, Anhui Province, Anhui University of Science and Technology, Huainan, China
| |
Collapse
|
86
|
Lee YS, Gupta DP, Park SH, Yang HJ, Song GJ. Anti-Inflammatory Effects of Dimethyl Fumarate in Microglia via an Autophagy Dependent Pathway. Front Pharmacol 2021; 12:612981. [PMID: 34025399 PMCID: PMC8137969 DOI: 10.3389/fphar.2021.612981] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/19/2021] [Indexed: 01/22/2023] Open
Abstract
Dimethyl fumarate (DMF), which has been approved by the Food and Drug Administration for the treatment of relapsing-remitting multiple sclerosis, is considered to exert anti-inflammatory and antioxidant effects. Microglia maintain homeostasis in the central nervous system and play a key role in neuroinflammation, while autophagy controls numerous fundamental biological processes, including pathogen removal, cytokine production, and clearance of toxic aggregates. However, the role of DMF in autophagy induction and the relationship of this effect with its anti-inflammatory functions in microglia are not well known. In the present study, we investigated whether DMF inhibited neuroinflammation and induced autophagy in microglia. First, we confirmed the anti-neuroinflammatory effect of DMF in mice with streptozotocin-induced diabetic neuropathy. Next, we used in vitro models including microglial cell lines and primary microglial cells to examine the anti-inflammatory and neuroprotective effects of DMF. We found that DMF significantly inhibited nitric oxide and proinflammatory cytokine production in lipopolysaccharide-stimulated microglia and induced the switch of microglia to the M2 state. In addition, DMF treatment increased the expression levels of autophagy markers including microtubule-associated protein light chain 3 (LC3) and autophagy-related protein 7 (ATG7) and the formation of LC3 puncta in microglia. The anti-inflammatory effect of DMF in microglia was significantly reduced by pretreatment with autophagy inhibitors. These data suggest that DMF leads to the induction of autophagy in microglia and that its anti-inflammatory effects are partially mediated through an autophagy-dependent pathway.
Collapse
Affiliation(s)
- Young-Sun Lee
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Korea.,Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Korea
| | - Deepak Prasad Gupta
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Korea
| | - Sung Hee Park
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Korea
| | - Hyun-Jeong Yang
- Department of Integrative Biosciences, University of Brain Education, Cheonan, Korea
| | - Gyun Jee Song
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Korea.,Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Korea
| |
Collapse
|
87
|
Jia Y, Zhang D, Yin H, Li H, Du J, Bao H. Ganoderic Acid A Attenuates LPS-Induced Neuroinflammation in BV2 Microglia by Activating Farnesoid X Receptor. Neurochem Res 2021; 46:1725-1736. [PMID: 33821438 PMCID: PMC8187184 DOI: 10.1007/s11064-021-03303-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 02/21/2021] [Accepted: 03/17/2021] [Indexed: 01/03/2023]
Abstract
Neuroinflammation plays an important role in the onset and progression of neurodegenerative diseases. Microglia-mediated neuroinflammation have been proved to be the main reason for causing the neurodegenerative diseases. Ganoderic acid A (GAA), isolated from Ganoderma lucidum, showed anti-inflammatory effect in metabolism diseases. However, little research has been focused on the effect of GAA in neuroinflammation and the related mechanism. In the present study, lipopolysaccharide(LPS)-stimulated BV2 microglial cells were used to evaluate the anti-inflammatory capacity of GAA. Our data showed that GAA significantly suppressed LPS-induced BV2 microglial cells proliferation and activation in vitro. More strikingly, GAA promoted the conversion of BV2 microglial cells from M1 status induced by LPS to M2 status. Furthermore, GAA inhibited the pro-inflammatory cytokines release and promoted neurotrophic factor BDNF expression in LPS-induced BV2 microglial cells. Finally, we found that the expression of farnesoid-X-receptor (FXR) was prominently downregulated in LPS-stimulated BV2 microglial cells, antagonism of FXR with z-gugglesterone and FXR siRNA can reverse the effect of GAA in LPS-induced BV2 microglial cells. Taking together, our findings demonstrate that GAA can significantly inhibit LPS-induced neuroinflammation in BV2 microglial cells via activating FXR receptor.
Collapse
Affiliation(s)
- Yue Jia
- School of Medicine, Yunnan University, 2 Cuihu North Road, Kunming, 650091, Yunnan, People's Republic of China
| | - Dandan Zhang
- School of Medicine, Yunnan University, 2 Cuihu North Road, Kunming, 650091, Yunnan, People's Republic of China
| | - Hua Yin
- Yunnan Key Laboratory of Molecular Biology of Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, Yunnan, People's Republic of China
| | - Haoran Li
- School of Medicine, Yunnan University, 2 Cuihu North Road, Kunming, 650091, Yunnan, People's Republic of China
| | - Jing Du
- School of Medicine, Yunnan University, 2 Cuihu North Road, Kunming, 650091, Yunnan, People's Republic of China.
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, People's Republic of China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100088, People's Republic of China.
| | - Hongkun Bao
- School of Medicine, Yunnan University, 2 Cuihu North Road, Kunming, 650091, Yunnan, People's Republic of China.
| |
Collapse
|
88
|
Modification of Glial Cell Activation through Dendritic Cell Vaccination: Promises for Treatment of Neurodegenerative Diseases. J Mol Neurosci 2021; 71:1410-1424. [PMID: 33713321 DOI: 10.1007/s12031-021-01818-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/15/2021] [Indexed: 02/07/2023]
Abstract
Accumulation of misfolded tau, amyloid β (Aβ), and alpha-synuclein (α-syn) proteins is the fundamental contributor to many neurodegenerative diseases, namely Parkinson's (PD) and AD. Such protein aggregations trigger activation of immune mechanisms in neuronal and glial, mainly M1-type microglia cells, leading to release of pro-inflammatory mediators, and subsequent neuronal dysfunction and apoptosis. Despite the described neurotoxic features for glial cells, recruitment of peripheral leukocytes to the brain and their conversion to neuroprotective M2-type microglia can mitigate neurodegeneration by clearing extracellular protein accumulations or residues. Based on these observations, it was speculated that Dendritic cell (DC)-based vaccination, by making use of DCs as natural adjuvants, could be used for treatment of neurodegenerative disorders. DCs potentiated by disease-specific antigens can also enhance T helper 2 (Th2)-specific immune response and by production of specific antibodies contribute to clearance of intracellular aggregations, as well as enhancing regulatory T cell response. Thus, enhancement of immune response by DC vaccine therapy can potentially augment glial polarization into the neuroprotective phenotype, enhance antibody production, and at the same time balance neuronal cells' repair, renewal, and protection. The characteristic feature of this method of treatment is to maintain the equilibrium in the immune response rather than targeting a single mediator in the disease and their application in other neurodegenerative diseases should be addressed. However, the safety of these methods should be investigated by clinical trials.
Collapse
|
89
|
Mi Y, Qi G, Brinton RD, Yin F. Mitochondria-Targeted Therapeutics for Alzheimer's Disease: The Good, the Bad, the Potential. Antioxid Redox Signal 2021; 34:611-630. [PMID: 32143551 PMCID: PMC7891225 DOI: 10.1089/ars.2020.8070] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022]
Abstract
Significance: Alzheimer's disease (AD) is the leading cause of dementia. Thus far, 99.6% of clinical trials, including those targeting energy metabolism, have failed to exert disease-modifying efficacy. Altered mitochondrial function and disruption to the brain bioenergetic system have long-been documented as early events during the pathological progression of AD. Recent Advances: While therapeutic approaches that directly promote mitochondrial bioenergetic machinery or eliminate reactive oxygen species have exhibited limited translatability, emerging strategies targeting nonenergetic aspects of mitochondria provide novel therapeutic targets with the potential to modify AD risk and progression. Growing evidence also reveals a critical link between mitochondrial phenotype and neuroinflammation via metabolic reprogramming of glial cells. Critical Issues: Herein, we summarize major classes of mitochondrion-centered AD therapeutic strategies. In addition, the discrepancy in their efficacy when translated from preclinical models to clinical trials is addressed. Key factors that differentiate the responsiveness to bioenergetic interventions, including sex, apolipoprotein E genotype, and cellular diversity in the brain, are discussed. Future Directions: We propose that the future development of mitochondria-targeted AD therapeutics should consider the interactions between bioenergetics and other disease mechanisms, which may require cell-type-specific targeting to distinguish neurons and non-neuronal cells. Moreover, a successful strategy will likely include stratification by metabolic phenotype, which varies by sex and genetic risk profile and dynamically changes throughout the course of disease. As the network of mitochondrial integration expands across intracellular and systems level biology, assessment of intended, the good, versus unintended consequences, the bad, will be required to reach the potential of mitochondrial therapeutics.
Collapse
Affiliation(s)
- Yashi Mi
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Guoyuan Qi
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, Arizona, USA
- Department of Pharmacology, College of Medicine Tucson, Tucson, Arizona, USA
- Department of Neurology, College of Medicine Tucson, Tucson, Arizona, USA
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, Arizona, USA
| | - Fei Yin
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, Arizona, USA
- Department of Pharmacology, College of Medicine Tucson, Tucson, Arizona, USA
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
90
|
Piccioni G, Mango D, Saidi A, Corbo M, Nisticò R. Targeting Microglia-Synapse Interactions in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22052342. [PMID: 33652870 PMCID: PMC7956551 DOI: 10.3390/ijms22052342] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022] Open
Abstract
In this review, we focus on the emerging roles of microglia in the brain, with particular attention to synaptic plasticity in health and disease. We present evidence that ramified microglia, classically believed to be "resting" (i.e., inactive), are instead strongly implicated in dynamic and plastic processes. Indeed, there is an intimate relationship between microglia and neurons at synapses which modulates activity-dependent functional and structural plasticity through the release of cytokines and growth factors. These roles are indispensable to brain development and cognitive function. Therefore, approaches aimed at maintaining the ramified state of microglia might be critical to ensure normal synaptic plasticity and cognition. On the other hand, inflammatory signals associated with Alzheimer's disease are able to modify the ramified morphology of microglia, thus leading to synapse loss and dysfunction, as well as cognitive impairment. In this context, we highlight microglial TREM2 and CSF1R as emerging targets for disease-modifying therapy in Alzheimer's disease (AD) and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Gaia Piccioni
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, 00161 Rome, Italy; (D.M.); (A.S.)
- Department of Physiology and Pharmacology “V.Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (G.P.); (R.N.)
| | - Dalila Mango
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, 00161 Rome, Italy; (D.M.); (A.S.)
- School of Pharmacy, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Amira Saidi
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, 00161 Rome, Italy; (D.M.); (A.S.)
- Department of Physiology and Pharmacology “V.Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, 20144 Milan, Italy;
| | - Robert Nisticò
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, 00161 Rome, Italy; (D.M.); (A.S.)
- School of Pharmacy, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Correspondence: (G.P.); (R.N.)
| |
Collapse
|
91
|
Wei Y, Chen J, Cai GE, Lu W, Xu W, Wang R, Lin Y, Yang C. Rosmarinic Acid Regulates Microglial M1/M2 Polarization via the PDPK1/Akt/HIF Pathway Under Conditions of Neuroinflammation. Inflammation 2021; 44:129-147. [PMID: 32940818 DOI: 10.1007/s10753-020-01314-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microglia are resident macrophage-like cells in the central nervous system (CNS). The induction of microglial activation dampens neuroinflammation-related diseases by promoting microglial (re)polarization to the anti-inflammatory (M2) phenotype and can serve as a potential therapeutic approach. Mitochondrial respiration and metabolic reprogramming are required for the anti-inflammatory response of M2 macrophages. However, whether these mitochondrial-dependent pathways are involved in microglial (re)polarization to the anti-inflammatory (M2) phenotype under conditions of lipopolysaccharide (LPS)-induced neuroinflammation remains unclear. Moreover, the mechanisms that coordinate mitochondrial respiration and the functional reprogramming of microglial cells have not been fully elucidated. Rosmarinic acid (RA) possesses antioxidative and anti-inflammatory activities, and we previously reported that RA markedly suppresses LPS-stimulated M1 microglial activation in mice. In this study, we found that RA suppresses M1 microglial polarization and promotes microglial polarization to the M2 phenotype under conditions of neuroinflammation. We identified an increase in mitochondrial respiration and found that metabolic reprogramming is required for the RA-mediated promotion of microglial polarization to the M2 phenotype under LPS-induced neuroinflammation conditions. Hypoxia-inducible factor (HIF) subunits are the key effector molecules responsible for the effects of RA on the restoration of mitochondrial function, metabolic reprogramming, and phenotypic polarization to M2 microglia. The phosphoinositide-dependent protein kinase 1 (PDPK1)/Akt/mTOR pathway is involved in the RA-mediated regulation of HIF expression and increase in M2 marker expression. We propose that the inhibition of PDPK1/Akt/HIFs by RA might be a potential therapeutic approach for inhibiting neuroinflammation through the regulation of microglial M1/M2 polarization. Graphical abstract Schematic of the mechanism through which RA suppresses LPS-induced neuroinflammation by promoting microglial polarization to the M2 phenotype via PDPK1/Akt/HIFs. The bold arrows indicate the direction of the effects of RA (i.e., inhibitory or promoting effects on cytokines or mediators).
Collapse
Affiliation(s)
- Yicong Wei
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jianxiong Chen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Guo-En Cai
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Wei Lu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Wei Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Ruiguo Wang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Yu Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
- Fujian University of Traditional Chinese Medicine, No. 1 Qiuyang Road, Minhou Shangjie, Fuzhou, China.
| | - Chengzi Yang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
- Fujian University of Traditional Chinese Medicine, No. 1 Qiuyang Road, Minhou Shangjie, Fuzhou, China.
| |
Collapse
|
92
|
Molina-Martínez P, Corpas R, García-Lara E, Cosín-Tomás M, Cristòfol R, Kaliman P, Solà C, Molinuevo JL, Sánchez-Valle R, Antonell A, Lladó A, Sanfeliu C. Microglial Hyperreactivity Evolved to Immunosuppression in the Hippocampus of a Mouse Model of Accelerated Aging and Alzheimer's Disease Traits. Front Aging Neurosci 2021; 12:622360. [PMID: 33584248 PMCID: PMC7875867 DOI: 10.3389/fnagi.2020.622360] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation is a risk factor for Alzheimer's disease (AD). We sought to study the glial derangement in AD using diverse experimental models and human brain tissue. Besides classical pro-inflammatory cytokines, we analyzed chitinase 3 like 1 (CHI3L1 or YKL40) and triggering receptor expressed on myeloid cells 2 (TREM2) that are increasingly being associated with astrogliosis and microgliosis in AD, respectively. The SAMP8 mouse model of accelerated aging and AD traits showed elevated pro-inflammatory cytokines and activated microglia phenotype. Furthermore, 6-month-old SAMP8 showed an exacerbated inflammatory response to peripheral lipopolysaccharide in the hippocampus and null responsiveness at the advanced age (for this strain) of 12 months. Gene expression of TREM2 was increased in the hippocampus of transgenic 5XFAD mice and in the cingulate cortex of autosomal dominant AD patients, and to a lesser extent in aged SAMP8 mice and sporadic early-onset AD patients. However, gene expression of CHI3L1 was increased in mice but not in human AD brain samples. The results support the relevance of microglia activation in the pathways leading to neurodegeneration and suggest diverse neuroinflammatory responses according to the AD process. Therefore, the SAMP8 mouse model with marked alterations in the dynamics of microglia activation and senescence may provide a complementary approach to transgenic mouse models for the study of the neuroinflammatory mechanisms underlying AD risk and progression.
Collapse
Affiliation(s)
- Patricia Molina-Martínez
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Rubén Corpas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elisa García-Lara
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marta Cosín-Tomás
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Rosa Cristòfol
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Perla Kaliman
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Carme Solà
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - José Luis Molinuevo
- Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Barcelona, Spain.,Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Raquel Sánchez-Valle
- Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Barcelona, Spain.,Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain
| | - Anna Antonell
- Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Barcelona, Spain.,Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain
| | - Albert Lladó
- Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Barcelona, Spain.,Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain
| | - Coral Sanfeliu
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
93
|
Rombaut B, Kessels S, Schepers M, Tiane A, Paes D, Solomina Y, Piccart E, Hove DVD, Brône B, Prickaerts J, Vanmierlo T. PDE inhibition in distinct cell types to reclaim the balance of synaptic plasticity. Theranostics 2021; 11:2080-2097. [PMID: 33500712 PMCID: PMC7797685 DOI: 10.7150/thno.50701] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Synapses are the functional units of the brain. They form specific contact points that drive neuronal communication and are highly plastic in their strength, density, and shape. A carefully orchestrated balance between synaptogenesis and synaptic pruning, i.e., the elimination of weak or redundant synapses, ensures adequate synaptic density. An imbalance between these two processes lies at the basis of multiple neuropathologies. Recent evidence has highlighted the importance of glia-neuron interactions in the synaptic unit, emphasized by glial phagocytosis of synapses and local excretion of inflammatory mediators. These findings warrant a closer look into the molecular basis of cell-signaling pathways in the different brain cells that are related to synaptic plasticity. In neurons, intracellular second messengers, such as cyclic guanosine or adenosine monophosphate (cGMP and cAMP, respectively), are known mediators of synaptic homeostasis and plasticity. Increased levels of these second messengers in glial cells slow down inflammation and neurodegenerative processes. These multi-faceted effects provide the opportunity to counteract excessive synapse loss by targeting cGMP and cAMP pathways in multiple cell types. Phosphodiesterases (PDEs) are specialized degraders of these second messengers, rendering them attractive targets to combat the detrimental effects of neurological disorders. Cellular and subcellular compartmentalization of the specific isoforms of PDEs leads to divergent downstream effects for these enzymes in the various central nervous system resident cell types. This review provides a detailed overview on the role of PDEs and their inhibition in the context of glia-neuron interactions in different neuropathologies characterized by synapse loss. In doing so, it provides a framework to support future research towards finding combinational therapy for specific neuropathologies.
Collapse
|
94
|
Role of Microglia in Modulating Adult Neurogenesis in Health and Neurodegeneration. Int J Mol Sci 2020; 21:ijms21186875. [PMID: 32961703 PMCID: PMC7555074 DOI: 10.3390/ijms21186875] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
Microglia are the resident immune cells of the brain, constituting the powerhouse of brain innate immunity. They originate from hematopoietic precursors that infiltrate the developing brain during different stages of embryogenesis, acquiring a phenotype characterized by the presence of dense ramifications. Microglial cells play key roles in maintaining brain homeostasis and regulating brain immune responses. They continuously scan and sense the brain environment to detect any occurring changes. Upon detection of a signal related to physiological or pathological processes, the cells are activated and transform to an amoeboid-like phenotype, mounting adequate responses that range from phagocytosis to secretion of inflammatory and trophic factors. The overwhelming evidence suggests that microglia are crucially implicated in influencing neuronal proliferation and differentiation, as well as synaptic connections, and thereby cognitive and behavioral functions. Here, we review the role of microglia in adult neurogenesis under physiological conditions, and how this role is affected in neurodegenerative diseases.
Collapse
|
95
|
Vanhunsel S, Beckers A, Moons L. Designing neuroreparative strategies using aged regenerating animal models. Ageing Res Rev 2020; 62:101086. [PMID: 32492480 DOI: 10.1016/j.arr.2020.101086] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/13/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022]
Abstract
In our ever-aging world population, the risk of age-related neuropathies has been increasing, representing both a social and economic burden to society. Since the ability to regenerate in the adult mammalian central nervous system is very limited, brain trauma and neurodegeneration are often permanent. As a consequence, novel scientific challenges have emerged and many research efforts currently focus on triggering repair in the damaged or diseased brain. Nevertheless, stimulating neuroregeneration remains ambitious. Even though important discoveries have been made over the past decades, they did not translate into a therapy yet. Actually, this is not surprising; while these disorders mainly manifest in aged individuals, most of the research is being performed in young animal models. Aging of neurons and their environment, however, greatly affects the central nervous system and its capacity to repair. This review provides a detailed overview of the impact of aging on central nervous system functioning and regeneration potential, both in non-regenerating and spontaneously regenerating animal models. Additionally, we highlight the need for aging animal models with regenerative capacities in the search for neuroreparative strategies.
Collapse
Affiliation(s)
- Sophie Vanhunsel
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - An Beckers
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
96
|
Lin MS. CISD2 Attenuates Inflammation and Regulates Microglia Polarization in EOC Microglial Cells-As a Potential Therapeutic Target for Neurodegenerative Dementia. Front Aging Neurosci 2020; 12:260. [PMID: 33005144 PMCID: PMC7479185 DOI: 10.3389/fnagi.2020.00260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Accumulating evidence has demonstrated a significant association between microglia-driven inflammation in the brain and neurodegenerative dementia. We previously showed a significant decline in CISD2 expression in mice models with advanced age. Moreover, we observed that the knockdown of CISD2 led to remarkable inflammation and mitochondrial dysfunction in neural cells. In the present study, we investigated whether CISD2 attenuation influences anti-inflammatory effects and M1-M2 polarization in microglia. Materials and Methods: The knockdown of CISD2 expression by siRNA (siCISD2) in EOC microglial cells was performed to mimic the age-driven decline of CISD2 expression. The extent of the inflammatory reaction, polarization in the M1/M2 spectrum, and NFκB activation were verified in EOC microglial cells exhibiting CISD2 deficiency. Results: In the cellular model of microglia, loss of CISD2 function mediated by siCISD2 exhibited a significant augmentation of proinflammatory signaling, as well as reduced expression levels of Arg-1, Ym1, IL-10, and BCL2. Attenuation of CISD2 expression led to a decrease in the proportion of the M2 phenotype of microglia (compared to M1). Enhanced DNA-binding activity of the NFκB p65 subunit was confirmed in cells transfected with siCISD2, as demonstrated by enzyme-linked immunosorbent assay (ELISA). Conclusions: To the best of our knowledge, this is the first report examining the following phenomena: (1) anti-inflammatory effects of CISD2 in microglia via NFκB regulation; and (2) microglial CISD2 assistance in the restoration of M2 microglia phenotype. The anti-inflammatory effects of CISD2 in microglia eventually augment anti-apoptotic effects, which provides a rationale for the development of potential therapeutic target for neurodegenerative diseases and neurodegenerative dementia.
Collapse
Affiliation(s)
- Muh-Shi Lin
- Division of Neurosurgery, Department of Surgery, Kuang Tien General Hospital, Taichung, Taiwan.,Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan, Taiwan.,Department of Biotechnology, College of Medical and Health Care, Hung Kuang University, Taichung, Taiwan.,Department of Health Business Administration, College of Medical and Health Care, Hung Kuang University, Taichung, Taiwan
| |
Collapse
|
97
|
Zhao J, Bi W, Zhang J, Xiao S, Zhou R, Tsang CK, Lu D, Zhu L. USP8 protects against lipopolysaccharide-induced cognitive and motor deficits by modulating microglia phenotypes through TLR4/MyD88/NF-κB signaling pathway in mice. Brain Behav Immun 2020; 88:582-596. [PMID: 32335193 DOI: 10.1016/j.bbi.2020.04.052] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 11/16/2022] Open
Abstract
Ubiquitin-specific protease 8 (USP8) regulates inflammation in vitro; however, the mechanisms by which USP8 inhibits neuroinflammation and its pathophysiological functions are not completely understood. In this study, we aimed to determine whether USP8 exerts neuroprotective effects in a mouse model of lipopolysaccharide (LPS)-induced cognitive and motor impairment. We commenced intracerebroventricular USP8 administration 7 days prior to i.p. injection of LPS (750 μg/kg). All treatments and behavioral experiments were performed once per day for 7 consecutive days. Behavioral tests and pathological/biochemical assays were performed to evaluate LPS-induced hippocampal damage. USP8 attenuated LPS-induced cognitive and motor impairments in mice. Moreover, USP8 downregulated several pro-inflammatory cytokines [nitric oxide (NO), tumor necrosis factor α (TNF-α), prostaglandin E2 (PGE2), and interleukin-1β (IL-1β)] in the serum and brain, and the relevant protein factors [inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2)] in the brain. Furthermore, USP8 upregulated the anti-inflammatory mediators interleukin (IL)-4 and IL-10 in the serum and brain, and promoted a shift from pro-inflammatory to anti-inflammatory microglial phenotypes. The LPS-induced microglial pro-inflammatory phenotype was abolished by TLR4 inhibitor and in TLR4-/- mice; these effects were similar to those of USP8 treatment. Mechanistically, we found that USP8 increased the expression of neuregulin receptor degradation protein-1 (Nrdp1), potently downregulated the expression of TLR4 and myeloid differentiation primary response protein 88 (MyD88) protein, and inhibited the phosphorylation of IκB kinase (IKK) β and kappa B-alpha (IκBα), thereby reducing nuclear translocation of p65 by inhibiting the activation of the nuclear factor-kappaB (NF-κB) signaling pathway in LPS-induced mice. Our results demonstrated that USP8 exerts protective effects against LPS-induced cognitive and motor deficits in mice by modulating microglial phenotypes via TLR4/MyD88/NF-κB signaling.
Collapse
Affiliation(s)
- JiaYi Zhao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong Province 510632, China
| | - Wei Bi
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province 510630, China
| | - JiaWei Zhang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong Province 510632, China
| | - Shu Xiao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong Province 510632, China
| | - RuiYi Zhou
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province 510630, China
| | - Chi Kwan Tsang
- Clinical Neuoscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province 510630, China
| | - DaXiang Lu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong Province 510632, China
| | - Lihong Zhu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong Province 510632, China.
| |
Collapse
|
98
|
Amburana cearensis: Pharmacological and Neuroprotective Effects of Its Compounds. Molecules 2020; 25:molecules25153394. [PMID: 32726999 PMCID: PMC7435960 DOI: 10.3390/molecules25153394] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Amburana cearensis A.C. Smith is an endemic tree from Northeastern Brazil used in folk medicine as teas, decocts and syrups for the treatment of various respiratory and inflammatory diseases, since therapeutic properties have been attributed to compounds from its stem bark and seeds. Numerous pharmacological properties of semi-purified extracts and isolated compounds from A. cearensis have been described in several biological systems, ranging from antimicrobial to anti-inflammatory effects. Some of these activities are attributed to coumarins and phenolic compounds, the major compounds present in A. cearensis seed extracts. Multiple lines of research demonstrate these compounds reduce oxidative stress, inflammation and neuronal death induced by glutamate excitotoxicity, events central to most neuropathologies, including Alzheimer’s disease (AD) and Parkinson’s Disease (PD). This review focuses on the botanical aspects, folk medicine use, biological effects and pharmacological activities of A. cearensis compounds and their potential as novel non-toxic drugs for the treatment of neurodegenerative diseases.
Collapse
|
99
|
A novel compound DBZ ameliorates neuroinflammation in LPS-stimulated microglia and ischemic stroke rats: Role of Akt(Ser473)/GSK3β(Ser9)-mediated Nrf2 activation. Redox Biol 2020; 36:101644. [PMID: 32863210 PMCID: PMC7371982 DOI: 10.1016/j.redox.2020.101644] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/30/2020] [Accepted: 07/11/2020] [Indexed: 01/07/2023] Open
Abstract
Microglia-mediated neuroinflammation plays a crucial role in the pathophysiological process of multiple neurological disorders such as ischemic stroke, yet lacks effective therapeutic agents. Previously, we discovered one novel synthetic compound, tanshinol borneol ester (DBZ), possesses anti-inflammatory and anti-atherosclerotic activities, whereas little is known about its effects in CNS. Therefore, the present study aims to explore the effects and potential mechanism of DBZ on neuroinflammation and microglial function. Our studies revealed that DBZ significantly inhibited NF-κB activity, suppressed the production of pro-inflammatory mediators meanwhile promoted M2 mediators expression in LPS-stimulated BV2 cells and mouse primary microglia cells. DBZ also exhibited antioxidant activity by enhancing Nrf2 nuclear accumulation and transcriptional activity, increasing HO-1 and NQO1 expression, and inhibiting LPS-induced ROS generation in BV2 cells. Importantly, the anti-neuroinflammatory and antioxidant effects of DBZ above were reversed by Nrf2 knockdown. Additionally, DBZ ameliorated sickness behaviors of neuroinflammatory mice induced by systemic LPS administration, and significantly reduced infract volume, improved sensorimotor and cognitive function in rats subjected to transient middle cerebral artery occlusion (tMCAO); besides, DBZ restored microglia morphological alterations and shifted the M1/M2 polarization in both murine models. Mechanistically, DBZ-induced Nrf2 nuclear accumulation and antioxidant enzymes expression were accompanied by increased level of p-Akt(Ser473) (activation) and p-GSK3β(Ser9) (inactivation), and decreased nuclear level of Fyn both in vitro and in vivo. Pharmacologically inhibiting PI3K or activating GSK3β markedly increased nuclear density of Fyn in microglia cells, which blocked the promoting effect of DBZ on Nrf2 nuclear accumulation and its antioxidant and anti-neuroinflammatory activities. Collectively, these results indicated the effects of DBZ on microglia-mediated neuroinflammation were strongly associated with the nuclear accumulation and stabilization of Nrf2 via the Akt(Ser473)/GSK3β(Ser9)/Fyn pathway. With anti-neuroinflammatory and antioxidant properties, DBZ could be a promising new drug candidate for prevention and/or treatment of cerebral ischemia and other neuroinflammatory disorders.
Collapse
|
100
|
The Potent PDE10A Inhibitor MP-10 (PF-2545920) Suppresses Microglial Activation in LPS-Induced Neuroinflammation and MPTP-Induced Parkinson’s Disease Mouse Models. J Neuroimmune Pharmacol 2020; 16:470-482. [DOI: 10.1007/s11481-020-09943-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022]
|